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Abstract
We present a coinductive proof of Moessner’s theorem.
This theorem describes the construction of the stream
(1n, 2n, 3n, . . .) (for n ≥ 1) out of the stream of nat-
ural numbers by repeatedly dropping and summing el-
ements. Our formalisation consists of a direct transla-
tion of the operational description of Moessner’s pro-
cedure into the equivalence of - in essence - two func-
tional programs. Our proof fully exploits the circular-
ity that is present in Moessner’s procedure and is more
elementary than existing proofs. As such, it serves as
a non-trivial illustration of the relevance and power of
coinduction.

1. Introduction
It is well-known that if one drops from the stream of
natural numbers

(1, 2, 3, . . .)

every second element:

(1, 3, 5, . . .)

and one forms of the resulting stream (of the odd natu-
ral numbers) the stream of its partial sums:

(1, 4, 9, . . .)
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then one has obtained the stream of all the natural
numbers squared:

(12, 22, 32, . . .)

The cubes of the natural numbers can be obtained in a
similar fashion, by dropping from the stream of natural
numbers every third element, yielding

(1, 2, 4, 5, 7, 8, . . .)

then taking partial sums:

(1, 3, 7, 12, 19, 27, . . .)

then dropping every second element:

(1, 7, 19, . . .)

and finally taking partial sums again:

(1, 8, 27, . . .)

In [3], Moessner described how the above procedure
of repeatedly alternating a drop and a partial sum oper-
ation can be generalised to obtain the stream

(1n, 2n, 3n, . . .)

for any n ≥ 1. A proof of the correctness of this pro-
cedure, which is known as Moessner’s theorem, was
given by Perron in [6]. An alternative proof and further
generalisations were later provided by Paasche [5] and
Salié [9]. All these proofs are based on a detailed book-
keeping of the elements of all the intermediate streams,
and use nested inductions, involving binomial coeffi-
cients and falling factorial numbers. More details about
these classical proofs can be found in a recent paper
[1, 2] by Hinze, in which he has given a new proof of
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Moessner’s theorem (and its generalisations), in a cal-
culation style.

Here, we present yet another proof of Moessner’s
theorem, using coinduction. This definition and proof
principle, which is one of the cornerstones of the theory
of coalgebra [7], is dual to the well-known principle
of mathematical induction. Induction is well-suited for
finite and well-founded structures, such as the natural
numbers and finite lists. In contrast, coinduction can be
used for reasoning about infinite structures such as the
streams of natural numbers above.

Recently [4], we have studied various operations on
streams from a coinductive perspective, including the
drop operators that are used in Moessner’s construc-
tion. This has made it possible to give an elementary
proof of Moessner’s theorem using coinduction.

Our proof has three main characteristics, in which it
differs from the existing proofs mentioned above. First,
our formalisation of Moessner’s procedure consists of
a direct translation of the operational description of
Moessner’s procedure with which we started this paper.
Secondly, the construction of a suitable stream bisimu-
lation, which as usual constitutes the heart of a proof by
coinduction, fully exploits the circularity that is present
in our definition of both the stream of natural numbers
and the drop and sum operators. Thirdly, our proof is
elementary to a degree that we expect that it can be
easily automated, as is more often the case with coin-
ductive proofs. This is certainly true for every concrete
instance of the theorem, for a given fixed n. But also
for the general case, an automated proof using an inter-
active proof assistant should be feasible.

None of these characteristics are shared by the afore-
mentioned classic proofs by Perron, Paasche and Salié.
And although Hinze’s proof does exploit some of the
circularity involved, using corecursive definitions of
the operators it uses, his formalisation is at a consid-
erable distance from the original operational descrip-
tion of Moessner’s procedure. Moreover, the proof by
Hinze is, to be sure, very interesting and clever but also
somewhat ad hoc and relatively complex.

At the same time, the proofs by Paasche, Salié and
Hinze deal with both Moessner’s original theorem and
with the generalisations mentioned above. In contrast,
our present proof deals with Moessner’s original proce-
dure only. And although we conclude our paper with a
formalisation of a representative example of these gen-

eralisations, finding a proof by coinduction is left as
future work.

Summarizing, we believe that the present paper has
a contribution to make to the foundations of functional
programming. Our formalisation of Moessner’s the-
orem can be easily presented as stating the equiva-
lence of two functional (say Haskell) programs: the first
computing the procedure of alternatingly dropping and
summing elements of a stream, the second describing
the computation the stream of n-powers of the stream
of natural numbers. Furthermore, proving this equiva-
lence constitutes a non-trivial exercise in coinduction,
which is a definition and proof principle that is funda-
mental for functional programming. Finally, the present
exercise is also interesting from a coalgebraic perspec-
tive, as it is – in our experience – one of the most inter-
esting and advanced illustrations to date of the power
of coinduction.

2. Preliminaries
We define the set of all streams of natural numbers by

INω = {σ | σ : IN→ IN }

We shall sometimes write such streams as

σ = (σ(0), σ(1), σ(2), . . .)

We call σ(0) the initial value of σ and we call the
remainder of the stream the stream derivative of σ,
denoted by

σ′ = (σ(1), σ(2), σ(3), . . .)

We can view streams as states of an abstract machine,
for which initial value and derivative together deter-
mine the behaviour: one can think of the initial value
σ(0) as an (initial) observation on σ; and when we take
one single transition step in state σ, we reach the new
state σ′.

Next we define various streams and stream functions
by so-called stream differential equations [8]. In anal-
ogy to differential equations in classical mathematics,
stream differential equations define streams by specify-
ing their stream derivative and their initial value.

• The stream n = (n, n, n, . . .), for every n ∈ IN, is
given by the following stream differential equation:

n′ = n

with initial value n(0) = n.
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• The element-wise sum

σ+τ = (σ(0)+τ(0), σ(1)+τ(1), σ(2)+τ(2), . . .)

of two streams σ, τ ∈ INω can be specified by the
following stream differential equation:

(σ + τ)′ = σ′ + τ ′

with initial value

(σ + τ)(0) = σ(0) + τ(0)

(We use overloading: the same symbol is used for
the sum of natural numbers and the sum of streams.)
• Using the operation of sum, we can specify the

stream of natural numbers nat = (1, 2, 3, . . .) by

nat′ = nat + 1

with initial value nat(0) = 1.
• The (element-wise) Hadamard product

σ� τ = (σ(0) · τ(0), σ(1) · τ(1), σ(2) · τ(2), . . .)

of two streams σ, τ ∈ INω satisfies

(σ � τ)′ = σ′ � τ ′

with initial value

(σ � τ)(0) = σ(0) · τ(0)

Often we simply write στ for σ� τ . Also we define
natn by nat0 = 1 and natn+1 = nat� natn.
• Scalar multiplication

kσ = (k · σ(0), k · σ(1), k · σ(2), . . .)

of a stream σ ∈ INω with a natural number k ∈ IN
satisfies:

(kσ)′ = kσ′

with initial value

(kσ)(0) = k · σ(0)

• For every σ ∈ INω, the stream

Σσ = (σ(0), σ(0)+σ(1), σ(0)+σ(1)+σ(2), . . .)

of partial sums of σ is defined by the following
stream differential equation:

( Σσ )′ = ( Σσ′ ) + σ(0)

with initial value

( Σσ )(0) = σ(0)

• We define drop operators Di
k, for all k ≥ 2 and

0 ≤ i < k, and for all σ ∈ INω, by the following
system of stream differential equations:

(Di+1
k σ )′ = Di

k σ
′

(D0
k σ )′ = Dk−2

k σ′′

with initial values

(Di+1
k σ )(0) = σ(0)

(D0
k σ )(0) = σ′ (0)

The operator Di
k repeatedly drops the i-th element

of every block of k elements of the incoming stream
(please note that we start counting the elements of
streams with 0). For instance,

D1
3(σ) = (σ(0), σ(2), σ(3), σ(5), σ(6), σ(8), . . .)

• It will be convenient to have one function symbol for
the composition of a drop operator with the operator
for partial sums. Therefore we define

Σi
k = Σ ◦Di

k

These operators satisfy the following differential
equations:

( Σi+1
k σ)′ = Σi

k σ
′ + σ(0)

( Σ0
k σ)′ = Σk−2

k σ′′ + σ′ (0)

with initial values

( Σi+1
k σ) (0) = σ(0)

( Σ0
k σ) (0) = σ′ (0)

(It is straightforward to prove that all of the stream
differential equations mentioned above are well-defined,
that is, have a unique solution. See [8] for more details
on stream differential equations.)

In our proof of Moessner’s theorem, we will use a
few basic properties of the operators above, all of which
are easily verified.

Proposition 2.1 For all n,m ∈ IN,

n+m = n+m

For all σ, τ, ρ ∈ INω,

σ � 1 = σ σ � τ = τ � σ
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σ � (τ + ρ) = (σ � τ) + (σ � ρ)

Di
k(σ + τ) = Di

k(σ) +Di
k(τ)

Σi
k(σ + τ) = Σi

k(σ) + Σi
k(τ)

We use stream differential equations not only be-
cause they offer a very succinct and convenient way
of specifying streams. Equally importantly, they also
allow us to build stream bisimulation relations, which
are defined in terms of stream derivatives and initial
values. Stream bisimulations are the key ingredient of
proofs by coinduction, as we will see shortly.

Definition 2.2 (stream bisimulation)

A relation R ⊆ INω× INω is a (stream) bisimulation if,
for all σ, τ ∈ INω,

(σ, τ) ∈ R ⇒
{

(1) σ(0) = τ(0) and
(2) (σ′, τ ′) ∈ R

Theorem 2.3 (coinduction proof principle)

For a stream bisimulation relation R ⊆ INω × INω and
for all σ, τ ∈ INω,

(σ, τ) ∈ R ⇒ σ = τ

Proof:

If R is a bisimulation relation, then one proves σ(n) =
τ(n), for all σ, τ ∈ INω with (σ, τ) ∈ R, by induction
on n ∈ IN. QED

Example 2.4 We illustrate the use of the coinduction
proof principle with a simple example. The shuffle
product of two streams σ and τ is classically defined
by

(σ ⊗ τ)(n) =
n∑

k=0

(
n

k

)
· σ(k) · τ(n− k)

Alternatively and equivalently, the shuffle product can
be defined by the following stream differential equa-
tion:

(σ ⊗ τ)′ = (σ′ ⊗ τ) + (σ ⊗ τ ′)

with initial value

(σ ⊗ τ)(0) = σ(0) · τ(0)

An advantage of this definition is that it avoids the use
of binomial coefficients. Now let us look at two basic
properties of the shuffle product:

(σ + τ)⊗ ρ = (σ ⊗ ρ) + (τ ⊗ ρ)

(σ ⊗ τ)⊗ ρ = σ ⊗ (τ ⊗ ρ)

The first property is straightforward to prove. If we base
a proof of the second property, associativity, on the
classical definition, then we shall encounter a double
summation of terms with binomial coefficients. How-
ever, if we base a proof on the stream differential equa-
tion above, then our reasoning is pleasantly free of bi-
nomial coefficients. To this end, we define R ⊆ INω ×
INω to be the smallest set such that

(i) for all σ, τ and ρ in INω,

〈(σ ⊗ τ)⊗ ρ, σ ⊗ (τ ⊗ ρ)〉 ∈ R

(ii) for all 〈σ1, σ2〉 ∈ R and 〈τ1, τ2〉 ∈ R,

〈σ1 + τ1, σ2 + τ2〉 ∈ R

It is easy to prove that R is a bisimulation relation. The
associativity of the shuffle product now follows by the
coinduction proof principle, Theorem 2.3. QED

3. Moessner’s theorem
Using the definitions from Section 2, we shall now
formalise Moessner’s construction. In the formulation
below, we start Moessner’s construction not with the
stream of natural numbers but with the constant stream
1 = (1, 1, 1, . . .). This is equivalent to the descrip-
tion given in the introduction because, as we shall see,
Σ 1 = nat whence Σn

n+1 1 = nat, for all n ≥ 1.

Theorem 3.1 (Moessner’s theorem) For all n ≥ 1,

Σ1
2 Σ2

3 · · · Σn
n+1 1 = natn

We note that the above formula is a direct translation
of the operational description of Moessner’s procedure,
given in the introduction.

4. The proof: warming up
We shall first prove Moessner’s theorem for n = 1 and
n = 2. The proofs will be by coinduction and consist of
the construction of a stream bisimulation relation. After
that, it will be easy to define one (big) bisimulation
relation for Moessner’s theorem in its full generality,
for all n ≥ 1 at the same time.
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4.1 Moessner theorem for n = 1

In order to prove

Σ1
2 1 = nat

by coinduction, a first naive attempt at the definition of
a suitable stream bisimulation R ⊆ INω × INω is to put

R = {(Σ1
2 1, nat)}

In order to check whether R is a stream bisimulation
relation, we compute initial values on the left and the
right, which are equal to 1. Thus R satisfies stream
bisimulation property (1), of Definition 2.2. Computing
stream derivatives gives

(Σ1
2 1)′ = Σ0

2 1 + 1

and
nat′ = nat + 1

We see that R is not closed under stream derivatives,
and so does not satisfy stream bisimulation property
(2). In order to ensure that R will be closed under
stream derivatives, our second attempt at defining R is
now as follows: let R ⊆ INω × INω be the smallest set
satisfying

(i) (Σ1
2 1, nat) ∈ R

(ii) (Σ0
2 1, nat) ∈ R

(iii) for all σ ∈ INω, (σ, σ) ∈ R
(iv) for all (σ1, τ1) ∈ R and (σ2, τ2) ∈ R,

(σ1 + σ2, τ1 + τ2) ∈ R

We note that we have ensured that

( (Σ1
2 1)′, nat′ ) = ( Σ0

2 1 + 1, nat + 1) ∈ R

by clauses (ii), (iii) and (iv). Similarly, also

( (Σ0
2 1)′, nat′ ) = ( Σ0

2 1 + 1, nat + 1) ∈ R

It follows that our newR is indeed closed under deriva-
tives. Also, one easily checks that initial values left and
right are equal, for all pairs in R. This shows that R is
a stream bisimulation. It follows, by coinduction Theo-
rem 2.3, that Σ1

2 1 = nat. QED

4.2 Moessner theorem for n = 2

For a proof by coinduction of

Σ1
2 Σ2

3 1 = nat2

we will define a relation R ⊆ INω × INω such that

( Σ1
2 Σ2

3 1, nat2 ) ∈ R

and such that R is a stream bisimulation. As before,
we investigate stream derivatives left and right and
compute

(Σ1
2 Σ2

3 1)′ = Σ0
2(Σ

2
3 1)′ + (Σ2

3 1)(0)

= Σ0
2(Σ

1
3 1 + 1) + 1

= Σ0
2Σ

1
3 1 + Σ0

2 1 + 1

(using Proposition 2.1 for the last equality). Also,

(nat2)′ = ( nat� nat )′

= nat′ � nat′

= (nat + 1)� (nat + 1)

= nat(nat + 1) + nat + 1

We make a (mental) note to include the following three
pairs in R:

( Σ0
2Σ

1
3 1, nat(nat + 1) ), ( Σ0

2 1, nat ), ( 1, 1 ) ∈ R

We recognize the latter two pairs from the proof of
Moessner’s theorem for the case n = 1, and we con-
tinue with the computation of the stream derivatives of
the streams in the first pair. Skipping a few intermedi-
ate steps, in which again some of the properties from
Proposition 2.1 are used, we find:

( Σ0
2Σ

1
3 1 )′

= Σ0
2Σ

1
3 1 + Σ0

2 1 + Σ0
2 1 + 1 + 1

and

( nat(nat + 1) )′

= nat(nat + 1) + nat + nat + 1 + 1

Based on the above analysis of (repeated) stream
derivatives, we come to the following definition: let
R ⊆ INω × INω be the smallest set satisfying

(i) (Σ1
2 1, nat) ∈ R and ( Σ1

2 Σ2
3 1, nat2 ) ∈ R

(ii) (Σ0
2 1, nat) ∈ R and ( Σ0

2Σ
1
3 1, nat(nat + 1) ) ∈ R
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(iii) for all σ ∈ INω, (σ, σ) ∈ R
(iv) for all (σ1, τ1) ∈ R and (σ2, τ2) ∈ R,

(σ1 + σ2, τ1 + τ2) ∈ R

One easily verifies that R is a stream bisimulation re-
lation. It follows, by coinduction Theorem 2.3, that
Σ1
2 1 = nat and that Σ1

2 Σ2
3 1 = nat2. In other words,

the above relation R proves Moessner’s theorem for
n = 1 and n = 2 at the same time. QED

5. The proof: general case
We shall now prove Moessner’s Theorem 3.1, for all
n ≥ 1. For the proof, we define again a stream bisim-
ulation relation, generalising the relations used previ-
ously, as follows: Let R ⊆ INω × INω be the smallest
set satisfying

(i) for all n ≥ 1,

( Σ1
2 Σ2

3 · · · Σn
n+1 1 , natn ) ∈ R

(ii) for all n ≥ 1,

( Σ0
2 Σ1

3 · · · Σn−1
n+1 1 , nat(nat + 1)n−1 ) ∈ R

(iii) for all σ ∈ INω,

(σ, σ) ∈ R

(iv) for all (σ1, τ1) ∈ R and (σ2, τ2) ∈ R,

(σ1 + σ2, τ1 + τ2) ∈ R

Next we will prove that R is a stream bisimulation.
Moessner’s theorem then follows by coinduction, The-
orem 2.3.

In order to prove that the relationR is a bisimulation,
we shall use the following facts.

Proposition 5.1 For all n ≥ 1,

natn(0) = 1

and

(natn)′

= nat(nat + 1)n−1

+ nat(nat + 1)n−2

+ · · ·
+ nat(nat + 1)

+ nat + 1

Proposition 5.2 For all k, n ≥ 1,

( Σ1
k+1 Σ2

k+2 · · · Σn
k+n 1 )(0) = 1

and

( Σ1
k+1 Σ2

k+2 · · · Σn
k+n 1 )′

= Σ0
k+1 Σ1

k+2 · · · Σn−1
k+n 1

+ Σ0
k+1 Σ1

k+2 · · · Σn−2
k+n−1 1

+ · · ·
+ Σ0

k+1 Σ1
k+2 1

+ Σ0
k+1 1 + 1

Proposition 5.3 For all n ≥ 1,

( nat(nat + 1)n−1 )(0) = 2n−1

and

(nat(nat + 1)n−1)′

= an−10 nat(nat + 1)n−1

+ an−11 nat(nat + 1)n−2

+ · · ·
+ an−1n−2nat(nat + 1)

+ an−1n−1(nat + 1)

where, for 0 ≤ i ≤ n− 1,

an−1i =

(
n− 1

i

)
+ · · ·

+

(
n− 1

1

)
+

(
n− 1

0

)
Proposition 5.4 For all k, n ≥ 1,

( Σ0
k+1 Σ1

k+2 · · · Σn−1
k+n 1 )(0) = 2n−1

and

( Σ0
k+1 Σ1

k+2 · · · Σn−1
k+n 1 )′

= an−10 Σk−1
k+1 Σk

k+2 · · · Σk+n−2
k+n 1

+ an−11 Σk−1
k+1 Σk

k+2 · · · Σk+n−3
k+n−1 1

+ · · ·
+ an−1n−2Σ

k−1
k+1 Σk

k+2 1

+ an−1n−1 ( Σk−1
k+1 1 + 1 )

with the ai’s as above, in Proposition 5.3.
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The proofs of Propositions 5.1, 5.2 and 5.3 are straight-
forward. The proof of Proposition 5.4 is by induction
on n. In the induction step, one uses the following
property of binomial coefficients: for all n ≥ 1 and
0 ≤ i ≤ n− 1,

an−1i = an−2i + an−3i−1 + · · ·+ an−1−i0

Using these four propositions, one can easily show
that the relation R, defined at the beginning of this
section, is a stream bisimulation relation. Moessner’s
theorem, now for all n ≥ 1, follows as before by
coinduction. QED

6. Stream calculus
The coinductive proof of the previous section is what
we see as the main contribution of this paper. In the
present section, we want to give yet another proof of
Moessner’s theorem, which can be viewed as an equa-
tional version of the proof by coinduction.

We shall be using a bit of elementary stream calculus
[8], of which the basics are briefly recalled first.

We define the set of all streams of real numbers by

IRω = {σ | σ : IN→ IR }

For r ∈ IR, we define the constant stream

[r] = (r, 0, 0, 0, . . .)

which we often denote again by r. Another constant
stream is

X = (0, 1, 0, 0, 0, . . .)

The operation of sum is given, as before, by

(σ + τ)(n) = σ(n) + τ(n)

for σ, τ ∈ IRω and n ≥ 0. We shall also need yet an-
other type of product, called the (convolution) product:

(σ × τ)(n) =
n∑

i=0

σ(i) · τ(n− i)

The convolution product is different from both the
Hadamard product and the shuffle product that we de-
fined previously (on the natural numbers).

Important – a new notational convention: Previously
we wrote στ for the Hadamard product σ � τ . In

what follows, we shall reserve this notation for the
convolution product:

στ = σ × τ

Also we now define σ0 = [1] and σn+1 = σ × σn. We
shall still want to use Hadamard powers of streams, for
which we introduce a new notation. We define σh(0) =
1 and σh(n+1) = σ � σh(n).

We continue with our summary of stream calculus.
If σ(0) 6= 0 then the stream σ has a (unique) multi-
plicative inverse σ−1 in IRω, satisfying σ−1 × σ = [1].
As usual, we shall often write 1/σ for σ−1 and σ/τ for
σ × τ−1.

We call a stream π ∈ IRω polynomial if there are
k ≥ 0 and ai ∈ IR such that

π = a0 + a1X + a2X
2 + · · ·+ akX

k

= (a0, a1, a2, . . . , ak, 0, 0, 0, . . .)

where we write aiX
i for [ai] × Xi with Xi the i-

fold convolution product of X with itself. A stream
ρ ∈ IRω is rational if it is the quotient ρ = σ/τ of
two polynomial streams σ and τ with τ(0) 6= 0. For
instance, the following steams are rational:

1

1− 2X
= (1, 2, 22, 23, . . .)

X

(1−X)2
= (0, 1, 2, 3, . . .)

One can compute a stream from its initial value
and derivative by the so-called fundamental theorem of
stream calculus [8]: for all σ ∈ IRω,

σ = σ(0) + (X × σ′)

(writing σ(0) for [σ(0)]). The fundamental theorem of
stream calculus allows us to solve stream differential
equations. For a trivial example, take

σ(0) = 1 σ′ = σ

By the fundamental theorem, we have σ = σ(0) +
(X × σ′) = 1 + (X × σ), which leads to the solution
σ = 1/1−X (which happens to be equal to the stream
1).

In the remainder of this section, we shall apply the
stream calculus above for yet another proof of Moess-
ner’s theorem. More specifically, we shall prove that
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both streams on the left-hand side and the right-hand
side of Moessner’s identity are rational, using the fun-
damental theorem together with the propositions from
Section 5. Then Moessner’s follows simply from the
observation that these rational streams are equal.

6.1 A rational expression for Σ1
2 Σ2

3 · · · Σn
n+1 1

For notational convenience, we introduce the following
constants:

Pn = Σ1
2 Σ2

3 · · · Σn
n+1 1

Qn = Σ0
2 Σ1

3 · · · Σn−1
n+1 1

for all n ≥ 1. For the numbers Pn, we have

Pn

= Pn(0) + (X × P ′n )

= 1 + X × (Qn + Qn−1 +

· · · + Q2 + Q1 + 1 )

And for the numbers Qn, we have

Qn

= Qn(0) + (X ×Q′n )

= 2n−1 + X × ( an−10 Qn + an−11 Qn−1 +

· · · + an−1n−2Q2 + an−1n−1(Q1 + 1) )

where the coefficients aji are defined as in Proposition
5.3. As a consequence, we obtain the following recur-
rence relation for Qn:

Qn

=
2n−1

1−X
+

X

1−X
( an−11 Qn−1 +

· · · + an−1n−2Q2 + an−1n−1(Q1 + 1) )

This recurrence together with the above formula for Pn

allows us to compute a closed rational expression for
(both Qn and) Pn, yielding the following formulae, for
the first few values of n:

P1 =
1

(1−X)2

P2 =
1 +X

(1−X)3

P3 =
1 + 4X +X2

(1−X)4

P4 =
1 + 11X + 11X2 +X3

(1−X)5

P5 =
1 + 26X + 66X2 + 26X3 +X4

(1−X)6

(A general formula for Pn, for arbitrary n ≥ 1, will be
discussed below.)

6.2 A rational expression for nath(n)

In a similar fashion, we are able to compute rational
expressions for all the (Hadamard) powers of nat. We
compute as follows:

nath(n)

= (nath(n))(0) + (X × (nath(n))′ )

= 1 + X × ( 1 + nat)h(n)

= 1 + X × ( 1 +

(
n

1

)
nath(1) +

· · · +

(
n

n− 1

)
nath(n−1) + nath(n) )

This implies the following recurrence relation:

nath(n)

=
1

1−X
+

X

1−X
( nath(0) +

(
n

1

)
nath(1) +

· · · +

(
n

n− 1

)
nath(n−1) )

where we have replaced 1 by nath(0). It leads to the
following rational expressions, again for the first few
values of n:

nath(1) =
1

(1−X)2

nath(2) =
1 +X

(1−X)3

nath(3) =
1 + 4X +X2

(1−X)4

nath(4) =
1 + 11X + 11X2 +X3

(1−X)5

nath(5) =
1 + 26X + 66X2 + 26X3 +X4

(1−X)6

6.3 Yet another proof of Moessner’s theorem
Because the rational expressions for P1, P2, etc. are
equal to those for nath(1), nath(2), etc., we have proved
Moessner’s theorem again, for each of these cases. For
a general proof, for all n ≥ 1 at the same time, we have
to determine a general expression for arbitrary n, for
both Pn and nath(n). To this end, we use the fact that
there exists in the literature a generating function for
the n-powers of the natural numbers. Such generating
functions can be (almost literally) translated into an
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expression in stream calculus. Based on this, one can
prove the following general identity, for all n ≥ 1:

Pn =
n−1∑
m=0

A(n,m)
Xm

(1−X)n+1
= nath(n)

where A(n,m) are the so-called Eulerian numbers,
which are defined, for every n ≥ 1 and 0 ≤ m ≤ n−1,
by the following recurrence relation:

A(n,m) = (n−m)A(n− 1.m− 1)

+ (m+ 1)A(n− 1,m)

All details are omitted here. The above identity consti-
tutes yet another proof of Moessner’s theorem.

7. Discussion
Here are what we see as the main constituents of our
coinductive proof of Moessner’s theorem.

• Streams are viewed as single entities.
• The coinduction proof principle, Theorem 2.3, says

that in order to prove that two streams are the same,
it suffices to show that they behave the same (since
two streams have the same behaviour if they are re-
lated by a bisimulation). For streams, in other words,

being is doing

• Showing that two streams behave the same (and
hence are equal) is particularly easy when their be-
haviour is circular. This makes it possible to con-
struct finite or (using induction) finitary bisimula-
tion relations.
• For the proof of Moessner’s theorem, the circular-

ity involved is expressed by the stream differential
equations for the operations of partial summation
and dropping, on the one hand, and the stream of
natural numbers, on the other. To illustrate this for
the natural numbers, we recall that

nat′ = nat + 1

Here we have circular behaviour in that after one
transition step of nat, we obtain a new state nat′ that
contains nat again as a summand.
• We arrived at the definition of the bisimulation re-

lation R used in the proof of Moessner’s theorem
in a fairly standard way. First we constructed R for
the cases of n equal to 1 and 2. For each of these

cases, we included first the pair of streams that we
wanted to prove equal (clause (i) of the definition
of R). Then we computed their derivatives and ob-
served that they consist of sums of the streams we
started out with together with some new streams.
The latter were added as new pairs, in clause (ii).
Closing R under sums, in clause (iii) and including
the identity relation, in clause (iv), then was suffi-
cient to prove that R is a bisimulation. Having gone
through this process for the first few values of n, the
general definition of R emerged.

Our coinductive proof of Moessner’s theorem, based on
the construction of a bisimulation relation, is closely
related to our second proof, based on rational expres-
sions. For the definition of the bisimulation relation, we
had to analyse the initial values and derivatives of Pn

and nath(n), which resulted in the propositions of Sec-
tion 5. Similarly, the recurrence relations that led to the
rational expressions for Pn and nath(n) are based on
these same propositions.

We see two main subjects for future research. First,
we want to analyse the precise relationships between
our present two proofs, on the one hand, and the proofs
by Perron [6], Paasche [5] and Salié [9], and by Hinze
[1], on the other.

Secondly, we want to try and apply our coinductive
proof method to the following generalisation of Moess-
ner’s theorem, which is proved in [5, 9] and also anal-
ysed in [1]. A first contribution to a coinductive proof
of this generalisation is already contained in our for-
mulation of it here: we present its ingredients in terms
of again a stream diferential equation, using the follow-
ing slightly adapted version of the drop operator: for all
σ ∈ INω and all k ≥ 2 and 0 ≤ i < k, we define by

(Di+1
k σ) (0) = σ(0) (Di+1

k σ )′ = Di
k σ
′

(D0
k σ) )(0) = σ′ (0) (D0

k σ )′ = Dk−1
k+1 σ

′′

The difference between this definition and the one in
Section 2 lies in the value of (D0

k σ )′, which changes
the cycle of the drop operator from k to k+1. Using this
new definition, we define an operation M on streams
σ ∈ INω of natural numbers by the following stream
differential equation:

M(σ)(0) = σ(0) (M(σ))′ = M( Σ ◦D1
2(σ′) )

The question with which we want to conclude the
present paper is: to give a coinductive proof of the fact
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that
M(1) = (0!, 1!, 2!, . . .)
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