
Context-Free Languages, Coalgebraically

Joost Winter1?, Marcello M. Bonsangue2,1, and Jan Rutten1,3

1 Centrum Wiskunde & Informatica (CWI)
2 LIACS – Leiden University

3 Radboud University Nijmegen

Abstract. We give a coalgebraic account of context-free languages using
the functor D(X) = 2 ×XA for deterministic automata over an alpha-
bet A, in three different but equivalent ways: (i) by viewing context-free
grammars as D-coalgebras; (ii) by defining a format for behavioural dif-
ferential equations (w.r.t. D) for which the unique solutions are precisely
the context-free languages; and (iii) as the D-coalgebra of generalized
regular expressions in which the Kleene star is replaced by a unique
fixed point operator. In all cases, semantics is defined by the unique ho-
momorphism into the final coalgebra of all languages, thus paving the
way for coinductive proofs of context-free language equivalence. Further-
more, the three characterizations are elementary to the extent that they
can serve as the basis for the definition of a general coalgebraic notion
of context-freeness, which we see as the ultimate long-term goal of the
present study.

1 Introduction

The set P(A∗) of all formal languages over an alphabet A is a final coalgebra of
the functor D(X) = 2×XA. Deterministic automata are D-coalgebras and their
behaviour, in terms of language acceptance is given by the final homomorphism
into P(A∗). A language is regular if it is in the image of the final homomorphism
from a finite D-coalgebra to P(A∗). Or, equivalently by Kleene’s theorem, if it
is in the image of the final homomorphism from the set of regular expressions,
which constitute a D-coalgebra by means of the so-called Brzozowski derivatives.

Thus the coalgebraic picture of regular languages and regular expressions is
well-understood (cf. [9] for details). Moreover the picture is so elementary that it
has recently been possible [12] to generalize it to a large class of other systems,
including Mealy machines, labelled transition systems, and various probabilistic
automata.

In the present paper, we will develop in part a similar such coalgebraic pic-
ture for context-free languages, which form another well-known class, extending
regular languages. Our focus will be on context-free grammars, which consti-
tute one of the common definition schemes for context-free languages. (Another
well-known characterization is through pushdown automata, which will not be
treated here.)
? Supported by the NWO project CoRE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301659325?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Because the set of all languages is a final coalgebra of the functor D(X) =
2×XA, as was mentioned above, it seems natural to try and use the same functor
for a coalgebraic treatment of context-free grammars and languages. We will do
so in three different but equivalent ways. (i) We will, in Sect. 3, view context-free
grammars (in essentially Greibach normal form) as D-coalgebras, which we shall
call grammar coalgebras; their elements will correspond to partial derivations.
(ii) Next we will, in Sect. 4, define a format of behavioural differential equations
with respect to the functor D, for which the unique solutions are precisely the
context-free languages. (iii) In Sect. 5, we will define context-free languages by
means of generalized regular expressions, in which the Kleene star is replaced by
a unique fixed point operator, and which are given a D-coalgebra structure using
a variation of Brzozowski derivatives. In all three cases, semantics is defined by
the final homomorphism into P(A∗).

We show that the above three coalgebraic characterizations are equivalent in
the following sense: a language is context-free if and only if it is in the image
of the final homomorphism starting in either a grammar D-coalgebra; or a D-
coalgebra corresponding to a (finite) system of behavioural differential equations;
or the D-coalgebra of generalized expressions with fixed point operator.

The proofs of these equivalences are not trivial, but contain few surprises,
consisting of ingredients that are already present at various places in the litera-
ture. What we do see as the contribution of this paper are the three characteriza-
tions as such, together with the fact that their equivalence could be established
in such an elementary fashion. We expect that this will lead to various further
results, as follows.

Grammar coalgebras establish a direct correspondence between context-free
grammars and context-free languages, by finality, and thus pave the way for coin-
ductive proofs of context-free language equivalence. Furthermore, we will argue
that our way of defining context-free languages through behavioural differential
equations will lead to a generalization of the very notion of context-freeness to
other types of systems, much in the same way as regular expressions and regular
languages were generalized in [12]. A sketch of an elementary but interesting first
instance hereof is given at the end of the present paper, in Sect. 6, where we will
introduce the new notion of context-free streams. Finally, expressions with a fixed
point operator are well-suited for the formulation of algebraic characterizations,
which we see as yet another direction for future research.

Related work. In contrast to regular languages, equality of context-free languages
is known to be an undecidable property [4]. This may explain why not so much al-
gebraic or coalgebraic work has been devoted to study the theory of context-free
languages. The first, and only, coalgebraic treatment of context-free languages
we are aware of, is presented in [3]. In this paper context-free languages are
described indirectly, as the result of flattening finite skeletal parsed trees. The
authors study context-free grammars as coalgebras for a functor different form
ours, i.e. the functor P((A+ (−))∗).

Algebraically, the starting point is Kozen’s complete characterization of regu-
lar languages in terms of Kleene algebras, idempotent semirings equipped with a

star-operation satisfying some fixed point equations [6]. In [7, 1], Kleene algebras
have been extended with a least fixed point operator to axiomatize fragments of
the theory of context-free languages. We take a similar approach, but coalgebraic
in nature and substituting the Kleene star with a unique fixed point operator.
Whereas [7, 1] are interested in providing solutions to systems of equations of
the form x = t using least fixed points, we look at systems of behavioural differ-
ential equations and give a semantic solution in terms of context-free languages
(in Sect. 4) and syntactic solutions in terms of regular expressions with unique
fixed points (in Sect. 5).

Regular expressions with the Kleene star replaced by a unique right-recursive
fixed point operator have been studied in [14, 12] for a large variety of coalgebras,
including the one for deterministic automata.

Acknowledgements. We would like to thank Alexandra Silva, for valuable sug-
gestions and discussions.

2 Coalgebras and Deterministic Automata

In this section we give the basic definitions of coalgebras, deterministic au-
tomata and context-free grammars. A more extensive coalgebraic treatment of
languages, automata and regular expressions can be found, for example, in [10,
9, 5].

A coalgebra for an endofunctor F:Set → Set consists of a carrier set C
together with a map c:C → FC. The functor F is usually called the type of
the coalgebra. In this paper we will be concerned with coalgebras for structured
automata [13], i.e. of type DF, for the functor D = 2× (−)A and endofunctors
F:Set→ Set. Here and in the rest of this paper, A is a finite set (in this context
also called alphabet), 2 is the two-element set {0, 1} and × is the Cartesian
product. Sometimes we see 2 as a complete lattice with 0 ≤ 1 and join ∨ and meet
∧ as expected. A coalgebra (C, c:C → DFX) can be interpreted as an automaton
that for a given state t ∈ C returns a pair c(t) = 〈o(t), δ(t)〉, determining whether
the state t is final (i.e. o(t) = 1) or not (o(t) = 0), and offering a structured state
δ(t)(a) ∈ FX for each input a ∈ A. Typically we will write ta for δ(t)(a), call o(t)
the output of t and ta the a-derivative of t . When confusion may arise about the
coalgebra we are currently referring to, we will superscribe o(t) and ta with the
coalgebra map c. We can extend the notion of a-derivative to word derivatives
tw, for w ∈ A∗, by setting tλ = t for the empty word λ and taw = (ta)w for
a ∈ A and w ∈ A∗.

A homomorphism from a D-coalgebra (C, c) to a D-coalgebra (D, d) is a
function f :C → D preserving outputs and next states, that is, for all t ∈ C,

o(f(t)) = o(t) and f(ta) = f(t)a

(which is equivalent to the condition that d ◦ f = D(f) ◦ c, where the action of
the functor D on functions is as expected).

For example, the set P(A∗) of all languages on the alphabet A can be
equipped with a D-coalgebra map by setting for every L ⊆ A∗, o(L) = 1 if and
only if λ ∈ L, and La = {w ∈ A∗ | aw ∈ L}. This coalgebra is called final because
for every D-coalgebra (C, c), there is a unique homomorphism J Kc:C → P(A∗)
given by

λ ∈ JtKc iff o(t) = 1 , and aw ∈ JtKc iff w ∈ JtaKc .

A relation R ⊆ C × D between the carriers of two D-coalgebras (C, c) and
(D, d) is called a bisimulation if, whenever (s, t) ∈ R, we have o(s) = o(t), and
(sa, ta) ∈ R for all a ∈ A. Whenever there exists a bisimulation R such that
(s, t) ∈ R, we say that s and t are bisimilar and write s ∼ t. It holds that s ∼ t
if and only if JsKc = JtKd, or, in other words, s and t are bisimilar exactly when
they are mapped onto the same language.

A relation R ⊆ C×D is a bisimulation up-to if, whenever (s, t) ∈ R, we have
o(s) = o(t), and for all a ∈ A, there are s′ ∈ C and t′ ∈ D such that sa ∼ s′,
ta ∼ t′, and (s′, t′) ∈ R. Clearly ∼ is a bisimulation up-to. Conversely, for every
bisimulation up-to R, if (s, t) ∈ R, then s ∼ t.

3 Context-Free Languages via Grammars

We assume the reader to be familiar with the standard notions on context-free
grammars and languages, and give only the definitions and results we need in
the rest of this paper. For a more comprehensive study of context-free grammars
and languages, see e.g. [8].

A context-free grammar, or CFG, on a finite alphabet A is a pair (X, p),
where X is a finite set of nonterminals, or variables, and p:X → Pω((A + X)∗)
is a function describing the production rules. We use the standard notation to
describe the production rules:

x→ t iff t ∈ p(x) ,

where x ∈ X and t ∈ (A+X)∗. Here + denotes the coproduct (or disjoint union),
Pω the finite power set, and (A+X)∗ is the set of all the strings of finite length
over A and X. According to the above definition, CFGs are coalgebras for the
functor Pω((A+ (−))∗), and indeed a coalgebraic account of context-free gram-
mars and context-free languages using the above functor (without the finiteness
condition on the power set) is presented in [3]. There, the focus is mainly on
finite skeletal parsed trees (i.e. finite strings with additional tree structure), and
context-free languages are obtained after applying a flattening function. In the
present paper we will depart from the above work in order to describe uniquely
context-free languages in three different (but equivalent) coalgebraic forms.

In order to define the language associated to a context-free grammar, next
we define the notion of derivation. Given a CFG G = (X, p), for any string
s, s′ ∈ (A + X)∗, we write s ⇒ s′, and say s′ is derivable from s in a single
derivation step, whenever s = s1xs2 and s′ = s1ts2 for a production rule x→ t
of G, and s2, s2 ∈ (A+X)∗. We say that s′ is derivable from s in a single leftmost

derivation step whenever s1 is a (possibly empty) string of terminals in A∗. As
usual,⇒∗ denotes the reflexive and transitive closure of⇒. In general, if s⇒∗ s′,
then s′ is derivable from s using only leftmost derivation steps. Therefore we can
restrict our attention to leftmost derivations only.

For a CFG (X, p) and any variable x ∈ X, called the starting symbol, we
define the language L(x) ⊆ A∗ generated by (X, p) from x by

L(x) = {w ∈ A∗|x⇒∗ w}.

A language L ⊆ A∗ is called context-free if there exists a CFG (X, p) and a
variable x ∈ X, such that L = L(x).

For our coalgebraic treatment of context-free languages it will be convenent
to work with CFGs with production rules of a specific form. We say that a CFG
is in weak Greibach normal form if all of its production rules are of the form

x→ at or x→ λ ,

where a ∈ A is an alphabet symbol, and t ∈ (A + X)∗ is a (possibly empty)
sequence of terminal and alphabet symbols. The main difference between weak
Greibach normal form and the usual notion of Greibach normal form [2] is that
here, t is not a string over X but over (A + X), and hence may contain both
terminal and alphabet symbols. Clearly, every CFG in Greibach normal form is
also in weak Greibach normal form.

For every terminal symbol x, the language L(x) generated by a CFG (X, p) in
weak Greibach normal form is a context-free language. Conversely, every context
free language L can be generated by a CFG in Greibach normal form from some
terminal symbol [2]. Therefore CFGs in weak Greibach normal form characterize
precisely context-free languages.

3.1 A Coalgebraic Treatment of Context-Free Grammars

In this section we look at CFGs in weak Greibach normal form, and, for each
such grammar, we define a corresponding D-coalgebra, in the sense that the
unique coalgebra homomorphism from the grammar (seen as a D-coalgebra) to
the final D-coalgebra of all languages, maps nonterminal symbols precisely to
the context-free language they generate. The key observation is that every CFG
(X, p) with productions in weak Greibach normal form can be seen as a coalgebra
for the functor DPω((A+(−))∗) (rather than as a Pω((A+(−))∗)-coalgebra as we
have seen in the previous section). More precisely, we represent the production
rules by a map p:X → DPω((A + (−))∗), with p(x) = 〈o(x), δ(x)〉 defined, for
all terminal symbols x ∈ X, by

o(x) = 1 iff x→ λ , and t ∈ xa iff x→ at

(writing as before xa for f(a)). Consider for example the grammar (in weak
Greibach normal form) over the alphabet A = {a, b} with nonterminal symbols
X = {x, y} and productions

x→ axa , x→ ayb , x→ aa , y → ayb , y → λ .

The language generated from x is L(x) = {anbmak|n = m + k, n ≥ 1}, while
the language generated from y is L(y) = {anbn|n ≥ 0}. In coalgebraic form, the
above productions read as follows:

o(x) = 0 xa = {xa, yb, a} xb = ∅
o(y) = 1 ya = {yb} yb = ∅ .

The coalgebra associated to each CFG in weak Greibach normal form is not a
proper deterministic automaton (i.e. a D-coalgebra) because its type is of the
form DPω((A + (−))∗). However, using a technique analogous to determiniza-
tion [13], we can turn it into a deterministic automaton by embedding the nonter-
minal symbols X into Pω((A+X)∗) using the assignment ηX :X → Pω((A+X)∗),
mapping each x ∈ X into the singleton set {x} (in which x is seen as a string). In
fact, we extend in a canonical manner each coalgebra p:X → DPω((A+X)∗) for
a CFG to what we call a grammar coalgebra p#:Pω((A+X)∗)→ DPω((A+X)∗)
as follows: for each finite subset S ⊆ (A+X)∗ we define its output value and its
a-derivative by

S o(S) Sa
∅ 0 ∅
{λ} 1 ∅
{as} 0 {s} where t ∈ (A+X)∗

{bs} 0 ∅ if b 6= a, b ∈ A
{xs} o(s) {ts | t ∈ xa} ∪ {sa} if o(x) = 1, x ∈ X, t ∈ (A+X)∗

{xs} 0 {ts | t ∈ xa} if o(x) = 0, t ∈ (A+X)∗

T ∪ U o(T) ∨ o(U) Ta ∪ Ua where T,U ⊆ (A+X)∗ .

The idea of this definition is to view subsets of (A+X)∗ as languages. In fact,
the above definition coincides with the coalgebra structure map of the final D-
coalgebra P(A∗) if we take subsets of strings in A∗ (not containing nonterminal
symbols). This is combined with the coalgebra map of the grammar which gives
the output value and a-derivative for each nonterminal symbol, as can be seen
from the fact that p# ◦ ηX = p.

X
ηX
- Pω((A+X)∗)

J K
- P(A∗)

DPω((A+X)∗)

p

?
-

�
p
#

DP(A∗)
?

We are now ready to state our main result for this section, namely the corre-
spondence between context-free languages and the languages associated by the
final homomorphism J−K above to each nonterminal symbol of a CFG.

Theorem 1. Let (X, p) be a context-free grammar in weak Greibach normal
form over a finite alphabet A, and S a finite subset of (A+X)∗. For every word
w ∈ A∗, we have w ∈ JSKp# if and only if there exists some s ∈ S such that
s⇒∗ w.

(For a sketch of the proof of this theorem, and some of the later theorems,
see the Appendix.)

It follows that a language L is context-free iff L = JηX(x)Kp# , for some
grammar coalgebra generated by a CFG (X, p) and x ∈ X.

4 Context-Free Languages via Equations

Next we will look at a characterization of context-free languages in terms of
systems of behavioural differential equations, analogous to those introduced in
[11]. The idea is to define context-free languages by means of equations that
involve output values and derivatives for each alphabet symbol, using a simple
language with only variables, choice and sequential composition. Each system
of behavioural differential equations in our format has as its unique solution
a language, which we will prove to be context-free whenever the number of
equations is finite. Conversely, for each context-free language L we will construct
a finite system of behavioural differential equations with L as unique solution.

To illustrate our approach, consider the example from the previous section.
A formal definition of this context-free language could be given by the following
system of behavioural differential equations:

output value a-derivative b-derivative
o(x) = 0 xa = (x · a) + (y · b) + a ya = y · b
o(y) = 1 xb = 0 yb = 0

Next we present a syntax describing the format of behavioural differential equa-
tions that will be considered: let A be a finite set of alphabet symbols, X be
a (possibly infinite) set of variables, and {o(x)|x ∈ X} and {xa|x ∈ X} for
each a ∈ A be (syntactic) sets of symbols, representing notational variants of
the variables. The variables x ∈ X will play the role of placeholders for lan-
guages L ⊆ A∗, while their notational variants xa will be placeholders for the
corresponding language La, for each a ∈ A, and the o(x) will correspond to the
information whether L contains the empty string λ or not. We call a behavioural
differential equation for context-free languages well-formed if it consists of an
equation o(x) = v and an equation xa = t for each a ∈ A, where v ∈ {0, 1} and
t is a term defined by

t ::= 0 | 1 |x | a | t+ t | t · t

where x ∈ X and a ∈ A. (In the remainder of this paper, we will often simply
write ‘ab’ rather than ‘a · b’.) We let TX denote the set of all terms, as defined
above, over the set X. A well-formed system of equations for X consists of
one well-formed equation for each x ∈ X. Equivalently, a well-formed system of
equations over X (for a fixed A) can be seen as a mapping f :X → D(TX) where,
writing f(x) = 〈o(x), δ(x)〉, we define o(x) and, for each a ∈ A, xa = δ(x)(a) by
the values specified by the system of behavioural differential equations.

Before defining what a solution of a system of equations is, we need to inter-
pret the above operations on terms as functions on languages. To this end, we

transform a system of equations f :X → D(TX) into a deterministic automaton
f̄ :TX → D(TX) inductively as follows:

t o(t) ta
0 0 0
1 1 0
x o(x) xa
a 0 1
b 0 0 if b 6= a, b ∈ A

u+ v o(u) ∨ o(v) ua + va u, v ∈ TX
u · v 0 ua · v if o(u) = 0, u, v ∈ TX
u · v o(v) ua · v + va if o(u) = 1, u, v ∈ TX

We can now combine a system of equations f :X → D(TX), its extension f̄ ,
and the unique homomorphism into the final coalgebra of all languages in the
following diagram:

X ⊂

i
- TX

J K
- P(A∗)

D(TX)

f

?
-

�

f̄

DP(A∗)
?

A solution for such a system of equations consists of a mapping of variables x
to languages Lx ⊆ A∗ such that Lx = JxK for all x ∈ X. The above diagram
basically shows that every well-formed system of equations has a unique solution.
Our next goal is to prove that such a solution is a context-free language. Before
we do this, however, we introduce the notion of term equivalence:

Definition 2. We say that two terms t, u ∈ TX are equivalent, denoted by
t ≡ u, when for every well-formed system of equations (X, f), t ∼ u with respect
to the coalgebra (TX, f̄) generated from (X, f).

One can easily show that the relation ≡ is a congruence with respect to the
sum + and multiplication · of terms in TX, for any set X. Furthermore, TX
modulo ≡ forms an idempotent semiring:

Proposition 3. For any set X and terms t, u, v ∈ TX, the following hold:

t+ u ≡ u+ t u ≡ v ⇒ t[u/x] ≡ t[v/x]
t+ t ≡ t 0 · t ≡ 0 ≡ t · 0
0 + t ≡ t ≡ t+ 0 1 · t ≡ t ≡ t · 1
t+ (u+ v) ≡ (t+ u) + v t · (u · v) ≡ (t · u) · v
(t+ u) · v ≡ t · v + u · v t · (u+ v) ≡ t · u+ t · v

Equivalence between terms in TX can be extended to bisimilarity between
different systems of equations on the same set of variables. This result will be
convenient when proving that every context-free language is the solution of a
well-formed system of equations.

Proposition 4. If (X, f) and (X, g) are two systems of equations such that, for
every x ∈ X, and every symbol a, of (x) = og(x), and xfa ≡ xga, then the identity
relation on TX is a bisimulation up-to between the generated coalgebras (TX, f̄)
and (TX, ḡ).

We can now establish the first main result of this section, relating states of
a grammar coalgebra to terms in TX.

Theorem 5. Let A and X be finite sets. For every context-free grammar (X, p)
in weak Greibach normal form and finite subset S of (A + X)∗ there exists a
well-formed system of equations f :X → (TX)A and a term t ∈ TX such that
S ∼ t with respect to the generated coalgebras p# and f̄ , respectively.

Proof. (Sketch) The system of equations f can be constructed from the grammar
p as follows: o(x) = 1 if λ ∈ p(x), and 0 otherwise; and xa =

∑
{s̄ | as ∈ p(x)},

where s̄ is the obvious translation of s ∈ (A+X)∗ into a term of TX. The proof
now proceeds by showing that {(S, t) |S ⊆ (A + X)∗, t =

∑
{s̄ | s ∈ S}} is a

bisimulation up-to with respect to the generated coalgebras. ut

Because for every context-free language L there exists a CFG (X, p) and
x ∈ X such that L = JηX(x)Kp# , it follows that every context-free language is
the solution of a well formed system of equations.

It remains to show that every solution of a system of equations is a context-
free language. Our approach will be to construct, for every system of equations
(X, f), a context-free grammar (X, p), such that x ∼ ηX(x) for all x with respect
to the generated coalgebras f̄ and p#. To this end, we first transform our system
of equations so that terms at the right hand side of all equations are in disjunctive
normal form. This is possible because of the laws proven in Propositions 3 and
because ≡ is a congruence.

We say that a term t ∈ TX is conjunctive when either t = 1; or when t = a·u,
where a ∈ A and u a conjunctive term; or when t = x · u, where x is a variable,
and u is a conjunctive term. We say that a term t ∈ TX is in disjunctive normal
form, when either t = 0; or when t = u+ v, where u is conjunctive, and v is in
disjunctive normal form. Using Proposition 3, it is easy to see that for every term
t, there is an equivalent (and thus bisimilar for all (TX, f̄)-coalgebras) term t′

in disjunctive normal form. This implies that for every system of equations we
can construct a new system of equations with the same variables and having the
same solution but such that all terms on the right-hand side of the a-differential
equations are in disjunctive normal form. We call a system of equations with the
latter property a system of equations in disjunctive normal form.

We are finally ready for the other main result of this section, stating that
every solution of a system of equations is a context-free language.

Theorem 6. For a finite set X, if (X, f) is a system of equations in disjunctive
normal form there exists a context-free grammar (X, p), such that x ∼ ηX(x) with
respect to the generated coalgebras (TX, f̄) and (P((A+X)∗), p#), respectively.

Proof. Given a system of equations (X, f), we construct the grammar (X, p),
such that

p(x) =
⋃
{at | t is a disjunct of xa} ∪ {λ | if o(x) = 1} .

It is easy to see that f is a translation of p in the sense of Theorem 5. Hence, it
follows that x ∼ {x} = ηX(x) with respect to f̄ and p#. ut

Combining the two theorems in this section we have obtained that context-
free languages are precisely the solutions of well-formed systems of equations.

5 Context-Free Expressions

In this section, we will introduce context-free expressions as an extension of
regular expressions, where the Kleene star is replaced by a (unique) fixed point
operator µ. We then will define a notion of Brzozowski-like derivatives for these
expressions, and prove that the languages characterizable by such expressions
are precisely the context-free languages. In contrast to the previous coalgebraic
formalisms, this formalism gives us a single coalgebra of which the elements
correspond exactly to the context-free languages.

Our usage of fixed point expressions with a coinductive semantics has a very
similar flavour to that in [12], in which fixed point expressions are used as a
characterization of regular expressions over a variety of functors. The additional
expressive power obtained by the context-free expressions presented here is due
to an explicit inclusion of a concatenation operator.4 This provides an additional
perspective on the treatment given here, in which ‘context-freeness’ is obtained
by the addition of a new operator to a calculus of regular experssions5, and
may pave the way for an investigation of (1) extending this approach to other
coinductively defined operators, and (2) extending this approach to a generalized
notion of context-freeness for other functors.

We define the set of terms t (henceforth to be called context-free expressions)
and guarded terms g over an alphabet A and a set of variables X as follows:

t ::= 0 | 1 |x ∈ X | a ∈ A | t+ t | t · t |µx.g
g ::= a · t (a ∈ A) | 1 | g + g

For all closed terms t, we can describe the behaviour by defining the output value
o(t), and the derivative ta for each alphabet symbol a. We do this as follows:

4 In [12], a translation from the familiar format of regular expressions (with concate-
nation) into µ-style expressions is given by means of substitution. However, this
translation does not work for expressions of the type x · t.

5 Although this calculus does not explicitly contain the Kleene star, it can easily be
expressed by means of the equality t∗ = µx.((t · x) + 1)

t o(t) ta
0 0 0
1 1 0
a 0 1
b 0 0 if b 6= a, b ∈ A

u+ v o(u) ∨ o(v) ua + va
u · v 0 ua · v if o(u) = 0
u · v o(v) ua · v + va if o(u) = 1
µx.u o(u[µx.u/x]) (u[µx.u/x])a

Here t[u/x], as usual, denotes the term obtained from t by replacing all free
occurrences of x by u. Because of the guardedness conditions of terms occurring
directly inside the µ operator, it is easy to see that the above definition is well-
defined.

Note furthermore that we have just defined a D-coalgebra – the term coalge-
bra – with the set of all context-free expressions as objects, and the behaviour
defined above as its transition function.

Again, the relation ∼ is a congruence with respect to the sum + and mul-
tiplication · of context-free expressions. Furthermore, the set of context-free ex-
pressions modulo ∼ forms an idempotent semiring:

Proposition 7. For all context-free expressions t, u, v, the following hold:

t+ u ∼ u+ t u ∼ v ⇒ t[u/x] ∼ t[v/x]
t+ t ∼ t 0 · t ∼ 0 ∼ t · 0
0 + t ∼ t ∼ t+ 0 1 · t ∼ t ∼ t · 1
t+ (u+ v) ∼ (t+ u) + v t · (u · v) ∼ (t · u) · v
(t+ u) · v ∼ t · v + u · v t · (u+ v) ∼ t · u+ t · v
t[u/x] ∼ u⇒ µx.t ∼ u µx.t ∼ µy.(t[y/x]) if y is not free in t
µx.t ∼ t[µx.t/x]

As an illustration of context-free expressions, it is easy to see that the expres-
sion µx.(axb+1) will be mapped onto the language {anbn}. As another example,
consider the expression

µx.(axa+ aa+ aµy.(ayb+ 1)b).

In the next subsection, it will become clear that this expression corresponds to
the language {anbmak |n = m+ k, n ≥ 1} from the earlier examples.

5.1 From Systems of Equations to Context-Free Expressions

Assume we have a coalgebra generated by a system of equations, and an term
in this coalgebra. From Sect. 4, we know that this term is mapped by the final
homomorphism onto a context-free language. In this section, we will embark on
the task of finding a context-free expression corresponding to this term, in the
sense that it is mapped onto the same language. We will do this using a process
of repeated substitution.

To start with, given a system of equations (X, f), to we will associate with
every variable x the µ-expression

sx := µx.(
∑
a∈A

a · xa + o(x)),

and call it the corresponding or associated µ-expression. (As before, this nota-
tion strictly speaking does not denote a single expression, but rather a set of
expressions which, by associativity of addition, are all bisimilar.)

We now go on by defining the notions of single syntactic substitutions and
chains of syntactic substitutions: a term t′ is a single syntactic substitution of
t, if t′ is obtained by replacing (syntactically) a single occurrence of a single
variable by its corresponding µ-expression. A chain of syntactic substitutions is
a list of terms t1, . . . , tn such that, for each 1 ≤ i < n, ti+1 is a single syntactic
substitution of ti.

We are especially interested in chains of syntactic substitutions, where the
resulting term does not contain any free variables, or only a limited set of free
variables. We will call such terms closures and pseudoclosures of the original
term:

Definition 8. We say a term t′ is a Z-pseudoclosure of t for a set Z ⊆ X
of variables, if there exists a a chain of syntactic substitutions t1, . . . , tn such
that t1 = t, tn = t′ and t′ only contains free variables from Z. We call a ∅-
pseudoclosure simply a closure.

As a continuation of our running example, recall the system of equations
corresponding to the language {anbmak |n = m + k, n ≥ 1}. From this system
of equations, we obtain the following assignment of µ-expressions to variables:

sx = µx.(axa+ ayb+ aa+ 0)
sy = µy.(ayb+ 1)

From x, we obtain µx.(axa + ayb + aa + 0) by means of a single syntactic
substitutions, and another single syntatctic substitution then gives us µx.(axa+
aµy.(ayb + 1)b + aa + 0). This expression does not contain any free variables
anymore, and therefore is a closure of x.

Some general laws about closures and psueudoclosures are easily established:

Proposition 9. 1. If u′ is a W -pseudoclosure of u and v′ a W -pseudoclosure
of v, then u′+ v′ is a W -pseudoclosure of u+ v, u′ · v′ is a W -pseudoclosure
of u · v, and µx.u′ is a W − {x}-pseudoclosure of µx.u.

2. If t = u+ v, and t′ is a W -pseudoclosure of t, then t′ is of the form u′ + v′,
where u′ is a W -pseudoclosure of u, and v′ is a W -pseudoclosure of v′. The
same fact holds if we replace + by ·.

Using the previous proposition, we can establish that, for every term t, a
closure t′ exists. It should be noted, though, that this t′ generally is not unique:
for a term t, in general, many closures exist.

Proposition 10. Given a term t ∈ TX (that is, a µ-free term), a set of vari-
ables Z ⊆ X, and an assignment of a term tx to each variable x ∈ X, there
exists a Z-pseudoclosure t′ of t.

With the next proposition we construct a bisimulation up-to between a coal-
gebra generated by a system of equations and the term coalgebra, relating every
term t to every t′ such that t′ is a closure of t.

Proposition 11. Given a system of equations (X, f) (yielding an corresponding
expression sx for each variable x ∈ X), a coalgebra generated by it (TX, f̄), and
a assignment of a term ux to each variable x ∈ X such that ux ≡ sx for all
x ∈ X, the relation

R = {(t, t′) | t ∈ TX and t′ is a closure of t (w.r.t. the assignment ux)}

is a bisimulation up-to between (TX, f̄) and the term coalgebra.

Going back once again to our example, this proposition directly establishes
that the expression

µx.(axa+ aµy.(ayb+ 1)b+ aa+ 0)

corresponds to the language {anbmak |n = m+k, n ≥ 1}. The earlier expression
µx.(axa+ aµy.(ayb+ 1)b+ aa) is easily seen to be bisimilar to this expression.

The two previous propositions directly imply that, for any term in a coalgebra
generated by a system of equations (and, hence, for every context-free language),
we can use any closure of it as a bisimilar context-free expression. Hence, and
because every term has a closure, for every context-free language we can find a
context-free expression that is mapped to it by the final homomorphism:

Theorem 12. Let L be a context-free language. There exists a context-free ex-
pression t such that JtK = L.

5.2 From Context-Free Expressions to Systems of Equations

Going in the other direction, the recipe is as follows: given a context-free expres-
sion t′ in which every variable is bound by a µ-operator just once, we ‘decon-
struct’ this expression into a system of equations, and a term t, of which t′ is a
closure. Then Proposition 11 directly gives us the result, that there is a system
of equations (X, f), a variable x ∈ X, such that t′ ∼ t with respect to the term
coalgebra and the coalgebra (TX, f̄) generated by (X, f). Hence, it follows that
t is mapped by the final homomorphism onto a context-free language.

By applying a process of α-renaming, we can obtain an expression t′ from any
expression t such that, in t′, no variable is bound twice, or, in other words, such
that there are no two distinct subexpressions of t′ that bind the same variable.
It is easy to see that the resulting term t′ will always be bisimilar to t.

Now we are able to move on to the main proposition of this section, in which
for every context-free expression t′ a system of equations is constructed, such
that in the coalgebra generated by it, there is a term t with t ∼ t′.

Proposition 13. Given a context-free expression t′, such that no two distinct
sub-expressions of t′ are µ-expressions binding the same variable, there exists a
system of equations (X, f) generating an assignment of expressions sx to vari-
ables x ∈ X, and a term t, such that (with respect to (X, f)) t′ is a closure of t,
based on an assignment of expressions tx to variables x ∈ X with tx ≡ sx.

As every context-free expression is bisimilar to a term in a coalgebra gener-
ated by some system of equations, it follows directly that the final homomor-
phism maps every context-free expression to a context-free language:

Theorem 14. For every context-free expression t, JtK is a context-free language.

6 Discussion

Our coalgebraic account of context-free languages in terms of grammars, systems
of behavioural equations, and context-free expressions can be taken as a starting
point for a generalization in at least two different and orthogonal directions. On
the one hand, we can consider other languages of expressions for the functor D

to obtain different classes of languages, and on the other hand we can generalize
the notion of context-freeness to coalgebras for other functors .

As an interesting example of the first type, one could consider systems of
behavioural differential equations for which the term at the right of each equation
stems from the language of expressions

t ::= 0 | 1 |x ∈ X | t+ t | a · t .

The semantic solution of such a system is given by regular languages, while the
syntactic one is given by a language of expressions as studied in [14]. The corre-
sponding notion of grammars for regular languages is then given by considering
productions of the form p:X → D(Pω(A∗ ×X)), i.e. right-linear grammars [4].

Examples of the second type of generalization will depend on the structure
of the functor. Here we briefly sketch only an elementary but interesting first
example. The functor S(X) = IN × X has the set of all streams INω as its
final coalgebra. We note that, similar to the set of all languages, also INω is a
semiring, with elementwise addition of streams as sum, and convolution product
as product. Streams can be defined by behavioural differential equations, which
specify the head σ(0) ∈ IN and tail σ′ of a stream σ ∈ INω. Now let us call a
stream context-free whenever it can be specified by a stream differential equation
σ′ = t, where t is a term of the following form:

t ::= n |X | t+ t | t× t

and where n is any natural number, X denotes the constant stream (0, 1, 0, 0, . . .),
+ denotes elementwise addition of streams, and × denotes convolution product.
We note that the above syntax (and its semantics) for t is a straightforward
variation on the syntax (and its semantics) that we used for the behavioural
differential equations for context-free languages, in Section 4.

As an example of a context-free stream, let γ be defined by the well-formed
differential equation given by

γ′ = γ × γ γ(0) = 1

It has as its unique solution the stream of the Catalan numbers (1, 1, 2, 5, 14, . . .),
which occurs in numerous counting problems (such as the number of well-
bracketed words consisting of matching pairs of an opening and a closing bracket).
The stream γ is known not to be rational, so this example nicely illustrates how
the class of context-free streams extends the class of rational streams, in the
same way as with languages.

Further research directions include a coalgebraic characterization of context-
free languages in terms of pushdown automata [4, 8], and the study of coinductive
decision procedures for bisimilarity of deterministic context-free languages, a
problem that is known to be decidable [15].

References

1. Ésik, Z., Leiß, H.: Algebraically complete semirings and Greibach normal form.
Annals of Pure and Applied Logic 133(1-3), 173–203 (2005)

2. Greibach, S.A.: A new normal-form theorem for context-free, phrase structure
grammars. Journal of the Association for Computing Machinery 12, 42–52 (1965)

3. Hasuo, I., Jacobs, B.: Context-free languages via coalgebraic trace semantics. In:
CALCO. LNCS, vol. 3629, pp. 213–231. Springer (2005)

4. Hopcroft, J.E., Ullman, J.D.: Formal languages and their relation to automata.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1969)

5. Jacobs, B.: A bialgebraic review of deterministic automata, regular expressions
and languages. In: Essays Dedicated to Joseph A. Goguen. LNCS, vol. 4060, pp.
375–404. Springer (2006)

6. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Inf. Comput. 110(2), 366–390 (1994)

7. Leiß, H.: Towards Kleene algebra with recursion. In: CSL. LNCS, vol. 626, pp.
242–256. Springer (1991)

8. Linz, P.: An Introduction to Formal Languages and Automata. Jones and Bartlett
(1997)

9. Rutten, J.J.M.M.: Automata and coinduction (an exercise in coalgebra). In: CON-
CUR. LNCS, vol. 1466, pp. 194–218. Springer (1998)

10. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoretical Computer
Science 249(1), 3–80 (2000)

11. Rutten, J.J.M.M.: Behavioural differential equations: a coinductive calculus of
streams, automata, and power series. Theoretical Computer Science 308(1-3), 1–53
(2003)

12. Silva, A.: Kleene Coalgebra. Ph.D. thesis, Radboud Universiteit Nijmegen (2010)
13. Silva, A., Bonchi, F., Bonsangue, M.M., Rutten, J.J.M.M.: Generalizing the power-

set construction, coalgebraically. In: FSTTCS. LIPIcs, vol. 8, pp. 272–283. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik (2010)

14. Silva, A., Bonsangue, M.M., Rutten, J.J.M.M.: Non-deterministic Kleene coalge-
bras. Logical Methods in Computer Science 6(3) (2010)

15. Stirling, C.: Decidability of DPDA equivalence. Theoretical Computer Science
255(1-2), 1–31 (2001)

A Appendix: Proofs

Proof (of Proposition 1). In this proof, two facts that are easily verified by
induction will be used: 1) o(Sw) = 1 iff w ∈ JSK for all words w and all S; and
2) for all S ⊆ (A+X)∗, if w ∈ JSK, then there is a s ∈ S such that w ∈ J{s}K.

We proceed by induction on the length of words w. For the empty word λ, it
is easy to see that s⇒∗ λ if and only if s only consists of nonterminal symbols
x that have a production rule x→ λ. Conversely, we have λ ∈ JSK iff o(Sλ) = 1,
that is, if o(S) = 1: but it follows easily from the definition that this is the
case iff there is a s ∈ S consisting only of nonterminal symbols x that have a
production rule x→ λ.

Assume that the inductive hypothesis holds for w, and consider the word aw.
Assume s ⇒∗ aw, and consider the first term in the leftmost derivation of aw
that is of the form at. Thus s⇒∗ at⇒∗ aw. By inspecting the definitions, it is
easily seen that if s ∈ S, then t ∈ Sa. Furthermore, it also follows that t⇒∗ w,
and the inductive hypothesis then gives w ∈ JSaK, and hence that o((Sa)w) = 1.
But clearly Saw = (Sa)w, so aw ∈ JSK.

For the other direction, assume that aw ∈ JSK. Then there must be some
s ∈ S, such that aw ∈ J{s}K, or that o({s}aw) = o(({s}a)w) = 1. We now get
that w ∈ J{s}aK, and the inductive hypothesis now gives some t ∈ {s}a such
that t⇒∗ w. From inspecting the definitions, it is also easy to see that s⇒∗ at.
Hence, we get s⇒∗ at⇒∗ aw, which is what needed to be shown. ut

Proof (of Proposition 3). As two useful illustrations of coinductive proofs, we
will show the proofs that t · (u+ v) ≡ t · u+ t · v and t · (u · v) ≡ (t · u) · v:

To see that t · (u+ v) ≡ t · u+ t · v, consider the relation

R = {(t · (u+ v), t · u+ t · v)} ∪ {((t · (u+ v)) + w, (t · u+ t · v) + w)}.

We will show that this is a bisimulation up-to. Assume r ∈ R. If r is of the
form (t · (u + v), t · u + t · v), we have o(t · (u + v)) = o(t) ∧ (o(u) ∨ o(v)) =
(o(t)∧ o(u))∨ (o(t)∧ o(v)) = o(t · u+ t · v). Furthermore, whenever o(t) = 0, we
have:

(t · (u+ v))a = ta · (u+ v)
(t · u+ t · v)a = ta · u+ ta · v

and clearly (ta · (u+ v), ta · u+ ta · v) ∈ R. When o(t) = 1, we have:

(t · (u+ v))a = ta · (u+ v) + (u+ v)a
= ta · (u+ v) + (ua + va)

and

(t · u+ t · v)a = (t · u)a + (t · v)a
= (ta · u+ ua) + (ta · v + va).

But clearly, we have, by earlier laws

(ta · u+ ua) + (ta · v + va) ∼ (ta · u+ ta · v) + (ua + va).

As we know that (ta · (u + v) + (ua + va), (ta · u + ta · v) + (ua + va)) ∈ R, we
know that the bisimulation up-to condition is fulfilled. The case where r is of
the form ((t · (u+ v)) + w, (t · u+ t · v) + w) goes very similarly.

To see that t · (u · v) ≡ (t · u) · v, consider the relation

R = {t · (u · v), (t · u) · v} ∪ {t · (u · v) + w, (t · u) · v + w}.

Again, we will show that this is a bisimulation up-to. Again, we will treat the
case where we have a r ∈ R of the form (t · (u · v), (t ·u) · v) – the other case goes
very similarly, and now we distinguish three cases.

If o(t) = 0, we will necessarily also have o(t·u) = 0, and (t·(u·v))a = ta ·(u·v),
as well as ((t ·u) · v)a = (t ·u)a · v = (ta ·u) · v. Clearly (ta · (u · v), (ta ·u) · v) ∈ R.

If o(t) = 1 and o(u) = 0, we have

(t · (u · v))a = ta · (u · v) + (u · v)a
= ta · (u · v) + ua · v.

On the other side,

((t · u) · v)a = (t · u)a · v
= (ta · u+ ua) · v

However, we already know that (ta · u + ua) · v ∼ (ta · u) · v + ua · v, and now
because (ta ·(u ·v)+ua ·v, (ta ·u) ·v+ua ·v) ∈ R the bisimulation up-to condition
is satisfied.

Finally, if o(t) = o(u) = 1, we have

(t · (u · v))a = ta · (u · v) + (u · v)a
= ta · (u · v) + (ua · v + va)

and

((t · u) · v)a = (t · u)a · v + va

= (ta · u+ ua) · v + va.

But again,

(ta · u+ ua) · v + va ∼ ((ta · u) · v + ua · v) + va

and

((ta · u) · v + ua · v) + va ∼ (ta · u) · v + (ua · v + va).

As (ta · (u · v) + (ua · v + va), (ta · u) · v + (ua · v + va)) ∈ R, this completes the
proof that R is a bisimulation up-to. ut

Proof (of Proposition 4). Let t be a term.
First, we have to show that of̄ (x) = oḡ(x). When t is a variable, an alphabet

symbol, 0 or 1, this is trivial, and when t is a compound term, this is proven by
induction.

Secondly, we have to show that for all alphabet symbols a, there are terms
t′, t′′, such that tf̄a ∼ t′, tḡa ∼ t′′, and (t′, t′′) ∈ R (or, in other words, t′ = t′′).

This, too, will be proven by induction, and is trivial for the base cases where t
is an alphabet symbol, 0, or 1.

When t is a variable x, we have xf̄a = xfa ∼ xga = xḡa. Taking t′ = t′′ = xf̄a
then suffices.

When t is of the form u + v or of the form u · v, we will make use of the
inductive assumption that the bisimilarity condition holds for u and v. But then
it is easy to see that it holds for t too, making use of the fact that ∼ is a
congruence with respect to + and ·. ut

Proof (of Proposition 10). By (reverse) induction on the size of Z. If Z = X,
the result is trivial, because every term is its own X-pseudoclosure.

Now we assume the theorem holds for W ⊆ X, and need to prove that, for
any x ∈ X, the theorem also holds for W − {x}. We do this by induction on
(µ-free) terms.

1. For terms 0, 1, and a, the result is trivial as these terms do not contain any
free variables.

2. For terms t = u + v or t = u · v, the result follows from Proposition 9 and
the inductive hypothesis.

3. For the variable x, we know that there must be a W -pseudoclosure u of tx.
Then µx.u is a (W − {x})-pseudoclosure of x.

4. For variables y 6= x, assume that u is a W -pseudoclosure of ty, and v is a
W -pseudoclosure of tx. Then u[µx.v/x] is a W −{x}-pseudoclosure of ty (it
is easy to see that u[µx.v/x] can be obtained from u by a chain of single
syntactic substitutions), and hence µy.u[µx.v/x] is a W −{x}-pseudoclosure
of y. ut

Proof (of Proposition 11). Say (t, t′) ∈ R. It suffices to show that o(t) = o(t′),
and that for each alphabet symbol a, there is a sa, such that t′a ∼ sa, and
(ta, sa) ∈ R. We will do both by induction.

Showing that o(t) = o(t′) is immediate when t = 0, t = 1, or t = a, because in
these cases we have t = t′. When t = x, it must be the case that t′ is obtainable
by a chain of single syntactic substitutions from µx.(

∑
a∈A a · xa + o(x)). But,

as every chain of single syntactic substitutions from µx.(
∑
a∈A a ·xa + o(x)) will

be of the form µx.(
∑
a∈A a · s(a) + o(x)), and o(a · s(a)) = 0 for all s(a), it

follows easily that o(t′) = o(x). When t = u + v, it follows that t′ must be of
the form u′ + v′, where u′ is a closure of u, and v′ is a closure of v. We then get
o(t) = o(u) ∨ o(v) = o(u′) ∨ o(v′) = o(t′), using the inductive assumption that
o(u) = o(u′) and o(v) = o(v′). The case where t = u · v goes analogously.

Showing that (ta, t′a) ∈ R, again, is immediate when t = 0, t = 1, or t = a.
When t = x, the first single syntactic substitution to obtain t′ must, again,
be replacing x by µx.(

∑
a∈A a · xa + o(x)). As a result, t′ must be of the shape

µx.(
∑
a∈A a·s(a)+o(x)), where each s(a) is a {x}-pseudoclosure of xa. It follows

that ua := s(a)[µx.(
∑
a∈A a · s(a) + o(x))/x] is a closure of xa. As (b · tb)a = 0

when a 6= b, as (a · ta)a = ta, and as 1a = 0a = 0, it follows that ua ∼ t′a: as ua
is a closure of ta, the condition holds. The cases where t = u + v and t = u · v
are immediate from the inductive hypothesis and Proposition 9. ut

Proof (of Proposition 13). In this proof, we define the µ-pruning of a term as
the µ-free term obtained by replacing the outermost µ-expressions in it by the
variables bound by these expressions.

For every variable x, let tx be equal to the µ-pruning of ux, where µx.ux is
the unique sub-expression of t binding x. Let s be equal to the µ-pruning of t.

To see that there exists a declaration system (X, f) such that sx ≡ tx for all
x ∈ X, we note that for each tx there exists a sx with sx ≡ tx of the form

sx =
∑
a∈A

a · s(a, x) + o (o ∈ {0, 1})

(The reason why this is so, roughly is the follows: because ux occurs directly
within the scope of a µ-operator, it has to be a guarded term. We can easily
show, by induction on guarded terms g, that the µ-pruning of each such term
has a normal form of this type.)

But we can easily construct a declaration system (X, f) that yields back
these sx, by setting, for each x ∈ X, xa = s(a, x), and o(x) = o.

To see that t is a closure of s, consider the following sublemma:

Lemma. Given the above association of terms tx to each variable x, if t is a µ-
pruning of a term t′ (that is an ingredient of the original term in consideration)
with only free variables in W ⊆ X, then t′ is a W -pseudoclosure of t.

Proof (of Lemma). By induction on terms.
For terms t of the form 0, 1, a, if t is a µ-pruning of t′, then t = t′, and hence

t′ is a closure (and, hence, a W -pseudoclosure for any W ⊆ X) of t as 0, 1, and
a are closed terms.

For terms t′ of the form u′ + v′, if t is a µ-pruning of t′, then t is of the form
u+ v, where u is a µ-pruning of u′ and v is a µ-pruning of v′. But then, by the
inductive hypothesis, u′ is a W -pseudoclosure of u and v′ is a W -pseudoclosure
of v, and then, by Proposition 9, t′ is a W -pseudoclosure of t. The case where
t = u · v goes analogously.

For terms t′ of the form x ∈ W , x is its own µ-pruning, and clearly x is a
W -pseudoclosure of itself, as x ∈W .

For terms t′ of the form µx.u, if t is a µ-pruning of t′, then t = x. A single
syntactic substitution yields µx.tx from x, where tx is the µ-pruning of the unique
sub-expression binding x, that is u. As u can contain free variables fromW as well
as x itself, the inductive assumption gives us that u is a W ∪ {x}-pseudoclosure
of tx, and now Proposition 9 gives the result that t′ is a (W ∪ {x}) − {x}-
pseudoclosure (and, hence, also a W -pseudoclosure) of t. ut

The sublemma directly implies that t is a closure of s, and completes the
proof of Proposition 13. ut

