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ABSTRACT

The problem of graph layout and drawing is fundamental to many aproaches to the visualization of relational

information structures. As the data set grows, the visualization problem is compounded by the need to reconcile

the user’s need for orientation cues with the danger of information overload. Put simply: How can we limit the

number of visual elements on the screen so as not to overwhelm the user yet retain enough information that

the user is able to navigate and explore the data set confidently? How can we provide orientational cues so that

a user can understand the location of the current viewpoint in a large data set? These are problems inherent

not only to graph drawing but information visualization in general. We propose a method which extracts the

significant features of a directed acyclic graph as the basis for navigation 1.

1991 Computing Reviews Classification System: D.2.2, G.2.1, G.2.2, H.5.2, I.3.6, I.3.8
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Note: This paper has been submitted as a journal publication. At CWI, the work was carried under the project

INS3.2 “Information Visualization”

The on-line version of this report contains parts of the figures in colour2

1. INTRODUCTION

A fundamental challenge for information visualization applications that use graph visualization techniques for
relational data sets is the scale and structural complexity of the data. Beyond the well known and researched
problems of graph layout, large-scale data sets call for new approaches to navigation, and the provision of
visual cues to support the user’s awareness of their context or location within the data set. There is a large
body of published research results in this area, which involve the use of zoom [8], pan, visual cues [2], and
focus+context techniques using non-linear filters such as, for example, fish-eye views [7], hyperbolic geome-
try [5], and distortion-oriented presentations [9]. This paper contributes a method which can be used to produce

1Note: the colour figures of this paper are available at the web site:http://www.cwi.nl/InfoVisu .
2Seeftp://ftp.cwi.nl/pub/CWIreports/INS/INS-R9813.ps.Z
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a schematic view of a directed acyclic graph or DAG to the tools and techniques available for viewing graph
structures.

Theskeletonof a graph is the set of nodes and edges that are determined to be significant by a given metric.
The skeleton can give the impression of a structural backbone. Because it is a selection of a small subset of
important nodes, the skeleton eliminates the problem of information overload while still providing information
essential for further exploration. The skeleton also allows the user to characterize a particular graph by pro-
viding a simple image which contains the most important features or ’landmarks’ of a graph. In this way, the
skeleton provides the user with a map for orientation and navigation. The features chosen by the metric may
be structurally important or reflect some other measure. By changing the metrics used to extract the skeleton,
we may produce different maps for different purposes.

The highlighting of trees according to the underlying Strahler values was proposed as an aid to navigation
in [2]. In this paper, we will explain how to apply Strahler and other metrics to trees and DAGs to obtain a
skeleton. Obviously, the metric is crucial in the determination of the skeleton. We have looked for metrics
which result in a skeleton that is a good indicator of the underlying structure of the graph.

Our current methods require that the graph be acyclic. Although it is possible to extract a DAG from an
arbitrary graph, for simplicity we have chosen in this phase of work to assume that the graph is already directed
and acyclic. As with other types of graphs, DAGs can be quite overwhelming when the number of nodes is
large and are found in many applications. This makes the DAG an excellent candidate for skeleton extraction.
Of course, any result derived for DAGs is also applicable for trees.

2. GENERAL METHODOLOGY

The general methodology for extracting skeletons is as follows:

• Choose a metric function for a graph and a cutoff value.

• Traverse the graph and extract the nodes whose metric values are above the cutoff value.

• Display the final skeleton. This consists of the nodes which have been extracted and the edges connecting
them.

• Display the leftover nodes and edges, possibly merged or simplified.

Figure 1: A fully displayed tree
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The metric should reflect the relative significance of each node of the graph. The metric and the resulting
skeleton should correspond to a clear mental model which aids the user during navigation. The cutoff value
determines the level of detail which is represented by the skeleton.

Figure 2: A schematic view of the tree in Figure 1

The last step of our method involves representing the nodes and edges not selected by the extraction process.
For trees, the subtrees not belonging to the skeleton may be simply replaced by triangles or other shapes,
resulting in a schematic view of the tree. Representing the non-skeletal nodes and edges from a DAG calls
for more sophisticated techniques using different colours and intensities to distinguish between skeletal and
non-skeletal parts of the DAG (See Section 2.3 for details).

Introductory example:Figure 1 shows the original structure of a tree. Figure 2 shows the skeleton which
results from selecting the nodes which have metric values above a cutoff value. Our program has replaced
the excluded nodes by triangles to create aschematic viewof the tree. A schematic view is a simplified
representation of a graph which makes use of the skeleton and replaces non-skeletal parts of the graph with
lines or shapes.

2.1 Metrics
The extraction of a skeleton for a DAG requires the computation of a value for each node of a DAG in the
same fashion as for trees. In this section, we will talk about two different metrics and give an impression
of the skeletons which they give as a result. These metrics were chosen for two reasons. First, each can be
explained in terms of a simple metaphor, which we believe will help users develop an intuition about the effect
of the metric, without needing to understand the underlying mathematics. Second, experimental results have
shown that the metrics do provide an impression of the overall structure of the DAG. We will also indicate how
different metrics may be composed. The composition of metrics can produce quite useful results and can be
applied much the same way as one might apply several layers of optical filters to a camera.

The Strahler metric. We used Strahler numbers for trees as a metric to extract the skeleton in Figure 2. This
metric was already presented in [2] and we will recall it here; for a full account on Strahler numbers the reader
may see [3].

The Strahler value of a leaf is set to 1. For any other nodev, a value is computed using the formula:

S(v) = max(S(k1), . . . , S(kp)) +
{
p− 1 if all valuesS(ki) are equal
p− 2 otherwise

(2.1)
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wherek1, . . . , kp are the successors ofv.
Strahler numbers have proven to be a good measure of the branching structure of hierarchical networks

(trees). They were also used as the basis of a method for producing realistic images of 2D trees in a paper by
Viennot et al. [10]. The results presented there certainly confirms the potential that Strahler numbers bear as a
means for describing graphical effects on trees.

Figure 3: Strahler for DAGs

Numbers such as the Strahler number for trees are often referred to assynthetic values, because of their links
with attribute grammars [4] and their use in combinatorial mathematics [6]. Other values can be computed
using the same recursive scheme. For example, giving a value of 1 to every leaf of a tree and setting the value
of a node to be the sum of the values of its children leads to a synthetic computation of the numbers of leaves for
each subtree. This metric can be given more application specific values, through the use of weights (see [2]).

The same computation scheme can be applied to any graph without cycles. Indeed, it is the absence of cycles
in the structure that makes it possible to define a function depending on the set ofsuccessorsof a node. A DAG
has no cycles and provides an explicit direction to traverse its nodes. Given a DAG one can identify a subset
of nodes having incoming degree zero, calledsource nodes. Similarly, the nodes having outgoing degree zero
are calledsink nodes. Obviously, any exhaustive search of the DAG may start from the source nodes and end
in the sink nodes. The traversal of a DAG may also start from the sink nodes, depending on the desired results.

The Strahler metric can be easily generalized to DAGs by settingS(b) = 1 for every sink nodes, and by
applying Eq. (2.1) to the set ofsuccessorsof a nodev. Figure 3 gives an example.

The Flow metric. The second metric we present is based on a natural interpretation of a DAG. A downward
scan of the DAG emphasizes the distribution of information from a node to its successors.

A good metaphor to capture the dynamic among the links is that of a set of connected pipes through which
water flows from top to bottom. We will call that metric theFlow metricand denote it byM .

LetM(t) = 1 for every source nodet. Then compute values for every other node the following way: A node
already having a value divides it by the number of its successors and contributes this value to each of them. A
node receiving a set of values coming from its ancestors sums them up. More precisely, the valueM(v) for a
nodev is obtained by summing contributions over the set of all its ancestorsa1, . . . , aq (q ≥ 1).

That is,

M(v) =
∑
j

M(aj)/number of successors ofaj (2.2)

The DAG in Figure 4 provides an example. Observe that values produced by this metric do not necessarily
decrease (or increase) along a path from source to sink nodes. The valueM(v) at a nodev evaluates the flow
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Figure 4: Flow metric for DAGs

going through that node.

General framework. As can be expected, the common properties of both Strahler and Flow metric is that
nodes of importance in a graph are those with greater values. This should be kept in mind when designing any
other metric to be applied to a DAG. The pattern used for Strahler, as well as the Flow metrics, can easily be
extended to a general computation scheme, as follows. Suppose arbitrary valuesK(b) are given to sink nodes
of a DAG. Set

K(v) = F ( (K(k1), . . . ,K(kp) ) (2.3)

for any other nodev, wherek1, . . . , kp are the successors ofv andF is a function (or formula) depending on
the valuesK(k1), . . . ,K(kp). Hence, values are assigned to nodes of the DAG through an upward search. The
Strahler metric follows that computation scheme. We could also define a function computing values through a
downward search. In that case, we use a recurrence:

K ′(v) = F ( (K ′(a1), . . . ,K ′(aq) ) (2.4)

wherea1, . . . , aq are the ancestors ofv, and assign starting valuesK ′(t) to source nodes of the DAG. This
computation scheme was used to define the Flow metric. Observe that a dual Strahler metric could be defined
by applying the opposite computation scheme using the same formula (Eq. (2.1)), but applying it to ancestors
instead of successors. The same observation applies to the Flow metric, yielding a measure for an ”upward”
flow of information or data.

The actual function to compute is in some sense application dependent. However, the choice or design of a
metric should be strongly linked to a clear interpretation of its effect on the extraction process. From this point
of view, metrics corresponding to well understood metaphors might have a wider range of uses and applications.
This is the case for the Flow metric since it is supported by the water flow metaphor: the nodes in the skeleton
are those through which much of the water flows. Also, weights can be used the same way they are used with
Strahler to influence values of the nodes. Another possibility could be to give distinct starting values to source
nodes of a DAG.

2.2 Skeleton extraction
Given a metric, the simplest approach to extract a skeleton is to collect the nodes with a value greater than or
equal to a lower bound. We can compute a lower bound that extracts a specific percentage of the nodes, so we
will express it in terms of the percentage.
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Figure 5 shows the skeleton which results from selecting the nodes with Flow values in the top 30 %. The
square bold-faced nodes are those belonging to the skeleton. The thicker arcs are those joining nodes in the
skeleton. This example actually has no need for a skeletal view because it is not very complex but the smaller
number of nodes allows us to more easily illustrate the essential concepts. For examples using a larger number
of nodes, please see the color plates in the Appendix.

Figure 5: The nodes selected based on Flow values in the top 30 %

All source nodes are part of the skeleton since they have an assigned values of 1. The water flow metaphor
aids in understanding why a given node is present in the skeleton. This is obvious, for example, for the node
with incoming degree 4 and outgoing degree 0 in the upper part of the skeleton; the contributions it collects
from all sources nodes except one sum up to a value of 1.25, hence its presence in the skeleton. The node at the
bottom of the right part on the skeleton bears the same value. Observe that it collects values from six different
nodes, only two of which are part of the skeleton. The fact that the value 1.25 makes those nodes part of the
skeleton depends on the set of values reached by all nodes in the graph and our choice to display the 30% top
nodes.

2.3 Implementing a schematic view
The goal of the schematic view is to emphasize the ”backbone”, as produced by the skeleton extraction. The
schematic view consists of two displayed parts: the skeleton itself, and the leftover nodes and edges.

Instead of lines, very long and thin trapezoids are used to display the skeleton edges. Trapezoids were chosen
because they can have different widths at each end as an extra visual cue. The width of the trapezoids at the
nodes are proportional to the metric values of the incident nodes; in other words, the sizes of the edges give
an indication of the magnitute of the metrics at the incident nodes. Similarly, a continuous visual indication is
provided by colour: skeleton edges and nodes are drawn using a different hue than the leftover nodes (e.g. red
on the colour plates in the Appendix). As a further visual cue, the saturation component of the colour along
each edge is interpolated from values at the source and destination nodes determined from the skeletal metric.

For the DAGs, the leftover nodes and edges are simply drawn using a low-contrast hue (light gray on the
Appendix colour plates). For trees, the monotonicity of the metrics, as well as the simpler structure of trees,
allows for an alternative representation: triangles are used to replace the leftover nodes and edges. The size
of the triangle image is proportional to the subtree being represented (see Figure 2). A continuous colour
transition similar to the scheme for the skeleton edges is also used on the triangles. The top of the triangles have
a saturation proportional to the node’s metric value, and the triangle gradually changes colour and saturation
toward a shade of the background color. Of course, more complicated representations than triangles could be
used for the subtrees such as the type of images used in the Aggregate TreeMaps of Chuah [1]).

In the cases of both trees and DAGs, the use of alpha blending has also been an effective aid for both trees
and DAGs. The transparency provided by alpha blending ensures that the intersections of edges and triangles
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do not interfere with the clarity of the figure.

3. METRIC COMBINATION

Any good metric should concentrate on a specific aspect of the DAG.Combiningdifferent metrics into new
ones is a way to capture multiple aspects of the graph; some examples will be presented in this section.

Figure 6: Skeleton of a DAG based on a combination of Strahler and Flow metrics

Combining Strahler and Flow metrics. We use an example to illustrate how combination of metrics can
be achieved. When looking at the skeleton in Figure 5, one may object to the fact thatall source nodes are
selected, i.e. that the extraction process based on the Flow metric does not enable to distinguish among them.
Indeed, one may want to use a metric reflecting the fact that a sub-graph, starting at a specific source, is more
complex than another. Using our water flow metaphor, the metric should provide pipes with different diameters,
depending on the complexity of the corresponding sub-graph. The Strahler values of a node, which measure the
structural complexity of its sub-graph, is then a good candidate to provide a measure for this complexity. This,
in combination with the Flow metrics, may be used to define the desired new metrics. The detailed definition
of the new metrics is as follows.

The Flow metric is modified so that the node receives a value from its ancestor proportional to its Strahler
value. Denote byµ(v) the sum of the Strahler values of the children of a given nodev. That is,µ(v) =∑
j S(kj), where the sum extends over the set of successorsk1, . . . , kp of v. The new metric is then defined

byP (t) = 1 for all source nodest and by the equation:

P (v) =
∑
j

P (aj) ·
S(v)
µ(aj)

for all other nodes, where the sum extends over the set of ancestorsa1, . . . , aq of v. That is, the valueP (v)
is obtained by summing contributions obtained from ancestors ofv. A specific ancestor will give its children a
part of its own value proportional to their Strahler values.

The skeleton extracted from the same DAG as in Figure 5, using identical cutoff values, but based on this
modified Flow scheme is shown in Figure 6. Notice how this new computation scheme sorts the source nodes
to extract only those playing a more important role in the whole graph (or network of pipes).

Combining directions. A further combination of metrics can be achieved if their directions are also taken
into consideration. Indeed, the choice between Eq. (2.3) or Eq. (2.4) for the computation scheme priviledges
a direction. If both a metric and its ”dual” are used on the same graph, each node is assigned two different
values, reflecting directional measures. These values can then be combined (for example, by taking their
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average value), thereby yielding a new metrics again. This ”average” metrics reflects both the ”upward” and
the ”downward” characteristics of the DAG relative to the metrics.

As a specific example, the modified Flow metrics of the preceding section has its dual metrics, too. This
dual metrics uses the dual Flow metrics and thedual Strahler values. Finally, the two directional Flow metrics
can be combined into an average Flow metrics. This metrics has been used to obtain the color plates in the
Appendix.

4. CONCLUSIONS AND FURTHER RESEARCH

Our skeleton extraction methodology can be applied to any tree or DAG without using domain-specific knowl-
edge, i.e. the semantic information usually associated with nodes or edges in a graph visualization application.
However, it is possible to add domain-specific weights to the metric in order to sift the nodes for features of
interest. In this way, it is possible to tailor a metric in order to implement a search. We have discussed the first
type of metric which extracts interesting features from the graph relations inherent to the data, resulting in a
structural view.

In our java application, skeletal views play an important role as navigational aids, complementing techniques
such as zoom, pan, and fish-eye views. Although this is the only application of skeletal views which we have
discussed, there are others. For example, we have created thumbnail images with skeletal views of a DAG.
These thumbnails can then be used as the representation of a folded subtree. Another well known application
of thumbnails is as a bird’s-eye view of the graph with an indication of the current viewing location.

The primary goal of our future research is to extend the skeleton idea to more general graphs. The definition
of metrics for such graphs may be a significant problem. Recursive functions should be defined whose conver-
gence is ensured. Other metrics for DAGs, as well as other techniques to display the skeleton and the leftover
nodes should be explored. A more elaborate usability study on the utility of skeletal views is also a possible
future activity.
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6. COLOR PLATES

The following examples, as well as others, can be viewed at the url:
http://www.cwi.nl/InfoVisu/

Figure 7: Underlying DAG extracted from a web site (approx. 200 nodes).
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Figure 8: Skeleton based on average of modified Flow metric and its dual.


