
Semantic models for a version of PARLOG

Frank S. de Boer1 , Joost N. Kok2 ,

Catuscia Palamidessi3 and Jan J.M.M. Rutten1

1 Centre for Mathematics and Computer Science,
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2Department of Computer Science, University of Utrecht,
P.O. Box 80089, 3508 TB Utrecht, The Netherlands

3 Dipartimento di Informatica, Universita di Pisa,
Corso Italia 40, 56100 Pisa, Italy

Abstract. This paper gives four semantics for PARLOG: two operational se
mantics based on a transition system, a declarative semantics and a denotational
semantics. One operational and the declarative semantics model the success set of a
PARLOG program, that is, the set of computed answer substitutions corresponding
to all successfully terminating computations. The other operational and the denota
tional semantics model also deadlock and infinite computations. For the declarative
and the denotational semantics we extend standard notions like unification in order
to cope with the synchronization mechanism of PARLOG. The basic mathematical
structure for the declarative semantics is the set of finite streams of substitutions. In
the denotational semantics we use tree-like structures that are labelled with streams
of substitutions. We look at the relations between the different models: First we
relate the two operational semantics and next we show the relation of the declarative
and denotational semantics with their operational counterparts. We treat a version
of PARLOG because we do not cover all aspects of the language.

Key words and phrases: operational semantics, denotational semantics, declara
tive semantics, parallelism, concurrent logic languages, correctness, complete metric
spaces.

1 Introduction.

The language PARLOG [9,10,17), as well as most of the concurrent logic languages,
is based on the Horn Clause Logic (HCL) plus some mechanisms for expressing con
currency. One of the main drawbacks of this approach is that these new mecha
nisms heavily affect the clean declarative understanding of HCL. Indeed, although
many operational semantics have been investigated ([26,27,28,3,16,4]), a satisfactory
declarative one is still to be defined. PARLOG belongs to a class of concurrent logic
languages whose main features are:

• the input-constraints, on which the mechanism of synchronization between AND
processes is based, and

Part of this work was carried out in the context of ESPRIT 415: Parallel Architect.ures and
Languages for Advanced Information Processing - a VLSI-directed approach.

622

• the presence of commit, that realizes the don't know nondeterrninisrn, controlled
by guards.

Other languages in this class are Guarded Horn Clauses (32,33], Concurrent Prolog
[29,30), and their flat versions. These mechanisms affect the semantics of the pure
underlying language in several ways (31]:

• the success set is reduced by the input-constraints,

• the finite failure set is enlarged by the commit, and modified (i.e., either reduced
or enlarged) by the input-constraints,

• the infinite failure set is modified both by the commit and the input-constraints.

In this paper we address the problem of characterizing these new sets, for PARLOG,
first in a declarative and then in a compositional way (i.e., by giving the meaning of
a composite goal in terms of the meaning of its conjuncts). We deal with a version of
PARLOG. For example, we do not consider unification related primitives, OR-parallel
aspects and local deadlock in deep guards.

First, we describe these sets by a formal operational semantics based on a tran
sition relation (in the style of [18], see also [27,16,4] for similar approaches). The
operational meaning is given in terms of sets of words (or streams) of substitutions,
that correspond to the answers computed during the derivation.

Next, we characterize declaratively the new success set, as the least fixpoint of
an immediate consequence operator on interpretations. (The full model-theoretic se
mantics is still under investigation.) Our approach can be considered an evolution
of the one developed in [21] and [22]. The basic idea there is to model the ability of
a process to produce and to consume data structures. This is done by introducing
annotations on data structures (terms) and by extending the Herbrand universe with
variables (see also [15] and [14)). However, the declarative semantics presented in
those papers is not able to fully characterize the behaviour of concurrent logic lan
guages. The main problem has to do with the situation of deadlock that arises when
two processes are obliged to wait for each other for bindings. Consider, for example,
the goal +- p(x, y), q(x, y) and the programs

Pi = {p(a, b) +-I., q(a, b) -1.},

P2 = {p(z,b) +- lt•(z)., 1·(a) -1., q(a,b)-1.},

and assume that in both cases the first argument of p and the second argument
of q are input-constrained (expressed in PARLOG by the declaration modes Di =
{p(?, '),q(', ?)}, and D2 = {p(?, '), qC, ?), 1·(?)}, respectively). According to the oper
ational semantics, the computation of the goal cannot succeed in P1 (it results in a
deadlock), whilst in P2 always can. Now it is the case that the approach presented in
[21] and [22] is not able to distinguish between the two situations. Indeed, r(a+, b+)
(r producing a and b) happens there to be true in the models (and in the least fix
point interpretation) of both the programs. So, a full completeness result (between
the declarative and the operational semantics) could not be obtained. For a detailed
discussion of this problem see also [23].

Our solution to this problem consists in enriching the interpretations with streams
of substitutions. Due to the presence of guards, whose evaluation has to be interpreted
as an atomic action (internal action), the streams of the operational semantics offer
too little struct.ure, and we have to add some delimiters to represent critical sections.
'Ne call these new structures sequences. This allows us to characterize declaratively

623

(and, therefore, compositionally) the bindings obtained at different stages in the com
putation. In this way we obtain a full equivalence result. An other basic difference
with respect to the previous approach is to annotate the variables instead of the data
constructors. This allows us to extend the unification theory ([11,20]) in order to deal
with input-constraints in a formal way. We also give an extended algorithm for the
computation of the (extended) most general unifier. Moreover, we introduce the no
tion of parallel composition of substitutions, that allows us to model the combination
of the substitutions computed by and-parallel processes.

Other compositional models for the success set are presented in [26] and [24). Both
these approaches are based on streams of input/output simple substitutions, where
simple means that the bindings are of the form x/y or :i:/ J(xi, ... , xn)· This restric
tion introduces additional complications for modeling the full unification mechanism.
Thanks to our extended unification theory, we deal directly with (general) su'bstitu
tions, and the correspondence with the operational semantics is therefore simpler and
more intuitive.

Finally we consider the problem of characterizing the finite failures and the infinite
computations in a compositional way. It turns out that the streams of the declarative
semantics offer again too little structure, but also the sequences introduced in the
declarative semantics are not powerful! enough. Indeed, in order to model the failure
set, we need not only to distinguish between external and internal computation steps,
but also between different points of nondeterministic choice.

To justify this, let's illustrate how the absence of nondeterminism informations
(branching informations) causes our operational semantics to be not compositional.
Consider the programs

Pi= {p(x) - lq(x)., p(x) <- lr(:i:)., q(a) +-I. r(b) <-I. s(a) <-1.},

P2 = {p(x) <- lq(x)., q(a) +-I· q(b) +- I· s(a) +-I.},

with mode declarations Di= {p(?),q(?),r(?),s(")}, and D2 = {p(?),q(?),s(')}, re
spectively. Consider the goal+- p(y). Operationally, in both Pi and P2 it will suspend
waiting for a binding on y (either a orb). However, if we extend the goal with an atom
s(x), thus yielding the goal <- p(y), s(y), then we get different operational meanings.
In Pi the goal can fail (due to the choice of the wrong clause for p(y)), whereas in P2
it cannot.

A possible way to provide these branching informations is to use tree-like struc
tures. However, it still remains an open question what exactly is the minimal in
formation needed to obtain a compositional semantics. This question is related to
the problem of full abstractness. A fully abstract denotational semantics for Flat
Concurrent Prolog is described in [16). Their approach is based on suspension sets,
which are a more abstract structure tha.n the three-like one. However, it is not clear
how their result can be extended to the general case of non-flat guards. The same
applies to the declarative approach taken in (13) to characterize the finite failures.

In our approach we code the branching informations by using trees labelled with
streams of substitutions. We see them as elements of complete metric spaces, satis
fying so-called reflexive domain equations ([8], [2)). We use a denotational style: for
every operator in the language we define a semantic operator that can be seen as a
function on these spaces. The meaning of a goal can then be given by a semantic op
erator that results to be the unique fixpoint of a contraction on the functional metric
spaces ((8], (2]). The relation of this denotational semantics with respect to the oper
ational one is obtained via an abstraction operator, that identifies some denotations.
The correctness of the denotational semantics is then stated as the equality between
the result of this abstraction and the operational semantics.

624

Due to space limitations we only give proofs in outline form. Full proofs can be
found in [25] (for the declarative part) and in [6] (for the denotational part).

The definition of PARLOG has been changed with respect to the previous versions.
We consider the one described in [17].

2 The language PARLOG

To describe the syntax of the language PARLOG we introduce the following sets:

• The set of atoms, with typical elements A, B, H, we denote by Atom.

• The set of conjunctions, with typical elements A, fJ, G, we denote by Conj.

• The set of goals, with typical elements ,_A,<- fJ, <- G, we denote by Goal.

• The set of clauses, with typical element C, we denote by Clause.

• The set of programs, with typical element W, we denote by Prog.

Conjunctions are of the form: A = A1 , ... , An. A special element in Conj is true,
denoting the empty conjunct. With D we denote the goal true. A clause is of the
form C = H GIB, where H, G and B are called the head, the guard, and the
body of the clause, respectively. The symbol I is called the commit operator. We do
not consider operators (like ;) that impose any ordering on clauses. Every program
W consists of a finite set of clauses together with a so-called mode declaration, which
specifies for every predicate which of its arguments are input and output. They are
indicated by the symbols? and· respectively. So, for instance, the declaration p(?, ?, ")
specifies that the first two arguments of p are input and the third one is output.

An atom A in a goal is seen as an (AND-) process. Its computation proceeds
by looking for a candidate clause in W. A clause is candidate if its head H input
unifies with A (i.e. the input arguments unify) and the computation of the guard
succeeds, both without binding the (variables in the) input arguments of A. If there
are candidate clauses, then the computation of A commits to one of them (i.e. no
backtraking will take place), the output-unification is performed and A is replaced by
the body of the clause. If no clauses are candidate but there are suspended clauses (i.e.
clauses in which the input unification would succeed and bind the input-arguments),
then the computation of A suspends, and will be resumed when its (input) arguments
get bound by other processes in the goal. If a guard would succeed by binding the
input-arguments (of A), then an error is generated (unsafe guard). If none of this
cases applies, then the process A and the whole goal fail. Of course, a failure occurs
also when all the processes in the goal get suspended (deadlock).

To simplify the discussion, we do not deal with the error case. More precisely, we
include this case into the suspension case. So, we consider a suspension mechanism
similar to the one of GHC, namely: a clause suspends if either the input-unification
or the goal evaluation would instantiate the input-arguments of A.

3 Operational semantics.

For the rest of the paper let W denote a fixed program. The set of variables occurring
in a conjunction A is indicated by V(A). We postulate a function invar that gives for
every atom A the set of variables occurring in those arguments of A that are specified
as input by the mode declaration of W. Given a set of variables V, Wv denotes the
program whose clauses are variants (see (20)), with respect to V, of the claus~s of W.

625

We introduce the set of substitutions (19, I E) Subst. c is the empty substitution. For
V a finite set of variables, we use t91v to denote the restriction of {) to V. Further
we have the familiar notion of mgu, which is a partial function from pairs of atoms
to substitutions. We introduce the notions of input and output mgu's: Consider two
atoms A = p(t1, ... , tn) and A' = p(t~, ... , t~). Assume that the declaration-mode of p
has the symbol? (input-mode) on the arguments i 1, ... , ik. Then, mgu;(A, A') denotes
mgu({ {t;" t:J,. .. {t;., t:.}}). In a similar way we define mgu 0 (A, A') to be the mgu
of the output arguments.

The operational semantics will be based on the following transition relation:

Definition 3.1 (Transition relation)
Let _,~ (Goal x Subst) x (Goal x Subst) be the smallest relation satisfying

1. If 3H +-- G\B E Wv(A)• 3mgu;(Av, H)
[<+-- G, mgu;(At9, H) >~< 0, t9' >, and t9' \invar(AO) = £],

then <+--A, t9 >-+<+-- outunif(At9, Ht9'), B, t9t9' >

2. If 3mgu 0 (At9, H t9'),
then <+-- outunif(Av, Ht9'), B, {)' >--><+-- lJ, t9'mgu0 (At9, Ht9') >.

3. If <.-A,t9>-+<+-A1 ,t9'>l<D,t9'>
then <+-A,B,t9 >_,< A',B,t9' >I<+-- B,t9' >

<+-- .B,A,t9 >-+<+-- B,A',t9' >I<- B,t9' >
0

In these transitions, t9 represents the substitution that has been computed until
that moment. In 1., it is stated that we can resolve <-- A if we can find a (renamed)
clause in our program with a head H that can be input-unified with A; moreover,
the refutation of the guard G of that clause must terminate successfully and the
total substitution {)' must not instantiate any input variables of Ai'J. The transition
2. represents the first action performed after the commitment, namely the output
unification. A conjunction, in 3., is evaluated by the parallel execution of its conjuncts,
modelled here by interleaving. In the following definition we give the operational
semantics.

Definition 3.2 (Operational semantics)
We define

0 1 : Goal--> M1, with M1 = P(Subst)
02 : Goal--> M2, with M2 = P(Substf).

(Here Subst';" = Subst+ U Substw USubst• .{c5}, with typical element t91. ·· ·t9n· · · ·;
the symbol c5 denotes failure; P(X) is the set of all the subsets of X .)

We put O;[+- true]= {c}, and

01[+-A] = {t9Jv(.4)\«-A,c>~<D,t9>};

u

u

{(t91. · · ·t9n)JV{A) E Subst+ I
<+--A,< >-+<+-A1,t91 >--+ ·· · -->< D,t9n >}

{(t91. · · ·t9n)Jv(A)·8 E Subst*.{8} I _
< +-- A, c >--> · · · --+< An, iln >f+ A +-- An # D}

{(t91. · · ·)Jv(.4) E Substw I <+--A,<>--+«-- A1,t91 >--> · ··}.
0

626

The success set for ,_ A is given by 0 1 [.-- A]: it contains all computed answer
substitutions corresponding to all successfully terminating computations. The set
02[<- A] takes in addition into account all failing and infinite computations, repre
sented by elements of Subst' · { 5} and Substw, respectively. The relation between 0 1

and 0 2 is obvious: If we set

last(X)::: {t9 I 3s E Subst*(s.t9 EX)}

then we have: 0 1 = last o 0 2 .

In the following sections, 0 1 and 0 2 will be related to a declarative and a deno
tational semantics, respectively.

4 Declarative semantics.

In this section we define the declarative (fixpoint) semantics of PARLOG. We make
use of an extended notion of Herbrand base and interpretations, enriched with vari
ables (that allows to model the notion of computed substitution, [22],[15],[14]), and
with annotations (that allows to model the synchronization mechanism of concurrent
logic languages, see [21] and [22] for similar approaches). We extend the standard
notions of the unification theory ([11], [20]) in a formal framework. Moreover, we
introduce the notion of parallel composition, that allows to formalize the combination
(plus consistency check) of the substitutions computed by subgoals run in parallel.
Finally, we introduce the notion of sequences of substitutions, that allows to overcome
the difficulties presented in [22] about the situations of deadlock. A similar construc
tion has been made for defining the declarative semantics of GHC ((5], [25]). For the
proofs we refer to [25].

4.1 Annotated variables.

In order to model the synchronization mechanism of PARLOG we introduce the notion
of annotated variable. The annotation can occur on a variable in the goal, and it means
that such a variable is in an input-argument and therefore cannot be bound, during
the derivation step, before commitment. In other words, such a variable can receive
bindings from the execution of other atoms in the goals, but cannot produce bindings
by the execution of the atom in which it. occurs (before commitment).

We will denote the set of variables, with typical elements x, y, .. ., by Var, and
the set of the annotated variables, with typical elements x-, y-, ... , by Var-. We
can consider "-" as a bijective mapping - : Var-+ Var-. The set of terms Term is
extended on the new set of variables Var U Var-. The set of variables occurring in
the term t is denoted by V(t). For V ~ Var, tfV- is the term obtained by replacing
in t every variable x E V by x-. The term tl Var- will be simply denoted by t-.

A substitution iJ is now a mapping -0 : Var U Var- -+ Term, such that only a
finite number of variables are mapped into terms different from themselves. In order
to model the difference between producing and receiving a binding we introduce an
asymmetry in the definition of the application of a substitution -0 to a term (or atom,
or formula) t:

if t::: x E Var
if t = x- E Var- and i?(x-) f. x
if t = x- E liar- and t9(x-) = x
if t::: f(t1, ... , tn)

627

The reason why the application of iJ to x- can result in iJ(x)- (instearl of iJ(x))
is related to the peculiarity of the input-mode constraint of PARLOG. In fact, it
does not apply to a specific variable (as in CP), but to the arguments of the atom.
Therefore, when an annotated variable is bound to a term t, all the variables occurring
in t get under the influence of the input-mode constraint, and therefore they have to
inherit the annotation.

We factorize the set of substitution with respect to the equivalence relation 13 1 =: iJ2

if] \fx E Var U Var-[xt9 1 = x-82]. From now on, a substitution t9 will indicate its
equivalence class.

Example 4.1 Consider the atom A = p(J(x, y), x, y). We annotate the variables
in A so to get A-= p(J(x-,y-),x-,y-). Consider now the substitution iJ =
{x/g(z),y/h(w),y-Jh(a)}. We have: A-t9 = p(f(g(z-),h(a)),g(z-),h(a))). <>

The notion of composition iJ 1 t32, of two substitutions, t9 1 and t92 is extended as
follows

The composition is associative and the empty substitution £ is the neutral element.
ii is called idempotent iff tJiJ = iJ. Given a set of sets of terms M, we define iJ to be
an unifier for M iff

\fS EM: lft1,t2 ES [t1iJ = t2iJ and tjiJ = t:)iJ].

The ordering on substitutions is the standard one, namely: 121 :::; 132 iff 3133 (t91133 =
t9 2] (iJ 1 is more general than 132). The set of mgu's (most general unifiers) of a set of
sets of terms Mis denoted by mgu(M).

We give an extended version of the unification algorithm, based on the one pre
sented in (1], that works on finite sets of pairs. Given a finite set of finite sets of terms
M, consider the (finite) set of pairs

Mpmr• = LJ {< t, u >I t,·u ES}.
SEM

We define the unifiers of a set { < t 1, u 1 >, ... , < tn, 11,, >} as the ones of
{ { t 1, u 1}, ... , { tn, u,.}}. Of course, Jvf and M pairs are equivalent (i.e. they have the
same unifiers). A set of pairs is called solved if it is of the form

where all the x; 's are distinct elements of Var U Var-, x; If. V(t1, ... , tn), and, if
x; E Var and I; # x;, then x; r/. V(x1 ,. . ., Xn, t 1 , ... , t,,). For P solved, define
IP= {xi/t1, ... , Xn/t,.}, and Op= /PIP·

The following algorithm transforms a set of pairs into an equivalent one which is
solved, or halts with failure if the set has no unifiers.

Definition 4.2 (Extended unification algorithm)

• Let P, P' be sets of pairs. Define P => P' if P' is obtained from P by choosing
in P a pair of the form below and by performing the corresponding action

replace by the pairs
< i1,U1 >, .. .,<in, Un>

628

2. < f(t 1, ... , tn), g(u1, ... , u,.) >, where f ;fa g

3. < x,x > where x E VarU Var-

4. <t,x> wherexE VarUVar-,
t ~ VarU Var-

5. < x, t > where x E Var, x f. t, x- -/; t,
x or x- occurs in other pairs

6. < x,x- >where x E Var,
and x occurs in other pairs

7. < x-, t > where x- E Var-, x- -/; t
and x- occurs in other pairs

ha.It with failure

delete the pair

replace by the pair < x, t >

if x E V(t) or x- E V(t)
then halt with failure
else apply the substitution
{ x /t} to a.II the other pairs

apply the substitution
{ x / x-} to all the other pairs

if x- E V(t)
then halt with failure
else apply the substitution
{x-/t} to all the other pairs.

We will write P =>fail if a failure is detected (steps 2, 5 or 7).

• Let => • be the reflexive-transitive closure of the relation =>, and let P1 01 be the
set P, 0 1 = {P' I symm(P) =>• P', and P' is solved}, where

symm({ < t1, U1 >, ... , < tn, Un >}) =
u

{ < t l > U 1 >, ... , < t,. , Un >}
{< t\,u1 >, ... ,< t;;-,u;;- >}.

The set of substitutions determined by the algorithm is

tl.(P) = {bp• IP' E P,oi}.

The following proposition shows that the set of the idempotent most genera.I uni
fiers of M is finite and can be computed in finite time by the extended unification
algorithm.

Proposition 4.3 Let P be a finite set of pairs, and M be a finite set of finite sets
of terms.

l. (finiteness) The relation => is finitely-branching and noetherian (i.e. termi
nating).

2. (solved form) If P is in normal form (i.e. there exist no P' such that P => P'),
then P is in solved form.

3. (soundness) D.(P) ~ mgu(P)

4. (completeness) mgu(M) ~ D.(Mpam).

5. P => • fail iff P is not unifiable.

4.2 Parallel composition on substitutions.

In this section we introduce the notion of parallel composition on substitutions and
on sets of substitutions, both denoted by o . Intuitively, the parallel composition is
meant to be the formalization of one of the basic operations performed by the parallel
execution model of logic programs. When two a.toms A1 and A 2 (in the same goal)

629

are run in parallel, the associated computed answer substitutions t9 1 and t92 have
to be combined, afterwards, in order to get the final result. This operation can be
perfo~m~d in the following way: Consider the set of all the pairs corresponding to
the bmdmgs of both t91 and t92. Then, compute the most general unifier of such a
set. Note that the consistency check corresponds to a verification that such a set is
unifiable.

Definition 4.4 In the following, S(t9) is the set of sets {{x, t} I x/t E t9}. 8 1, 8 2 are
sets of substitutions.

1. 191o192 = mgu(S(19i) U S(t92)).

2. 81 0 82 = u 191 0 t92 .
.i,ee,,.i,ee,

We will denote the sets { 19} o 8 and 8 o { 19} by 19 o 8 and 8 o {) respectively. o

Example 4.5

1. Consider the program {p(!(a)) <-- j., q(f(a)) <-- j.}, with declaration-mode
{p(?),qC)}, and consider the goal - p(:r),q(x). We annotate the variable x,
in p(x), in order to express the input-mode constraint. We have
mgu(p(x-), p(f(a))) = { iJi}, where t9 1 = {x- / f(a)}, and
mgu(q(x),q(f(a))) = {t92} 1 where t92 = {:r/f(a)}.
Now observe that 191 E mgu(S(t9i)), t92 E mgu(S(t92)) and {)1 ~ {)2, therefore
t92 E t91o192.

2. Consider now the same program and goal as before, but let the declaration mode
be {p(?),q(?)}. We have mgu(p(x-),p(!(a))) = mgu(q(x-),q(f(a))):::: {iJi},
and t91E191o191 1 whilst t92(/:.191 o t91.

In 1. the goal can be refuted by a suitable ordering on the execution of the atoms
(q(x) before p(x)). This corresponds to get a substitution (t92), that does not bind
any annotated (i.e. input-constrained) variable. This is not the case in 2., and indeed
no refutation are possible. o

4.3 Sequences of substitutions.

As shown in [15), and (14), the computed bindings in HCL can be declaratively mod
eled by using a not ground Herbrand Base, or equivalently, a set of couples atom
substitution. However, when the input-constraints are present, it is not sufficient to
consider only a substitution. In fact, as shown in (21] and (22], a flat representation
of the computed bindings is not powerful enough to model the effects of the possible
interleavings in the executions of the atoms in a goal. Namely, the possibility for
atoms to provide each other the b\ndings necessary for going on in the respective
computations. In a sense, we have to register the whole history of the execution of
the atom, and therefore we have to deal with sequences of substitutions. Since we
only model declaratively the success set, we need to consider only finite sequences.
Anyway, the set Subst+ used for the operational semantics is still a too weak struc
ture. Indeed, to represent the critical sections given by the input-unification and the
guard evaluation, we need to separate a subsequence from the rest.

Definition 4.6 The finite sequences of substitutions, with typical element s, are
defined by the following (abstract) syntax

0

630

The role of the squared brackets, is to delimit.ate the critical sections. Their
meaning will he clarified by the definition of the interleaving operator. We introduce

S' def { / I the following notations. If S and S' are sets of sequences, then S. = s.s s E

S,s' E S'} and [S] d.;;_f {[s] I s E S}. Ifs = .,'J'.s', then iJ 6 s ~ (iJ 6 .,'J').s' and

,1 o [s] '1;} [(1J 6 i1').s']. For 8 a set of substitution we have 8 6 s ~ LJ~ee .,') 6 s.

Definition 4. 7 (Interleaving operator).

l. s 1 II s2 = {19.s I 3s': ..J.s' = s1,s Es' II s2}

2. S1 II 82 =

U { 1J.s I 3s' : i?.s' = s2, s Es' 11 si}
U {[s'].s I 3s" : [s1].s11 = s1, s E s" II s2}
U {[s'].s I 3s" : [s'].s" = s2, s E s" II si}

u 0

The following definition introduces the notion of result n of a sequence s (or a set
of sequences S) of substitutions. Roughly, such a result is obtained by performing
the parallel composition of each element of the sequence with the next one, and by
cltecking, each time, that the partial result does not map annotated variables.

Definition 4.8

l. £(8) = {z9 E 0 I t91 Var- = f}
2. 'R.(19) = £({19})

3. 'R.([s]) = disann('R.(s))

4. R.(s1 .s2) = 'R,("R(s1) 6 s2)

5. 'R.(S) = LJ 'R,(s).
sES

where disann(s) removes all the annotations in s. Thus, rule 3. specifies that, after
a critical section, the input-constraints are released. £(6) is a filter that eliminates
from 0 all the substitutions mapping annotated variables. o

4.4 Least fixpoint semantics.

In this section we introduce the notion of interpretation, and we define a continuous
mapping (associated to the program) on interpretations. The least fixpoint of this
mapping will be used to define the fixpoint semantics. Such a mapping is the extension
of the immediate consequence operator for UCL ([12],[l]).

The Ilerbrand base wzth variables B associated to the program W is the set. of
all the possible atoms that. can be obtained by applying the predicates of iv to the
elements of Tenn. An interpretation I of iv is a set of pairs oft.he form < A, s >,
where A is an atom in B and s is a sequence of substitutions on Var and Tenn.
< A, s >E I can be read declaratively as A is trne in I under the sequence s. We
remark the symilarit.y with the temporal logic, although we do not investigate this
relation here. 1 will denote the set of all the interpretations of W.

1 is a complete lattice with respect to the set-inclusion, where the empty set (/J is
the minimum element, and the set union U and the set intersection n are the sup and
inf operations, respectively.

The following definition, that. will be used in the least fixpoint construction, is
mainly introduced for technical reasons.

631

Definition 4.9 Let s1, ... , Sh be sequences of substitutions, and let A 1 , ••. , Ak (h ~
k) be atoms. s1, ... ,share locally independent on A 1 , .• ., Ak iff

'rls;, 'rhJ ins; : (V(t9) U C(t9)) n V(A1 ,. • ., Ak) ~ V(A;).

where V(t9) and C(t9) are the standard domain and codomain of t9. <>

In the following, we use the notation s to denote a sequence of sequences of substi
tutions s1,. . .,sn. Moreover, if§= s1,. . .,sn and A= A1,. . .,An, then< A,s >
stands for <Ai, s1 >, ... ,<An, Sn >, and II (s) stands for s1 II ···II Sn.

Definition 4.10 The mapping T: I--> I, associated to W, is defined as follows:

T(I)= {< A,s >I 3H +-GIBE Wv(A)•

3s', s" locally independent on G, f3, A,

< G,s' >,< B,s" >EI:

s E [mgu;(A-, H).(11 (s'))].mguo(A, H).(11 (s"))}
<>

A possible sequence for A results from the critical section containing the mgu; with
the head of a clause, and a sequence resulting from the guard. The input variables in
A are annotated. The whole is followed by the mgu0 and a sequence resulting from
the body.

Proposition 4.11 T is continuous. Then, its least fixpoint lfp(T) exists, and lfp(T) =
Un;:: a rn(0) holds. <>

We define the least fixpoint semantics associated to W as the set F(W) = lfp(T).

Theorem 4.12 (Equivalence of declarative and operational semantics)

01(+-A)=
{ t9 I 38 locally independent on A : < A, s >E F(W) and t9 E 'R.(11 (s))1v(.A)} <>

Example 4.13

1. Consider the program {p(y) +- q(y)I., q(a) +- J.}, with declaration-mode
{p(?),q(')}, and consider the goal+-- p(x). The possible s's such that
< p(x),s >E lfp(T), are those of the forms= ({y/x-}.{y/a}]. We have:
"R.(s) = disann(E({y/x-} 6 {y/a})) = disann(E({{x-/a,y/a}})) = 0, and in
deed no refutations are possible.

2. Consider now the program {p(y) +- Jq(y)., q(a) +- J.}, with the same declara
tion mode. The possible s's are of the forms= ({y/x-}].{y/a}. We have:
R(s) = n(disann(E({y/x-})) 6 {y/a}) = 'R.({y/x} 6 {y/a}) = {{x/a,y/a}},
and we notice that indeed there exists a refutation for+- p(x) giving the answer
{x/a}. <>

Now we consider again the example showed in the introduction (deadlock situation),
which illustrates the necessity to use streams-like structures.

Example 4.14

1. Consider the program {p(a, b) +- I., q(a, b) +- J.}, with declaration-mode
{p(?, '),q(", ?)},and consider the goal+- p(x, y),q(x,y). We have
< p(x, y), s 1 >, < q(x, y), s2 >E lfp(T), for s1 = ({x- /a}].{y/b} and
s 2 = [{y- /b}].{x/a}. For all the possible interleavings s E 81 JI 82, we get
n(s) = 0. Indeed, no refutations are possible (deadlock).

632

2. Consider now the program {p(z,b) - lr(z)., r(a)-1., q(a,b)-1.}, with the
same declaration-mode for p and q, and with r(?). We have
< p(x, y), St >, < q(x, y), s2 >E lfp(T), for St = [{ z/x-}].{y/b }.[{z- /a}] and
s2 = [{y- /b}].{x/a}. We have
s = ({z/x-}].{y/b}.[{y-/b}].{x/a}.[{z-/a}] E s1 11 s2 and {x/a,y/b,z/a} E
'R(s). Indeed, there exists a refutation of the goal,_ p(x, y), q(x, y) giving the
answer{x/a,y/b}. o

5 Denotational semantics.

In this section, we give an overview of the definition of a denotational model for PAR
LOG. We refer to (6] for a more elaborate explanation and detailed formal definitions.
Denotational semantics for flat versions of concurrent logic languages can be given
with standard techniques. It is more difficult to assign a denotational semantics to
concurrent logic languages with deep guards. Our denotational semantics does not
deal with local deadlock in guards. Namely, we assume that if one of the guards has a
successful computation then there will be no deadlock (cfthe operational semantics).

To define our denotational model we first introduce two semantic universes (p E)
P and (q E) Q; they are complete metric spaces satisfying the following two reflexive
domain equations:

P ~ Pco(Q) and Q ~ Subst U (Subst x Q) U (Subst x P).

(Here Pc0 (Q) is the set of all compact subsets of Q; the symbol ~ is interpreted
"is isometric with".) In (8] and [2] it is described how to solve such equations; in
[4] similar semantic universes are used. The elements p and q, called processes, are
tree-like structures. The difference between < {), p > and < {), q > can be best
explained by pointing out the different role played by the comma in both pairs: In
< {),p > it indicates an interleaving point whereas in < {),q > it does not. Thus,
< d,q > represents an internal computation step, which will be used to model the
computation of a guard. Formally, this difference appears explicitly in the definition
of the semantic operator for interleaving (of processes) tt.
Example 5.1 A typical example of a process p would be p = {q1, q2},
with q1={<111,< {)2,d3 >>}, q2 = {< d4,p>}, and f>= {< {)5,{Js >,'17}, which
can graphically be represented by

<>

In using reflexive domains with processes as elements, we follow the scheme that
was used for imperative languages in [8]. Processes contain branching information,
which here is used to distinguish between a failure possibility stemming from a failing
guard computation and a failure resulting from the absence of a suitable candidate
clause. (As it was already observed in the introduction, it is still to be investigated
what kind of branching information we need in order to obtain a full abstract model.)

We introduce three semantic operators:

633

;, ~ : P x P--. P and sir: P - P.

The operator; for sequential composition is defined as usual. Namely

where

19;P2 =< 19,P:I >, < 19,q > ;P2=<19,q;P'.l > and < iJ,p > ;P2 =< iJ,p;Jl2 >.

The operator ~ for interleaving is defined by

Pl ilP2 = { q lLP2 I q E pi} u { q lLP1 I q E P2}.

Here IL is the left-merge operator, which always starts with a step of the left
component. It is defined by 19 [Lp =< 19, p > and

< 19,q >[Lp=< 19,q [lp>, < iJ,p>[Lp=< 19,p~p>.

Note that in the first case we stay in the "left-merge mode", whereas in the latter,
where we have an interleaving point, the left-merge is changed into the normal merge
again. We also observe that this definition is recursive; it can be justified by giving
it as the unique fixed point of a suitable defined contraction. (The same applies to
the recursive definitions of 1) and yield, below.) See [19) and [7] for many examples
of this style of definition.

Finally, in str(p) all the streams in pare collected; in other words, this operator
removes all the interleaving points:

str(p) = u{ili-(q) I q E p}

where

str(19) = {19}, str(< 19,q >) = {< 19,q' >: q' E str(q)} and

str(< 19,p >) = {< 19,q' >I q' E ili-(p)}.

Example 5.2 The streams of the process p given in example 5.1 are:

str(p) = {< 191 ,< 192 ,193>>,<194,< d5,l95>>,<194,191 >},

or, graphically,

Definition 5.3 (Denotational semantics)
The function 1) : Goal --. P is given by the following three clauses:

1. 1>[<- true]= {t},

0

634

2. 'D[+- A] = LJ {str(mgu;(A-, H);D[+- G]J); mgu 0 (A-, H); 'D[+- BJ I
H +- GJB E Wv(A)},

3. 'D[+- A, B] = 'D[.- A]~:z:>[- B].

(these equations define a contraction, and 'Dis defined as the unique fixpoint of this
contraction.) <>

In 2., the meaning of the resolution of an atom A is given as the union over all
the clauses in the program W that have a head H that can be unified with A. This
unification is given, similarly to the declarative semantics, in two parts: First the input
variables are annotated (in A-) and unified with H; next, after the guard evaluation,
the output variables are unified. This ordering is important, since it will be used by
the operator it yield, which is defined below with the help of the function n Var (given
in definition 4.8). Notice that this unification together with the computation of the
guard is considered to be an atomic action, which is formally expressed by the use of
the function str.

We conclude with the formulation of the correctness of V with respect 02. To
this end, we introduce a function yield : P-+ (Subst-+ M2); it is given by

yie/d(p)(l!I) = LJ6{ 11' I < 111, < 112, · .. , < l!l,._1, 11,. > .. · >>E p}U
LJ6 {11'.yield(p')(i?') I< 111, < !?2,. ·., < 11n,P1 > · .. >>E p},

where 11' E nvar(l!l.111. · · ·11n)· (We have: LJ6 = LJX \ {6} if this is non-empty,
and { 6}, otherwise.) The correctness result now can be formulated as follows:

Theorem 5.4

6 Conclusions and future work.

We have defined a declarative semantics that models the success set of PARLOG and
a denotational semantics that models also the finite failures and the infinite compu
tations. Similar approaches can be taken for GHC (see (5,25]) and for Concurrent
Prolog.

If we compare the denotational semantics given here to the ones given in (4] and
(5), we observe that this one is more abstract, i.e., it makes less distinctions. Moreover,
this one is in some sense closer to the declarative model. In fact, the restrictions on
unifications imposed by the mode declarations are formalized in the same way by the
denotational and the declarative model.

Still, the denotational model is not fully abstract and the construction of such
a model remains a topic for further research. Another topic to be investigated is
the relation between the denotational and the declarative semantics. In this paper
both models are related via their corresponding operational semantics, and no direct
comparison is done.

References

[1] K.R. Apt. Introduction to logic programming. Technical Report CS-R8741, Cen
tre for Mathematics and Computer Science, Amsterdam, 1987. To appear as a
chapter in Handbook of Theoretical Computer Science, North-Holland.

635

[2) P. America and J .J .M.M. Rutten. Solmig refiexzve domam equations rn a cat

egory of complete metric spaces. Proc. of the third workshop on mathematical
foundations of programming language semantics, LNCS 298, HJ88, pp. 254-2$8.

[3] L. Beckman, Towards a Formal Semantics for Concurrent Logic
Languages, Proc. of the Third International Conference on Logic
LNCS 225, 1986, pp. 335-349.

[4] J .W. Bakker and J .N. Kok. Uniform abstraction, atomicity and contrnr:twn.< m

the comparative semantics of con.current prolog. Technical Report CS 88 .. , Centre

for Mathematics and Computer Science, Amsterdam, 1988. Extended abstract
in Proc. of FGCS 1988. To appear in TCS.

[5) F.S. de Boer, J.N. Kok, C. Palamidessi, and J.J.M.M. Rutten. Control flow
versus logic: a denotational and a declarative model for Guarded Horn Cla11ses.
Technical Report, Centre for Mathematics and Computer Science, 1988. To ap
pear in Proc. MFCS 1989.

[6] F.S. de Boer, J.N. Kok, C. Palamidessi, and J.J.M.l\L Rutten. Semantics models

for PARLOG. Technical Report, Centre for Mathematics and Computer Science.
1988.

[7] J. W. de Bakker and J .-J .Ch. Meyer. Metric semantics for concurmicy. BIT.
28,1988, pp. 504-529 ..

[8) J. W. de Bakker and J .I. Zucker. Processes and the denotational semantics of
concurrency. Information and Control 54, 1982, pp. 70-120.

[9] K.L. Clark, S. Gregory, Notes on the implementation of Pt1RLOG, Journal of
Logic Programming 2(1), 1985, 17-42.

[10) K.L. Clark, S. Gregory, PARLOG: Parallel programming in logic, ACM Trans.

Program. Lang. Syst. Vol. 8, 1, 1986, 1-49. Res. Report DOC 84/4, Dept. of
Computing, Imperial College, London.1984.

[11] E. Eder. Properties of substitutions and unifications. Journal Symbolic Compu
tation 1, 198.5, pp. 31-46.

(12) M.H. van Emden and R.A. Kowalski. The semantics of predicate logic as a

programming language. Journal of the ACM 23(4), 1976, pp. 733-742.

[13) M. Falaschi, G. Levi, Finite Failures and Partial Computations in Concurrent
Logic Languages, Proc. of FGCS 1988, pp. 364-373.

[14) M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Declarative modeling of
the operational behaviour of logic languages. To appear on TCS.

[15)

[16)

M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. A new declarative seman

tics for logic languages. In Proceedings Conf. and Symp. on Logic Programming,

1988, pp. 993-1005.

R. Gerth, M. Codish, Y. Lichtenstein, and E. Shapiro. Fully abstract denotatwnal
semantics for concurrent prolog. In Proc. Logic In Computer Science, 1988, pp.

320-335.

[l 7) S. Gregory. Parallel logic programming in PARLOG. International Series in

Logic Programming, Addison-Wesley, 1987.

636

[18] M. Hennessy and G.D. Plotkin. Full abstraction for a simple parallel program
ming language. In J. Becvar, editor, Proceedings 8th MFCS, Lecture Notes in
Computer Science 74, Springer Verlag, 1979, pp. 108-120.

[19] J .N. Kok and J .J .M.M. Rutten. Contractions in comparing concurrency seman
tics. In Proceedings 15th ICALP, Tampere, LNCS 317, 1988, 317-332.

[20] J .-L. Lassez, M.J. Maher, and K. Marriot. Unification revisited. In J. Minker, ed
itor, Foundations of deductive databases and logic programming, Morgan Kauf
mann, Los Altos, 1988.

[21] G. Levi and C. Palamidessi. The declarative semantics of logical read-only vari
ables. In Proc. Symp. on Logic Programming, IEEE Comp. Society Press, 1985,
pp. 128- 137.

[22] G. Levi and C. Palamidessi. An approach to the declarative semantics of syn
chronization in logic languages. In Proc. 4th Int. Conf. on Logic Programming,
1987, 877-893.

[23] G. Levi. Models, unfolding rules and fixed point semantics. Proc. Conf. and
Symp. on Logic Programming, 1988, pp. 1649-1665.

[24] M. Murakami. A New Declarative Semantics of Parallel Logic Programs with
Perpetual Processes. Proc. of FGCS, 1988, pp. 374-381.

[25] C. Palamidessi. A fixpoint semantics for Guarded Horn Clauses. Technical Re
port CS-R8833, Centre for Mathematics and Computer Science, Amsterdam,
1988.

[26] V .A. Saraswat: Partial Correctness Semantics for CP{0, I,&). Proc. of the Conf.
on Foundations of Software Computing and Theoretical Computer Science, LNCS
206, 1985, 347-368.

[27] V.A. Saraswat: The concurrent logic programming language GP: definition and
operational semantics, in: Conference Record of the Fourteenth Annual ACM
Symp. on Principles of Programming Languages, Munich, 1987, pp. 49-62.

(28] V .A. Sara.swat. GHC: operational semantics, problems and relationship with
cp(!, I). In IEEE international symposium on logic programming, 1987, pp. 347-
358.

[29] E.Y. Shapiro. A subset of concurrent pro/og and its interpreter. Tech. Report
TR-003, !COT, Tokyo, 1983.

[30] E.Y. Shapiro. Concurrent Prolog: Collected Papers. Vol. 1-2 MTI press, 1988.

(31] A. Takeuchi and K. Furukawa. Parallel Logic Programming Languages. Proc.
Conf. on Logic Programming, LNCS 225, London, 1986, 242-254.

[32] K. Ueda. Guarded Horn Clauses. Technical Report TR-103, !COT, Tokyo, 1985.
Revised in 1986. A revised version is in Proc. Logic Programming 1985, pp. 168-
179. Also in E.Y. Shapiro, editor, Concurrent Prolog, Collected Papers., chapter
4.

[33] K. Ueda. Guarded Horn Clauses, A Parallel Logic Programming Language with
the Concept of a Guard. Technical Report TR-208, ICOT, Tokyo, 1986. Revised
in 1987. Also in Proc. Programming of Future Generation Computers, North
Holland, 1988, pp. 441-456.

