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On The Projective Invariant Representation of Conics in Computer 
Graphics 

Ivan Herman 

Centre for Mathematics and Computer Science (CWI), DepL of Interactive Systems 
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands 

ABSTRACT 

A general formulation for conics and conic arcs for the purpose of computer graph
ics is given, based on principles and theorems of projective geometry. This approach 
allows the approximation of these curves by line segments to be postponed in the graph
ics output pipeline; it results in a more compact storage, faster approximation algorithms 
and smoother outlook of the curves. 
1983 CR Categories: G.O, 1.3.2, 1.3.5 
Keywords cl Phrases: projective geometry in computer graphics, conics in design and 
computer graphics, projective theory of conics. 
Note: the present text is to be published in: Computer Graphics Forum 8(1989), No. 4. 

1. Introduction 

Besides line segments and polygons, conics are also frequently used objects in computer graphics. They are 
used in geomettic design, they are frequently implemented as GDP-s in various graphics standard imple
mentations and some are included in the basic set of output primitives of ISO documents (e.g. cmto). 
Among the three main classes of conics, namely ellipses, parabolae and hyperbolae, the use of ellipses 
(first of all circles) is the most widespread. Circles and circular arcs are used in business graphics for 
charts, in mechanical engineering for rounded comers, for holes etc. Circular arcs may also be used to 
interpolate curves (see for example Sabini~. 

Although the role of parabolae and hyperbolae is not so important, we cannot ignore them either. On 
the one hand they do appear in practical applications (for example there are proposals to use parabolic arcs 
for curve approximation like the so-called double-quadratic curves in VafadylS) but, first of all, these 
curves appear naturally when distorting an ellipse with a projective mapping. 

What is the real problem in handling these curves? Mathematically, the (planar) conics are described 
by a second order polynomial of the fonn: 

a1,1.xf +a2,2ri + 2a1,2X1X2 + 2a1,3X1+2a2,3X2 + 2a3,3 = 0 

While this formula is appropriate to perfonn all calculations which are necessary in for example a model
ling system (see Fraux and Pratt5> it is inadequate to draw the corresponding conic. Indeed, practically all 
graphics devices available today are prepared to render (on the hardware/finnware level) line segments; in 
other words, the "ideal" mathematical curve must be approximated by an appropriate polyline or polygon. 
To achieve a reasonable outlook, this approximation must be quite dense; for example the number of 
approximation points to render a circle properly must be at least 100, but an approximation with 360 points 
(that is one point for each degree) is sometimes also necessary. 

It is not an easy task to generate these points properly. Appropriate approximation fonnulae or equa
tions are necessary; we will have some examples later. Some of these fonnulae (mostly the one describing 
ellipses) are already known to the graphics community, whereas some others are relatively unknown. On 
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the other hand, having these formulae in hand does not solve all our problems. Indeed, we have to find an 
answer to the following question: at which point of the graphics output pipeline do we effectively perform 
this approximation? 

The approach chosen usually is to approximate the curve with a polygon/polyline before performing 
a transformation in the pipeline. Despite the fact that conics form a class of projective invariant curves 
(that is the image of a conic wuler the effect of a projective transformation will remain a conic), most of the 
formulae we know about are not projective invariant, that is the data generating these formulae change 
their geometrical nature when applying a projective ttansfonnation. There has been no real investigation 
we know about which would have made an attempt to overcome this difficulty. Instead, the curves are 
approximated beforehand, dle resulting polygons/polylines are transformed and rendered following already 
well established methods. 

There are, however, two major problems with this approach. First of all, there is a loss in speed, 
storage etc. As we have seen, the number of generated points tend to be relatively large; all these points 
have to be transformed, that is a matrix-vector multiplication has to be applied and, in case of a projective 
and non-affine transformation, and additional division by the last coordinate value is also to be performed 
(the so-called "projective division"). By applying some alternative methods which we have developed 
and are presented below, a speed improvement of at least 20% can be achieved. 

Speed is not the only issue (and having all these super-fast computers invading the marketplace, this 
argument might be less and less important). There is also a problem with the quality of the approximation. 
When approximating for example a circle with 360 points, we get a fairly regular geometrical ordering of 
the points which, if displayed directly, will produce an acceptably smooth outlook. However, if a transfor
mation is applied against this set of points, this "regularity" will be lost Some of the line segments will 
become much longer than odlers; in these areas dle resulting polyline will have a "jagged" effect whereas 
on some other parts of the curve the density of the points will be wmecessarily high. This negative effect is 
even more disturbing if the approximation is connected to some kind of shading of a three dimensional sur
face. It is very difficult to keep track of these distortions which may be, in case of a more complicated pro
jective transformation, very significant indeed. The only way of reducing dlis effect is to postpone the 
approximation step as "far" as possible and to produce the resulting polyline after the ttansfonnations 
instead of prior to it 

The real difficulty with this approach is the fact that a non-affine projective transformation will, as 
we have already mentioned, "destroy" a number of geometrical characteristics of the points. As an exam
ple remember that the centre of an ellipse might not be longer the centre any more; furthermore, the image 
of an ellipse is not even an ellipse in some cases; it may become a hyperbola or a parabola Consequently, 
if we want to describe a means to handle conics by approximating them after the transformation in the out
put pipeline, we have to achieve two goals: a) represent the conics in a projective invariant way and b) 
have a concise view on all three major classes of conics. This is what we will attempt to do below. For this 
purpose, we have to make heavy use of the mathematical field which provides us with a wllfied description 
of conics, namely projective geometry. Therefore we have to begin by giving an overview of the necessary 
tools. The reader may also refer to odler related works like the book of Penna et al.13, the tutorial notes of 
Herman from the Eurographics '88 conferenceB, or some other more classical textbooks on projective 
geometry2-4, 6, 11. 

In the first part of the paper we will deal exclusively with two dimensional conics and two dimen
sional projective transformations, although the three dimensional case might be more important for practi
cal purposes. This is done for didactical purposes; indeed, the notions and formulae are more easily under
standable within the framework of a projective plane than a projective space. Once the underlying princi
ples are widerstood for a planar environment, their generalisation to three dimensions may be done without 
too many problems; this will be done in the third part of this paper. The main results may be sununerised as 
follows. 

• To each class of conics a small set of points will be assigned; these are the characteristic points 
related to the curve (they are not all points of the curve). These characteristic points have the follow
ing major properties: 

They are geometrically well describable points, chat is it is easy to generate them from 
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different applications. 

It is very simple to generate the matrix of the conic using these points. 

Appropriate approximation fonnulae may be derived using these points to approximate the 

curve with polygons or polylines. 

• It will be shown that the best way to transfonn a conic is to transfonn three of its points and its 
matrix; indeed this step can be done in a projective invariant way. Additionally, both the points and 
the matrix may be derived easily using the characteristic points. , 

. • Fmally, it will be shown that the characteristic points may be generated out of three points of the 
curve and its matrix. This can be done for all classes of conics and, furthennore, the exact 
classification of the conic can also be done without problems. 

Using these facts we can deduce the following approach for conic generation and/or approximation: 

i) The conic is defined either directly by its matrix and three of its points or by its characteristic points; 

ii) in case the characteristic points are given in i), the matrix and three points of the curve are generated; 

iii) the points and the matrix of the curve are transfonned; 

iv) the characteristic points of the (ttansfonned) curve are generated; at the same time it is clarified 
whether the image is an ellipse, a hyperbola or a parabola; 

v) using the characteristic points the approximation fonnula is generated and the curve may be ren

dered. 

2. The two dimensional case 

2.1. Mathematical preliminaries 

Points in a projective plane are described by homogeneous coordinates (for the sake of simplicity, we will 
denote the set of homogeneous coordinates by PR3; its elements are column vectors). These coordinates 
denote affine points if the last coordinate value is non-zero and ideal ones, if it is zero. Affine points can be 
identified with usual Eucledian points by performing the projective division, that is by using 

(2.1.1) 

Conversely, the relation 

(X1tX2)T-+ (x,,x2.ll (2.1.2) 

shows how an affine projective point can be created out of an Eucledian one. 

Ideal points are sometimes called "points at the infinity"; although this is not a precise definition 
from a mathematical point of view, it is intuitively helpful (for a more precise definition of ideal points see 
again the tutorial on the subjects). We can imagine the relationship between ideal points and Eucledian 
notions as follows. If x = (x1tx2l denotes a usual Eucledian vector, than the ideal point x = (x1,x2,0)T will 
denote the point in the infinity which is in the direction defined by x. In other words, ideal points may also 
be thought of as representing the direction of a line. 

In (planar) projective geometry the set of all ideal points is also considered to be a line, the ideal line. 
The traditional Eucledian lines are also lines in the projective sense; the only difference is that the projec
tive counterpart of the Eucledian lines contain one additional ideal point, namely the one describing the 
direction of the given line. Taking all these notions into account we might now say that any two lines in a 
projective plane have an intersection point. Indeed, the directions of two parallel lines are the same and, 
consequently, the intersection of the two lines is exactly the ideal point which represents this common 
direction. 

Just as in Eucledian geometry, we may also speak of different equations of a line. The traditional 
equation based on normal vectors can be turned into homogeneous fonn by the following relationship: 

If I is a line in the projective plane, then there exists an n e PR3 so that 

xe l+-+nTx=O 
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In other words, lines are also represented by homogeneous coordinates; conversely, each element of PR3 

may represent either a point or a line in the projective plane (in fact, n in the equation above represents the 
normal vector of the line in the classical Eucledian geometry). This fact leads to a remarkable unity in the 
formulae when describing points or lines; this unity is also referred to as the principle of duality in projec
tive geometry. This principle can also be used to simplify a number of formulae (see for example 
Arokiasamy~. 

Two distinct points of a projective plane determine a line. To describe this line, a parametric equa
tion is more suitable than the previous one. Indeed, if we denote the two points by ae PR3 and be PR3

, and 
the generated line is denoted by ab then: 

ab = {'Aa + µb) (2.1.3) 

A;itOorµ;itO 

We may also remark that the ideal line of the projective plane might be represented by the homogeneous 
vector (0,0, lf e PR3 • 

2.2. Elements of the projective theory of conics 

In Eucledian environment, a conic is described by the equation 

a, .• ,ri +a2,2~ +2a1.2X1X2 +2a1,3X1 +2a2,3X2 +2a3,3 =0 

By defining the matrix A =(a;)iial so that ai.i = ai.i• and by using homogeneous coordinates instead of 
Eucledian ones, the equation has its counterpart for projective environments as well, namely: 

3 

I. a;,jX;Xj = 0 
i,j•l 

Finally, this formula can be abbreviated by the so called bilinear form, that is: 

xAx=O (2.2.1) 

which is a shorthand notation of x1(Ax). Formula (2.2.1) will be used throughout the whole article. Here 
and in the whole section we will consider A to be a non-singular matrix, that is det (A) ~ 0. 

In fact, (2.2.1) can be used in a somewhat more general way to define the notion of conjugate points. 
This definition is as follows: 

The points x and y on the projective plane are said to be conjugate points with respect to the conic 
represented by the symmetric matrix A if and only if the following equation holds: 

xAy=O 

We could also say that the points of the curve may be characterised by the fact that they are auto-conjugate. 

The notion of conjugate points have a number of remarkable properties. Indeed, the following facts 
are true (their proofs may be deduced from the definitions or they may be found in the textbooks cited 
above): If xe PR3 is a fixed point, the set of all points ye PR3 which are conjugate to x form a line of the pro
jective plane. This line is called the polar of x; it may be represented by the homogeneous vector Ax. If I is 
a line in the projective plane, than there is one and only one point whose polar is /; this point is called the 
pole of I. The pole may be also characterised as follows: it is the (unique) intersection point of all the polars 
generated by the points on I (see figure 1 ). If xe PR3 is a point on the projective plane, x belongs to its own 
polar if and only if x is a point of the conic itself. In this case, the polar of x will be tangential to the conic at 
the point x and the homogeneous representation of this tangential is Ax. The pole of the ideal line is called 
the centre of the curve; in case of ellipses and hyperbolae, this coincides with the traditional, Eucledian 
definition of the centre of these curves. 

Two lines I 1 and l 2 are said to form a conjugate pair of lines if the pole of 11 belongs to / 2 and, conversely, 
the pole of /2 belongsto11• We may speak of a pair of conjugate chords as well as of a pair of conjugate 
diameters, denoting a pair of conjugate lines which are chords (resp. diameters) of the conic (diameter is a 
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All these definitions are, unfortunately, rather abstract and a certain time is needed to get used to 
them and to get an intuitive feeling as far as their geomettical meaning is concerned. Figure 2 shows an 
example which might help in using these definitions. The line I has two intersection points with the conic, p 
and q. The polars of these points are the two tangentials 11 and 12 respectively. In view of what has been 
said before, the intersection point of these lines, that is r, is the pole of the line I. This procedure is the 
usual way of generating the pole of a line, provided the line has two intersection points with the curve 
(which is not always the case). We have also to remark that if the point r is connected to the centre of the 
curve (denoted by c on figure 2), the resulting line will intersect the line segment pq in its middlepoint. The 
proof of this fact is, however, much beyond the scope of this paper. 

r 

Figure 2 

The importance of these definitions becomes clearer when the behaviour of conics in relationship to projec
tive transformations is examined. As we know, a general projective transformation of the plane can be 
described by a 3x3 mattix. If we denote this mattix by M, and if a conic is represented by the symmettic 
mattix A then for all ~ye PR3

: 

xAy =xT(Ay)= 

= (M- 1 Mxl (AM- 1 My) 

that is, if we denote 

M(A) = (M-1 )T A(M-1) (2.2.2) 
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then we can say that x,ye PR3 are conjugate with respect to A if and only if Mx,Mye PR3 are conjugate with 
respect to M (A). In other words, the image of a conic under the effect of a projective transfonnation 
remains a conic and, furthermore, fonnula (2.2.2) gives an easy way to calculate the matrix of the image. 
Also, the property of conjugation is projective invarianL The pole-polar relationship also remains valid 

across the transformation. Beware! The image of a centre is not necessarily a centre: although it is true that 
the image of the centre will still be the pole of the image of the ideal line, it is by no means sure that the 
image of the ideal line will still be the ideal line. 

This last remark leads us to the notion of affine transformation. These transfonnations are those pro

jective transfonnations which map the ideal line onto the ideal line. It can be proved that a projective 
transformation is affine if and only if its representation is of the fonn: 

[:: ;] 0 0 A. 

· where A. is a non-zero value (the matrices of projective transfonnations may also differ by a non-zero multi
plicative factor just like coordinates; they are "homogeneous" matrices). Those familiar with ISO graph
ics standards like GKS9 or CGJ 10, may recognise segment transformations in this formaL 

As projective transformations, affine transfonnations will keep the relationship of conjugate points; 
additionally, the image of a centre will still be a centre; in other words this property is affine invariant. 

The last general question we have to deal with is the mutual relationship of a conic and a line. In this 
respect, the following fact is true: 

the number of intersections of a line and a conic may be 0, I or 2. 

Although we have not proved the statements listed in the paragraph, we make an exception for this latter 
one. The reason is that the proof gives an effective way of calculating the (possible) intersection points and 
this is a feature we will need in the future. 

The line to intersect with can be described, as we have seen in (2.1.3), by: 

ab = { A.a + µb : A. ;t 0 or µ ;t 0} 

where a and b are two points on the line. We are looking for two values A. and µfor which 

(A.a+ µb)A (A.a+ µb) = 0 (2.2.3) 

holds. In fact, because of the homogeneous nature of the formulae, we are not interested in the exact values 
of A. and µ; only their relative ratio A./µ is of interest for us. 

F.quation (2.2.3) can be also rewritten by: 

aAal..2 + 2aAbAµ + Mbµ2 = 0 

If aAa ;t 0, we may consider µ ;t O; indeed, if this were not the case, then A. = O would also hold, which is 
impossible. Similarly, if bAb ;t O then A. ;t 0. We may consider the first case; that is we can divide the equa
tion by µ2 to get 

aAa(A./µ)2 + 2aAb(l..Iµ) + bAb = 0 

clearly, this equation may have 0, I or 2 solutions; by solving it we also get an explicit value for the (possi
ble) intersection point(s). 

The relationship between lines and conics has a very imponant consequence. Indeed, we can apply the 
theorem to a special case to get a simple means of classification for conics. Namely: 

The number of ideal points belonging to a conic may be 0, 1 or 2. (The set of ideal points 
being the ideal line, this is just the special case of the previous statement). In case this number 

is 0, the curve is an ellipse (or a circle); in case this number is I, the curve is a parabola with 

the axis determining the ideal point; in case this number is 2, the curve is a hyperbola, with the 
two asymptotes determining the two ideal points. 



- 7-

2.3. Some General Formulae 

In the present section a list of fonnulae or short calculation methods will be presented. These fonnulae 
should be considered as forming a set of elementary steps like a set of elementary routines in a more com
plicated programming environment. In fact all our further calculations will be perfonned by a repetitive use 
of some of these methods. This also means that an efficient implementation of these steps may be crucial to 
the overall perfonnance of the algorithms to be presented in the later paragraphs. 

The fonnulae themselves are by no means new mathematically. Some of them may be found in text
book like Penna et al. 13, while others may be deducible easily. What might be considered new is the fact 
that the emphasis is different from the one in classical projective geometry textbooks; we are interested in 
constructive ways of our fonnulae, to provide an implementability on a computing environment. 

The reason of this somewhat fonnal approach is as follows. If all subsequent algorithms in the sequel 
are based on these steps then a way to generalise our approach from 20 to 30 might be to try to generalise 
these elementary steps only; by this approach, all subsequent description remain valid. This is, in fact, what 
we will try to do in section 3. This is why we have to list here statements which are very simple in 20 (see 

· e.g. [1] and [2] in the list); while these are trivialities in case of 20, subsequent calculations might be 
necessary for the very same steps in 30. 

To begin with, three fonnulae must be presented which are not directly used in the sections to come, 
only by the general steps listed in this section (they are "local subroutines" to them) and they will have to 
be modified in case of 30. 

If ae PR3 and be PR3 are two points, compute ab (the line detennined by the two points). 

We have already a fonnula for that purpose, which is: 

ab ={la+ µb} 

A.:itOorµ:itO 

(2.3.1) 

If ue PR3 and ve PR3 represent two lines, let us denote by uv the intersection of these lines. 
Determine the homogeneous coordinates of this point. 

The three coordinates are given by: 

where e,, ei and eJ denote the vectors (1,0,0), (0, 1,0) and (0,0, 1) respectively. 

If ae PR3 and be PR3 are two points, compute the homogeneous representation of ab. 

The three coordinates are given by: 

Let us see now the general computation steps we will need in what comes. 

[I] We know the coordinates of at least two ideal points. 

Indeed, (1,0,0)T E PR3 and (0, l,Of E PR3 are two distinct ideal points. 

[2] We know the homogeneous representation of the ideal line. 

Indeed, (0,0,lf ePR3 represents the ideal line. 

[3] If two lines are known by having two points on each of them, compute their intersection point 

This is just the application of the fonnulae (2.3.2) and (2.3.3). 

-----·----

(2.3.2) 

(2.3.3) 
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(4] If aePR3 and bePR3 are two points and A is a symmetric matrix representing a conic, compute the 
number of intersection points and the eventual intersection points themselves. 

See previous section. 

(5] If aePR3 and bePR3 are two points and A is a symmetric matrix representing a conic, compute the 
pole of ab. 

Based on what was said in the previous section, Aa and Ab are the polars of the points a and b respec
tively. Following the previous section again (and figure 1), the pole is (Aa)(Ab). This latter can be 
calculated by using (2.3.2). 

[6] If ae PR3 and be PR3 are two points, A is a symmetric matrix representing a conic and, furthermore, 
ce PR3 is a point on the conic, compute the intersection of the tangential at c and ab. 

This could be done reusing the previous steps but an alternative method is as follows. We want to 
find appropriate A. and µ numbers so that: 

(A.a+ µb)Ac = 0 

taking into account that Ac gives the homogeneous representation of the tangential line at c. 

That is: 

AaAc + µbAc = 0 

Again, if aAc ~ 0 thenµ~ 0, that is we can divide; the result is: 

A./µ= -bAc /aAc 

2.4. General Overview of the Projective Representation 

As it might be clear from the previous sections, if the matrix of a conic is known, it is fairly straightforward 
to classify the conic. Indeed, the number of intersection points with the ideal line determines the nature of 
the conic itself. The ideal line being just a normal line in a projective environment, using step [l], formula 
(2.3.1) and finally step [4] of the previous section these intersection points (if any) may be easily calcu
lated. We also know that it is easy to keep track of the effect of a projective transformation on a conic by 
transforming its matrix (see (2.2.2)). It is therefore straightforward to concentrate on the matrix of a conic 
to find a compact form of storage and projective invariant representation of a conic. This is indeed what we 
will do. 

The following steps will be elaborated in more detail below. 

• A parametric equation for each type of conic will be described. These equations will have in com
mon the fact that they will define the points of the conic in a function of a real parameter t running in 
a finite interval (mainly [0,2Jt]). This description gives an easy way of generating the points of the 
curve; additionally, by defining a finite subset of the base interval, an approximation of the required 
density may also be defined. 

• It will also be shown that each type of parametric equation depends on a small number of geometri
cally significant characteristic points related to the curve. In other words, knowing the exact coordi
nates of these points the parametric equation is automatically generated. 

• Finally, it will also be shown that knowing the matrix of the curve plus maximally three points of the 
curve itself, all characteristic points may be calculated using the steps [1]-[6] of the previous para
graph. 

Let us consider for now that these facts are known. As a consequence, a means of storing and representing 
a conic might be simply to store three of its points plus its matrix. We have seen that these data are easily 
transformable and by calculating the (eventual) ideal points of the curve the fact whether the curve is 
transformed into an ellipse, a hyperbola or a parabola may be easily decided. As a next step, the set of 
characteristic points of the curve should be determined out of the transformed data and, finally, the 
parametric equation of the curve may be generated. It is therefore true that by elaborating on the previous 
points we will have found a solution to the problem presented in the introduction. This is what we will do 
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in what follows. 

2.5. Parametric Equations 

The parametric equations for the three major kinds of conics will be given below. In all three cases the gen
eral curve will be described as the affine image of a simple one. This has two major advantages: it helps to 
find the parametric equation but it also gives a way (using (2.2.2)) to find the matrix of the curve. We have 
to remark that in case of an actual implementation, the transformation given below should be combined 
with the actual projective transformation of the pipeline first to use formula (2.2.2) only once to avoid 
unnecessary computations. However, these are already technical details.' 

We will make use of the following unicity theorem: if four non-collinear points of a conic plus the 
tangential in one of these points are given, the conic is uniquely defined. This unicity theorem assures us 
that the transformations we will use to define the parametric equations may not generate another conic than 
the one we want The reader who has no practice in projective geometty should be aware that in some 
cases one of the four points is an ideal one or, as in the case of the parabola. the tangential may also be the 
ideal line. 

2.5.1. Ellipse 

The simplest ellipse is a unit circle. There is also a well known parametric equation to describe the points 
of the circle, namely: 

(cos(t),sin (tW (0 St S 2tt) (2.5.1) 

The matrix of the circle is also very simple, namely 

[ 

i o ol 
0 1 0 
0 0 -1 

(2.5.2) 

For our purposes, we have to describe some geometric features of the circle from a projective geometric 
point of view. If we look at figure 3 and compare it with figure 2, we can deduce that the pole of the X axis 
is in the ideal point of the Y axis, that is (0,1,0l. Conversely, the pole of the Y axis is (1,0,0l, that is the 
ideal point of the X axis. In other words, the two coordinate axis form a conjugate pair of lines, more 
exactly a conjugate diameter pair (we could also say that the radii cq and er form a pair of conjugate radii). 
We know that an affine transformation keeps the conjugate diameters (it keeps conjugation because it is a 
projective transformation and it keeps the centre because it is affine). If we define therefore an affine 
transformation which transforms the circle on figure 3 into the ellipse of figure 4 by c--tc', q--tq' and r--tr', 
the result will be an ellipse (the ideal line does not change) and the lines c'q' and c'r' will be a pair of con
jugate radii. The matrix of the transformation is also straightforward. By denoting u' = q' - c' and v' = r' - c' 
we get: 

(2.5.3) 

This fact is also true conversely: if we know a pair of conjugate diameters of an ellipse, this conjugate 
diameter pair will define an affine transformation of the form (2.5.3) which will transform the unit circle 
into the given ellipse. The transformation in (2.5.3) can be combined with the parametric equation in 
(2.5.1) to produce the parametric equation of the ellipse, that is (by using a vector equation to simplify the 
formulae): 

1 In all three cases the sim;.e conic serving as a starting point for our calculations could be described by simpler formulae 
as well (e.g. (x,y) = (t,t ) in case ofparabolae) but we should never forget that we arc looking for formulae which are in
dependent of the special position of the curve with respect to the coordinate system. 

___ _:..:. :.::;.~~· 
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p 

Figure 3 

.· ... 
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Figure 4 

cos(t)u' +sin (t)v' + c' (2.5.4) 

0StS2x 

This formula is the one which has been adopted by the CGI Standard Proposal IO to describe an ellipse. 

Clearly, formula (2.5.4) is the kind of parametric equation we were looking for, the characteristic set of 

points consists of the centre and the endpoints of two conjugate radii. 

2.5.2. Hyperbola 

The case of the hyperbola is quite similar to an ellipse; only the resulting formulae will be a little bit more 

complicated. The starting point is again a simple hyperbola, which is the one described by the equation 

x2- y2 = 1 (figure 5). A parametric equation may also be given for that curve (see Penna et al 13.) which is as 

follows: 

(sec (t),tan (t))1 (0 St s 211:) (2.5.5) 

(the singularities corresponds to the ideal points of the curve). The matrix of the curve is again very simple, 

namely: 

[ 
1 0 0 l 
0 - 1 0 
0 0 -1 

(2.5.6) 
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Figure 5 

Here again, the two main axis form a conjugate diameter pair, just as in case of a circle. The significant 
difference is the exact geomettical description of the points rand s of figure 5. As we can see from the 
figure, the points e,f,g,h are the intersection points of the two asymptotes and the tangentials of the curve in 
p and q respectively. The asymptotes themselves are also tangential lines; indeed, they are the two taitgen
tials in the two ideal points of the conic. Fmally, the points r and s may be generated as the intersection 
points of the Y axis and the lines gh andefrespectively. 

Figure 6 

An affine transformation (in fact, all projective transformations) transforms tangentials into tangentials. In 
other words, an arbitrary affine transformation will transform the configuration of figure 5 into a 
configuration like figure 6; c will be transformed into c', p into p' etc. The important fact is that the con
struction we have described for rand s uses affine invariant properties only, that is the image of swill bes' 
(respectively, r will be transformed into r'). If we define therefore an affine transformation which 
transforms figure 5 into figure 6 by c-+c', q-+q' and r -+r' (whose matrix will be (2.5.3) again!), we get a 
paramettic equation of the hyperbola, which is: 

sec(t)u' + tan(t)v' + c' (2.5.7) 

O:St :S2x 

(where u' and v' have the same meaning as in case of an ellipse). 

Here again, if we know the centre and the points marked by p,q,r,s on the figures. we can reconstruct 

- - - - ~ = .:;:~:..--~--
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the parametric equation; in other words, this set of points might be considered as being the characteristic 

set of points for a hyperbola.t 

Care should be taken when using (2.5.7) to effectively render the curve; the points tend to the 
infinity, that is both singularities and overflow may occur. In most cases, however, some kind of run-time 
clip is necessary for a graphics environment anyway; this clip combined with a check on overflow will cut 
the dangerous line segments automatically. 

2.5.3. Parabola 

The parabola we start from is the one described by the equation x2 = y (figure 7). A parametric equation 
may also be given for that curve (see Penna et al 13.) which is as follows: 

[ 
cos(t) l+sin(t)]T 

1-sin(t)' 1-sin(t) 
(2.5.8) 

(0 s t s 21t) 

c 

Figure 7 

The singularity corresponds to the ideal points of the curve. The interval for the parameter 1 might be 
changed; in (2.5.8) the approximation will begin at (- 1, 1), will "go around" through (0,0) and (1, 1). Choos
ing e.g. the interval -Jt/2s1s 3Jt/2 would give a more symmetric arrangement. The matrix of the curve is 
again very simple, namely: 

[ 
1 0 0 l 0 0 -!h 
0 - !h 0 

(2.5.9) 

The Y axis of the parabola is a diameter; indeed, the centre of the parabola is the (only) ideal point of the 
curve. The line pq is of course not a diameter in this case (in contrast to the previous ones); it is, however, 
conjugate to the Y axis (following figure l, the pole of the Y axis is the intersection point of the ideal line 

t An alternative and somewhat beucr known parametric equation for the hyperbola would be 

eh (t)u' ± sh (t)v' + c' 

Using the so called hyperbolic cosine and hyperbolic sine functions. However, in this case the parameter t would be defined on the 
infinite interval 0 St s+oo, which would be computationally unstable. 
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and the X axis, which is the direction of this latter one; this coincides with the direction of pq). It is also 
known that the point r will be the middlepoint of the line segment pq. 

Figure 8 

An affine transformation keeps conjugation and keeps also the property of being the middlepoint of a line 
segment This means that transforming the parabola on figure 7 to the one of figure 8 would result in the 
points p',q',r' and c', where the lines p'q' and the axis running through c' (which is the same as the line c'r') 
will be conjugate to one another. Furthermore, r' will be the middlepoint of the line segmentp'q'. 

We can therefore apply the same methods as before. In this case, however, the meaning of u' and v' 
is different; indeed, let us define u' = q' - r' and v' = r' - c'. Using these definitions the transfonnation 
described in (2.5.3) will transform the parabola of figure 7 into the parabola of figure 8. The characteristic 
points are therefore p',r',q' and c'; the parametrics equation is: 

cos(t) , + 1 +sin(t) , , 
1-sin(t)" 1-sin(t)v +c (2.5.10) 

-1t/2 s t s 31t/2 

2.6. Generation of the Characteristic Points. 

The last and most important step in our procedure is to reconstruct the characteristic points of the curve out 
of its matrix and three of its points. Let us remind what these characteristic points are: 

e In case of an ellipse, the centre and two endpoints of two conjugate radii (see figures 3 and 4). 

• In case of a hyperbola, the centre, the two intersection points of a chord and the two points (denoted 
by r and s on figure 5) of the line which is conjugate to the chord and contains the centre. 

• In case of a parabola, the intersection point of an axis of the curve (which is, in fact, the other inter
section point of a diameter), the two intersection point of the curve and a chord conjugate to the axis 
chosed before and, finally, the intersection point of the axis and this latter chord. 

As we have already seen, it is fairly straightforward to decide whether a conic is an ellipse, a hyperbola or 
a parabola. Furthermore, as a result of this calculation, the ideal point(s) of the conic (if any) are also 
known. Additionally, out of the three points which are stored together with the matrix of the conic, at least 
one will be transformed into an affine (that is non-ideal) point. In fact, in case of an ellipse, all of them will 
become affine (although we will need only one), in case of a hyperbola at least one will be affine and, 
finally, two affine points will be at hand for a parabola. 

In all three cases, the centre of the curve may be calculated easily as well. In fact, for a parabola this 
step is not necessary at all: the centre will be the (only) ideal point of the curve. For the other two cases the 
steps [1] and [6] will lead to the necessary result by calculating the pole of the ideal line. 

For an ellipse (figures 3 and 4) we may start with one of the known points of the curve; let us take 
the one denoted by q. Using step [5] and the points q,c, the pole of the line qc may be calculated (in fact, 
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this will be an ideal point). Fmally, using this new point and the point c, the two intersection points r and s 
may also be calculated (although only one of them is needed). The resulting c,q and r points fonn the 
requested set of characteristic points. 

For a hyperbola (figures 5 and 6), the situation is a little bit more complicated. Taking one of the 
affine points of the hyperbola and denoting it by p, the other intersection point of the corresponding diame
ter may be calculated (step [4]). For each of the two asymptotes two points are already known (the centre 
and the two ideal points of the hyperbola respectively). With the help of these data.the points e,f,g and h 
(intersection points of the asymptotes and the tangentials at the diameter endpoints) may also be computed 
(using step [6]). Furthennore, the diameter which is conjugate to the diameter pq is also determined; 
indeed, the pole of pq determined by [5] gives a second point to it (the first being the centre). Ftnally, the 
intersection points s and r may be calculated using step [3 ]. 

In case of a parabola (figures 7 and 8) two affine points of the curve are already known (p and q). 
The pole of the line pq may be connected to the (known) ideal point of the curve; this will be a diameter. 
Based on the remark we made in connection with figure 2, the intersection of this diameter and the line seg-

· ment pq (which can be calculated using [3]) will be the middlepoint of pq. Additionally, the (other) inter
section point of the diameter with the curve may be calculated using [4]. This will be c, the last missing 
characteristic point 

2.7. Arcs 

Before we move to 30, we have to address the problem of arcs. Indeed, the use of conic arcs might be even 
more important (e.g. for surface modelling) than whole curves. 

One of the advantages of the parametric fonnulae given in the previous paragraphs is that they are all 
invertible. In other words, if a point on the curve is known, the corresponding t value might also be calcu
lated. Hence, handling of arcs becomes quite straightforward: the two endpoints of the arc and one inter
mediate point must also be transfonned and these data will detennine an appropriate subinterval of the 
parameter interval. The only small problem which should be handled run-time is to know which "half" of 
the curve should be taken for the arc (think of an ellipse); the presence of the third point on the arc will 
however decide that unambiguously. 

3. The 3D Case 

3.1. Mathematics Again 

The projective space is very similar to the projective plane. Ideal points are defined following the same 
scheme; homogeneous coordinates are used to describe points (of course, they are now members of PR4 

instead of PR3) and the relationship between affine and ideal points is essentially the same as in paragraph 
2.1. 

There are of course differences. In case of projective space, the inherent duality described before 
stands for points and planes: an element of PR4 may describe a plane. The set of all ideal points is now 
considered to be a plane, the ideal plane, representable by (O,O,O,l)TePR4

• Lines may be expressed by for
mula (2.1.1 ). 

Geometrically, planes of the projective space are projective planes (this seems to be a triviality but, 
in fact, requires a formal proof in mathematics). The ideal points belonging to a given plane (that is the 
directions parallel to it) fonn the ideal line of the plane. We may speak of the intersection of an affine 
plane and the ideal plane, which is the ideal line of the plane. In other words, every two planes in the pro
jecti ve space have an intersection which is a line (just as every two lines in the projective plane have an 
intersection which is a point). 

The notion of conics may be generalised onto projective spaces as well; the only difference is that 
the symmetric matrix in use should be 4x4 instead of 3x3. These conics are the so-called quadratic surfaces 
(hyperboloids, paraboloids, hyperbolic paraboloids etc.). Their classification is much more complicated 
than in the case of planar curves; however, they fonn again a class of surfaces which is invariant to projec
tive transfonnations (the way we have deduced fonnula 2.2.2 was independent of dimensions). By luck, 
we do not need a complete overview of all these surfaces in computer graphics; in fact, they are rarely in 



use. 

The intersection of a plane and a quadratic surface leads to a planar conic on the plane. Indeed, if our 
plane happens to be the plane x3 = o, this can be easily seen by just putting a O to all relevant places of the 
equation of the surface; the result is a second order equation for the remaining coordinate values. If the 
plane is of a general position, it can always be transfonned into the plane x3 = 0 by using an orthogonal 

transfonnation. 

These intersection curves are what we are really interested in. Also, it is very easy to associate a qua
dratic surface to a planar conic: one has to construct a generalised cylinder (we might also called it a sweep 
surface). This means that the curve should be moved along a line not contained by the plane of the conic 
(see figure 9). In the simplest case, when the conic lies in the X-Y plane, it also very simple to give the 
equation of such a surface. Indeed, if A is a 3><3 matrix then the matrix describing the corresponding sur
face maybe: 

a1,1 a1,2 0 a1,3 

a2.1 a2.2 0 az.3 

0 0 0 0 
a3,1 al.2 0 a3,3 

Figure 9 

(3.1.1) 

Care should be taken that the matrix A, is singular. In fact, it can be shown that in case of 30, if the matrix 
of a conic is singular, it is either the matrix of a (generalised) cylinder or that of a cone. The proof of this 
theorem would lead us far beyond the scopes of this article; the interested reader should consult for exam
ple KerekjaJ:tol 1 for the details. 

3.2. Generalisation of the Projective Representation of Conics for 30 

The way which seems to be promising is as follows. The original curve we want to describe is an ellipse, a 
hyperbola or a parabola in space. The plane of the curve is determined by the points describing the curve 
(conjugate radii endpoints etc.). Out of these the normal of the plane can be calculated easily. 

Fonnulae (2.5.2), (2.5.5) and (2.5.9) give the matrices of the simplest ellipse, hyperbola and parabola 
in a projective plane. Using (3. I.I), the corresponding cylinders may also be described by appropriate 
matrices. As a next step, we have defined in 20 an affine transformation which transformed the simple 
conic curves into somewhat more complicated ones (see 2.5.3). In all three cases, we had to define some 
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vectors (u' and v') based on the geometric nature of the curve and the transformation was defined by the 
relations: 

(0,0, l)T-+c' 
(1,0, l)T-+q' 
(0, I, l)T-+r' 

The generation of an appropriate affine transformation may be generalised to 30 as well. Indeed, by 
defining again u' = q' - c', v' = r' - c' and additionally w' = u'xv' - c', we may define the following transfor
mation: 

This affine transformation has the following properties: 

(0,0,0, l)T-+ c' 
(l,0,0, l)T-+ q' 
(0, 1,0, l)T-+ r' 
(0,0, l, tl-+ u'xv' 

(3.2.1) 

In fact, u 'xv' is the normal vector of the plane containing the curve. As a result, out· of the originally planar 
curve in space we get the matrix of a special quadratic surface. The matrix of this surface may then be 
transformed using formula (2.2.2) again. 

If we choose the same representation of the conic as in 20, that is its matrix and three points on it, 
what we have got after the transformation is the matrix of a quadratic surface and three points of the 
required (transformed) curve again. These three points may be used for an additional purpose in this case: 
they determine the plane of the image of the original (planar) conic (we will see in the next paragraph how 
the homogeneous representation of that plane can be generated). What we are really interested in, is to 
reconstruct the set of characteristic points of the resulting curve on the image plane (in other words, we are 
not interested in the overall behaviour of the resulting quadratic surface). As we have already mentioned 
before, if we succeed in giving a set of alternative methods to cover the steps listed in 2.3, the construction 
leading to the characteristic points described in 2.6 may be applied without change. Taking into account 
that all parametric equations listed in 2.5 are vector equations, their use in 30 becomes straightforward to 
generate the curve (or an arc) in 30 space. This means, that to complete the generalisation of a our 
approach to 30, we have only to reconstruct the steps [1]-(6] listed in 2.3. This is what we will do in the 
next paragraph. 

3.3. General Formulae Revisited 

The first formulae we have to generalise are the ones corresponding to (2.3.2) and (2.3.4). The new formu
lae are very much alike indeed; roughly speaking, one dimension should be added where necessary. That 
is: 

If ue PR4 , ve PR4 and we PR4 represent three planes, determine the homogeneous coordinates 
of the intersection point of the three planes (the intersection point will be denoted by uvw). 

The four coordinates are given by: 

(3.3.1) 

If all determinants in 3.2.1 are zero, the planes meet in a line; this is a singular case. 

If ae PR4
, be PR4 and ce PR4 represent three points, determine the homogeneous representation 

of the planes determined by these three points (the generated plane will be denoted by abw). 
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The corresponding fonnulae are the same as (3.3. I); the singularity means that the three points 

are collinear. 

Based on these fonnulae, we can compute the homogeneous representation of the plane containing the 
image of the conic curve we want to render. This element of PR4 will be denoted by n. For the sake if sim
plicity, the plane itself will be denoted by P. We can also suppose that we have in hand at least one point of 
the space which is not on the plane. For example, one of the ideal points (l,0,0,0)7 , (O,l,0,0)7 or (0,0, l,0)7 

should be outside the plane; if not, the curve cannot be rendered at all (all its points are ideal). This point 

will be denoted by p. 

Let us now see the steps listed in 2.3 and how can they be generalised. 

[I] We know the coordinates of at least two ideal points of P. 

Let us suppose for a while that all three transfonned points of the curve are affine. By perfonning the 
projective division and substracting one of them out of the two others we get two Eucledian vectors 
which are parallel to the plane. These vectors will also detennine two ideal points. (see (2.1.2). 

If one (or two) of the transfonned points are ideal, then this is just what we were looking for. 

[2] We know the homogeneous representation of the ideal plane. 

Indeed, (0,0,0,1)7 ePR3 represents the ideal plane. 

[3] If two lines of Pare known by having two points on each of them, compute their intersection point 

For each line a plane may be defined which contains the line and is different from P. Indeed the two 
points of the line and p will detcnnine such a plane. The homogeneous representation of these planes 
may be detennined; then, these two elements of PR4 plus n will detennine the intersection point. 

[4] If aePR4 and bePR4 are two points in P and A is a symmetric matrix representing a conic, compute 
the number of intersection point and the eventual intersection points themselves. 

The very same method as in two dimensional case can be applied without change. 

[5] If ae PR4 and be PR4 are two points in P and A is a symmetric matrix representing a conic, compute 
the pole of ab. 

Similarly to the two dimensional case Aa and Ab represent the polar of a and b respectively. The 
difference is that the polar is now a plane instead of a line. However, by calculating (Aa )(Ab )n, we get 
the two dimensional pole on P. 

[6] If aePR4 and bePR4 are two points in P, A is a symmetric matrix representing a conic and, further
more, ce PR4 (c 7 n = 0), is a point on the conic, compute the intersection of the tangential at c and ab. 

Essentially the same fonnula can be used as in 2.3. Indeed, the tangential plane of A is given by Ac 

and the intersection of this plane with P will give the tangential in P. 

We have shown therefore that all steps listed in 2.3. may be generalised into 30, which also means that the 
projective representation proposed for conics can be used in 30 as well. 

4. Conclusions 

Beyond the specific algorithmic side of the previous results, two more general conclusions might also be 
drawn from them. These are as follows. 

It seems to be feasible that more research activities should be concentrated on the question of projec
tive invariant representations of the output primitives in use. Using somewhat more elaborate tools of pro
jective geometry seems to lead to a number of interesting fonnulations and algorithms which might be fas
ter, shorter, might result in data compression when describing the primitives etc. Examples have been 
presented in the already cited tutorial of EG'888, the paper of Arokiasamy1, the paper of Krammer on 
modelling clip12 or the presentation of the so called 2.50 graphics systems7. There is still a lot to do in the 
field and a number of interesting results to find. 

Another conclusion which might be of interest is related to the approach we have chosen to generate 
the characteristic points. In fact, we have used a relatively small number of basic tools which are reminis
cent of the elementary steps allowed in Eucledian geometry for geometrical constructions (possibility to 
draw a line, to draw the intersection of two lines etc.). Of course, our basic steps are related to 

- · -- -~>·......., __ _ 
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computational methods but. significantly enough, the way of reconstructing the characteristic sets was just 
the repetitive use of these elementary steps in the right order. In this sense, the whole method we have 
used might remind us of all those very classical geometric exercises where one has to reconstruct some
times very complex geometric objects out of simple ones, using a ruler and some elementary steps. It might 
be an interesting intellectual exercise to look after these old, ttaditional methods (some geometrical con
structions are several hundred or even a thousand years old!); it might well be that with a fresh look at them 
new approaches can be found which might be useful in graphics algorithms, in drafting systems etc. 
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