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Bit-Interleaved Coded Modulation Revisited:
A Mismatched Decoding Perspective
Alfonso Martinez, Albert Guillén i Fàbregas, Giuseppe Caire and Frans Willems

Abstract— We revisit the information-theoretic analysis of bit-
interleaved coded modulation (BICM) by modeling the BICM
decoder as a mismatched decoder. The mismatched-decoding
model is well-defined for finite, yet arbitrary, block lengths,
and captures the channel memory among the bits belonging to
the same symbol. The generalized mutual information of the
mismatched decoder coincides with the infinite-interleaver BICM
capacity, where BICM is modeled as a set of independent parallel
binary-input channels whose output is the bitwise log-likelihood
ratio. The error exponent —and hence the cutoff rate— of the
BICM mismatched decoder is upper bounded by that of coded
modulation and may thus be lower than in the infinite-interleaved
model. For binary reflected Gray mapping in Gaussian channels
the loss in error exponent is small.

I. INTRODUCTION

The classical bit-interleaved coded modulation (BICM) de-
coder proposed by Zehavi in [1] uses metrics for each of the
bits of a symbol based on the channel observation, rather than
symbol metrics used in Ungerböck’s coded modulation (CM)
[2]. This decoder is sub-optimal and non-iterative, but offers
very good performance and is interesting from a practical
perspective due to its low implementation complexity.

Caire et al. [3] further elaborated on Zehavi’s decoder
and, under the assumption of an infinite-length interleaver,
presented and analyzed a BICM channel model as a set of
parallel independent binary-input output symmetric channels.
Based on the data processing theorem [4], Caire et al. showed
that the BICM mutual information cannot be larger than that
of CM. However, and rather surprisingly a priori, they found
that the cutoff rate of BICM can sometimes be larger than that
of CM [5]. The error exponents for the parallel-channel model
were studied in [6].

In this paper we take a closer look to the classical BICM
decoder proposed by Zehavi and cast it as a mismatched de-
coder [7–9]. The observation that the classical BICM decoder
treats the different bits in a given symbol as independent, even
if they are clearly not, naturally leads to a simple model of
the symbol mismatched decoding metric as the product of bit
decoding metrics, in turn related to the log-likelihood ratios.
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Without requiring any assumptions on the interleaver length,
we provide a per-symbol expression of the error exponent
using the BICM mismatched metric.

We show that the generalized mutual information [7–9] of
the BICM mismatched decoder yields the mutual information
derived in [3] for the independent parallel channel model,
giving a proof of achievability without assuming infinite
interleaving; the interleaver is actually not necessary to achieve
this rate. We also show that the BICM error exponent (and in
particular the cutoff rate) is always upper-bounded by that
of CM, as opposed to the corresponding exponent for the
independent parallel channel model [3], which can sometimes
be larger. To any extent, the loss in error exponent is negligible
for binary reflected Gray mapping in Gaussian channels.

This paper is organized as follows. Section II introduces the
system model and notation. Section III shows general results
on the error exponents, including the generalized mutual
information and cutoff rate as particular instances. Section IV
studies the achievable rates of BICM under mismatched de-
coding. Numerical results and comparison with the parallel-
channel models are presented in Section V. Finally, Section VI
draws some concluding remarks.

II. DECODING MODEL

We consider transmission over a memoryless channel with
transition probabilities p(y|x), where x ∈ X , y ∈ Y denote
the channel input and output, respectively, and X ,Y are the
corresponding alphabets. We denote by X, Y the underlying
random variables. We consider a discrete input alphabet X =
{x1, . . . , xM}, with M

∆= 2m = |X |. For future use, we
define the sequences x

∆= (x1, . . . , xN ), y
∆= (y1, . . . , yN ),

the corresponding random vectors by X and Y respectively,
and the input and output sets by X ∆= XN , Y ∆= YN .

For coded modulation schemes, encoding and mapping to a
modulation symbol are intertwined, so that the encoder output
directly corresponds to a modulation symbol. In bit-interleaved
coded modulation schemes, a binary labeling function µ :
{0, 1}m → X maps a binary codeword c of a binary code
C onto the signal constellation symbols. We define the sets
X j

b = {x ∈ X : bj(x) = b} as the set of signal constellation
points with bit b in the j-th position of the binary label, where
we have defined the inverse mapping function as for labeling
position j as bj : X → {0, 1}.

For later use, we define the j-th marginal pj(y|b) as

pj(y|b)
∆=

1
|X j

b |

∑
x′∈X j

b

p(y|x′). (1)
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Assuming equally likely codewords, the decoder is a func-
tion from the set Y to the space of codewords which estimates
the transmitted codeword x̂ as

x̂ = arg max
x

q(x,y) (2)

where q(x,y) is the codeword decoding metric. Since the
channel is memoryless, we assume a codeword metric of
the form q(x,y) =

∏N
n=1 q(xn, yn), namely the product of

symbol metrics.
In CM constructions, such as Ungerböck’s [2], the symbol

decoding metric is proportional to the channel transition prob-
ability, that is q(x, y) ∝ p(y|x). The value of proportionality
constant is irrelevant, as long as it is not zero.

In bit-interleaved CM, the natural model of the symbol
decoding metric is given by

q(x, y) =
m∏

j=1

qj

(
bj(x), y

)
(3)

where for each j = 1, . . . ,m, we have a bit decoding metric

qj

(
bj(x) = b, y

)
=
∑

x′∈X j
b

p(y|x′). (4)

The BICM decoder treats thus each of the m bits in a symbol
as if they were independent. In general, these bit metrics
are statistically dependent and uses as a metric proportional
to the product of the marginals pj(y|b). These marginals
are the transition probabilities of m binary-input channels,
with respective input the j-th bit in the binary label of the
modulation symbol, and whose output is a log-likelihood ratio,
or more exactly a log-metric ratio.

In practice, due to complexity limitations, we might be
interested in the following lower-complexity version of (4),

qj(b, y) = max
x∈X j

b

p(y|x). (5)

In the log-domain this is known as the max-log approximation.
In either case, the explicit decoding rule of the BICM

decoder is therefore given by

x̂ = arg max
x

N∏
n=1

m∏
j=1

qj

(
bj(xn), yn

)
. (6)

A special channel model of particular interest is the complex
AWGN. The output is given by

Y = H
√

snrX + Z, (7)

where H is a complex-valued fading coefficient, Z a circularly
symmetric unit-variance complex Gaussian random variable,
and snr the signal-to-noise ratio (SNR). The input set X cor-
responds to unit energy PSK or QAM signal sets. Therefore,

p(y|x) =
1
π

e−|y−h
√

snrx|2 , x ∈ X .

The unfaded AWGN channel is obtained by letting H = 1
in the above. There are many other interesting examples,
like orthogonal modulation, such as pulse-position modulation
(PPM) or frequency-shift keying (FSK) with coherent or non-
coherent detection, and the M -ary symmetric channel or the
M -ary erasure channel, or a combination of the two.

III. ERROR PROBABILITY WITH RANDOM CODES

A. Random coding exponent

The error probability of random codes under ML decoding,
i. e., for a decoding metric satisfying q(x, y) ∝ p(y|x),
was analyzed in [10] and used to prove the achievability
part of the channel coding theorem. In particular, Gallager
showed that there exist codes (in this case, random codes)
whose error probability vanishes for sufficiently large block
lengths provided that R < C. The error probability decreases
exponentially with the block length according to a parameter
called the error exponent. For memoryless channels Gallager
found [10] that the average error probability over the random
coding ensemble can be bounded as

P̄e ≤ exp
(
−N

(
E0(ρ)− ρR

))
(8)

where

E0(ρ) ∆= − log

∑
y

(∑
x

p(x)p(y|x)
1

1+ρ

)1+ρ
 (9)

is the Gallager function, and 0 ≤ ρ ≤ 1 is a free parameter.
For continuous output, the summation over y is replaced by an
integral. The tightest bound for a particular input distribution
p(X) is obtained by optimizing over ρ, which determines the
random coding exponent

Er(R) = max
0≤ρ≤1

E0(ρ)− ρR. (10)

Metric that the random coding exponent admits a symbolwise,
or per letter, factorization when the channel is memoryless.

For memoryless channels and for codeword metrics de-
composable as product of symbols metrics, that is q(x,y) =∏N

n=1 q(xn, yn), Gallager’s derivation can easily be extended.
Details can be found in [8]. The error probability is upper
bounded by the expression

P̄e ≤ exp
(
−N

(
Eq

0(ρ, s)− ρR
))

, (11)

where the generalized Gallager function Eq
0(ρ, s) is given by

Eq
0(ρ, s) = − log EX,Y

[(∑
x′∈X

p(x′)
q(x′, Y )s

q(X, Y )s

)ρ]
. (12)

For a particular input distribution p(X), the random coding
error exponent is then given by [8]

Eq
r (R) = max

0≤ρ≤1
max
s>0

Eq
0(ρ, s)− ρR. (13)

For a generic bit metric (3), Gallager’s generalized function
for BICM (assuming uniform inputs) is given by

Ebicm
0 (ρ, s) = − log EX,Y

 1
2m

∑
x′∈X

m∏
j=1

qj(bj(x′), Y )s

qj(bj(X), Y )s

ρ .

(14)
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B. Data processing inequality for error exponents
In [8], it was proved that the data-processing inequality

holds for error exponents, in the sense that for a given input
distribution we have that

Eq
0(ρ, s) ≤ E0(ρ) for any s > 0. (15)

For the sake of completeness, we next rederive this result
by extending Gallager’s reasoning in [10] to the mismatched
decoding regime. For a fixed channel observation y, the func-
tion inside the logarithm of the generalized Gallager function
Eq

0(ρ, s) can be rewritten as the summation over y of(∑
x∈X

p(x)p(y|x)q(x, y)−sρ

)(∑
x′∈X

p(x′)q(x′, y)s

)ρ

.

(16)

This form is reminiscent of the right-hand side of Hölder’s
inequality (see Exercise 4.15 of [10]), which can be writ-

ten as
(∑

i aibi

)1+ρ ≤
(∑

i a1+ρ
i

)(∑
i b

1+ρ
ρ

i

)ρ
. With the

identifications ai = p(x)
1

1+ρ p(y|x)
1

1+ρ q(x, y)
−sρ
1+ρ and bi =

p(x)
ρ

1+ρ q(x, y)
sρ

1+ρ , we can lower bound Eq. (16) by the
quantity ∑

x∈X
p(x)p(y|x)

1
1+ρ . (17)

Recovering the summation over the channel output y and the
logarithm in Eq. (16), in general one has that Eq

0(ρ, s) ≤
E0(ρ) for arbitrary s > 0 and any input distribution.

Note that the expression in Eq. (17) is independent of
s and of the specific decoding metric q(x, y). Nevertheless,
evaluation of Gallager’s generalized function for the specific
choices s = 1

1+ρ and q(x, y) ∝ p(y|x) gives the lower bound,
which is also Eq. (9). This gives a sufficient condition for the
lower bound to be attained.

C. Independent parallel channels
In their analysis of multilevel coding and successive decod-

ing, Wachsmann et al. provided the error exponents of BICM
modelled as a set of parallel channels [6]. The corresponding
Gallager’s function, which we denote by Eind

0 (ρ), can be
written as

Eind
0 (ρ) = −

m∑
j=1

log EB,Y

[(
1
2

1∑
b′=0

pj(Y |b′)
1

1+ρ

pj(Y |B)
1

1+ρ

)ρ]
(18)

as corresponds to a binary-input channel with output y and bit
metric matched to the transition probability pj(y|b).

This channel is only directly related to the original channel
p(y|x) whenever the channel output can be decomposed into
parallel, independent outputs. Otherwise, since all subchannels
are affected by the same noise realization y, the parallel-
channel model fails to capture the statistics of the true channel.
We will later provide examples for which it is either larger or
smaller than the original error exponent, i. e. Eind

0 (ρ, s) >
E0(ρ) or Eind

0 (ρ, s) < E0(ρ) for suitable values of s. The
sum can thus be seen as the error exponent of a different
channel, obtained by replicating the original channel m times;
this channel may be more or less noisy than the original one,
depending on the form of the transition probability p(y|x).

D. Generalized mutual information

The largest achievable rate with mismatched decoding is not
known in general. Perhaps the easiest candidate to deal with
is the generalized mutual information (GMI)[7–9], given by

Igmi(X;Y ) = sup
s>0

Igmi
s (X;Y ), (19)

where

Igmi
s (X;Y ) = EX,Y

[
log

q(X, Y )s∑
x′∈X p(x′)q(x′, Y )s

]
. (20)

As in the case of matched decoding, this definition can be
recovered from the error exponent,

Igmi
s (X;Y ) =

dEq
0(ρ, s)
dρ

∣∣∣∣∣
ρ=0

. (21)

For completeness, we define the generalized cutoff rate as

R0
∆= Er(R = 0) = max

s>0
E0(1, s). (22)

From (15), the generalized cut-off rate is upperbounded by the
cut-off rate of the matched decoder.

For uniform input distribution, we define the coded modu-
lation exponent Ecm

0 (ρ) as the exponent of a decoder which
uses metrics q(x, y) ∝ p(y|x), namely

Ecm
0 (ρ) = − log EX,Y

[(
1

2m

∑
x′

(
p(x′, Y )
p(X, Y )

) 1
1+ρ

)ρ]
.

(23)

This expression is (9). This decoder achieves the rate coded
modulation capacity Icm(X;Y ), given by

Icm(X;Y ) = EX,Y

[
log

p(Y |X)
1

2m

∑
x′∈X p(Y |x′)

]
. (24)

IV. ACHIEVABLE RATES WITH BICM DECODING

In this section we study the achievable rates of the BICM
decoder. By using mismatched decoding, we apply the results
from the previous section, and elaborate on the generalized
mutual information. In particular, we show that the generalized
mutual information is equal to the BICM capacity of [3] when
the metric (4) is used. As we have seen in the previous section,
the BICM decoder uses a metric of the form given in Eq. (3).
We have the following results.

Theorem 4.1: The generalized mutual information of the
BICM mismatched decoder is equal to the sum of the gen-
eralized mutual informations of the independent binary-input
parallel channel model of BICM,

Igmi(X;Y ) = sup
s>0

m∑
j=1

EB,Y

[
log

qj(b, Y )s

1
2

∑1
b′=0 qj(b′, Y )s

]
.

(25)
Proof: For a given s, and uniform inputs, i.e., p(x) = 1

2m ,
Eq. (20) gives

Igmi
s (X;Y ) = EX,Y

[
log

∏m
j=1 qj

(
bj(X), Y

)s∑
x′∈X

1
2m

∏m
j=1 qj

(
bj(x′), Y

)s
]

.

(26)
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We now have a closer look at the denominator in the logarithm
of (26). The key observation here is that the sum over the con-
stellation points of the product over the binary label positions
can be expressed as the product over the label position is the
sum of the probabilities of the bits being zero and one, i.e.,

∑
x′∈X

1
2m

m∏
j=1

qj

(
bj(x′), Y

)s
(27)

=
1

2m

m∏
j=1

(
qj(b′ = 0, Y )s + qj(b′ = 1, Y )s

)
(28)

=
m∏

j=1

(
1
2
(
qj(b′ = 0, Y )s + qj(b′ = 1, Y )s

))
. (29)

Rearranging terms in (26) we obtain,

Igmi
s (X;Y ) (30)

= EX,Y

 m∑
j=1

log
qj

(
bj(x), Y

)s
1
2

(
qj(b′ = 0, Y )s + qj(b′ = 1, Y )s

)


(31)

=
m∑

j=1

1
2m

1∑
b=0

∑
x∈X j

b

EY |B=b,J=j

[
log

qj

(
bj(x), Y

)s
1
2

∑1
b′=0 qj(b′, Y )s

]
.

(32)

There are a number of interesting particular cases of the
above theorem.

Corollary 4.1: For the metric in Eq. (4),

Igmi(X;Y ) =
m∑

j=1

EB,Y

[
log

pj(Y |B)
1
2

∑1
b′=0 pj(Y |b′)

]
(33)

Proof: For the metric in Eq. (4), qj(b, y) is proportional
to pj(y|b), and we can therefore identify the quantity

EB,Y

[
log

qj

(
B, Y

)s
1
2

∑1
b′=0 qj(b′, Y )s

]
(34)

as the generalized mutual information of a matched binary-
input channel with transitions pj(y|b). Then, the supremum
over s is achieved at s = 1 and we get the desired result.

Expression (33) coincides with the result in [3], even though
we have lifted the assumption of infinite interleaving.

Corollary 4.2: For the metric in Eq. (5),

Igmi(X;Y )

= sup
s>0

m∑
j=1

EB,Y

[
log

(
maxx∈XB

j
p(y|x)

)s
1
2

∑1
b=0

(
maxx′∈X j

b
p(y|x′)

)s
]

. (35)

The fundamental difference between the mutual information
given in [11] and the generalized mutual information given in
(35) is the optimization over s. In particular, both expressions
are equal when s = 1. Therefore, the optimization over s may
induce a larger achievable rate. Furthermore, as we shall see in
the examples, letting s = 1 in the mismatched error exponent
yields significant degradation.

V. NUMERICAL RESULTS

In this section we show a number of examples illustrating
the error exponents of BICM and CM in AWGN channels
with and without fading, at different SNR values. Figures
1(a), 1(b) and 1(c) show the error exponents for CM (solid),
BICM with independent parallel channels (dashed), BICM
using mismatched metric (4) (dash-dotted), and BICM using
mismatched metric (5) (dotted) for 16-QAM with Gray map-
ping, Rayleigh fading and snr = 5, 15,−25 dB, respectively.
Dotted lines labeled with s = 1 correspond to the error
exponent of BICM using mismatched metric (5) letting s = 1,
i.e., without optimizing over s. As we observe, there is a large
penalty for not optimizing over s. We further observe that the
parallel channel model gives a larger exponent than the CM, in
agreement with the cutoff rate results of [3]. Instead, assuming
a finite-length interleaver without neglecting the dependency
between the different bits yields a lower exponent than CM.

We also remark that using the metric (5) yields marginal
loss in the exponent for mid-to-large SNR, while both models
(independent parallel channels and finite-length interleaver
with mismatched decoding) yield the same capacity. When
the SNR is low, i.e., in the wideband regime [12], we observe
that the independent parallel channel model and BICM using
the mismatched metric (4) have the same exponent, while we
observe a significant penalty when metrics (5) are used. We
denote with crosses the corresponding information rates.

An interesting question is whether the independent parallel
channel error exponent is always larger than that of BICM us-
ing mismatched decoding. To illustrate this point, Figure 1(d)
shows the error exponents for CM (solid), BICM with inde-
pendent parallel channels (dashed), BICM using mismatched
metric (4) (dash-dotted), and BICM using mismatched metric
(5) (dotted) for 8-PSK with Gray mapping in the unfaded
AWGN channel. As we can see, the error exponent obtained
from the parallel channel model can indeed be smaller.

VI. CONCLUSIONS

We have presented an analysis of BICM by casting the
BICM decoder as a mismatched decoder. While the indepen-
dent parallel channel models give the BICM mutual infor-
mation [3, 6], they fail to capture the dependency among the
different bits of a symbol. The characterization of the BICM
decoder as a mismatched decoder captures the dependency
between the different bits in a symbol, and to some extent
(for random codes at least), of finite-length interleaving. We
have shown that the error exponent cannot be larger than
that of CM, contrary to the analysis of BICM as a set of
independent parallel channels. As a consequence our analysis,
the cutoff rate cannot be larger than that of CM. Note
that the conclusions of [3] are purely based on the analysis
of the parallel channel model which inherently ignores the
dependency between the m bits of a symbol, and for which,
the cutoff rate could be larger than that of CM. For Gaussian
channels with binary reflected Gray mapping, the gap between
the BICM and CM error exponents is small, as found by Caire
et al. for the capacity.



5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

R

E
r
(R

)

s = 1

(a) 16-QAM, Rayleigh fading, and snr = 5 dB.
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(b) 16-QAM, Rayleigh fading and snr = 15 dB.
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(c) 16-QAM, Rayleigh fading and snr = −25 dB. Crosses correspond to
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BICM with metric (5) with s = 1.
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(d) 8-PSK, AWGN without fading, and snr = 5 dB.

Fig. 1. Error exponents for CM (solid), BICM with independent parallel channels (dashed), BICM using mismatched metric (4) (dash-dotted), and BICM
using mismatched metric (5) (dotted) for various modulations with Gray mapping, in AWGN channels with and without Rayleigh fading.
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