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Abstract Grid staggering for wave equations is a validated approach for many applications,
as it generally enhances stability and accuracy. This paper is about time staggering. Our aim
is to assess a fourth-order, explicit, time-staggered integration method from the literature,
through a comparison with two alternative fourth-order, explicit methods. These are the clas-
sical Runge-Kutta method and a symmetric-composition method derived from symplectic
Euler.

Keywords Wave equations · Explicit time integration · Staggered time integration ·
Composite time integration

1 Introduction

The research reported here grew out of our interest in a special fourth-order, explicit, time-
staggered integration method proposed in [4, 5] for partitioned ODE systems

u′ = f (t, v),

v′ = g(t, u), (1.1)

in particular systems representing semi-discrete wave equations. This partitioned form as-
sumes that f is independent of u and that g is independent of v, which of course bears
a restriction. Still many problems lead to this partitioned form, such as second-order con-
servative wave equations posed as first-order systems and other conservative problems, for
example, the important Maxwell equations.

If explicit time integration is feasible, as typically holds for wave equations without ex-
cessively separated time scales, computational efficiency requires a sufficiently large imagi-
nary stability boundary combined with a sufficiently small truncation error, scaled of course
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with the computational costs per time step. Unfortunately, scaled stability along the imagi-
nary axis meets barriers. In particular, the imaginary stability boundary βIm of any explicit,
consistent, one-step Runge-Kutta (RK) method is bounded by s − 1, where s denotes the
number of RK stages [8, 15, 16]. By exploiting the special partitioned form (1.1), the stag-
gered one-step method proposed in [4, 5] circumvents this barrier. Using effectively four
stages, this method has

βIm = 161/3 + 321/3 ≈ 5.69,

so that compared to the fourth-order, four-stage, classical RK method, which has βIm =
2
√

2, an improvement by a factor 2 is obtained. In addition, for autonomous linear problems
the staggered method has a 16 times smaller leading truncation error. Compared to the clas-
sical RK method, the staggered method thus seems quite beneficial for semi-discrete wave
problems of the partitioned form (1.1). The purpose of this paper is to examine this in some
detail. We will do this by comparing this method not only to the classical RK method, but
also to a fourth-order symmetric-composition method derived from symplectic Euler.

The paper is organized as follows. In Sect. 2 we will discuss the main properties of the
staggered method which are relevant to our comparison. Likewise, Sect. 3 is devoted to the
symmetric-composition method. The classical Runge-Kutta method will not be discussed,
as it can be found in nearly any numerical analysis textbook. In the remainder we will refer
to this method as ClassicalRK4. In Sect. 4 we will present results of a numerical compar-
ison between the three fourth-order methods applied to a wave equation with prescribed
boundary values. As anticipated, in this case all three fourth-order methods do suffer from
order reduction. To some extent, this numerical deficiency diminishes the higher order ben-
efit for high-accuracy calculations, although in general the higher consistency order remains
worthwhile. Order reduction is now well understood and in Sect. 5 we will present an er-
ror analysis which explains this phenomenon for the staggered method. Final remarks and
conclusions are found in Sect. 6.

2 StaggeredLF4

2.1 The Integration Formula

Time staggering for (1.1) means approximating u and v at interlaced time levels, one after
the other. Following [5], we choose integer levels tn for u and half-integer levels tn+1/2

for v for n = 0,1, . . . . Level tn denotes time tn = nτ with constant step size τ . Let un

and vn+1/2 be the approximation to u(tn) and v(tn+1/2), respectively. A well-known time-
staggered integration method for system (1.1) is the second-order, explicit, staggered leap-
frog rule

un+1 = un + τf (tn+1/2, vn+1/2),

vn+3/2 = vn+1/2 + τg(tn+1, un+1),
(2.1)

henceforth called StaggeredLF2. This method thus steps from (un, vn+1/2) to (un+1, vn+3/2)

with step size τ . The well-known Yee scheme [17] for the Maxwell equations is of this form.
The 4th-order staggered method from [5] follows the same recipe, except that it uses

internal stages as with Runge-Kutta methods. There exist two representations, the first one
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being

k1 = τf (tn+1/2, vn+1/2),

k2 = τg(tn, un),

k3 = τf (tn−1/2, vn+1/2 − k2),

k4 = τg(tn+1, un + k1),

k5 = τf (tn+3/2, vn+1/2 + k4),

un+1 = un + 22

24
k1 + 1

24
k3 + 1

24
k5.

e1 = τg(tn+1, un+1),

e2 = τf (tn+1/2, vn+1/2),

e3 = τg(tn, un+1 − e2),

e4 = τf (tn+3/2, vn+1/2 + e1),

e5 = τg(tn+2, un+1 + e4),

vn+3/2 = vn+1/2 + 22

24
e1 + 1

24
e3 + 1

24
e5.

(2.2)

In the formulas defining un+1, odd and even numbered stages are assigned to f and g,
respectively, while in the formulas defining vn+3/2 it is the other way around. The approxi-
mation vn+3/2 is defined by the same coefficients as used for un+1, the only difference being
that f and g are interchanged and that all time levels in vn+3/2 are shifted forward with 1/2.
The missing value v1/2 at the start is to be provided by a regular one-step method, such as
ClassicalRK4. Note that although (2.2) is written in 5 stages, it can be implemented with 4
evaluations of f and g, because e2 = k1 and e1 can be saved to provide k2 at the next time
step. Hence the computational costs per step are comparable to those of ClassicalRK4 and
if the above savings are used, the costs are equal.

The second representation, which reveals its relation with StaggeredLF2, is given by

U1 = un + τf (tn+1/2, vn+1/2),

V2 = vn+1/2 − τg(tn, un),

U3 = un + τf (tn−1/2,V2),

V4 = vn+1/2 + τg(tn+1,U1),

U5 = un + τf (tn+3/2,V4),

un+1 = 22

24
U1 + 1

24
U3 + 1

24
U5.

V1 = vn+1/2 + τg(tn+1, un+1),

U2 = un+1 − τf (tn+1/2, vn+1/2),

V3 = vn+1/2 + τg(tn,U2),

U4 = un+1 + τf (tn+3/2,V1),

V5 = vn+1/2 + τg(tn+2,U4),

vn+3/2 = 22

24
V1 + 1

24
V3 + 1

24
V5.

(2.3)

From this representation one sees more clearly that steps in the negative direction are
taken, viz., for V2 and U2. In the remainder we will refer to (2.2) and (2.3) as StaggeredLF4.
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Taylor expanding at tn+1/2 from exact starting values u(tn), v(tn+1/2), yields for sys-
tem (1.1) in autonomous form the local error expression

δu = u(tn+1) − un+1

= τ 5

(
1

1920
u(5) − 1

576
fjg

j

klf
l
mgkgm − 1

576
fjg

j

klmf kf lf m

− 1

288
fjg

j

klf
kf l

mgm − 1

96
fjkg

jgk
lmf lf m − 1

96
fjkg

jgk
l f

l
mgm

− 1

96
fjkg

j

l f
lgk

mf m − 1

48
fjklg

jgkgl
mf m − 1

288
fjklmgjgkglgm

)
+O(τ 6).

For the v-component expanded at tn+1 a similar expression exists. For constant coefficient
autonomous linear systems (1.1), for which all elementary differentials in this expression
vanish, the leading local error term is equal to 1

1920τ 5u(5), which is very small for a fourth-
order method. This is a clear advantage of time staggering. In the linear case, ClassicalRK4
has as leading local error term 1

120τ 5u(5), being 16 times larger. However, for arbitrary non-
linear problems the advantage may diminish, because elementary differentials can be present
with error constants significantly larger than 1

1920 .

2.2 Linear Stability

For λ ∈ C, stability properties are examined for the 2-component linear test model [5]

(
u

v

)′
=

(
0 λ

λ 0

)(
u

v

)
. (2.4)

The 2 × 2-matrix is decomposed as

(
0 λ

λ 0

)
= 1

2

(
1 −1
1 1

)(
λ 0
0 −λ

)(
1 1

−1 1

)
. (2.5)

Multiplying by τ , denoting z = τλ, and computing the matrix exponential, this decomposi-
tion reveals the exact solution expression

(
u(tn+1)

v(tn+1)

)
=

(
cosh(z) sinh(z)

sinh(z) cosh(z)

)(
u(tn)

v(tn)

)
, (2.6)

which on the staggered time grid transforms into

(
u(tn+1)

v(tn+3/2)

)
=

(
1 2 sinh( z

2 )

2 sinh( z
2 ) 1 + 4 sinh2( z

2 )

)(
u(tn)

v(tn+1/2)

)
. (2.7)

Likewise, applying StaggeredLF4 to the test model gives the numerical recursion

(
un+1

vn+3/2

)
= Ms

(
un

vn+1/2

)
, Ms =

(
1 β

β 1 + β2

)
, (2.8)

where β = z+ 1
24z3. Note that the StaggeredLF2 method (2.1) gives the same recursion with

β = z.



J Sci Comput (2007) 33: 139–154 143

Remark 2.1 For z → 0 the entries of Ms should coincide with the corresponding entries of
the matrix in (2.7) up to at least order four. Let Mse denote this matrix. Then we get

Mse −Ms =
(

0 1
1920z5 +O(z7)

1
1920z5 +O(z7) 1

860 z6 +O(z8)

)
, z → 0, (2.9)

revealing the leading error constant 1/1920. Similarly, for ClassicalRK4 we have

(
un+1

vn+1

)
= M

(
un

vn

)
,

M =
(

1 + 1
2z2 + 1

24z4 z + 1
6z3

z + 1
6z3 1 + 1

2z2 + 1
24z4

)
,

(2.10)

and denoting the matrix in (2.6) by Me we find

Me −M =
(

1
720z6 +O(z8) 1

120z5 +O(z7)

1
120z5 +O(z7) 1

720z6 +O(z8)

)
, z → 0, (2.11)

revealing the 16 times larger leading error constant.

StaggeredLF4 is called (linearly) stable if Ms is power bounded. This holds, if and only
if its two eigenvalues lie on the unit disc and are different when they lie on the unit circle
(the root condition). The stability region is then defined by the set of values z = τλ in C for
which this holds. With μ denoting an eigenvalue, the characteristic equation of Ms reads
(1 − μ)2 = β2μ. Because the product of the two zeroes is equal to one, we can restrict
ourselves to zeroes on the unit circle. Inserting μ = eiφ gives for β = z + 1

24z3 the condition
β2 = 4i2 sin2(φ/2). It thus immediately follows that we have stability only if z is purely
imaginary.

Hence the stability region of StaggeredLF4 is an interval along the imaginary axis and on
this interval the scheme is non-dissipative. A further elementary calculation shows that the
single real zero of the cubic equation a3 − 24a − 48 = 0 determines the imaginary stability
boundary

βIm = 161/3 + 321/3 ≈ 5.69, (2.12)

defining the imaginary stability interval (−βIm,βIm). For z = ±iβIm the two roots of the
characteristic equation of Ms coincide, violating the root condition. ClassicalRK4 has
βIm = 2

√
2 ≈ 2.82, being a factor 2 smaller. However, the properly scaled imaginary sta-

bility boundary of StaggeredLF4, that is βIm/4 ≈ 1.42, is smaller than the (scaled) βIm of
StaggeredLF2, which equals 2.0.

Apparently, for the special ODE problem (1.1), which is associated to non-dissipative
wave equations, StaggeredLF4 has attractive properties. It improves ClassicalRK4 with a
16 times smaller error constant in the linear case and a 2 times larger βIm for equal costs.
It also improves StaggeredLF2 by its order four compared to order two, but at the expense
of a four times higher workload per step and a smaller scaled βIm. Nevertheless, for high-
accuracy calculations, as with long-time applications, the higher order will be advantageous.
Similar as for StaggeredLF2, a restriction is that even a small amount of dissipation rules
out the staggered method, whereas ClassicalRK4 remains applicable.
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Remark 2.2 Test model (2.4) is unstable for any λ with a nonzero real part. The staggered
methods mimic this, restricting λ to be purely imaginary for stability. The λ can be thought
of as resulting from Fourier-von Neumann analysis and thus representing all eigenvalues
in the spectrum of a semi-discrete wave operator. It suffices to work with a single λ-value.
Using two eigenvalues as in (

u

v

)′
=

(
0 λ1

λ2 0

)(
u

v

)
, (2.13)

makes no difference due to the similarity transformation

(√
λ2
λ1

0

0 1

)(
0 λ1

λ2 0

)(√
λ1
λ2

0

0 1

)
=

(
0

√
λ1λ2√

λ1λ2 0

)
.

Hence, for stability analysis the two models are equivalent. By interpreting λ,λ1, λ2 prop-
erly, all conclusions and results derived for (2.4) are also valid for (2.13) and vice-versa.

3 SymmetricCO4

To assess the practical use and performance of StaggeredLF4, we will also compare it to an
explicit, fourth-order, symmetric-composition method based on the symplectic Euler rule

un+1 = un + τf (tn, vn),

vn+1 = vn + τg(tn+1, un+1),
(3.1)

and its adjoint

un+1 = un + τf (tn+1, vn+1),

vn+1 = vn + τg(tn, un).
(3.2)

3.1 The Integration Formula

Composition is a well-known idea within geometric integration, see e.g. [2, 6, 9–11, 13].
Our method is derived as explained in [6, Sect. V.3, formula (3.1)]. It uses a coefficient set
due to [9] which is given in formula (3.6) in [6]. Let �ατ and �∗

βτ represent (3.1) and (3.2)
applied with step size ατ and βτ , respectively. The method then performs a time step from
(un, vn) to (un+1, vn+1), using an overall step of length τ through the symmetric composition

	τ = �αsτ ◦ �∗
βsτ

◦ · · · ◦ �α1τ ◦ �∗
β1τ , (3.3)

where s = 5 and the αk,βk are given by

β1 = α5 = 14 − √
19

108
, α1 = β5 = 146 + 5

√
19

540
,

β2 = α4 = −23 − 20
√

19

270
, α2 = β4 = −2 + 10

√
19

135
, β3 = α3 = 1

5
.

(3.4)

Introduce for k = 1, . . . ,5 the coefficients ak = α1 +· · ·+αk and bk = β1 +· · ·+βk . Further
introduce α0 = 0, a0 = 0, b0 = 0 and U0 = un,V0 = vn. The composition 	τ then can be
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economically and compactly written in the form

Vk = Vk−1 + (βk + αk−1)τgk−1

Uk = Uk−1 + (βk + αk)τfk

}
k = 1(1)5,

vn+1 = V5 + α5τg(tn+1, un+1),

un+1 = U5,

(3.5)

where

gk−1 = g(tn + (bk−1 + ak−1)τ,Uk−1),

fk = f (tn + (bk + ak−1)τ,Vk).
(3.6)

Because g(tn+1, un+1) can be saved, in this form the method requires 5 evaluations of f

and g per step, just one more than ClassicalRK4 and StaggeredLF4. In the remainder we
will refer to (3.5) as SymmetricCO4. Like StaggeredLF4, also this method takes substeps in
the negative direction.

3.2 Linear Stability

When applied to test model (2.4), SymmetricCO4 yields the recurrence

(
un+1

vn+1

)
= M

(
un

vn

)
, M =

1∏
k=5

Mk, (3.7)

where

Mk =
(

1 + βk(αk + βk)z
2 (αk + βk)z

(αk + βk)(z + αkβkz
3) 1 + αk(αk + βk)z

2

)
.

The entry M(1,2) approximates sinh(z) in (2.6) with leading error O(z5) and constant
≈ 1/2121, which is somewhat smaller than the corresponding constant 1/1920 of Stag-
geredLF4.

We have examined power boundedness of M experimentally. Like StaggeredLF4, Sym-
metricCO4 is unstable for any λ with a nonzero real part. For its imaginary stability bound-
ary βIm, we found 3.0, approximately, being 5.69/3 ≈ 1.9 smaller than for StaggeredLF4.
When comparing the scaled imaginary stability boundaries

2
√

2/4 ≈ 0.71 ClassicalRK4

(161/3 + 321/3)/4 ≈ 1.42 StaggeredLF4

3.0/5 ≈ 0.60 SymmetricCO4

(3.8)

it is clear that StaggeredLF4 is most promising in situations where the step size is truly
limited by stability. Of course, then the second-order staggered LF rule (2.1) remains a
strong competitor, as it has βIm = 2.0 and uses just one f and g per step.

Remark 3.1 There exist several coefficient sets for symmetric-composition methods of order
four [6]. For our assessment of StaggeredLF4, the scaled imaginary stability boundary is im-
portant, but also the accuracy. The coefficients (3.4) due to McLachlan [9] are known to give
particularly small error terms. As a possible alternative we have computed the boundary for
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the unique coefficient set for s = 3, see [6]. We found 1.57/3, which is smaller than 5.0/6.
Moreover, the s = 3 formula is known to lead to significantly lower accuracies. As a second
alternative we have examined coefficients for s = 6 due to [2], which are also advocated
in [6], formula (3.7), for giving small error terms. For these coefficients we found 3.16/6
as scaled imaginary stability boundary, which is again smaller than 5.0/6. We thus have
concluded that the current (geometric) integrator SymmetricCO4 makes a good competitor
for StaggeredLF4, despite the fact that StaggeredLF4 does have a substantially larger scaled
imaginary stability boundary.

4 Order Reduction

Higher order methods using internal stages do suffer from order reduction resulting in loss
of accuracy. To a certain extent this is problem dependent, but a rule of thumb is that it
happens with inhomogeneous, prescribed boundary data. We will illustrate this numerically
for StaggeredLF4 and its two fourth-order competitors. Because with loss of accuracy Stag-
geredLF2 may come into sight, this second-order method is also included.

Although simple, the 1D linear wave equation

φt = ψx, ψt = φx, 0 ≤ x ≤ 1, (4.1)

serves our purpose. As solution we choose

φ(x, t) = 1

2
(φ0(x − t) + φ0(x + t)),

ψ(x, t) = 1

2
(φ0(x − t) − φ0(x + t)),

(4.2)

prescribed by the pulse profile φ0(x) = e−100(x− 1
2 )2

. See Fig. 1.
Let h = 1/(N + 1), xi = ih for i = 0,1, . . . ,N + 1, and let ui(t) and vi(t) de-

note the semi-discrete approximations to φ(xi, t) and ψ(xi, t), respectively. We then dis-
cretize φt = ψx in space with the fourth-order implicit scheme

1

6
(u′

i−1 + 4u′
i + u′

i+1) = 1

2h
(vi+1 − vi−1), i = 1, . . . ,N. (4.3)

Fig. 1 The exact solution of the 1D test problem (4.1). At the left φ, at the right ψ
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The boundary values u′
0, u

′
N+1 and v0, vN+1 are prescribed from the exact solution.1 The

second equation ψt = φx is semi-discretized similarly.
Arranging the unknowns ui, vi in vectors u,v of length N , we then arrive at the inhomo-

geneous linear systems

u′ = Av + a(t), A = M−1S, a(t) = M−1su(t),

v′ = Au + b(t), A = M−1S, b(t) = M−1sv(t),
(4.4)

where the definitions of the tridiagonal matrices M,S and source terms su, sv shall be clear.
The matrix A does have purely imaginary eigenvalues, but A is not truly skew-symmetric
(near the boundary points) as it would be with periodic boundary values. The spectral ra-
dius of A equals 1.74/h, approximately, resulting in the following maximal step sizes for
stability

τ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2
√

2h/1.74 ≈ 1.62h ClassicalRK4

5.69h/1.74 ≈ 3.27h StaggeredLF4

3.0h/1.74 ≈ 1.72h SymmetricCO4

2.0h/1.74 ≈ 1.14h StaggeredLF2

(4.5)

With a minor adjustment to hit chosen output times within an integer number of steps, which
results in slightly smaller values, the step sizes (4.5) are used in the numerical tests. Classi-
calRK4 provides the start vector v1/2 needed for StaggeredLF4 and StaggeredLF2.

Figure 2 contains convergence results for the u-component at two different output times,
t = 0.1 (left) and t = 0.5 (right). For the v-component the results are alike. The marks in
the plots correspond with N = 40,80, . . . ,1280. The plots are based on efficiency, that is,
what we plot are maximum norm global errors (PDE solution minus fully discrete solution)
versus computational work (number of integration steps times number of (f, g)-evaluations
per step times number of spatial grid points).

Fig. 2 Loglog convergence plots for problem (4.1). ClassicalRK4 ∗-marks, StaggeredLF4 o-marks, Sym-
metricCO4 ∇-marks, StaggeredLF2 �-marks

1Because the solution consists of outgoing waves and is defined for all x, imposing this boundary condition is
a consequence of the finite spatial domain and the specific spatial scheme. It does serve our purpose, however,
on illustrating the order reduction phenomenon.
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At output time t = 0.1 all three fourth-order methods do converge for τ,h → 0 with
their ODE order 4, in spite of the prescribed boundary values. So no order reduction occurs.
This is due to the fact that at t = 0.1 the solutions and their derivatives are nearly zero,
as can be seen in Fig. 1. Of interest is that both StaggeredLF4 and SymmetricCO4 are
more efficient than ClassicalRK4, with a slight advantage for SymmetricCO4. This was not
expected, due its higher workload per step and its notably smaller scaled imaginary stability
interval compared to StaggeredLF4. Apparently, the symmetric-composition method has
smaller error coefficients than the staggered one.

As anticipated, at t = 0.5 reduction occurs, so that the PDE convergence behavior of the
three fourth-order method differs from that at time t = 0.1. For ClassicalRK4 and Symmet-
ricCO4 the order goes down to two (the order of StaggeredLF2), whereas for StaggeredLF4
it goes down to three. Due to its order three, in the limit StaggeredLF4 will be most efficient,
but it takes a while before it beats SymmetricCO4. On the coarser grids SymmetricCO4
performs best. This is because error terms causing reduction have relatively small error co-
efficients so that the effect of reduction is normally visible on fine grids only.2 This also ex-
plains that in spite of the reduction, one is still better off with the higher-order methods than
with the simple second-order StaggeredLF2 method.3 Finally, note that ClassicalRK4 per-
forms significantly better than StaggeredLF2, but significantly worse than SymmetricCO4
and StaggeredLF4.

5 Error Analysis for StaggeredLF4

In this section we will present an error analysis for StaggeredLF4 for arbitrary linear systems

u′ = Av + a(t), 0 < t ≤ T , u(0) = u0,

v′ = Bu + b(t), 0 < t ≤ T , v(0) = v0,
(5.1)

which explains and gives insight in the order reduction phenomenon. We hereby follow [14],
where standard Runge-Kutta methods are discussed (with ClassicalRK4 as a special case).
The material from [14] is also contained in [7, Sect. II.2.1]. Essential in the analysis is
the Ansatz that A,B and a(t), b(t) are supposed to contain a negative power of a spatial
mesh width h, and that convergence of numerical approximations is to be understood as
convergence towards exact PDE solutions for τ,h → 0.

5.1 Definitions

For system (5.1), the StaggeredLF4 method (2.3) takes the form

un+1 = un + τ

(
A + 1

24
τ 2ABA

)
vn+1/2 + τSu

n+1/2,

vn+3/2 = vn+1/2 + τ

(
B + 1

24
τ 2BAB

)
un+1 + τSv

n+1,

(5.2)

2In simple cases, like for our test problem, the order reduction can be repaired by transforming the problem
to one with a vanishing solution at the boundary [14]. See also [1, 3, 12] for more involved approaches.
3Because of its temporal order two, the fourth-order spatial discretization is a bit of a waste for StaggeredLF2,
as fourth-order spatial discretization is more expensive than the most simple second-order one. In this regard,
StaggeredLF2 is not equally treated in this comparison. But also with second-order in space it will be less
efficient than its three higher-order competitors.
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where

Su
n+1/2 = 1

24
(22an+1/2 + (an−1/2 + an+3/2) + τA(bn+1 − bn) + τ 2ABan+1/2),

Sv
n+1 = 1

24
(22bn+1 + (bn + bn+2) + τB(an+3/2 − an+1/2) + τ 2BAbn+1).

(5.3)

Observe that the forward time-level approximation un+1 is still present in the right hand-side
expression for vn+3/2, and that the inhomogeneous terms Su and Sv are taken to be located
at tn+1/2 and tn+1, respectively.

Let uh, vh denote a restriction of the PDE solutions approximated by the semi-discrete
system (5.1). Substitution into (5.1) defines the local spatial discretization errors σu and σv ,
that is,

u′
h(t) = Avh(t) + a(t) + σu(t),

v′
h(t) = Buh(t) + b(t) + σv(t),

(5.4)

and substitution of uh, vh into (5.2) defines local defects δu
n+1/2 and δv

n+1, that is,

uh(tn+1) = uh(tn) + τ

(
A + 1

24
τ 2ABA

)
vh(tn+1/2) + τSu

n+1/2 + τδu
n+1/2,

vh(tn+3/2) = vh(tn+1/2) + τ

(
B + 1

24
τ 2BAB

)
uh(tn+1) + τSv

n+1 + τδv
n+1.

(5.5)

Next we introduce the full global errors

εu
n+1 = uh(tn+1) − un+1, εv

n+3/2 = vh(tn+3/2) − vn+3/2, (5.6)

and subtract (5.2) from (5.5) for getting the relations defining these global errors in terms of
the local error quantities. We find

(
εu
n+1

εv
n+3/2

)
= S

(
εu
n

εv
n+1/2

)
+ τS1

(
δu
n+1/2

δv
n+1

)
, (5.7)

where S = S1S2 is the amplification operator with

S1 =
(

I 0

τB + 1
24τ 3BAB I

)
, S2 =

(
I τA + 1

24τ 3ABA

0 I

)
. (5.8)

Regarding the asymptotics τ,h → 0, the following general assumptions will be used:

(A1) Stability of (5.7)

(A2) A = O(h−1),B = O(h−1), τ ∼ h

(A3) The PDE solution is sufficiently differentiable

(A4) A,B, I + 1
24τ 2AB,I + 1

24τ 2BA are inversely bounded

(5.9)

Assumptions (A1), (A2), (A3) are of a general nature. Assumption (A2) makes sense for
wave problems like (4.1)4 and (A3) justifies Taylor expansions to the level needed in the case

4For the related problem φt = ψ,ψt = φxx , assumption (A2) need to be replaced by A = I,B =
O(h−2), τ ∼ h. The order reduction properties discussed here change with this problem.
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under consideration. Only assumption (A4) is special, in that it belongs to StaggeredLF4. It
will be used in Sect. 5.3. For the numerical test model used above, (A4) can be verified to
hold. Below we will prove that if (A1)–(A4) hold, then StaggeredLF4 converges with order
3 instead of its ODE order 4.

5.2 The Local Errors

We will first elaborate the local defects introduced in (5.5). Let us write

δu
n+1/2 = δ

u,t
n+1/2 + δ

u,s
n+1/2, δv

n+1 = δ
v,t
n+1 + δ

v,t
n+1, (5.10)

where the new upper indices refer to the temporal and spatial defect, respectively. The de-
fects can be determined by eliminating the source term values present in (5.3) through the
spatial local error expressions (5.4). The spatial defects are found to be given by

δ
u,s
n+1/2 = 1

24
(22σu

n+1/2 + σu
n−1/2 + σu

n+3/2 + τA(σ v
n+1 − σv

n ) + τ 2ABσu
n+1/2), (5.11)

δ
v,s
n+1 = 1

24
(22σv

n+1 + σv
n + σv

n+2 + τB(σu
n+3/2 − σu

n+1/2) + τ 2BAσv
n+1), (5.12)

and δ
u,t
n+1/2 expanded at tn+1/2 and δ

v,t
n+1 expanded at tn+1 satisfy

δ
u,t
n+1/2 = τ 4

(
1

1920
u

(5)
h − 1

288
(u

(5)
h − Av

(4)
h ) − 1

576
A(v

(4)
h − Bu

(3)
h )

)

+ τ 6

(
1

322560
u

(7)
h − 1

8640
(u

(7)
h − Av

(6)
h ) − 1

46080
A(v

(6)
h − Bu

(5)
h )

)

+ h.o.t., (5.13)

δ
v,t
n+1 = τ 4

(
1

1920
v

(5)
h − 1

288
(v

(5)
h − Bu

(4)
h ) − 1

576
B(u

(4)
h − Av

(3)
h )

)

+ τ 6

(
1

322560
v

(7)
h − 1

8640
(v

(7)
h − Bu

(6)
h ) − 1

46080
B(u

(6)
h − Av

(5)
h )

)

+ h.o.t. (5.14)

From (5.7) follows that the local discretization error, i.e., the error made within a single
integration step from the exact solution, is given by

τS1

(
δu
n+1/2

δv
n+1

)
= τ

(
I 0

τB + 1
24τ 3BAB I

)(
δu
n+1/2

δv
n+1

)
. (5.15)

We now neglect the spatial error contributions (5.11) and (5.12) until further notice. In
accordance with the ODE consistency order of 4, the expansions for the local error then
can be seen to begin with τ 5-terms. However, this is meaningful only if all terms in the
expansion are bounded for τ,h → 0. Let us examine the u-component (the treatment of v

goes identical). Inspection of (5.13) shows that with assumptions (A2), (A3) at hand, the
local error satisfies

τδ
u,t
n+1/2 = 1

576
τ 5ABu

(3)
h + h.o.t. ∼ τ 3, (5.16)
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by which we mean that there exist components, which are O(τ 3) for τ,h → 0, instead of
O(τ 5). In special cases the order can be higher, but generally it will be three.

To illustrate this, let us consider our test problem (4.1), for which we have A = B and
A = M−1S, so that ABu

(3)
h = M−1SM−1Su

(3)
h . The matrices M and S are given by

M = 1

6

⎛
⎜⎜⎜⎜⎜⎝

4 1
1 4 1

. . .
. . .

. . .

1 4 1
1 4

⎞
⎟⎟⎟⎟⎟⎠

,

S = 1

2h

⎛
⎜⎜⎜⎜⎜⎝

0 1
−1 0 1

. . .
. . .

. . .

−1 0 1
−1 0

⎞
⎟⎟⎟⎟⎟⎠

.

(5.17)

Because at the boundary points x = 0 and x = 1 the solution is prescribed, the first rows are
truncated at the left and the last rows at the right, as compared with the related matrices

M = 1

6

⎛
⎜⎜⎜⎜⎜⎝

4 1 1
1 4 1

. . .
. . .

. . .

1 4 1
1 1 4

⎞
⎟⎟⎟⎟⎟⎠

,

S = 1

2h

⎛
⎜⎜⎜⎜⎜⎝

0 1 −1
−1 0 1

. . .
. . .

. . .

−1 0 1
1 −1 0

⎞
⎟⎟⎟⎟⎟⎠

,

(5.18)

which we would have in case of periodic boundary conditions. Then, for (5.18), there holds

ABu
(3)
h ≈

[
∂5φ(h, t)

∂t3∂x2
, . . . ,

∂5φ(1 − h, t)

∂t3∂x2

]T

= O(1), (5.19)

and this term would cause no reduction. For matrices (5.17), we only get

ABu
(3)
h = O(1),

if, in addition to the normal smoothness assumption (A3), the solution derivatives φttt, φtttx

and φtttxx would vanish at the boundary points. This follows directly by elaborating the ex-
pression

ABu
(3)
h = M−1SM−1Su

(3)
h .

If these derivatives don’t vanish, the order result (5.16) applies.



152 J Sci Comput (2007) 33: 139–154

From (5.15) follows that for component v the local error is given by

(
τB + 1

24
τ 3BAB

)
τδ

u,t
n+1/2 + τδ

v,t
n+1. (5.20)

With assumption (A2) at hand, it is seen immediately that in general v suffers from the same
level of order reduction as u.

Finally, with the same reasoning, one can deduce from (5.11) and (5.12) that the spa-
tial contributions to the full local errors are of the order of the local spatial discretization
errors σu,σ v introduced in (5.4). Hence the spatial order behavior is regular.

5.3 The Global Errors

The numerical tests presented in Sect. 4 revealed a PDE convergence order 3 for Stag-
geredLF4. However, we also found its local error to behave according to this order. This
is contradictory to the standard estimation technique of transferring local to global errors
through recursion (5.7) and assumption (A1) given in (5.9), since this would result in a PDE
convergence order 2. Fortunately, very often the reduction is one unit less for the global
error, due to cancellation effects. This happens also for StaggeredLF4. Below we will prove
that the method converges with order 3 assuming (A1)–(A4).

To take the cancellation into account, we will use Lemma II.2.3 from [7]. Denote (5.7)
by εn+1 = Sεn + τδn. The idea of the lemma is to assume that δn can be written as

δn = (I − S)ξn + ηn, such that,

ξn ∼ τ 2, ξn+1 − ξn ∼ τ 3, ηn ∼ τ 3.
(5.21)

The difference ε̂n = εn − τξn then satisfies ε̂n+1 = Sε̂n + τ δ̂n, δ̂n = ηn − (ξn+1 − ξn), for
which the standard estimation technique of ‘summing up all local errors’ then can be used
to prove PDE convergence order 3.

As shown above we may neglect the spatial contributions (5.11) and (5.12) to the local
error, and we will do so for convenience of presentation. First, from (5.8) we write S as

S =
(

I S12

S21 I + S21S12

)
,

S12 = τA + 1

24
τ 3ABA,

S21 = τB + 1

24
τ 3BAB.

(5.22)

Likewise, from (5.15) we write δn as

δn =
(

δu
n+1/2

δv
n+1 + S21δ

u
n+1/2

)
. (5.23)

Next we choose ηn = 0 and compute

ξn = (I − S)−1δn =
(−S−1

21 δv
n+1

−S−1
12 δu

n+1/2

)

=
(−(I + 1

24τ 2AB)−1B−1(τ−1δv
n+1)

−(I + 1
24τ 2BA)−1A−1(τ−1δu

n+1/2)

)
, (5.24)
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where we have used assumption (A4) given in (5.9).
From (5.21) then follows, that, for proving the order 3 convergence, there remains to

assess that

ξn ∼ τ 2.

Consider expression (5.13) for δ
u,t
n+1/2 and its order reducing term ABu

(3)
h given in (5.16).

By the multiplication with the inverse of A, we gain one order for this term. By the division
by τ , we loose one. Consequently, with assumption (A4), the contribution of this term to ξn

is just ∼τ 2. All other terms are of higher order in τ , meaning that for the second component
of ξn the proof is complete. The proof for the first component of ξn goes in the same way,
using similar arguments for δ

v,t
n+1.

6 Final Remarks and Conclusions

The numerical literature on partial differential equations shows a development towards
higher-order discretization methods. In line with this development, the current paper was
devoted to higher-order, explicit time integration of the partitioned system (1.1) emanating
from wave-type problems. We have discussed and compared three fourth-order methods, in-
cluding StaggeredLF4—the time-staggered method (2.3), SymmetricCO4—the symmetric-
composition method (3.5) derived from symplectic Euler, and ClassicalRK4—the classical
Runge-Kutta method. In particular our aim was to assess the merits of StaggeredLF4, which
was proposed in [4, 5].

No doubt this method is a very valuable contribution to the field. It is significantly more
efficient than ClassicalRK4 and the classical, second-order, staggered leapfrog method (2.1).
Like most higher-order multi-stage methods, the fourth-order method can suffer from order
reduction, but only by one unit of convergence order, and it is felt only on rather fine grids.
Its strength lies in its scaled imaginary stability boundary, which is considerably larger than
for its two fourth-order competitors, see (3.8).

On the other hand, our numerical comparison with SymmetricCO4, although limited,
indicates that symmetric composition based on symplectic Euler is nearly as efficient as
time staggering, if not more efficient. In a sequel to this paper we therefore plan to re-
port on more extensive research to the benefits of high-order composition for wave-type
partial differential equations with a focus on systems (1.1), including systems of the form
u′ = v, v′ = g(t, u), since this gives more room for nonlinear second-order problems, and
possibly other partitioned semi-discrete forms.

A further bonus of SymmetricCO4 is that it is based on symplectic Euler and thus it is
also symplectic. This is a valuable property not shared by StaggeredLF4. To illustrate this
we conclude the paper with numerically comparing SymmetricCO4 and StaggeredLF4 for
the Kepler two-body problem

q̈1 = − q1

(q2
1 + q2

2 )3/2
, q̈2 = − q2

(q2
1 + q2

2 )3/2
. (6.1)

Copying data from [6], it was solved for the initial values q1(0) = 1 − e, q2(0) = 0,
q̇1(0) = 0, q̇2(0) = √

(1 + e)/(1 − e) with eccentricity e = 0.6. Writing it in first-order form
gives a 4-component partitioned system of type (1.1). The solution is 2π -periodic and was
computed over 100 periods, using τ = π/20 for StaggeredLF4 and τ = π/16 for Symmet-
ricCO4 for equal expense per time step. The missing initial value v1/2 for StaggeredLF4 was
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Fig. 3 Exact and numerical solutions of the Kepler problem (q2 versus q1) over 100 periods

here computed with SymmetricCO4. Figure 3 shows that SymmetricCO4 is indeed more ac-
curate than StaggeredLF4, which in turn is significantly more accurate than ClassicalRK4
(not shown here).
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