
Information rates of radiation as a photon gas

Alfonso Martinez*
CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

�Received 10 August 2007; revised manuscript received 8 October 2007; published 26 March 2008�

The information rates achievable with a photon-gas model of electromagnetic radiation are studied. At any
frequency, information rates over the photon-gas model essentially coincide with the Shannon capacity when
the signal-to-noise ratio is below a threshold. Only above the threshold does the photon gas incur in a
significant loss in information rates; the loss can amount to half of the capacity. The threshold exceeds 40 dB
for radio frequencies and vanishes at higher frequencies.
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I. INTRODUCTION

The addition of quantum effects to Shannon’s classical
information theory has a rich history, from the pioneering
analysis of Gordon �1,2�, through significant contributions by
Helstrom �3� and Holevo �4,5�, up to more recent work by
Giovannetti et al. �6,7�. A goal shared by these authors has
been the derivation of Shannon’s expression for the capacity
of a wave-form channel with Gaussian noise from quantum-
mechanical principles.

In nats �1 nat is log2�e�, or 1.4427, bits� per Fourier mode,
the Shannon capacity CSh of the complex-valued Gaussian
channel is given by the well-known expression �8�

CSh�Es,�
2� = ln�Es + �2� − ln��2� , �1�

where Es is the average received energy per mode and �2 is
the corresponding Gaussian noise variance, in turn given by
�2=N0, where N0 is the one-sided �thermal� noise spectral
density.

In one approach, analyzed by Gordon �1,2�, information is
sent over coherent states and recovered at the receiver by
performing a coherent heterodyne measurement. In this case,
noise is additive Gaussian with variance ��n+1�h�, where �n
is the average number of thermal photons in the correspond-
ing mode of frequency �; the average energy Es similarly
becomes Es=�sh�, �s being the average number of signal
photons. The capacity with heterodyne detection CHet is
given by �1,9�

CHet��s,�n� = ln�1 + �s + �n� − ln�1 + �n� . �2�

In the absence of restrictions on the measurement method,
one can use the Holevo-Schumacher-Westmoreland �HSW�
theorem to compute the largest information rate achievable.
When the channel inputs are not entangled and no entangled
measurements are allowed one obtains the so-called one-shot
capacity. For coherent—i.e., Gaussian—states the corre-
sponding one-shot capacity, which we denote by CHSW, is
given by �4–6�

CHSW��s,�n� = g��s + �n� − g��n� , �3�

where g�t� is the entropy of a Bose-Einstein distribution with
mean t, given by g�t�= �1+ t�ln�1+ t�− t ln t, with the agree-

ment that 0 ln 0=0. Using entanglement does not increase
the capacity in absence of thermal noise, i.e., for �n=0 �6�.
For other values of �n, entanglement might yield a larger
capacity, although this formula is conjectured to be the ca-
pacity also in that case �7�.

For radio and microwave frequencies �n�1 and the noise
spectral density satisfies N0=�nh��kT0, T0 being the ambi-
ent temperature. Moreover, the Shannon capacity CSh is very
close to the capacity with coherent heterodyne detection and
to the one-shot, coherent-state capacity, that is

CHet��s,�n� � CHSW��s,�n� � CSh�Es,kT0� . �4�

Details can be found in Appendix A. Any of these equations
gives thus the largest information rate practically achievable
when thermal noise is the limiting factor.

Inspired by recent work on reference frames in informa-
tion theory �10�, where Schumacher is quoted as saying that
“restrictions on the resources available for communication
yield interesting communication theories,” we consider a
model of radiation as an ensemble of classical particles, for
which quantum interference terms are absent. Rather than
adding quantum effects, we examine the effect on the infor-
mation rates of removing some of the quantum behavior of
radiation.

In Sec. II we present a discrete channel model of the
radiation field as a photon gas. The key trait of the photon-
gas model is that information is sent by modulating the en-
ergy of the Fourier modes of the field. Likewise, energy is
measured at the receiver. The received signal is the sum of
thermal noise, distributed as blackbody radiation at a given
temperature and frequency, and a useful signal whose energy
distribution is the same as for a coherent state. As with direct
detection methods at optical frequencies �9�, communication
over a photon gas cannot rely on knowledge of the phase of
coherent states.

In Sec. III we determine the channel capacity of the
photon-gas model and derive the main result of this paper,
namely that the information rate of the photon gas essentially
coincides with Shannon’s capacity, with the capacity of het-
erodyne detection, and with the one-shot coherent-state ca-
pacity in Eq. �4� above, provided that the signal-to-noise
ratio lies below a threshold; above the threshold, up to half
of the capacity may be lost. At 290 K and for a frequency �

�in Hertz�, this threshold is approximately given by 6�1012
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and is thus large for radio and microwave frequencies. More-
over, in the “classical” limit where energy is continuous the
capacity of the photon gas coincides with Shannon’s capacity
CSh.

II. MODEL OF RADIATION AS A PHOTON GAS

In this section, we describe a model of the radiation field
as a photon gas. The model is obtained from the usual quan-
tum analysis by assuming that radiation behaves as classical
particles, with no quantum interference effects. Even though
this postulate does not arise naturally from electromagnetic
theory, the resulting model is well-defined and leads to useful
insights on the amount of information which can be sent by
using electromagnetic radiation.

Consider one polarization of the electromagnetic field at
an aperture, which we denote by ỹ�t�, a complex-valued
function representing the positive-frequency components of
the received field. Throughout the paper we use a tilde to
indicate that the function represents a field amplitude. As is
well-known, the field ỹ�t� admits a Fourier decomposition
onto frequencies of the form �c+ m

T , lying in a band of width
W around a reference frequency �c; here T is the duration of
the observation interval. The mth basis function is then given
by �m�t�= 1

�T
e−i2���c+m/T�t. Further, let the field ỹ�t� represent

the superposition of a useful signal x̃�t� and of additive
Gaussian noise z̃�t�, respectively given by

x̃�t� = �
m

x̃m�m�t�, z̃�t� = �
m

z̃m�m�t�; �5�

here x̃m is the field amplitude for the useful signal at mode m,
set at the transmitter �except for a propagation loss and a
phase rotation�, and z̃m are samples of Gaussian noise, e.g.,
thermal radiation at a given temperature T0 and frequency
�m.

In a quantum description, the fields ỹ�t�, x̃�t�, and z̃�t� are
replaced by operators representing the positive-frequency
components of the vector potential; each Fourier mode rep-
resents then one degree of freedom of the electromagnetic
field. In particular, the received field ỹ�t� is represented by a
set of annihilation operators ŷm, one for each mode. The
superposition of signal and noise is then represented by a
completely positive, trace-preserving map �11�, which com-
bines the annihilation operators of the electromagnetic field
for the useful signal, denoted by x̂m, and additive noise, ẑm;
this map guarantees that the output operators satisfy the
bosonic commutation rules. The superposition is given by
�12�

ŷm = ��ei	xx̂m + �1 − �ei	zẑm. �6�

The channel maps the two input annihilation operators onto
two outputs, the additional output being

− �1 − �e−i	zx̂m + ��e−i	xẑm. �7�

This guarantees the conservation of energy while the fields
are added �12�. We assume that �, 	z, and 	x are indepen-
dent of the mode index. The model includes thus the channel
propagation loss � and the phase uncertainty.

When the phases 	z and 	x are known at the receiver, a
coherent detection receiver acts on the annihilation operator
ŷm �9� and measures a quantity ỹm� =��x̃m+ z̃m� , except for an
irrelevant phase. Here x̃m is set at the transmitter and z̃m� is a
Gaussian random variable of variance ��1−���n+1�h�,
where �n is the average number of thermal photons.

As an alternative, a direct detection receiver measures the
number operator ŷm

† ŷm for the mth received temporal mode,
namely

ŷm
† ŷm = �x̂m

† x̂m + �1 − ��ẑm
† ẑm

+ ����1 − ��e−i�	x−	z�x̂m
† ẑm + H.c.� . �8�

Measurement of the number operator ŷm
† ŷm generates an out-

put which can be modeled as a random variable ym distrib-
uted according to a Laguerre distribution with parameters

�
�x̃m�2

h� and �1−���n �13�. In the approximation that the energy
is continuous, ym follows a noncentral chi-square distribu-
tion.

Our photon-gas model is obtained by postulating the re-
moval of the interference term x̂m

† ẑm �and its Hermitian con-
jugate�, whose form is that of a quantum interference term,
while maintaining the rest of the standard model. Radiation
is thus represented as an ensemble of classical particles. The
measurement ym is now given by

ym = �x̂m
† x̂m + �1 − ��ẑm

† ẑm, �9�

namely the sum of the energies of signal and noise.
The signal component �x̂m

† x̂m is modeled as a Poisson

random variable, of mean �
�x̃m�2

h� , where x̃m is the field value
set at the transmitter. As for the additive noise component
�1−��ẑm

† ẑm, it has a Bose-Einstein distribution �9� of mean
�1−���n, where �n is the average number of thermal photons
at the corresponding frequency and temperature. Since
�
1, the distributions of signal and noise components re-
main Poisson and Bose-Einstein, with the respective means
reduced by the corresponding factor, � or 1−� �13�.

One can think of this model as a photon gas, where the
receiver counts the number of photons in each Fourier mode.
For a continuous-energy approximation, the noise energy has
an exponential density, which is both the limiting form of a
Bose-Einstein distribution and the density of the squared am-
plitude of complex Gaussian noise �13�. In turn, the Poisson
distribution approaches a delta function at the received en-
ergy ��x̃m�2.

III. INFORMATION RATES

In the previous section we introduced two representations
of radiation as a photon gas: a model where the energy of
each Fourier mode is discrete and an exponential noise
model for which the energy is continuous. In both cases, we
have a channel model of the form

ym = sm�xm� + zm, m = 1, . . . ,n , �10�

where ym is a measurement on the mth Fourier mode, xm is
the mth signal component, a non-negative real number set at
the transmitter, sm the useful signal at the output, and zm is
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the mth sample of additive noise. By construction, the signal
sm and the noise zm are independent of each other; the noise
components zm are also independent for different values of
m.

The specifics of each of the two models are as follows.
�1� For discrete energy, ym, sm, and zm are numbers of

photons, each of energy h�. The signal component sm
has a Poisson distribution with mean �xm, where � is a
propagation loss between transmitter and receiver. In

field notation, xm=
�x̃m�2

h� . The noise component zm has a
Bose-Einstein distribution. One example is thermal radiation
at temperature T0 attenuated by a factor �1−��, with mean
�n= �1−���eh�/kT0 −1�−1. At near-visible and visible wave-
lengths, where scattered sunlight is the dominant noise
source, the temperature T0 can be an effective temperature,
with typical values of the order of some thousands of Kelvin.

�2� For continuous energy, that is �s�1 and �n�1, then
ym, sm=�xm and zm are non-negative real numbers, the
energy in the mth mode. The density of the random variable
signal energy approaches a delta function, since
pS�X�smh� �xmh��→�(�sm−xm�h�). For thermal noise, zm are
samples of exponential noise with mean En= �1−��kT0.

In all cases, we impose a constraint on the average re-
ceived signal energy Es; Es is related to the average transmit-
ted energy Et as Es=�Et. We denote by �s the average num-
ber of received signal photons. We consider only narrow-
band channels, for which the frequency � is assumed
constant for all modes.

The largest information rate �measured in nats per Fourier
mode� that can be sent over a channel with output condi-
tional density pY�X�y �x� is the channel capacity C �8�, given
by

C = sup
pX�x�

I�X;Y� , �11�

where the maximization is over all input densities pX�x� sat-
isfying the energy constraint, and I�X ;Y� is the mutual infor-
mation between channel input and output. For continuous
output the mutual information is given by

I�X;Y� =	 	 pX�x�pY�X�y�x�ln
pY�X�y�x�

pY�y�
dydx , �12�

where pY�y�=
pX�x�pY�X�y �x�dx. For discrete output, the in-
tegrals over y should be replaced by sums.

Under the approximation that the energy is continuous,
we previously saw that Poisson noise vanishes and the Bose-
Einstein distribution turns into an exponential density. The
capacity CAEN of a channel with additive exponential noise
was studied by Verdú �14�. Applied to our channel model, we
obtain the somewhat surprising

CAEN�Es,En� = ln�Es + En� − ln�En� , �13�

as in the classical limit with Gaussian noise. Shannon’s ca-
pacity is thus achieved even though the quadrature compo-
nents of the field are not explicitly used. In the next section,
we determine the capacity of the photon gas and compare its
value with the capacity of several quantum models.

IV. CAPACITY OF THE PHOTON GAS

In the photon-gas model, two sources of noise are present
at the output: Poisson noise, arising from the signal itself,
and additive noise. Distinct behavior is to be expected de-
pending on which noise prevails.

In a first approximation, the behavior is determined by the
noise variance. The additive noise variance is given by
�n�1+�n� �it follows a Bose-Einstein distribution�, whereas
the average signal variance is �s �as befits a Poisson random
variable� �13�. For �n�1, a region of practical importance,
the variances coincide if �s=�n

2. We denote this value of �s
by �

s
*. For lower values of �s, additive noise prevails; at

higher signal energies, Poisson noise dominates. In the next
section we examine how this change of behavior translates
into the achievable information rates. Then, we discuss in
some detail the behavior of the photon gas for radio and
microwave frequencies and for optical frequencies.

A. Upper and lower bounds to the capacity

As proved in Appendix B, the capacity C��s ,�n� of the
photon-gas model is upper bounded by CUpp, as

CUpp��s,�n� = min�CG��s,�n�,CP��s�� , �14�

where CG and CP are, respectively, given by

CG��s,�n� = g��s + �n� − g��n� = CHSW,

CP��s� = ln��1 +
�2e − 1
�1 + 2�s

��s +
1

2
�s+1/2

�e�s
�s

� . �15�

Here g�t� is the entropy of a Bose-Einstein distribution with
mean t. In particular, the one-shot capacity of the quantum
channel with coherent states, CHSW, is an upper bound to the
capacity of the photon-gas model. The second bound CP is
the capacity of a discrete-time Poisson channel, for which
�n=0.

Both functions CG and CP are monotonically increasing
functions of �s. For sufficiently high signal energy levels, the
bound CP prevails over CG. Both bounds thus have a cross-
ing point, whose position we next determine for high signal
and noise energy levels, i.e., �n�1 and �s��n. Using the
asymptotic forms of the upper bounds from Appendix A, we
have

CG��
s
*,�n� � ln��

s
*

�n
 �

1

2
ln��

s
*� � CP��

s
*� , �16�

and we obtain again the expression �
s
*=�n

2, previously de-
rived by reasoning in terms of noise variance.

In this classical limit, in the sense of large photon
counts, we can use the classical formula of the average
signal-to-noise ratio �SNR�, SNR=Es /En. Further, we as-
sume that ��1, so that En=h��n is approximately given by
kT0 as �n��kT0� / �h��. For thermal noise we can then define
a threshold signal-to-noise ratio �SNR*� as
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SNR* =
Es

En
�

�
s
*h�

kT0
�

�n
2h�

kT0
�

kT0

h�
�

6 � 1012

�
, �17�

where in the last equation we took T0=290 K. In decibels,
SNR*�dB��37.8−10 log10 � �� in GHz�. This quantitative
analysis is valid for radio and microwave frequencies. Simi-
lar considerations will be presented later for optical frequen-
cies.

The threshold in the upper bounds is mirrored by a similar
behavior for lower bounds. First, we numerically compute a
numerical lower bound CLow, namely the largest of the mu-
tual informations achieved by one of the following two input
densities �for x0�:

pX�x� =
�s

��s + �n�2e−x/��s+�n� +
�n

�s + �s
��x� , �18�

pX�x� =
�1 + 2�s�1/2

�2e − 1 + �1 + 2�s�1/2

1
�2�x�s

e−x/2�s

+
�2e − 1

�2e − 1 + �1 + 2�s�1/2��x� . �19�

The first density is also the optimum input distribution for
the additive exponential noise channel, as determined by
Verdú �14�. In Appendix C we prove that the channel output
Y follows a Bose-Einstein output distribution with mean
�s+�n when the input X is distributed according to this den-
sity and additive Bose-Einstein noise Z is added. As for the
second density, it was used in �15� to derive an upper bound
to capacity of a discrete-time Poisson channel, specifically
the formula for CP.

In addition, we derive in Appendix C a closed-form lower
bound to the capacity by using the density in Eq. �18�. Its
value is

CExp = g��s + �n� −
�n

�s + �n
g��n� −

�s

2��s + �n�

��ln 2�e + ln��n�1 + �n� +
1

12
�

� e�n�1+�n�+1/12/�s+�n��0,

�n�1 + �n� +
1

12

�s + �n
�� ,

�20�

where ��0, t� is given by ��0, t�=
t
�u−1e−udu.

B. Capacity for radio and microwave frequencies

The threshold can be seen in Fig. 1, which depicts the
upper �CG and CP� and lower bounds �CLow� to the capacity
�in bits� as a function of the input number of quanta �s and
for several values of �n, 1, 103, and 106 thermal photons.
Theloss in the photon-gas model is negligible when, say,
�s�

1
10�

s
*. On the other hand, above the energy level 10�

s
*,

the upper bound CP becomes dominant. As we will deter-

mine later, compared to Shannon’s capacity for coherent
models, half of the achievable information rate is eventually
lost at large values of the signal energy. Since the upper and
lower bounds are very close, we conclude that the capacity is
closely given by the upper bound in Eq. �14�. Around the
threshold a small gap of about 1 bit between the upper and
lower bounds is visible.

As proved in Appendix A, for finite values of �s, the
upper bound CG �and thus CHSW� satisfies

ln�1 +
�s

�n + 1
 � CG��s,�n� � ln�1 +

�s

�n
 �21�

and thus lies between Shannon’s classical capacity and the
capacity of heterodyne detection. Moreover, the gap between
the various capacities vanishes as �s and �n go to infinity.
Shannon’s classical capacity, Eq. �1�, is also depicted in Fig.
1. For �n=103 and 106, CSh is indeed indistinguishable from
CG. As �n→� �see Eq. �A5� in Appendix A�, the bound CG
and the capacity itself approach that of a continuous-energy
model, namely CAEN.

At radio and microwave frequencies and for not too large
signal-to-noise ratios, there are thus four models which give
essentially the same channel capacity. However, for �n=1,
Shannon’s capacity exceeds the result derived from quantum
theory by an amount of about 0.56 bits, as we find in Appen-
dix A. We should note here that this low value of �n is
beyond the classical context where Shannon derived his ca-
pacity formula. In general, for low values of �n the capacity
is more closely given by CP, the capacity of a discrete-time
Poisson channel, which we consider in more detail in the
following section. For these values of �n, the classical signal-
to-noise ratio Es /En=�s /�n is not well-defined. As for larger
�n, a threshold �

s
* exists such that below it the capacity is

closely given by CG; its value corresponds, however, to very
low channel capacities.

Figure 2 depicts the information rate loss between the
conjectured quantum channel capacity CHSW and our upper
and lower bounds. The gap is rather small for energies suf-
ficiently below the threshold and progressively approaches
half of the capacity as the input energy grows. For CExp the
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looseness at low �s is due to the pessimistic estimate of the
conditional output entropy H�Y �X� �details are given in Ap-
pendix C�, which is smaller than the Gaussian approximation
we have used. At high �s the tiny gap between CExp and CP is
caused by the nonoptimal input distribution; a closed-form
expression derived from Eq. �19� would likely close this gap.
The capacity of the photon gas essentially coincides with that
of the coherent-state models, even though the phase of the
coherent state is not used to transmit information.

A further connection, worthwhile mentioning, can be
made with noncoherent communications in Gaussian chan-
nels �16�, where one of the two signal quadratures is not
used, and a change in slope of the capacity function from
ln SNR to 1

2 ln SNR �for high SNR� occurs. A similar limita-
tion arises in phase-noise limited channels �17�. As the
threshold SNR* is close to the point where existing digital
communication systems using electromagnetic radiation suf-
fer from the effects of phase noise, it would be interesting to
verify which of the models, coherent detection or the photon
gas, defines most accurately the effective channel capacity.
Even though the cost in information rates of the resources
spent �e.g., pilots, phase-locked loops� in acquiring and
maintaining the phase coherence between transmitter and re-
ceiver is small for radio and microwave frequencies, its pre-
cise effect on the information rates is difficult to account for
and might significantly reduce the capacity for higher fre-
quencies.

C. Capacity for optical frequencies

We next consider optical frequencies, for which �n is very
small. Thermal noise is negligible and the usual level of
ambient light noise will lead to small values of �n at there-
ceiver. If the signal level is very low, information transmis-
sion is limited by this additive noise component and we fall
back onto the case previously considered. As depicted in Fig.
1, very low capacities are achievable. On the other hand, if
the signal level is large enough, the dominant noise source is
the Poisson noise.

Optical heterodyne coherent detection is close to optimal
for large signal energies, in the sense that almost 100% of the

classical capacity CHSW can be achieved. More precisely, as
we determine in Appendix A, the absolute difference be-
tween the two capacities quickly approaches 1.44 bits, which
becomes negligible if the capacity is large enough.

Moreover, the capacity with optical direct detection,
which corresponds to that of the photon gas, is upper
bounded by CP, which asymptotically grows as 1

2 ln �s, and
lower bounded by the mutual information achieved by the
density in Eq. �19�, or by CExp, the closed-form expression in
Eq. �20�. In either case, the capacity of direct detection and
therefore that of the photon gas is lower by about a factor 1

2
than the capacity of the coherent-state models.

At low values of the signal energy, as discussed by Gor-
don �1�, the capacity of homodyne coherent detection, CHom,
exceeds that of heterodyne detection by a factor of 2. This
follows from the formula for CHom �1�,

CHom��s,�n� =
1

2
ln�1 +

4�s

2�n + 1
 . �22�

Further, binary flash signaling, where one symbol is placed at
0 with probability p and another at 1 / �1− p� with probability
�1− p�, achieves a higher mutual information �1�. This is
verified in Fig. 3, which depicts the capacity as a function of
�s of flash signaling for several values of p, together with the
capacities for coherent detection and the conjectured quan-
tum capacity CHSW. The envelope of the capacities with flash
signaling is close to the upper bound CP, which again proves
a good estimate of the capacity of the photon gas.

V. CONCLUSIONS

In this paper, we have studied the channel capacity of a
photon-gas model of electromagnetic radiation, whereby ra-
diation is represented by an ensemble of photons—or classi-
cal particles—distributed over a set of Fourier modes. We
have seen that the photon-gas model need not incur in a
significant information rate loss even though the quadrature
components of the field are not used separately. In particular,
at radio and microwave frequencies, the one-shot capacity of
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the quantum channel with coherent states, the capacity with
heterodyne coherent detection, and the capacity of the pho-
ton gas all essentially coincide with Shannon’s formula.

Equivalently, the entropy of the received signal is deter-
mined by that of thermal radiation if the signal energy is
below a threshold. Below this threshold, the photon-gas
model incurs in no information loss; above it, up to half of
the channel capacity is lost. The capacity of the photon-gas
model thus deviates from that of coherent detection at suffi-
ciently high signal-to-noise ratios.

For a temperature of 290 K, this threshold signal-to-noise
ratio is 6�1012

� , well above the operation of most existing
communication systems at microwave frequencies. Above
the threshold, such as for higher frequencies, the entropy is
determined by the noise in the signal itself, a form of shot
noise or Poisson noise.

An open problem is to build a practical communication
system whose capacity, including the cost of acquiring and
keeping phase synchronization, exceeds the capacity of the
photon-gas model and approaches that of the coherent-state
model. Previous studies of direct detection �16� showed a
non-negligible capacity penalty compared to alternative
coherent-state methods. We relate this discrepancy to a dif-
ferent way of accounting for the energy of a mixture of ther-
mal and coherent radiation. In these studies the receiver does
not purely detect the sum of the signal and noise energies,
but an interference �cross-�term between signal and noise is
present. This term has mean zero but nonzero variance; this
variance is the source of the penalty in information rate. In
our model, this quantum interference term is made to vanish.

Finally, we mention that the photon-gas model is some-
what close to a representation of classical matter as a set of
particles. The results presented in this paper may thus be of
help in exploring the quantum-classical border for radiation
�18�.
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APPENDIX A: BOUND ESTIMATES

First, we prove the strict inequality

ln��s + �n� − ln �n � CG��s,�n� �A1�

for all values of �s�0, �n0. Using the definition of CG, we
rewrite this expression as

�1 + �s + �n�ln
�s + �n

1 + �s + �n
� �1 + �n�ln

�n

1 + �n
. �A2�

This is equivalent to proving that the function
f�t�= �1+ t�ln t

1+t is monotonically increasing for t�0. It is
indeed so since its first derivative f��t� is

f��t� =
1

t
− ln�1 +

1

t
 , �A3�

which is positive since ln�1+ t��� t� for positive t�.
We next estimate the gap between the two sides of Eq.

�A1� for large �s. The gap is given by

��n + 1�ln
�n + 1

�n
− ��s + �n + 1�ln

�s + �n + 1

�s + �n
. �A4�

For large �s, using that ln�1+x��x, we get �in bits�

��n + 1�log2
�n + 1

�n
− log2�e� . �A5�

As �n→�, it tends to zero; but it is finite for small �n.
We now move on to prove

CG��s,�n� � ln��s + �n + 1� − ln��n + 1� . �A6�

From the definition of CG, and after canceling common
terms, we rewrite the condition as

��s + �n�ln
1 + �s + �n

�s + �n
� �n ln

1 + �n

�n
. �A7�

This equation is true because the function f�t�= t ln�1+ 1
t � is

monotonically increasing for t�0, since it monotonically ap-
proaches the number e from below. We can estimate the gap
between the two sides of Eq. �A6� for large �s. The gap is
given by

��s + �n�ln
1 + �s + �n

�s + �n
− �n ln

1 + �n

�n
. �A8�

For large �s, using that ln�1+x��x, we get

log2�e� − �n log2
�n + 1

�n
. �A9�

As �n→�, it tends to zero; but it is finite for small �n. In
particular, the gap between optical heterodyne coherent de-
tection and the classical capacity of the quantum channel
approaches log2�e� for �n→0.

APPENDIX B: UPPER BOUNDS

For any input pX�x� the mutual information satisfies

I�X;Y� = H�Y� − H�Y�X� �B1�


g��s + �n� − H�S�X� + Z�X� �B2�

as the Bose-Einstein distribution has the highest entropy un-
der the given constraints �8�. Then,

H„S�X� + Z�X…  H„S�X� + Z�X,S… �B3�

=H�Z�X� = H�Z� �B4�

because conditioning reduces entropy �Chap. 2 of �8�� and Z
and X are independent. Therefore

I�X;Y� 
 g��s + �n� − g��n� . �B5�

As this holds for all inputs the upper bound CG follows.
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The variables X, S�X�, and Y�S� form a Markov chain in
this order, X→S�X�→Y =S�X�+Z, so that an application of
the data processing inequality �8� yields

I�X;Y� 
 I„X;S�X�… , �B6�

that is the mutual information achievable in the discrete-time
Poisson channel; a good upper bound to the capacity of the
latter was given in �15�.

APPENDIX C: LOWER BOUND

Our lower bound is derived from the mutual information
achievable by a specific input with density in Eq. �18�. The
channel output induced by this input has a Bose-Einstein
distribution and thus achieves the largest entropy. The char-
acteristic function E�eiuY� is given by

1

1 + ��s + �n��1 − eiu�
. �C1�

As the channel output Y is the sum of two independent ran-
dom variables, its characteristic function �cf� is the product
of the corresponding cf’s, namely

1

1 + �n�1 − eiu�	0

�

pX�x�e−x�1−eiu�dx �C2�

=
1

1 + �n�1 − eiu�	0

� �se
−x�1/��s+�n�+�1−eiu��

��s + �n�2 dx

+
�n

�s + �n

1

1 + �n�1 − eiu�
�C3�

=
1

1 + �n�1 − eiu�
�s

�s + �n

1

1 + ��s + �n��1 − eiu�

+
�n

�s + �n

1

1 + �n�1 − eiu�
, �C4�

which, after grouping and canceling some terms, is Eq. �C1�.
As a particular case we recover the exponential input, which
maximizes the output entropy of a discrete-time Poisson
channel �1�.

By construction, the output is Bose-Einstein with mean
�s+�n and the output entropy H�Y� is therefore given by
H�Y�=g��s+�n�. We compute the mutual information with
this input as H�Y�−H�Y �X�.

We estimate the conditional entropy as

H�Y�X� = 	
0

�

H�Y�x�pX�x�dx . �C5�

We obtain a term
�n

�s+�n
H�Y �x=0�, which can be computed as

H�Y �x=0�=g��n�. A second summand is upper bounded by
the differential entropy of a Gaussian random variable �see
Theorem 9.7.1 of �8��,

H�Y�x� 

1

2
ln 2�e�Var�Y�x� +

1

12
� �C6�

=
1

2
ln 2�e�x + �n�1 + �n� +

1

12
� . �C7�

The desired expression follows from carrying out the inte-
gration and using the definition of the incomplete gamma
function.
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