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Series Foreword

The goal of building systems that can adapt to their environments and learn

from their experience has attracted researchers from many fields, including

computer science, engineering, mathematics, physics, neuroscience, and cog-

nitive science. Out of this research has come a wide variety of learning tech-

niques that have the potential to transform many scientific and industrial

fields. Recently, several research communities have converged on a common

set of issues surrounding supervised, unsupervised and reinforcement learn-

ing problems. The MIT Press series on Adaptive Computation and Machine

Learning seeks to unify the many diverse strands of machine learning re-

search and to foster high-quality research and innovative applications.

Thomas Dietterich





Foreword

This is a splendid account of the latest developments on the minimum de-

scription length (MDL) principle and the related theory of stochastic com-

plexity. The MDL principle seeks to place the age-old statistical or induc-

tive inference on a sound foundation. In order to achieve this it requires

the drastically different and, for many, unpalatable view that the objective

is not to estimate any “true” data-generating mechanism but simply to find

a good explanation of data, technically called a model. The author gives an

impassionate balanced discussion of the deep philosophical implications of

the principle, and he traces the tortuous path from the roots to the current

refined stage of the principle, in which the idea of a universal model plays a

central role. This is a model that allows for an objective comparison of alter-

native models regardless of their form or number of parameters in case the

interest is in model selection. Further, it provides a basis for prediction and

classification.

The author describes painstakingly the information- and probability-theo-

retic notions needed for the reader with a minimum of prerequisites to apply

the principle to a variety of statistical problems. This involves an in-depth

treatment of the theory of “universal models,” which in its general form is

deep and complex. The author’s treatment of it, however, is highly acces-

sible. He achieves this by devoting an extensive section on discussing finite

universal models, which aremuch simpler than the general case but do serve

to illustrate the general ideas.

Based on this treatment, he then introduces the MDL principle in its mod-

ern, refined form, always emphasizing the ideas that give rise to the actual

formulas. He starts out with the simple case of comparing a finite number

of parametric models, and gradually builds up the theory to general prob-

lems of model selection. He also briefly discusses parameter estimation and
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nonparametric inference. For the reader with deeper statistical knowledge,

in Chapter 17 he compares MDL to some other more customary statistical

techniques.

Jorma Rissanen

Helsinki Institute for Information Technology

Helsinki, Finland

December 2005



Preface

How does one decide among competing explanations of data given limited

observations? This is the problem of model selection. A central concern in

model selection is the danger of overfitting: the selection of an overly com-

plex model that, while fitting observed data very well, predicts future data

very badly. Overfitting is one of the most important issues in inductive and

statistical inference: besides model selection, it also pervades applications

such as prediction, pattern classification and parameter estimation.

The minimum description length (MDL) principle is a relatively recent

method for inductive inference that provides a generic solution to the model

selection problem, and, more generally, to the overfitting problem. MDL is

based on the following insight: any regularity in the data can be used to

compress the data, i.e. to describe it using fewer symbols than the number

of symbols needed to describe the data literally. The more regularities there

are, the more the data can be compressed. Equating “learning” with “finding

regularity,” we can therefore say that the more we are able to compress the

data, the more we have learned about the data. Formalizing this idea leads to

a general theory of inductive inference with several attractive properties:

1. Occam’s razor. MDL chooses a model that trades off goodness-of-fit on

the observed data with “complexity” or “richness” of the model. As such,

MDL embodies a form of Occam’s razor, a principle that is both intuitively

appealing and informally applied throughout all the sciences.

2. No overfitting, automatically. MDLmethods automatically and inherently

protect against overfitting and can be used to estimate both the parame-

ters and the structure (e.g., number of parameters) of a model. In contrast,

to avoid overfitting when estimating the structure of a model, traditional
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methods such asmaximum likelihoodmust bemodified and extendedwith

additional, typically ad hoc principles.

3. Bayesian interpretation. Some (not all) MDL procedures are closely re-

lated to Bayesian inference. Yet they avoid some of the interpretation dif-

ficulties of the Bayesian approach, especially in the realistic case when it

is known a priori to the modeler that none of the models under consider-

ation is true. In fact:

4. No need for “underlying truth.” In contrast to other statistical methods,

MDL procedures have a clear interpretation independent of whether or

not there exists some underlying “true” model.

5. Predictive interpretation. Because data compression is formally equiva-

lent to a form of probabilistic prediction, MDLmethods can be interpreted

as searching for a model with good predictive performance on unseen

data. This makes MDL related to, yet different from, data-oriented model

selection techniques such as cross-validation.

This Book

This book provides an extensive, step-by-step introduction to the MDL prin-

ciple, with an emphasis on conceptual issues. From the many talks that I

have given on the subject, I have noticed that the same questions about MDL

pop up over and over again. Often, the corresponding answers can be found

only — if at all — in highly technical journal articles. The main aim of this

book is to serve as a reference guide, in which such answers can be found

in a much more accessible form. There seems to be a real need for such an

exposition because, quoting Lanterman (2001), of “the challenging nature of

the original works and the preponderance of misinterpretations and misun-

derstandings in the applied literature.” Correcting such misunderstandings

is the second main aim of this book.

First Aim: Accessibility I first learned about MDL in 1993, just before fin-

ishing my master’s in computer science. As such, I knew some basic proba-

bility theory and linear algebra, but I knew next to nothing about advanced

measure-theoretic probability, statistics, and information theory. To my sur-

prise, I found that to access the MDL literature, I needed substantial know-

ledge about all three subjects! This experience has had a profound influence

on this book: in a way, I wanted to write a book which I would have been
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able to understand when I was a beginning graduate student. Therefore,

since with some difficulty its use can be avoided, there is no measure theory

whatsoever in this book. On the other hand, this book is full of statistics and

information theory, since these are essential to any understanding of MDL.

Still, both subjects are introduced at a very basic level in Part I of the book,

which provides an initial introduction to MDL. At least this part of the book

should be readable without any prior exposure to statistics or information

theory.

If my main aim has succeeded, then this book should be accessible to (a)

researchers from the diverse areas dealing with inductive inference, such as

statistics, pattern classification, and branches of computer science such as

machine learning and data mining; (b) researchers from biology, economet-

rics, experimental psychology, and other applied sciences that frequently

have to deal with inductive inference, especially model selection; and (c)

philosophers interested in the foundations of inductive inference. This book

should enable such readers to understand what MDL is, how it can be used,

and what it does.

Second Aim: A Coherent, Detailed Overview In the year 2000, when I

first thought about writing this book, the field had just witnessed a number

of advances and breakthroughs, involving the so-called normalized maximum

likelihood code. These advances had not received much attention outside of a

very small research community; most practical applications and assessments

of MDL were based on “old” (early 1980s) methods and ideas. At the time,

some pervasive myths were that “MDL is just two-part coding”, “MDL is

BIC” (an asymptotic Bayesian method for model selection), or “MDL is just

Bayes.” This prompted me and several other researchers to write papers and

give talks about the new ideas, related to the normalized maximum likeli-

hood. Unfortunately, this may have had somewhat of an adverse effect: I

now frequently talk to people who think that MDL is just “normalized max-

imum likelihood coding.” This is just as much of a myth as the earlier ones!

In reality, MDL in its modern form is based on a general notion known in the

information-theoretic literature as universal coding. There exist many types of

universal codes, the main four types being the Bayesian, two-part, normal-

ized maximum likelihood, and prequential plug-in codes. All of these can

be used in MDL inference, and which one to use depends on the applica-

tion at hand. While this emphasis on universal codes is already present in

the overview (Barron, Rissanen, and Yu 1998), their paper requires substan-
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tial knowledge of information theory and statistics. With this book, I hope

to make the universal coding-based MDL theory accessible to a much wider

audience.

A Guide for the Reader

This book consists of four parts. Part I is really almost a separate book. It pro-

vides a very basic introduction to MDL, as well as an introductory overview

of the statistical and information-theoretic concepts needed to understand

MDL. Part II is entirely devoted to universal coding, the information-theoretic

notion on which MDL is built. Universal coding is really a theory about data

compression. It is easiest to introducewithout directly connecting it to induc-

tive inference, and this is the way we treat it in Part II. In fact though, there

is a very strong relation between universal coding and inductive inference.

This connection is formalized in Part III, where we give a detailed treatment

of MDL theory as a theory of inductive inference based on universal cod-

ing. Part IV can once again be read separately, providing an overview of the

statistical theory of exponential families. It provides background knowledge

needed in the proofs of theorems in Part II.

The Fast Track — How to Avoid Reading Most of This Book I do not

suppose that any reader will find the time to read all four parts in detail.

Indeed, for readers with prior exposure to MDL, this book may serve more

like a reference guide than an introduction in itself. For the benefit of readers

with no such prior knowledge, each chapter in Part I and Part II starts with

a brief list of its contents as well as a fast track–paragraph, which indicates

the parts that should definitely be read, and the parts that can be skipped at

first reading. This allows a “fast track” through Part I and Part II, so that the

reader can quickly reach Part III, which treats state-of-the-artMDL inference.

Additionally, some sections are marked with an asterisk (∗). Such sections

contain advanced material and may certainly be skipped at first reading.

Also, the reader will frequently find paragraphs such as the present one, which

are set in smaller font. These provide additional, more detailed discussion of

the issues arising in the main text, and may also be skipped at first reading.

Also, at several places, the reader will find boxes like the one below:
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Boxes Contain the Most Important Ideas

Each chapter contains several boxes like this one. These contain the most

important insights. Together, they form a summary of the chapter.

To further benefit the hurried reader, we now give a brief overview of each

part:

Part I Chapter 1 discusses some of the basic ideas underlying MDL in a

mostly nonmathematical manner. Chapter 2 briefly reviews general mathe-

matical and probabilistic preliminaries. Chapter 3 gives a detailed discussion

of some essential information-theoretic ideas. Chapter 4 applies these no-

tions to statistical models. This chapter gives an extensive analysis of the

log-likelihood function and its expectation. It may be of interest for teachers

of introductory statistics, since the treatment emphasizes some, in my view,

quite important aspects usually not considered in statistics textbooks. For

example, we consider in detail what happens if we vary the data, rather than

the parameters. Chapter 5 then gives a first mathematically precise imple-

mentation of MDL. This is the so-called crude two-part code MDL. I call it

“crude” because it is suboptimal, and not explicitly based on universal cod-

ing. I included it because it is easy to explain — especially the fact that it

has obvious defects raises some serious questions, and thinking about these

questions seems the perfect introduction to the “refined”MDL that we intro-

duce in Part III of the book.

Although some basic familiarity with elementary probability theory is assumed

throughout the text, all probabilistic concepts needed are briefly reviewed in

Chapter 2. They are typically taught in undergraduate courses and can be

found in books such as (Ross 1998). Strictly speaking, the text can be read

without any prior knowledge of statistics or information theory— all concepts

and ideas are introduced in Chapters 3 and 4. Nevertheless, some prior expo-

sure to these subjects is probably needed to fully appreciate the developments

in Part II and Part III. More extensive introductions to the statistical concepts

needed can be found in, for example (Bain and Engelhardt 1989; Casella and

Berger ; Rice 1995).

Part II Part II then treats the general theory of universal coding, with an

emphasis on issues that are relevant to MDL. It starts with a brief introduc-

tion which gives a high-level overview of the chapters contained in Part II.

Its first chapter, Chapter 6, then contains a detailed introduction to the main
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ideas, in the restricted context of countable model classes. Each of the four

subsequent chapters gives a detailed discussion of one of the four main types

of universal codes, in the still restricted context of “parametric models” with

(essentially) compact parameter spaces. Chapters 11, 12, and 13 deal with

general parametric models — including linear regression models — as well

as nonparametric models.

Part III Part III gives a detailed treatment of refined MDL. We call it “re-

fined” so as to mark the contrast with the “crude” form of MDL of Chap-

ter 5. It starts with a brief introduction which gives a high-level overview

of refined MDL. Chapter 14 deals with refined MDL for model selection.

Chapter 15 is about its other two main applications: hypothesis selection (a

basis for parametric and nonparametric density estimation) and prediction.

Consistency and rate-of-convergence results for refined MDL are detailed in

Chapter 16. Refined MDL is placed in its proper context in Chapter 17, in

which we discuss its underlying philosophy and compare it to various other

approaches.

Compared to Part I, Part II and Part III contain more advanced material,

and some prior exposure to statistics may be needed to fully appreciate the

developments. Still, all required information-theoretic concepts — invari-

ably related to universal coding — are once again discussed at a very basic

level. These parts of the book mainly serve as a reference guide, providing

a detailed exposition of the main topics in MDL inference. The discussion

of each topic includes details which are often left open in the existing litera-

ture, but which are important when devising practical applications of MDL.

When pondering these details, I noticed that there are several open ques-

tions in MDL theory which previously have not been explicitly posed. We

explicitly list and number such open questions in Part II and Part III. These

parts also contain several new developments: in order to tell a coherent story

about MDL, I provide some new results — not published elsewhere — that

connect various notions devised by different authors.

The main innovations are the “distinguishability” interpretation of MDL for

finite models in Chapter 6, the “phase transition” view on two-part coding

in Chapter 10, the luckiness framework as well as the CNML-1 and CNML-

2 extensions of the normalized maximum likelihood code in Chapter 11, and

the connections between Césaro and standard KL risk and the use of redun-

dancy rather than resolvability in the convergence theorem for two-part MDL

in Chapter 15.



Preface xxxi

I also found it useful to rephrase and re-prove existing mathematical the-

orems in a unified way. The many theorems in Part II and Part III usu-

ally express results that are similar to existing theorems by various authors,

mainly Andrew Barron, Jorma Rissanen, and Bin Yu. Since these theorems

were often stated in slightly different contexts, they are hard to compare.

In our version, they become easily comparable. Specifically, in Part II, we

restrict the treatment to so-called exponential families of distributions, which

is a weakening of existing results. Yet, the theorems invariably deal with

uniform convergence, which is often a strengthening of existing results.

Part IV: Exponential Family Theory The theorems in Part II make heavy

use of the general and beautiful theory of exponential or, relatedly, maximum

entropy families of probability distributions. Part IV is an appendix that con-

tains an overview of these families and their mathematical properties. When

writing the book, I found that most existing treatments are much too re-

stricted to contain the results that we need in this book. The only general

treatments I am aware of (Barndorff-Nielsen 1978; Brown 1986) use mea-

sure theory, and give a detailed treatment of behavior at parameters tending

to the boundaries of the parameter space. For this reason, they are quite

hard to follow. Thus, I decided to write my own overview, which avoids

measure theory and boundary issues, but otherwise contains most essential

ideas such as sufficiency, mean-value and canonical parameterizations, du-

ality, and maximum entropy interpretations.
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1 Learning, Regularity, and

Compression

Overview The task of inductive inference is to find laws or regularities un-

derlying some given set of data. These laws are then used to gain insight

into the data or to classify or predict future data. The minimum description

length (MDL) principle is a general method for inductive inference, based on

the idea that the more we are able to compress (describe in a compact manner)

a set of data, themore regularitieswe have found in it and therefore, the more

we have learned from the data. In this chapter we give a first, preliminary and

informal introduction to this principle.

Contents In Sections 1.1 and 1.2 we discuss some of the fundamental ideas

relating description length and regularity. In Section 1.3 we describe what

was historically the first attempt to formalize these ideas. In Section 1.4 we

explain the problems with using the original formalization in practice, and

indicate what must be done to make the ideas practicable. Section 1.5 in-

troduces the practical forms of MDL we deal with in this book, as well as

the crucial concept of “universal coding.” Section 1.6 deals with some issues

concerning model selection, which is one of the main MDL applications. The

philosophy underlying MDL is discussed in Section 1.7. Section 1.8 shows

how the ideas behind MDL are related to “Occam’s razor.” We end in Sec-

tion 1.9 with a brief historical overview of the field and its literature.

Fast Track This chapter discusses, in an informal manner, several of the

complicated issues we will deal with in this book. It is therefore essential for

readers without prior exposure to MDL. Readers who are familiar with the

basic ideas behind MDL may just want to look at the boxes.
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1.1 Regularity and Learning

We are interested in developing a method for learning the laws and regulari-

ties in data. The following example will illustrate what we mean by this and

give a first idea of how it can be related to descriptions of data.

Example 1.1 We start by considering binary data. Consider the following

three sequences. We assume that each sequence is 10000 bits long, and we

just list the beginning and the end of each sequence.

00010001000100010001 . . . 0001000100010001000100010001 (1.1)

01110100110100100110 . . . 1010111010111011000101100010 (1.2)

00011000001010100000 . . . 0010001000010000001000110000 (1.3)

The first of these three sequences is a 2500-fold repetition of 0001. Intu-

itively, the sequence looks regular; there seems to be a simple “law” under-

lying it; it might make sense to conjecture that future data will also be subject

to this law, and to predict that future data will behave according to this law.

The second sequence has been generated by tosses of a fair coin. It is, in-

tuitively speaking, as “random as possible,” and in this sense there is no

regularity underlying it.1 Indeed, we cannot seem to find such a regularity

either when we look at the data. The third sequence contains exactly four

times as many 0s as 1s. It looks less regular, more random than the first; but

it looks less random than the second. There is still some discernible regu-

larity in these data, but of a statistical rather than of a deterministic kind.

Again, noticing that such a regularity is there and predicting that future data

will behave according to the same regularity seems sensible.

1.2 Regularity and Compression

What do we mean by a “regularity”? The fundamental idea behind the MDL

principle is the following insight: every regularity in the data can be used

to compress the data, i.e. to describe it using fewer symbols than the number

of symbols needed to describe the data literally. Such a description should

always uniquely specify the data it describes - hence given a description or

1. Unless we call “generated by a fair coin toss” a “regularity” too. There is nothing wrong with

that view - the point is that, the more we can compress a sequence, the more regularity we have

found. One can avoid all terminological confusion about the concept of “regularity” by making

it relative to something called a “base measure,” but that is beyond the scope of this book (Li and

Vitányi 1997).
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encoding D′ of a particular sequence of data D, we should always be able to

fully reconstruct D using D′.

For example, sequence (1.1) above can be described using only a fewwords;

we have actually done so already: we have not given the complete sequence

— which would have taken about the whole page — but rather just a one-

sentence description of it that nevertheless allows you to reproduce the com-

plete sequence if necessary. Of course, the description was done using natu-

ral language and we may want to do it in some more formal manner.

If we want to identify regularity with compressibility, then it should also

be the case that nonregular sequences can not be compressed. Since se-

quence (1.2) has been generated by fair coin tosses, it should not be compress-

ible. As we will show below, we can indeed prove that whatever description

method C one uses, the length of the description of a sequence like (1.2) will,

with overwhelming probability, be not much shorter than sequence (1.2) it-

self.

Note that the description of sequence (1.3) that we gave above does not

uniquely define sequence (1.3). Therefore, it does not count as a “real” de-

scription: one cannot regenerate the whole sequence if one has the descrip-

tion. A unique description that still takes only a few words may look like

this: “Sequence (1.3) is one of those sequences of 10000 bits in which there

are four times as many 0s as there are 1s. In the lexicographical ordering of

those sequences, it is number i.” Here i is some large number that is explic-

itly spelled out in the description. In general, there are 2n binary sequences

of length n, while there are only
(

n
νn

)

sequences of length n with a fraction

of ν 1s. For every rational number ν except ν = 1/2, the ratio of
(

n
νn

)

to 2n

goes to 0 exponentially fast as n increases (this is shown formally in Chap-

ter 4; see Equation (4.36) on page 129 and the text thereunder; by the method

used there one can also show that for ν = 1/2, it goes to 0 as O(1/
√

n)).

It follows that compared to the total number of binary sequences of length

10000, the number of sequences of length 10000 with four times as many 0s

as 1s is vanishingly small. Direct computation shows it is smaller than 27213,

so that the ratio between the number of sequences with four times as many

0s than 1s and the total number of sequences is smaller than 2−2787. Thus,

i < 27213 ≪ 210000 and to write down i in binary we need approximately

(log2 i) < 7213 ≪ 10000 bits.

Example 1.2 [Compressing Various Regular Sequences] The regularities un-

derlying sequences (1) and (3) were of a very particular kind. To illustrate

that any type of regularity in a sequence may be exploited to compress that

sequence, we give a few more examples:
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The Number π Evidently, there exists a computer program for generating the

first n digits of π – such a program could be based, for example, on an

infinite series expansion of π. This computer program has constant size, ex-

cept for the specification of n which takes no more than O(log n) bits. Thus,

when n is very large, the size of the program generating the first n digits of

π will be very small compared to n: the π-digit sequence is deterministic,

and therefore extremely regular.

Physics Data Consider a two-column table where the first column contains

numbers representing various heights from which an object was dropped.

The second column contains the corresponding times it took for the object

to reach the ground. Assume both heights and times are recorded to some

finite precision. In Section 1.5 we illustrate that such a table can be substan-

tially compressed by first describing the coefficients of the second-degree

polynomial H that expresses Newton’s law; then describing the heights;

and then describing the deviation of the time points from the numbers pre-

dicted by H .

Natural Language Most sequences of words are not valid sentences accord-

ing to the English language. This fact can be exploited to substantially

compress English text, as long as it is syntactically mostly correct: by first

describing a grammar for English, and then describing an English text D

with the help of that grammar (Grünwald 1996), D can be described using

much less bits than are needed without the assumption that word order is

constrained.

Description Methods In order to formalize our idea, we have to replace

the part of the descriptions above that made use of natural language by some

formal language. For this, we need to fix a description method that maps se-

quences of data to their descriptions. Each such sequence will be encoded as

another sequence of symbols coming from some finite or countably infinite

coding alphabet. An alphabet is simply a countable set of distinct symbols.

An example of an alphabet is the binary alphabet B = {0, 1}; the three data

sequences above are sequences over the binary alphabet. A sequence over a

binary alphabet will also be called a binary string. Sometimes our data will

consist of real numbers rather than binary strings. In practice, however, such

numbers are always truncated to some finite precision. We can then again

model them as symbols coming from a finite data alphabet.

More precisely, we are given a sample or equivalently data sequence D =

(x1, . . . , xn) where each xi is a member of some set X , called the space of

observations or the sample space for one observation. The set of all potential

samples of length n is denoted Xn and is called the sample space. We call
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xi a single observation or, equivalently, a data item. For a general note about

how our terminology relates to the usual terminology in statistics, machine

learning and pattern recognition, we refer to the box on page 72.

Without any loss of generality we may describe our data sequences as bi-

nary strings (this is explained in Chapter 3, Section 3.2.2). Hence all the de-

scription methods we consider map data sequences to sequences of bits. All

description methods considered in MDL satisfy the unique decodability prop-

erty: given a description D′, there is at most one (“unique”)D that is encoded

as D′. Therefore, given any description D′, one should be able to fully recon-

struct the original sequence D. Semiformally:

Description Methods

Definition 1.1 A description method is a one-many relation from the sample

space to the set of binary strings of arbitrary length.

A truly formal definition will be given in Chapter 3, Section 3.1. There we

also explain how our notion of “description method” relates to the more

common and closely related notion of a “code.” Until then, the distinction

between codes an description methods is not that important, and we use the

symbol C to denote both concepts.

Compression and Small Subsets We are now in a position to show that

strings which are “intuitively” random cannot be substantially compressed.

We equate intuitively random with “having been generated by independent

tosses of a fair coin.” We therefore have to prove that it is virtually impossi-

ble to substantially compress sequences that have been generated by fair coin

tosses. By “it is virtually impossible” we mean “it happens with vanishing

probability.” Let us take some arbitrary but fixed description method C over

the data alphabet consisting of the set of all binary sequences of length ≥ 1.

Such a code maps binary strings to binary strings. Suppose we are given a

data sequence of length n (in Example 1.1, n = 10000). Clearly, there are 2n

possible data sequences of length n. We see that only two of these can be

mapped to a description of length 1 (since there are only two binary strings

of length 1: 0 and 1). Similarly, only a subset of at most 2m sequences can

have a description of length m. This means that at most
∑m

i=1
2i < 2m+1

data sequences can have a description length ≤ m. The fraction of data se-

quences of length n that can be compressed bymore than k bits is therefore at
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most 2−k and as such decreases exponentially in k. If data are generated by

n tosses of a fair coin, then all 2n possibilities for the data are equally prob-

able, so the probability that we can compress the data by more than k bits

is smaller than 2−k. For example, the probability that we can compress the

data by more than 20 bits is smaller than one in a million.

Most Data Sets Are Incompressible

Suppose our goal is to encode a binary sequence of length n. Then

• No matter what description method we use, only a fraction of at most

2−k sequences can be compressed by more than k bits.

• Thus, if data are generated by fair coin tosses, then no matter what

code we use, the probability that we can compress a sequence by more

than k bits is at most 2−k.

• This observation will be generalized to data generated by an arbitrary

distribution in Chapter 3. We then call it the no-hypercompression in-

equality. It can be found in the box on page 103.

Seen in this light, having a short description length for the data is equiv-

alent to identifying the data as belonging to a tiny, very special subset out

of all a priori possible data sequences; see also the box on page 31.

1.3 Solomonoff’s Breakthrough – Kolmogorov Complexity

It seems that what data are compressible and what are not is extremely de-

pendent on the specific description method used. In 1964 – in a pioneering

paper that may be regarded as the starting point of all MDL-related research

(Solomonoff 1964) – Ray Solomonoff suggested the use of a universal com-

puter language as a description method. By a universal language we mean

a computer language in which a universal Turing machine can be imple-

mented. All commonly used computer languages, like Pascal, LISP, C, are

“universal.” Every data sequence D can be encoded by a computer program

P that prints D and then halts. We can define a description method that

maps each data sequence D to the shortest program that prints D and then
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halts.2 Clearly, this is a description method in our sense of the word in that it

defines a 1-many (even 1-1) mapping from sequences over the data alphabet

to a subset of the binary sequences.

The shortest program for a sequence D is then interpreted as the optimal

hypothesis for D. Let us see how this works for sequence (1.1) above. Using a

language similar to C, we can write a program

for i = 1 to 2500 ; do {print ′0001′} ; halt

which prints sequence (1.1) but is clearly a lot shorter than it. If we want

to make a fair comparison, we should rewrite this program in a binary al-

phabet; the resulting number of bits is still much smaller than 10000. The

shortest program printing sequence (1.1) is at least as short as the program

above, which means that sequence (1.1) is indeed highly compressible using

Solomonoff’s code. By the arguments of the previous section we see that,

given an arbitrary description method C, sequences like (1.2) that have been

generated by tosses of a fair coin are very likely not substantially compress-

ible using C. In other words, the shortest program for sequence (1.1) is, with

extremely high probability, not much shorter than the following:

print ′01110100110100001010........10111011000101100010′; halt

This program has size about equal to the length of the sequence. Clearly, it is

nothing more than a repetition of the sequence.

Kolmogorov Complexity Wedefine theKolmogorov complexity of a sequence

as the length of the shortest program that prints the sequence and then halts.

Kolmogorov complexity has become a large subject in its own right; see (Li

and Vitányi 1997) for a comprehensive introduction.

The lower the Kolmogorov complexity of a sequence, the more regular or

equivalently, the less random, or, yet equivalently, the simpler it is. Measur-

ing regularity in this way confronts us with a problem, since it depends on

the particular programming language used. However, in his 1964 paper, Ray

Solomonoff (Solomonoff 1964) showed that asymptotically it does not matter

what programming language one uses, as long as it is universal: for every

sequence of data D = (x1, . . . , xn), let us denote by LUL(D) the length of the

shortest program for D using universal language UL. We can show that for

2. If there exists more than one shortest program, we pick the one that comes first in enumera-

tion order.
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every two universal languages UL1 and UL2, the difference between the two

lengths LUL1
(D) − LUL2

(D) is bounded by a constant that depends on UL1

and UL2 but not on the length n of the data sequence D. This implies that

if we have a lot of data (n is large), then the difference in the two descrip-

tion lengths is negligible compared to the size of the data sequence. This

result is known as the invariance theorem and was proved independently in

(Solomonoff 1964), (Kolmogorov 1965) (hence the name Kolmogorov com-

plexity), and (Chaitin 1969). The proof is based on the fact that one can

write a compiler for every universal language UL1 in every other univer-

sal language UL2. Such a compiler is a computer program with length L1→2.

For example, we can write a program in Pascal that translates every C pro-

gram into an equivalent Pascal program. The length (in bits) of this program

would then be LC→Pascal. We can simulate each program P1 written in lan-

guage UL1 by program P2 written in UL2 as follows: P2 consists of the com-

piler from UL1 to UL2, followed by P1. The length of program P2 is bounded

by the length of P1 plus L1→2. Hence for all data D, the maximal difference

between LUL1
(D) and LUL2

(D) is bounded by max{L1→2, L2→1}, a constant

which only depends on UL1 and UL2 but not on D.

1.4 Making the Idea Applicable

Problems There are two major problems with applying Kolmogorov com-

plexity to practical learning problems:

1. Uncomputability. The Kolmogorov complexity cannot be computed in

general;

2. Large constants. The description length of any sequence of data involves

a constant depending on the description method used.

By “Kolmogorov complexity cannot be computed” we mean the following:

there is no computer program that, for every sequence of dataD, when given

D as input, returns the shortest program that prints D and halts. Neither

can there be a program, that for every data D returns only the length of the

shortest program that prints D and then halts. Assuming such a program

exists leads to a contradiction (Li and Vitányi 1997).

The second problem relates to the fact that inmany realistic settings, we are

confronted with very small data sequences for which the invariance theorem

is not very relevant since the length of D is small compared to the constant

L1→2.
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“Idealized” or “Algorithmic” MDL If we ignore these problems, we may

use Kolmogorov complexity as our fundamental concept and build a the-

ory of idealized inductive inference on top of it. This road has been taken by

Solomonoff (1964, 1978), starting with the 1964 paper in which he introduced

Kolmogorov complexity, and by Kolmogorov, when he introduced the Kol-

mogorov minimum sufficient statistic (Li and Vitányi 1997; Cover and Thomas

1991). Both Solomonoff’s and Kolmogorov’s ideas have been substantially

refined by several authors. We mention here P. Vitányi (Li and Vitányi 1997;

Gács, Tromp, and Vitányi 2001; Vereshchagin and Vitányi 2002; Vereshchagin

and Vitányi 2004; Vitányi 2005), who concentrated on Kolmogorov’s ideas,

and M. Hutter (2004), who concentrated on Solomonoff’s ideas. Different

authors have used different names for this area of research: “ideal MDL,”

“idealized MDL,” or “algorithmic statistics.” It is closely related to the cele-

brated theory of random sequences due to P. Martin-Löf and Kolmogorov (Li

and Vitányi 1997). We briefly return to idealized MDL in Chapter 17, Sec-

tion 17.8.

Practical MDL Like most authors in the field, we concentrate here on non-

idealized, practical versions of MDL that explicitly deal with the two prob-

lems mentioned above. The basic idea is to scale down Solomonoff’s ap-

proach so that it does become applicable. This is achieved by using descrip-

tion methods that are less expressive than general-purpose computer lan-

guages. Such description methods C should be restrictive enough so that for

any data sequence D, we can always compute the length of the shortest de-

scription of D that is attainable using method C; but they should be general

enough to allow us to compress many of the intuitively “regular” sequences.

The price we pay is that, using the “practical” MDL principle, there will al-

ways be some regular sequences which we will not be able to compress. But

we already know that there can be no method for inductive inference at all

which will always give us all the regularity there is — simply because there

can be no automated method which for any sequence D finds the shortest

computer program that prints D and then halts. Moreover, it will often be

possible to guide a suitable choice of C by a priori knowledge we have about

our problem domain. For example, below we consider a description method

C that is based on the class of all polynomials, such that with the help of C

we can compress all data sets which can meaningfully be seen as points on

some polynomial.
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1.5 Crude MDL, Refined MDL and Universal Coding

Let us recapitulate our main insights so far:

MDL: The Basic Idea

The goal of statistical inference may be cast as trying to find regularity

in the data. “Regularity” may be identified with “ability to compress.”

MDL combines these two insights by viewing learning as data compression:

it tells us that, for a given set of hypotheses H and data set D, we should

try to find the hypothesis or combination of hypotheses in H that com-

presses D most.

This idea can be applied to all sorts of inductive inference problems, but it

turns out to be most fruitful in (and its development hasmostly concentrated

on) problems of model selection and, more generally, dealing with overfitting.

Here is a standard example (we explain the difference between “model” and

“hypothesis” after the example).

Example 1.3 [Model Selection and Overfitting] Consider the points in Fig-

ure 1.1. We would like to learn how the y-values depend on the x-values.

To this end, we may want to fit a polynomial to the points. Straightforward

linear regression will give us the leftmost polynomial - a straight line that

seems overly simple: it does not capture the regularities in the data well.

Since for any set of n points there exists a polynomial of the (n − 1)st degree

that goes exactly through all these points, simply looking for the polyno-

mial with the least error will give us a polynomial like the one in the second

picture. This polynomial seems overly complex: it reflects the random fluc-

tuations in the data rather than the general pattern underlying it. Instead of

picking the overly simple or the overly complex polynomial, it seems more

reasonable to prefer a relatively simple polynomial with small but nonzero

error, as in the rightmost picture. This intuition is confirmed by numerous

experiments on real-world data from a broad variety of sources (Rissanen

1989; Vapnik 1998; Ripley 1996): if one naively fits a high-degree polyno-

mial to a small sample (set of data points), then one obtains a very good fit

to the data. Yet if one tests the inferred polynomial on a second set of data

coming from the same source, it typically fits this test data very badly in the

sense that there is a large distance between the polynomial and the new data

points. We say that the polynomial overfits the data. Indeed, all model selec-

tion methods that are used in practice either implicitly or explicitly choose
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Figure 1.1 A simple, a complex and a tradeoff (third-degree) polynomial.

a tradeoff between goodness-of-fit and complexity of the models involved.

In practice, such tradeoffs lead to much better predictions of test data than

one would get by adopting the “simplest” (one degree) or most “complex”3

(n−1-degree) polynomial. MDL provides one particular means of achieving

such a tradeoff.

It will be useful to distinguish between “model”, “model class” and “(point)

hypothesis.” This terminology is explained in the box on page 15, and will

be discussed in more detail in Section 2.4, page 69. In our terminology, the

problem described in Example 1.3 is a “point hypothesis selection problem”

if we are interested in selecting both the degree of a polynomial and the cor-

responding parameters; it is a “model selection problem” if we are mainly

interested in selecting the degree.

To apply MDL to polynomial or other types of hypothesis and model selec-

tion, we have to make precise the somewhat vague insight “learning may be

viewed as data compression.” This can be done in various ways. We first

explain the earliest and simplest implementation of the idea. This is the so-

called two-part code version of MDL:

3. Strictly speaking, in our context it is not very accurate to speak of “simple” or “complex”

polynomials; instead we should call the set of first degree polynomials “simple,” and the set of

100th-degree polynomials “complex.”
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Crude Two-Part Version of MDL Principle (Informally Stated)

Let H1,H2, . . . be a list of candidate models (e.g., Hγ is the set of γth

degree polynomials), each containing a set of point hypotheses (e.g., in-

dividual polynomials). The best point hypothesis H ∈ H = H1 ∪H2 ∪ . . .

to explain the dataD is the one which minimizes the sumL(H)+L(D|H),

where

• L(H) is the length, in bits, of the description of the hypothesis; and

• L(D|H) is the length, in bits, of the description of the data when en-

coded with the help of the hypothesis.

The best model to explain D is the smallest model containing the selected

H .

The terminology “crude MDL” is explained in the next subsection. It is not

standard, and it is introduced here for pedagogical reasons.

Example 1.4 [Polynomials, cont.] In our previous example, the candidate

hypotheses were polynomials. We can describe a polynomial by describing

its coefficients at a certain precision (number of bits per parameter). Thus,

the higher the degree of a polynomial or the precision, the more bits we need

to describe it and the more “complex” it becomes. A description of the data

“with the help of” a hypothesis means that the better the hypothesis fits the

data, the shorter the description will be. A hypothesis that fits the data well

gives us a lot of information about the data. Such information can always be

used to compress the data. Intuitively, this is because we only have to code

the errors the hypothesis makes on the data rather than the full data. In our

polynomial example, the better a polynomial H fitsD, the fewer bits we need

to encode the discrepancies between the actual y-values yi and the predicted

y-valuesH(xi). We can typically find a very complex point hypothesis (large

L(H)) with a very good fit (small L(D|H)). We can also typically find a very

simple point hypothesis (small L(H)) with a rather bad fit (large L(D|H)).

The sum of the two description lengths will be minimized at a hypothesis

that is quite (but not too) “simple,” with a good (but not perfect) fit.

1.5.1 From Crude to Refined MDL

Crude MDL picks the H minimizing the sum L(H) + L(D|H). To make

this procedure well defined, we need to agree on precise definitions for the
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Models and Model Classes; (Point) Hypotheses

We use the wordmodel to refer to a set of probability distributions or func-

tions of the same functional form. E.g., the “first-orderMarkov model” is

the set of all probability distributions that are first-order Markov chains.

The “model of kth degree polynomials” is the set of all kth degree poly-

nomials for some fixed k.

We use the word model class to refer to a family (set) of models, e.g. “the

model class of all polynomials” or “the model class of all Markov chains

of each order.” The definitions of “model” and “model class” are chosen

so that they agree with how these words are used in statistical practice.

Therefore they are intentionally left somewhat imprecise.

We use the word hypothesis to refer to an arbitrary set of probability dis-

tributions or functions. We use the word point hypothesis to refer to a

single probability distribution (e.g. a Markov chain with all parameter

values specified) or function (e.g. a particular polynomial). In parametric

inference (Chapter 2), a point hypothesis corresponds to a particular pa-

rameter value. A point hypothesis may also be viewed as an instantiation

of a model.

What we call “point hypothesis” is called “simple hypothesis” in the

statistics literature; our use of the word “model (selection)” coincides

with its use in much of the statistics literature; see Section 2.3, page 62

where we give several examples to clarify our terminology.

Figure 1.2 Models and Model Classes; (Point) Hypotheses.

codes (description methods) giving rise to lengths L(D|H) and L(H). We

now discuss these codes in more detail. We will see that the definition of

L(H) is problematic, indicating that we somehow need to “refine” our crude

MDL principle.

Definition of L(D|H) Consider a two-part code as described above, and

assume for the time being that all H under consideration define probability

distributions. If H is a polynomial, we can turn it into a distribution by mak-
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ing the additional assumption that the Y -values are given by Y = H(X)+Z ,

where Z is a normally distributed noise term with mean 0.

For each H we need to define a code with length L(· | H) such that

L(D|H) can be interpreted as “the codelength of D when encoded with the

help of H .” It turns out that for probabilistic hypotheses, there is only one

reasonable choice for this code; this is explained at length in Chapter 5. It

it is the so-called Shannon-Fano code, satisfying, for all data sequences D,

L(D|H) = − logP (D|H), where P (D|H) is the probability mass or density

of D according to H . Such a code always exists, as we explain in Chapter 3,

in the box on page 96.

Definition of L(H): A Problem for Crude MDL It is more problematic

to find a good code for hypotheses H . Some authors have simply used “in-

tuitively reasonable” codes in the past, but this is not satisfactory: since the

description length L(H) of any fixed point hypothesis H can be very large

under one code, but quite short under another, our procedure is in danger

of becoming arbitrary. Instead, we need some additional principle for designing a

code forH.

In the first publications on MDL (Rissanen 1978; Rissanen 1983), it was im-

plicitly advocated to choose some sort of minimax code for eachHγ , minimiz-

ing the shortest worst-case total description length L(H) + L(D|H), where

the worst-case is over all possible data sequences. Thus, the MDL principle

is employed at a “meta-level” to choose a code for Hγ . This idea, already

implicit in Rissanen’s early work abut perhaps for the first time stated and

formalized in a completely precise way Barron and Cover (1991), is the first

step towards “refined” MDL.

More Problems for Crude MDL We can use crude MDL to code any se-

quence of data D with a total description length L(D):=minH{L(D|H) +

L(H)}. But it turns out that this code is incomplete: one can show that there

exist other codes L′ which for some D achieve strictly smaller codelength

(L′(D) < L(D)), and for no D achieve larger codelength (Chapter 6, Exam-

ple 6.4). It seems strange that our “minimum description length” principle

should be based on codeswhich are incomplete (inefficient) in this sense. An-

other, less fundamental problem with two-part codes is that, if designed in a

minimax way as indicated above, they require a cumbersome discretization

of the model spaceH, which is not always feasible in practice. The final prob-

lem we mention is that, while it is clear how to use crude two-part codes for
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point hypothesis and model selection, it is not immediately clear how they

can be used for prediction.

Later, Rissanen (1984) realized that these problems could be side-stepped

by using one-part rather than two-part codes. As we explain below, it depends

on the situation at hand whether a one-part or a two-part code should be

used. Combining the idea of designing codes so as to achieve essentially

minimax optimal codelengths with the combined use of one-part and two-

part codes (whichever is appropriate for the situation at hand) has culmi-

nated in a theory of inductive inference that we call refined MDL. We discuss

it in more detail in the next subsection.

Crude Two-Part MDL (Part I, Chapter 5 of this book)

In this book, we use the term “crude MDL” to refer to applications of

MDL for model and hypothesis selection of the type described in the box

on page 14, as long as the hypotheses H ∈ H are encoded in “intuitively

reasonable” but ad-hoc ways.

Refined MDL is sometimes based on one-part codes, sometimes on two-

part codes, and sometimes on a combination of these, but, in contrast to

crude MDL, the codes are invariably designed according to some min-

imax principles. If there is a choice, one should always prefer refined

MDL, but in some exotic modeling situations, the use of crude MDL is

inevitable.

Part I of this book first discusses all probabilistic, statistical and

information-theoretic preliminaries (Chapters 2–4) and culminates in a

description of crude two-part MDL (Chapter 5). Refined MDL is de-

scribed only in Part III.

1.5.2 Universal Coding and RefinedMDL

In refined MDL, we associate a code for encoding D not with a single H ∈ H,

but with the full model H. Thus, given model H, we encode data not in two

parts but we design a single one-part code with lengths L̄(D|H). This code

is designed such that whenever there is a member of (parameter in) H that fits

the data well, in the sense that L(D | H) is small, then the codelength L̄(D|H)

will also be small. Codes with this property are called universal codes in the

information-theoretic literature (Barron, Rissanen, and Yu 1998):
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Universal Coding (Part II of This Book)

There exist at least four types of universal codes:

1. The normalized maximum likelihood (NML) code and its variations.

2. The Bayesian mixture code and its variations.

3. The prequential plug-in code

4. The two-part code

These codes are all based on entirely different coding schemes, but in

practice, lead to very similar codelengths L̄(D|H). Part II of this book is

entirely devoted to universal coding. The four types of codes are intro-

duced in Chapter 6. This is follows by a separate chapter for each code.

For each model H, there are many different universal codes we can asso-

ciate with H. When applying MDL, we have a preference for the one that is

minimax optimal in a sense made precise in Chapter 6. For example, the setH3

of third-degree polynomials is associated with a code with lengths L̄(· | H3)

such that, the better the data D are fit by the best-fitting third-degree poly-

nomial, the shorter the codelength L̄(D | H). L̄(D | H) is called the stochastic

complexity of the data given the model.

Refined MDL is a general theory of inductive inference based on universal

codes that are designed to be minimax, or close to minimax optimal. It has

mostly been developed for model selection, estimation and prediction. To

give a first flavor, we initially discuss model selection, where, arguably, it

has the most new insights to offer:

1.5.3 RefinedMDL for Model Selection

Parametric Complexity A fundamental concept of refined MDL for model

selection is the parametric complexity of a parametric model H which we de-

note by COMP(H). This is a measure of the “richness” of model H, indicat-

ing its ability to fit random data. This complexity is related to the number

of degrees-of-freedom (parameters) in H, but also to the geometrical struc-

ture of H; see Example 1.5. To see how it relates to stochastic complexity,

let, for given data D, Ĥ denote the distribution in H which maximizes the

probability, and hence minimizes the codelength L(D | Ĥ) of D. It turns out
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that

L̄(D | H) = stochastic complexity of D givenH = L(D | Ĥ) + COMP(H).

Refined MDL model selection between two parametric models H1 and H2

(such as the models of first and second degree polynomials) now proceeds

as follows. We encode data D in two stages. In the first stage, we encode

a number j ∈ {1, 2}. In the second stage, we encode the data using the

universal code with lengths L̄(D | Hj). As in the two-part code principle, we

then select theMj achieving the minimum total two-part codelength,

min
j∈{1,2}

{L(j)+ L̄(D | Hj)} = min
j∈{1,2}

{L(j)+ L(D | Ĥ)+COMP(H)}. (1.4)

Since the worst-case optimal code to encode j needs only 1 bit to encode ei-

ther j = 1 or j = 2, we use a code for the first-part such that L(1) = L(2) = 1.

But this means that L(j) plays no role in the minimization, and we are ef-

fectively selecting the model such that the stochastic complexity of the given

data D is smallest.4 Thus, in the end we select the model minimizing the

one-part codelength of the data. Nevertheless, refined MDL model selection in-

volves a tradeoff between two terms: a goodness-of-fit term L(D | Ĥ) and a

complexity term COMP(H). However, because we do not explicitly encode

hypotheses H anymore, there is no potential for arbitrary codelengths any-

more. The resulting procedure can be interpreted in several different ways,

some of which provide us with rationales for MDL model selection beyond

the pure coding interpretation (Chapter 14):

1. Counting/differential geometric interpretation The parametric complex-

ity of a model is the logarithm of the number of essentially different, distin-

guishable point hypotheses within the model.

2. Two-part code interpretation For large samples, the stochastic complex-

ity can be interpreted as a two-part codelength of the data after all, where

hypotheses H are encoded with a special code that works by first dis-

cretizing the model space H into a set of “maximally distinguishable hy-

potheses,” and then assigning equal codelength to each of these.

3. Bayesian interpretation In many cases, refined MDL model selection co-

incides with Bayes factor model selection based on a noninformative prior

such as Jeffreys’ prior (Bernardo and Smith 1994).

4. The reason we include L(j) at all in (1.4) is to maintain consistency with the case where we

need to select between an infinite number of models. In that case, it is necessary to include L(j).
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4. Prequential interpretation MDLmodel selection can be interpreted as se-

lecting the model with the best predictive performance when sequentially

predicting unseen test data, in the sense described in Chapter 6, Section 6.4

and Chapter 9. This makes it an instance of Dawid’s (1984) prequential

model validation and also relates it to cross-validationmethods; see Chap-

ter 17, Sections 17.5 and 17.6.

In Section 1.6.1 we show that refined MDL allows us to compare models of

different functional form. It even accounts for the phenomenon that different

models with the same number of parameters may not be equally “complex.”

1.5.4 General Refined MDL: Prediction and Hypothesis Selection

Model selection is just one application of refined MDL. The two other main

applications are point hypothesis selection and prediction. These applications

can also be interpreted as methods for parametric and nonparametric estima-

tion. In fact,it turns out that large parts of MDL theory can be reinterpreted as

a theory about sequential prediction of future data given previously seen data. This

“prequential” interpretation of MDL (Chapter 15) is at least as important as

the coding interpretation. It is based on the fundamental correspondence be-

tween probability distributions and codes via the Shannon-Fano code that

we alluded to before, when explaining the code with lengths L(D | H); see

the box on page 96. This correspondence allows us to view any universal

code L̄(· | H) as a strategy for sequentially predicting data, such that the

betterH is suited as a model for the data, the better the predictions will be.

MDL prediction and hypothesis selection are mathematically cleaner than

MDL model selection: in Chapter 15, we provide theorems (Theorem 15.1

and Theorem 15.3) which, in the respective contexts of prediction and hy-

pothesis selection, express that, in full generality, good data compression implies

fast learning, where “learning” is defined as “finding a hypothesis that is in

some sense close to an imagined “true state of the world.” There are simi-

lar theorems for model selection, but these lack some of the simplicity and

elegance of Theorem 15.1 and Theorem 15.3.

Probabilistic vs. NonprobabilisticMDL Likemost other authors onMDL,

in this book we confine ourselves to probabilistic hypotheses, also known as

probabilistic sources. These are hypotheses that take the form of probability dis-

tributions over the space of possible data sequences. The examples we give in

this chapter (Examples 1.3 and 1.5) involve hypotheses H that are functions
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from some space X to another space Y ; at first sight, these are not “proba-

bilistic.” We will usually assume that for any given x, we have y = H(x) + Z

where Z is a noise term with a known distribution. Typically, the noise Z

will be assumed to be Gaussian (normally) distributed. With such an ad-

ditional assumption, we may view “functional” hypotheses H : X → Y as

“probabilistic” after all. Such a technique of turning functions into proba-

bility distributions is customary in statistics, and we will use it throughout

large parts of this book. Whenever we refer to MDL, we implicitly assume

that we deal with probabilistic models. We should note though that there

exists variations of MDL that directly work with universal codes relative to

functional hypotheses such as polynomials (see Section 1.9.1, andChapter 17,

Section 17.10).

Fixing Notation

We use the symbol H for general point hypotheses, that may either repre-

sent a probabilistic source or a deterministic function. We useH for sets of

such general point hypotheses. We reserve the symbol M for probabilis-

tic models and model classes. We denote probabilistic point hypotheses

by P , and point hypotheses that are deterministic functions by h.

Individual-Sequence vs. Expectation-basedMDL Refined MDL is based

on minimax optimal universal codes. Broadly speaking, there are two differ-

ent ways to define what we mean by minimax optimality. One is to look at

the worst-case codelength over all possible sequences. We call this individual-

sequence MDL. An alternative is to look at expected codelength, where the ex-

pectation is taken over some probability distribution, usually but not always

assumed to be a member of the model class M under consideration. We call

this expectation-based MDL. We discuss the distinction in detail in Part III of

the book; see also the box on page 407. The individual-sequence approach is

the one taken by Rissanen, the main originator of MDL, and we will mostly

follow it throughout this book.

The Luckiness Principle In the individual-sequence approach, the mini-

max optimal universal code is given by the normalized maximum likelihood

(NML) code that we mentioned above. A problem is that for many (in fact,

most) practically interesting models, the NML code is not well defined. In
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such cases, a minimax optimal code does not exist. As we explain in Chap-

ter 11, in some cases one can get around this problem using so-called “condi-

tional NML” codes, but in general, one needs to use codes based on a modi-

fied minimax principle, which we call the luckiness principle. Although it has

been implicitly used in MDL since its inception, I am the first to use the term

“luckiness principle” in an MDL context; see the box on page 92, Chapter 3;

the developments in Chapter 11, Section 11.3, where we introduce the con-

cept of a luckiness function; and the discussion in Chapter 17, Section 17.2.1.

The luckiness principle reintroduces some subjectivity in MDL code de-

sign. This seems to bring us back to the ad-hoc codes used in crude two-part

MDL. The difference however is that with luckiness functions, we can pre-

cisely quantify the effects of this subjectivity: for each possible data sample

D that we may observe, we can indicate how “lucky” we are on the sample,

i.e. how many extra bits we need compared to encode D compared to the

best hypothesis that we have available for D. This idea significantly extends

the applicability of refined MDL methods.

MDL is a Principle Contrary to what is often thought, MDL, and even,

“modern, refined MDL” is not a unique, single method of inductive infer-

ence. Rather, it represents a general principle for doing inductive inference.

The principle may (and will) be formulated precisely enough to allow us to

establish, for many given methods (procedures, learning algorithms) “this

method is an instance of MDL” or “this is not an instance of MDL. But nev-

ertheless:

MDL Is a Principle, Not a Unique Method

Being a principle, MDL gives rise to several methods of induc-

tive inference. There is no single “uniquely optimal MDL

method/procedure/algorithm.” Nevertheless, in some special situations

(e.g. simple parametric statistical models), one can clearly distinguish

between good and not so good versions of MDL, and something close to

“an optimal MDL method” exists.
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Summary: RefinedMDL (Part III of This Book)

Refined MDL is a method of inductive inference based on universal codes

which are designed to have some minimax optimality properties. Each

model H under consideration is associated with a corresponding univer-

sal code. In this book we restrict ourselves to probabilistic H. Refined

MDL has mainly been developed for model selection, point hypothesis

selection and prediction.

Refined MDL comes in two versions: individual-sequence and

expectation-based refined MDL, depending on whether the universal

codes are designed to be optimal in an individual-sequence or in an ex-

pected sense. If the minimax optimal code relative to a model M is not

defined, some element of subjectivity is introduced into the coding us-

ing a luckiness function. A more precise overview is given in the box on

page 406.

In the remainder of this chapter we will mostly concentrate on MDL for

model selection.

1.6 Some Remarks on Model Selection

Model selection is a controversial topic in statistics. Although most people

agree that it is important, many say it can only be done on external grounds,

and never by merely looking at the data. Still, a plethora of automatic model

selection methods has been suggested in the literature. These can give wildly

different results on the same data, one of the main reasons being that they

have often been designed with different goals in mind. This section starts

with a further example that motivates the need for model selection, and it

then discusses several goals that one may have in mind when doing model

selection. These issues are discussed in a lot more detail in Chapter 14. See

also Chapter 17, especially Section 17.3, where we compare MDL model se-

lection to the standard model selection methods AIC and BIC.

1.6.1 Model Selection among Non-Nested Models

Model selection is often used in the following context: two researchers or

research groups A and B propose entirely different models MA and MB as

an explanation for the same data D. This situation occurs all the time in ap-

plied sciences like econometrics, biology, experimental psychology, etc. For
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example, group A may have some general theory about the phenomenon at

hand which prescribes that the trend in data D is given by some polynomial.

Group B may think that the trend is better described by some neural net-

work; a concrete case will be given in Example 1.3 below. A and B would

like to have some way of deciding which of their two models is better suited

for the data at hand. If they simply decide on the model containing the hy-

pothesis (parameter instantiation) that best fits the data, they once again run

the risk of overfitting: if model MA has more degrees of freedom (parame-

ters) than model MB , it will typically be able to better fit random noise in

the data. It may then be selected even ifMB actually better captures the un-

derlying trend (regularity) in the data. Therefore, just as in the hypothesis

selection example, deciding whether MA or MB is a better explanation for

the data should somehow depend on how wellMA andMB fit the data and

on the respective “complexities” ofMA andMB .

In the polynomial case discussed before, there was a countably infinite

number of “nested” Mγ (i.e. Mγ ⊂ Mγ+1). In contrast, we now deal with

a finite number of entirely unrelated models Mγ . But there is nothing that

stops us from using MDL model selection as “defined” above.

Example 1.5 [Selecting Between Models of Different Functional Form]

Consider two models from psychophysics describing the relationship be-

tween physical dimensions (e.g., light intensity) and their psychological coun-

terparts (e.g. brightness) (Myung, Balasubramanian, and Pitt 2000): y =

axb + Z (Stevens’s model) and y = a ln(x + b) + Z (Fechner’s model) where

Z is a normally distributed noise term. Both models have two free parame-

ters; nevertheless, according to the refined version of MDL model selection

to be introduced in Part III, Chapter 14 of this book, Stevens’s model is in a

sense “more complex” than Fechner’s (see page 417). Roughly speaking, this

means there are a lot more data patterns that can be explained by Stevens’s

model than can be explained by Fechner’s model. Somewhat more precisely,

the number of data patterns (sequences of data) of a given length that can be

fit well by Stevens’s model is much larger than the number of data patterns

of the same length that can be fit well by Fechner’s model. Therefore, using

Stevens’s model we run a larger risk of “overfitting.”

In the example above, the goal was to select between a power law and a log-

arithmic relationship. In general, we may of course come across model selec-

tion problems involving neural networks, polynomials, Fourier or wavelet

expansions, exponential functions - anything may be proposed and tested.
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could have tried to learn g using a model class H containing the function

y = exp(x). But in general, both our imagination and our computational

resources are limited, and we may be forced to use imperfect models.

If, based on a small sample, we choose the best-fitting polynomial ĥ within

the set of all polynomials, then, even though ĥ will fit the data very well,

it is likely to be quite unrelated to the “true” g, and ĥ may lead to disas-

trous predictions of future data. The reason is that, for small samples, the

set of all polynomials is very large compared to the set of possible data pat-

terns that we might have observed. Therefore, any particular data pattern

can only give us very limited information about which high-degree polyno-

mial best approximates g. On the other hand, if we choose the best-fitting

ĥ◦ in some much smaller set such as the set of second-degree polynomials,

then it is highly probable that the prediction quality (mean squared error) of

ĥ◦ on future data is about the same as its mean squared error on the data

we observed: the size (complexity) of the contemplated model is relatively

small compared to the set of possible data patterns that we might have ob-

served. Therefore, the particular pattern that we do observe gives us a lot of

information on what second-degree polynomial best approximates g.

Thus, (a) ĥ◦ typically leads to better predictions of future data than ĥ; and

(b) unlike ĥ, ĥ◦ is reliable in that it gives a correct impression of how good

it will predict future data even if the “true” g is “infinitely” complex. This idea

does not just appear in MDL, but is also the basis of the structural risk mini-

mization approach (Vapnik 1998) and many standard statistical methods for

nonparametric inference; see Chapter 17, Section 17.10. In such approaches

one acknowledges that the data-generatingmachinery can be infinitely com-

plex (e.g., not describable by a finite degree polynomial). Nevertheless, it

is still a good strategy to approximate it by simple hypotheses (low-degree

polynomials) as long as the sample size is small. Summarizing:

The Inherent Difference between Under- and Overfitting

If we choose an overly simple model for our data, then the best-fitting

point hypothesis within the model is likely to be almost the best predictor,

within the simple model, of future data coming from the same source.

If we overfit (choose a very complex model) and there is noise in our

data, then, even if the complex model contains the “true” point hypothesis,

the best-fitting point hypothesis within the model may lead to very bad

predictions of future data coming from the same source.
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This statement is very imprecise and is meant more to convey the general

idea than to be completely true. The fundamental consistency theorems for

MDL prediction and hypothesis selection (Chapter 15, Theorem 15.1 and

Theorem 15.3), as well as their extension to model selection (Chapter 16),

are essentially just variations of this statement that are provably true.

The Future and The Past Our analysis depends on the data items (xi, yi) to

be probabilistically independent. While this assumption may be substantially

weakened, we can justify the use of MDL and other forms of Occam’s razor

only if we are willing to adopt some (possibly very weak) assumption of the

sort “training data and future data are from the same source”: future data

should (at least with high probability) be subject to some of the same regulari-

ties as training data. Otherwise,D and D′ may be completely unrelated and no

method of inductive inference can be expected to work well. This is indirectly

related to the grue-paradox (Goodman 1955).

MDL and Occam’s Razor

While MDL does have a built-in preference for selecting “simple”

models (with small “parametric complexity”), this does not at all mean

that applying MDL only makes sense in situations where simpler models

are more likely to be true. MDL is a methodology for inferring models from

data, not a statement about how the world works! For small sample sizes, it

prefers simple models. It does so not because these are “more likely to be

true” (they often are not). Instead, it does so because this tends to select

the model that leads to the best predictions of future data from the same

source. For small sample sizes this may be a model much simpler than

the model containing the “truth” (assuming for the time being that such

a model containing the “truth” exists in the first place).

In fact, some of MDL’s most useful and successful applications are

in nonparametric statistics where the “truth” underlying data is

typically assumed to be “infinitely” complex (see Chapter 13 and

Chapter 15).
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1.9 History and Forms of MDL

The practical MDL principle that we discuss in this book has mainly been

developed by J. Rissanen in a series of papers starting with (Rissanen 1978).

It has its roots in the theory of Kolmogorov complexity (Li and Vitányi 1997),

developed in the 1960s by Solomonoff (1964), Kolmogorov (1965) andChaitin

(1966, 1969). Among these authors, Solomonoff (a former student of the fa-

mous philosopher of science, Rudolf Carnap) was explicitly interested in in-

ductive inference. The 1964 paper contains explicit suggestions on how the

underlying ideas could be made practical, thereby foreshadowing some of

the later work on two-part MDL. While Rissanen was not aware of Solomo-

noff’s work at the time, Kolmogorov’s [1965] paper did serve as an inspi-

ration for Rissanen’s (1978) development of MDL. Still, Rissanen’s practical

MDL is quite different from the idealized forms of MDL that have been di-

rectly based on Kolmogorov complexity, which we discussed in Section 1.4.

Another important inspiration for Rissanen was Akaike’s AIC method for

model selection (Chapter 17, Section 17.3), essentially the first model se-

lection method based on information-theoretic ideas (Akaike 1973). Even

though Rissanen was inspired by AIC, both the actual method and the un-

derlying philosophy are substantially different from MDL.

Minimum Message Length MDL is much closer related to the Minimum

Message Length (MML) Principle (Wallace 2005), developed by Wallace and

his coworkers in a series of papers starting with the groundbreaking (Wal-

lace and Boulton 1968); other milestones are (Wallace and Boulton 1975) and

(Wallace and Freeman 1987). Remarkably, Wallace developed his ideas with-

out being aware of the notion of Kolmogorov complexity. Although Ris-

sanen became aware of Wallace’s work before the publication of (Rissanen

1978), he developed his ideas mostly independently, being influenced rather

by Akaike and Kolmogorov. Indeed, despite the close resemblance of both

methods in practice, the underlying philosophy is very different - see Chap-

ter 17, Section 17.4.

RefinedMDL The first publications on MDL only mention two-part codes.

Important progresswasmade by Rissanen (1984), inwhich prequential codes

are employed for the first time and Rissanen (1987), who introduced the

Bayesian mixture codes into MDL. This led to the development of the notion

of stochastic complexity as the shortest codelength of the data given a model
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(Rissanen 1986c; Rissanen 1987). However, the connection to Shtarkov’s

normalized maximum likelihood code was not made until 1996, and this pre-

vented the full development of the notion of “parametric complexity.” In the

mean time, in his impressive Ph.D. thesis, Barron (1985) showed how a spe-

cific version of the two-part code criterion has excellent frequentist statistical

consistency properties. This was extended by Barron and Cover (1991) who

achieved a breakthrough for two-part codes: they gave clear prescriptions on

how to design codes for hypotheses, relating codes with goodminimax code-

length properties to rates of convergence in statistical consistency theorems.

Some of the ideas of Rissanen (1987) and Barron and Cover (1991) were, as

it were, unified when Rissanen (1996) introduced the normalized maximum

likelihood code. The resulting theory was summarized for the first time by

Barron, Rissanen, and Yu (1998), and is the subject of this book. Whenever

we need to distinguish it from other forms of MDL, we call it “refinedMDL.”

1.9.1 What Is MDL?

“MDL” is used by different authors in somewhat different meanings, and it

may be useful to review these. Some authors use MDL as a broad umbrella

term for all types of inductive inference based on finding a short codelength

for the data. This would, for example, include the “idealized” versions of

MDL based on Kolmogorov complexity (page 11) andWallaces’s MML prin-

ciple (see above). Some authors take an even broader view and include all

inductive inference that is based on data compression, even if it cannot be

directly interpreted in terms of codelength minimization. This includes, for

example the work on similarity analysis and clustering based on the normal-

ized compression distance (Cilibrasi and Vitányi 2005).

On the other extreme, for historical reasons, some authors use the MDL

Criterion to describe a very specific (and often not very successful) model

selection criterion equivalent to BIC (see Chapter 17, Section 17.3).

As already indicated, we adopt the meaning of the term that is embraced

in the survey (Barron, Rissanen, and Yu 1998), written by arguably the three

most important contributors to the field: we use MDL for general inference

based on universal models. Although we concentrate on hypothesis selection,

model selection and prediction, this idea can be further extended to many

other types of inductive inference. These include denoising (Rissanen 2000;

Hansen and Yu 2000; Roos, Myllymäki, and Tirri 2005), similarity analysis and

clustering (Kontkanen, Myllymäki, Buntine, Rissanen, and Tirri 2005), outlier

detection and transduction (as defined in (Vapnik 1998)), and many others. In
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such areas there has been less research and a “definitive” universal-model

based MDL approach has not yet been formulated. We do expect, however,

that such research will take place in the future: one of the main strengths of

“MDL” in this broad sense is that it can be applied to ever more exotic model-

ing situations, in which the models do not resemble anything that is usually

encountered in statistical practice. An example is the model of context-free

grammars, already considered by Solomonoff (1964).

Another application of universal-model based MDL is the type of prob-

lem usually studied in statistical learning theory (Vapnik 1998); see also Chap-

ter 17, Section 17.10. Here the goal is to directly learn functions (such as

polynomials) to predict Y given X , without making any specific probabilis-

tic assumptions about the noise. MDL has been developed in some detail for

such problems, most notably classification problems, where Y takes its values

in a finite set – spam filtering is a prototypical example; here X stands for

an email message, and Y encodes whether or not it is spam. An example is

the application of MDL to decision tree learning (Quinlan and Rivest 1989;

Wallace and Patrick 1993; Mehta, Rissanen, and Agrawal 1995). Some MDL

theory for such cases has been developed (Meir and Merhav 1995; Yaman-

ishi 1998; Grünwald 1998), but the existing MDL methods in this area can

behave suboptimally. This is explained in Chapter 17, Section 17.10.2. Al-

though we certainly consider it a part of “refined” MDL, we do not consider

this “nonprobabilistic” MDL further in this book, except in Section 17.10.2.

1.9.2 MDL Literature

Theoretical Contributions There have been numerous contributors to re-

fined MDL theory, but there are three researchers that I should mention ex-

plicitly: J. Rissanen, B. Yu and A. Barron, who jointly wrote (Barron, Ris-

sanen, and Yu 1998). For example, most of the results that connect MDL

to traditional statistics (including Theorem 15.1 and Theorem 15.3 in Chap-

ter 15) are due to A. Barron. This book contains numerous references to their

work.

There is a close connection between MDL theory and work in universal

coding ((Merhav and Feder 1998); see also Chapter 6) and universal prediction

((Cesa-Bianchi and Lugosi 2006); see also Chapter 17, Section 17.9).

Practical Contributions There have been numerous practical applications

of MDL. The only three applications we describe in detail are a crude MDL

method for learning Markov chains (Chapter 5); a refined MDL method for
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learning densities based on histograms (Chapter 13 and Chapter 15); and

MDL regression (Chapter 12 and Chapter 14). Below we give a few repre-

sentative examples of other applications and experimental results that have

appeared in the literature. We warn the reader that this list is by no means

complete! Hansen and Yu (2001) apply MDL to a variety of practical prob-

lems involving regression, clustering analysis, and time series analysis. In

(Tabus, Rissanen, andAstola 2002; Tabus, Rissanen, andAstola 2003),MDL is

used for classification problems arising in genomics. Lee (2002a,b) describes

additive clustering withMDL. useMDL for image denoising and applyMDL

to decision tree learning. use MDL for sequential prediction. In (Myung,

Pitt, Zhang, and Balasubramanian 2000; Myung, Balasubramanian, and Pitt

2000), MDL is applied to a variety of model selection problems arising in

cognitive psychology. All these authors apply modern, “refined” versions of

MDL. Some references to older work, in which “crude” (but often quite sen-

sible) ad-hoc codes are used, are (Friedman, Geiger, and Goldszmidt 1997;

Allen and Greiner 2000; Allen, Madani, and Greiner 2003; Rissanen and Ris-

tad 1994; Quinlan and Rivest 1989; Nowak and Figueiredo 2000; Liu and

Moulin 1998; Ndili, Nowak, and Figueiredo 2001; Figueiredo, J. Leitão, and

A.K.Jain 2000; Gao and Li 1989). In these papers, MDL is applied to learn-

ing Bayesian networks, grammar inference and language acquisition, learn-

ing decision trees, analysis of Poisson point processes (for biomedical imag-

ing applications), image denoising, image segmentation, contour estimation,

and Chinese handwritten character recognition respectively. MDL has also

been extensively studied in time-series analysis, both in theory (Hannan and

Rissanen 1982; Gerenscér 1987; Wax 1988; Hannan, McDougall, and Poskitt

1989; Hemerly and Davis 1989b; Hemerly and Davis 1989a; Gerencsér 1994)

and practice (Wei 1992; Wagenmakers, Grünwald, and Steyvers 2006).

Finally, we should note that there have been a number of applications, es-

pecially in natural language learning, which, although practically viable, have

been primarily inspired by “idealized MDL” and Kolmogorov complexity,

rather than by the Rissanen-Barron-Yu style of MDL that we consider here.

These include (Adriaans and Jacobs 2006; Osborne 1999; Starkie 2001) and

my own (Grünwald 1996).

Other Tutorials, Introductions and Overviews The reader who prefers a

shorter introduction to MDL than the present one may want to have a look

at (Barron, Rissanen, and Yu 1998) (very theoretical and very comprehen-

sive; presumes knowledge of information theory), (Hansen and Yu 2001)
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(presumes knowledge of statistics; describes several practical applications),

(Lanterman 2001) (about comparing MDL, MML and asymptotic Bayesian

approaches to model selection), or perhaps my own (Grünwald 2005), which

is part of (Grünwald, Myung, and Pitt 2005), a “source book” for MDL the-

ory and applications that contains chapters by most of the main contributors

to the field.

Rissanen (1989,2007) has written two books on MDL. While outdated as

an introduction to MDL, the “little green book” (Rissanen 1989) is still very

much worth reading for its clear exposition of the philosophy underlying

MDL. (Rissanen 2007) contains a brief general introduction and then focuses

on some recent research of Rissanen’s, applying the renormalized maximum

likelihood (RNML) distribution (Chapter 11) in regression and denoising,

and formalizing the connection between MDL and Kolmogorov’s structure

function. In contrast to myself, Rissanen writes in accord with his own prin-

ciple: while containing a lot of information, both texts are quite short.

1.10 Summary and Outlook

We have discussed the relationship between compression, regularity, and

learning. We have given a first idea of what the MDL principle is all about,

and of the kind of problems we can apply it to. In the next chapters, we

present the mathematical background needed to describe such applications

in detail.


