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We work in a general framework where the state of a physical system is defined by its behaviour
under measurement, and the relation between different systems is constrained by a no-signalling
principle. We characterize symmetric states in such theories, showing that their marginals can be
approximated by convex combinations of independent and identical conditional probability distribu-
tions. This generalizes the classical finite de Finetti theorem of Diaconis and Freedman. Our results
have application to the foundations of physics, quantum cryptography, and the study of classical
channels. In particular, they apply to correlations obtained from quantum states even when there
is no bound on the local dimension, so that known finite quantum de Finetti theorems cannot be
used.

The finite de Finetti theorem states that taking a ran-
dom sample from a set of objects is approximately the
same as sampling independent and identically distributed
(i.i.d.) random variables, as long as the sample size is
small compared to the total number of objects in the
set. This is intuitively clear, but the error of the approx-
imation was not quantified until 1980 [1]. We prove the
analogous statement when the objects in the set are not
classical particles, but particles in a more general, prob-
abilistic, physical theory, which we analyse in the convex
sets framework (see [2, 3]).

We now give a brief description of the setting and our
results; precise definitions are given later on. A physical
system in a probabilistic physical theory is made up of
a number of—in our case identical—subsystems, called
particles. On each particle different measurements from
a set X can be performed and outputs from a set A are
obtained. The state of a particle is specified by a con-
ditional probability distribution P [A|X ]: the probability
of obtaining result a when performing measurement x is
given by P [A = a|X = x]. The set of allowed states Ω is
assumed to be convex (so that probabilistic mixtures of
states are valid states) and there is a rule for determining
which states of n particles are valid. Different rules lead
to different theories; they have in common, however, a
no-signalling property, which ensures that the reduced
state on a subset of the particles is always well-defined.

Our main result is that the joint state P [Ak|Xk] =
P [A1 · · ·Ak|X1 · · ·Xk] of k particles randomly chosen
from n particles—or equivalently, the state of the first k
particles of a permutation-invariant state of n particles—
can be approximated by a convex combination of iden-
tical and independent conditional probability distribu-
tions,

P [Ak|Xk] ≈

∫

dm(λ)Pλ[A|X ]⊗k (1)

and that the error in the approximation is bounded by
|X |k(k−1)/n in the appropriate distance measure, where
|X | is the number of different possible measurements [28].
Our result generalizes the finite de Finetti theorem of Di-
aconis and Freedman, who proved for classical probabil-
ity distributions (|X | = 1) that the error in the approxi-
mation is no more than k(k − 1)/n [1][29].

This work is motivated by recent work on finite quan-
tum de Finetti theorems, i.e., statements of the form

ρk ≈

∫

dσ σ⊗k, (2)

where ρk is the k-particle reduced density matrix of a
permutation-invariant density matrix of n d-dimensional
particles, with the error at most 4d2k/n in the trace dis-
tance [4, 5][30]. Our results do not imply the quantum
de Finetti theorem in full generality, but do have con-
sequences for quantum correlations that do not follow
from known quantum de Finetti theorems. In particu-
lar, our results are relevant when there is no bound on
the dimension of the quantum particles (so that the er-
ror in Eq. (2) cannot be controlled) but there is a bound
on the number of different measurements |X | (so that
the approximation in Eq. (1) is good). We also prove
a finite quantum de Finetti theorem for separable ρn,
in which case there is an approximation of the form in
Eq. (2) with error k(k − 1)/n, independent of the di-
mension. This highlights the difference between classical
correlations and entanglement in quantum states.

Applications.—This work has applications to three ar-
eas. The first is to the foundations of physics : Just as
the classical de Finetti theorem allows a Bayesian of de
Finetti’s subjective school to connect with the prior prob-
abilities of the objectivist [6], our results establish the
same correspondence for measurement results in theories
that obey a no-signalling principle.
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The second is in quantum cryptography, specifically
the security of Quantum Key Distribution (QKD). QKD
schemes [7, 8] allow the generation of cryptographic keys
that are provably secure under the assumption that quan-
tum mechanics provides a correct description of physical
reality. This presents a major advantage over classical
schemes, where security relies on assumptions about the
limited computational power of an eavesdropper. The
role of a quantum de Finetti theorem in proving the se-
curity of a key distribution scheme is to establish that
the most general attack an eavesdropper can make is
only a little more powerful than a collective attack, where
the adversary is assumed to apply the same transforma-
tion to each subsystem [9, 10]. Recently, Barrett, Hardy,
and Kent have devised a scheme to produce a key bit
from quantum correlations and their protocol is secure
even when the eavesdropper is only restricted by a no-
signalling principle and can do operations not allowed by
quantum theory [11] (see also [12, 13, 14]). Although it
is reasonable to assume that quantum theory is correct,
such a strong security proof has advantages as it still ap-
plies when the communicating parties do not have full
control over their measurement apparatus and, in par-
ticular, when they cannot control the dimension of the
quantum states from which they obtain the correlations.
Therefore, quantum de Finetti theorems do not directly
apply, since they are necessarily dimension-dependent [5],
but our results do not have this limitation.

The third application is to the study of classical chan-
nels. Up to now we have described de Finetti theorems
as bounding the distance between states in a physical
theory, and have not addressed operations or channels
on those states. Fuchs, Schack and Scudo have used the
Jamiolkowski isomorphism to transfer the infinite quan-
tum de Finetti theorem (n = ∞, k < ∞) [15, 16, 17]
to quantum channels [18]. Since a conditional probabil-
ity distribution can be viewed as a classical channel with
probability distributions as input and output, our results
also provide a de Finetti theorem for classical channels.

Outline.—Our first task is to define an appropriate dis-
tance measure on states of k particles in probabilistic
theories, in order to quantify the error in Eq. (1). The
distance between states should bound the probability of
distinguishing them by measurement, and so we need to
be clear about what measurement strategies are allowed.
One possibility, which we explore in [19], is to restrict to
strategies where each of the k particles is measured indi-
vidually. But when the conditional probability distribu-
tions arise from making informationally complete local
measurements on entangled quantum states, the result-
ing distance measure fails to bound the trace distance
between the quantum states. Therefore, in this Letter
we work in the convex sets framework, a very general
setting in which all noncontextual measurements are al-
lowed, including all joint quantum-mechanical measure-
ments. We describe this framework in the next section.

We then state and prove our results.

Convex sets framework.—Let Ω be the set of states of a
particle. We assume that Ω is convex, compact, and has
affine dimension n. In probability theory, for example, Ω
is the simplex of probability distributions (ω1, . . . , ωn+1),
ωi ≥ 0,

∑

i ωi = 1, while in quantum theory, Ω is (isomor-
phic to) the set of positive operators ω with trace one on
a Hilbert space H ∼= Cd. We are particularly interested
in the case where Ω is specified by a set of conditional
probability distributions {Pλ[A|X ]}, whose elements are
indexed by a label λ. This is partly because quantum
states can be described in this way. For instance, the
state ρ of a qubit, a spin- 1

2 system, is uniquely deter-
mined by the probabilities of obtaining spin up or down
when it is measured along the x, y, or z axes of the
Bloch sphere. Thus a qubit can be described by a con-
ditional probability distribution P [A|X ] with A = {↑, ↓}
and X = {x, y, z}. Not all conditional probability distri-
butions can be obtained by making local measurements
on quantum states. This led Barrett to define generalized
theories [20], where the state space Ω is the set of all con-
ditional probability distributions {Pλ[A|X ]}, denoted �.
When |X | = 1, this reduces to classical probability the-
ory. In fact, every Ω can be mapped to a convex subset
of � for some number of fiducial measurements and out-
comes (e.g., one measurement and dim A(Ω) outcomes [2,
Lemma 1]).

The most general measurement that can be performed
on a quantum system is a positive operator-valued mea-
sure (POVM), whose elements are termed effects. An
effect r can be written as r(ω) = Tr (Rω) for some non-
negative operator R with R ≤ 1, where r(ω) is the prob-
ability of obtaining the outcome associated with effect r
when the state is ω. Effects in a generalized theory will
be functions mapping states to probabilities, and these
functions should be affine so that they are compatible
with preparing convex combinations. The vector space
of affine functions a : Ω → R, denoted A(Ω), is isomor-
phic to Rn+1. The cone of nonnegative affine functions
on Ω is denoted A+(Ω). The order unit of A(Ω) is the
element e ∈ A(Ω) satisfying e(ω) = 1 for all ω ∈ Ω. An
effect is an element a ∈ A(Ω) satisfying 0 ≤ a(ω) ≤ 1
for all ω ∈ Ω. The set of all effects is denoted [0, e].
There is a natural embedding of Ω into A(Ω)∗, the dual
space of A(Ω), given by ω 7→ ω̂, where ω̂(a) = a(ω)
for all a ∈ A(Ω). Furthermore, if ω̂ ∈ A(Ω)∗ satisfies
ω̂(a) ≥ 0 for all a ∈ A+(Ω) and ω̂(e) = 1, then ω̂ is the
image of some state ω ∈ Ω [21, Section 2.6]. We iden-
tify ω̂ with ω in what follows. It is easy to check that
‖ · ‖ = supa∈[0,e] |a(·)| is a norm on A(Ω)∗. For more
details about the convex sets framework, see [2, 3].

A natural distance measure on the set of states,
which generalises the variational distance between clas-
sical probability distributions and the trace distance be-
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tween quantum states, is given by

‖ω − ω′‖ = sup
a∈[0,e]

|a(ω) − a(ω′)|. (3)

In quantum theory, systems are combined by taking
the tensor product of the Hilbert spaces for each system.
In the convex sets framework, the space A(Ω)⋆ is not a
Hilbert space but a Banach space and, although we still
combine systems via a tensor product, the tensor prod-
uct space is no longer unique. The action of the tensor
product on states is the usual one: ω ⊗ ω′ is defined to
be the product state where system Ω is in state ω, system
Ω′ is in state ω′, and the two systems are independent.
Taking the closure under convex combinations yields:

Definition 1. The minimal tensor product of Ω and Ω′,
denoted by Ω ⊗min Ω′ consists of convex combinations of
product states ω ⊗ ω′, ω ∈ Ω and ω′ ∈ Ω′.

States in Ω ⊗min Ω′ are said to be separable. The ac-
tion on effects is also the standard one: if a is a valid
effect for system Ω and a′ a valid effect for system Ω′,
then a ⊗ a′ is the effect defined on product states via
a ⊗ a′(ω ⊗ ω′) = a(ω)a′(ω′). If such effects (and convex
combinations thereof) are to be allowed, the state space
must only contain states in the maximal tensor product,
defined via duality as:

Definition 2. The maximal tensor product of Ω and Ω′,
denoted by Ω ⊗max Ω′ consists of all bilinear functions
µ : A(Ω) × A(Ω′) → R that satisfy µ(a ⊗ b) ≥ 0 for
a, b ≥ 0, and µ(e ⊗ e′) = 1.

Thus µ ∈ Ω ⊗max Ω′ can be written as a linear combi-
nation of product states, possibly with negative weights.
In classical probability theory, the minimal and the maxi-
mal tensor product coincide. In general, a tensor product
Ω⊗Ω′ is a convex set with Ω⊗minΩ′ ⊆ Ω⊗Ω′ ⊆ Ω⊗maxΩ

′.
In quantum theory, Ω⊗Ω′ is the set of trace one positive
operators on the (unique) Hilbert space tensor product
of H and H′. Note that Ω ⊗ Ω′ lies strictly between the
maximal and minimal tensor products in the quantum
case. The set of separable quantum states is Ω ⊗min Ω′.

For a state µ ∈ Ω⊗Ω′, we say that µΩ ∈ Ω, defined by
a(µΩ) = a ⊗ e′(µ) for all effects a, is the partial trace of
µ with respect to Ω′. An effect on the tensor product is
an element a ∈ A(Ω ⊗ Ω′) satisfying 0 ≤ a ≤ e ⊗ e′. The
larger the set of joint states, the smaller the set of allowed
effects. This means that the distance measure that we
defined in Eq. (3), when applied to states of more than
one particle, depends on which tensor product we use. It
is true, however, that ‖ω−ω′‖ ≤ ‖ω−ω′‖min, the distance
measure for the minimal tensor product, since in that
case the set of effects is largest. Also note that a physical
theory may place additional restrictions on which effects
are allowed but, even then, ‖ω − ω′‖ provides an upper
bound on the probability of distinguishing ω and ω′.

In generalized no-signalling theory (GNST), particles
are combined according to the maximal tensor product.
It can be shown that the state space of n particles is
precisely the set of all no-signalling conditional proba-
bility distributions [20, 22], including Popescu-Rohrlich
boxes [23]. A bipartite distribution P [A1A2|X1X2]
is said to be no-signalling if the marginal distribu-
tion P [A1|X1X2] is independent of X2 and likewise
P [A2|X1X2] is independent of X1. A multipartite dis-
tribution is no-signalling if all the bipartite distributions
obtained by grouping the particles into two sets are no-
signalling. The no-signalling principle ensures that the
marginal distribution P [Am|Xm] ∈ �

⊗maxm of a state
P [An|Xn] ∈ �

⊗maxn is well-defined.
Results.—Suppose we have n particles in state

P [An|Xn] ∈ Ω⊗n. If we interchange the particles ac-
cording to a permutation π ∈ Sn, the resulting state is

πP [An = a1 · · · an|X
n = x1 · · ·xn]

= P [An = aπ−1(1) · · ·aπ−1(n)|X
n = xπ−1(1) · · ·xπ−1(n)].

We say that a conditional probability distribution
P [An|Xn] is symmetric if it is invariant under all per-
mutations π ∈ Sn. If |X | = 1, this definition reduces to
the usual definition of a symmetric probability distribu-
tion. We can now state our main result:

Theorem 3. Let Ω be a convex subset of �. Suppose
that P [An|Xn] ∈ Ω⊗n is symmetric. Then there is a
measure m(λ) on single-particle conditional probability
distributions Pλ[A|X ] ∈ � such that

∥

∥P [Ak|Xk]−

∫

dm(λ)Pλ[A|X ]⊗k
∥

∥

≤min

(

2k|X ||A||X |

n
,
|X |k(k − 1)

n

)

.

(4)

This establishes that the state of a random subset of k
out of n particles is well approximated by a convex com-
bination of independent and identical conditional proba-
bility distributions. To prove Theorem 3, we first show
that if P [An|Xn] is symmetric and m is chosen to be suf-
ficiently small, then P [Am|Xm] is separable (Lemma 4).
We then establish a de Finetti theorem for separable
states, Theorem 5, which will complete the proof of our
main result, Theorem 3. We continue with Lemma 4.

Lemma 4. Let n ≥ |X | and set m = ⌈n/|X |⌉. Suppose
that P [An|Xn] ∈ Ω⊗n is symmetric. Then P [Am|Xm] ∈
�

⊗minm.

Proof. In order not to obscure the main argument, we
prove the statement for integral m = n/|X | [31]. Our
technique can be traced to Werner [24, 25, 26]. We imag-
ine the m particles to be separated in space and note that
P [Am|Xm] is separable if and only if it can be simulated
by a local hidden variable model. Such a simulation is de-
scribed in Fig. 1. We now provide the formal proof. We
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FIG. 1: Since n = m|X |, we can divide the particles into m
groups of |X | particles. In each of these groups we measure
one particle according to each measurement in X in advance

and record a list of all the results. In the simulation, if particle
i is supposed to be measured according to a measurement
x ∈ X, we just look through the ith group until we come
to the particle on which measurement x was performed in
advance, and output the result we find.

construct a separable conditional distribution Q[Am|Xm]
and then show that it is equal to P [Am|Xm]. We assume
that X = {1, 2, . . . , |X |}, define a vector yn = (yj)j=1,...,n

with coordinates yj = (j mod |X |) + 1, and define the
separable state

Q[Am|Xm] =
∑

bn

qbnQbn,1[A1|X1] · · ·Qbn,m[Am|Xm],

where bn ∈ An is distributed according to qbn = P [An =
bn|Xn = yn] and the single-particle conditional dis-
tributions are deterministic and defined by Qbn,i[Ai =
ai|Xi = xi] = [ai = b(i−1)|X |+xi

], where [t] = 1 if t
is true and 0 otherwise. Let L = {1, 2, . . . , n}, L1 =
{(i−1)|X |+xi : i = 1, 2, . . . , m} and L2 = L\L1. Further
let AL = An, AL1 = (Ax1 , A|X |+x2

, . . . , A(m−1)|X |+xm
)

and AL2 = AL\AL1 and define bL, bL1 and bL2 similarly.
We find

Q[Am = am|Xm = xm]

=
∑

bn

P [An = bn|Xn = yn]

× [a1 = bx1 ] · · · [am = b(m−1)|X |+xm
]

=
∑

bL2

P [AL1 = am, AL2 = bL2 |XL1 = xm, XL2 = yL2 ]

= P [AL1 = am|XL1 = xm] = P [Am = am|Xm = xm],

where we started with the definition of Q[Am|Xm], split
the summation over L1 and L2, dropped the conditioning
over XL2 = yL2 because of the no-signalling property of
P , used the definition of a marginal state, and, lastly, the
permutation-invariance of P .

Our next statement is a de Finetti theorem for convex
set theories with the minimum tensor product.

Theorem 5. Let Ω be a convex set with E extreme points
(E may be infinite). Suppose ωn ∈ Ω⊗minn is symmetric.

Then there is a measure m(τ) on states τ ∈ Ω such that

∥

∥ωk −

∫

dm(τ) τ⊗k
∥

∥

min
≤ min

(

2kE

n
,
k(k − 1)

n

)

. (5)

Proof. Let τ1, . . . , τE be the extreme points of Ω. Any
symmetric separable state is a convex combination of
states of the form ωn = 1

n!

∑

π τi
π−1(1)

⊗ · · · ⊗ τi
π−1(n)

,

where 1 ≤ i1, . . . , in ≤ E. Define τ := 1
n

∑n

j=1 τij
. We

expand

τ⊗k =

n
∑

j1=1

· · ·

n
∑

jk=1

Mn(ij1 , . . . , ijk
)τij1

⊗ · · · ⊗ τijk
, (6)

where Mn(ij1 , . . . , ijk
) = 1/nk is the multinomial distri-

bution. To compare this expression with ωk, write

ωk =

n
∑

j1=1

· · ·

n
∑

jk=1

Hn(ij1 , . . . , ijk
)τij1

⊗ · · · ⊗ τijk
, (7)

where Hn(ij1 , . . . , ijk
) is the hypergeometric distribution

for an urn with n balls (see [1]). Then

∥

∥ωk − τ⊗k
∥

∥

min
=

∥

∥

∑

j1,...,jk

(

Hn(ij1 , . . . , ijk
)

Mn(ij1 , . . . , ijk
)
)

τij1
⊗ · · · ⊗ τijk

∥

∥

min

≤
∑

j1,...,jk

∣

∣Hn(ij1 , . . . , ijk
) − Mn(ij1 , . . . , ijk

)
∣

∣

≤ min

(

2kE

n
,
k(k − 1)

n

)

, (8)

where we used the triangle inequality and Diaconis and
Freedman’s result on estimating the hypergeometric dis-
tribution with a multinomial distribution [1].

Proof of Theorem 3. Set m = ⌈n/|X |⌉ and apply
Lemma 4. Then apply Theorem 5 to P [Am|Xm], not-
ing that � has |A||X | extreme points (the deterministic
functions X 7→ A) and that ‖ · ‖ ≤ ‖ · ‖min.

Our final result is an application to quantum theory.
Let Ω be the set of density operators on C

d and note that
a separable density operator on n systems is an element of
Ω⊗minm. Since ||ρ−σ||1 = Tr|ρ−σ| = 2 sup0≤R≤1

|Tr(ρ−
σ)R| = 2‖ρ− σ‖min, we obtain:

Corollary 6. If ρ is a separable permutation-invariant
density operator on (Cd)⊗n, then there is a measure m(σ)
on states σ on Cd such that

∥

∥ρk −

∫

dm(σ)σ⊗k
∥

∥

1
≤ 2

k(k − 1)

n
. (9)

We conclude with an open question. Is Theorem 3
true if the conditional probability distributions Pλ[A|X ]
are restricted to be elements of Ω (rather than �)? If so,
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we would have a finite de Finetti theorem for all theories
in the convex sets framework.
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