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Abstract

In this paper we consider the numerical solution of 2D systems of certain types of taxis-
di�usion-reaction equations from mathematical biology. By spatial discretization these PDE
systems are approximated by systems of positive, nonlinear ODEs (Method of Lines). The aim
of this paper is to examine the numerical integration of these ODE systems for low to moder-
ate accuracy by means of splitting techniques. An important consideration is maintenance of
positivity. We apply operator splitting and approximate matrix factorization using low order
explicit Runge-Kutta methods and linearly implicit Runge-Kutta-Rosenbrock methods. As a
reference method the general purpose solver VODPK is applied.
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1 Introduction

1.1 Taxis-di�usion-reaction equations

The computation of solutions of partial di�erential equation (PDE) models from mathematical
biology is of ever increasing importance for the understanding of biological processes, for the veri-
�cation of hypothesis about the underlying biology and also for the application of such models to
patient speci�c data in medicine. The complexity of the model equations nearly always necessitates
the application of e�cient numerical methods. Numerical solutions should be obtained within a
reasonable short computation time to enable extensive parameter studies. Because the model pa-
rameters and the initial data are often known as crude approximations only, one is mostly satis�ed
with low to moderately accurate approximations. Despite the modest accuracy requirements, it
remains important to resolve certain qualitative solution properties correctly, which sometimes
requires a stricter accuracy. One such property is non-negativity, henceforth called positivity, of
concentration values featuring in bio-chemical reactions. Violating positivity is highly undesirable
because it may turn stable reactions into unstable ones which in turn may lead to numerical insta-
bilities. Taking these considerations into account, in this paper we study the numerical solution of



the taxis-di�usion-reaction system
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@t
= "�n�r �

 
n
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fi(c)rci

!
+ f0(n; c); (1a)

@c

@t
= D�c+ g(n; c); (1b)

where the time and space dependent functions n(t; x) and c(t; x) denote the density of a population
and a vector of l concentrations or densities of certain chemicals, respectively.
We consider this system on the unit square in space, x 2 [0; 1]2, and for �nite time intervals,
t 2 [0; T ]. The population might di�use with di�usion constant " > 0 or exhibits no di�usion
(" = 0). A characteristic property is that the evolution of n depends on gradients rci of the
chemical concentrations { a process known as (chemo)taxis which adds advection terms to the
population equation. The strength and the sign of the tactic inuence of each chemical ci on n is
described by fi(c), i = 1; 2; : : : ; l. We focus on biological systems where the di�usion coe�cient
" is much smaller than the speed of migration induced by the taxis term or where there is no
di�usion in the population at all. The reaction term f0(n; c) accounts for creation or loss of
entities in the population. The chemical concentrations in c can also change by di�usion (D is a
diagonal matrix with non-negative entries), or be spatially bound (then the corresponding diagonal
entry in D is zero). Finally, reactions between the concentrations and the population density are
modelled through the vector-valued function g(n; c). For our numerical investigations we consider
two speci�c models, a tumour invasion model [1] and a tumour angiogenesis model [5].

1.1.1 A tumour invasion model

This model has three components, n is the tumour cell density and c1 and c2 are the density of
the extracellular matrix (ECM) and the concentration of the matrix degradative enzymes (MDE),
respectively. The system reads

@n

@t
= "�n�r � (n rc1) ;

@c1
@t

= ��c2c1; (2)

@c2
@t

= d2�c2 + �n� �c2;

and is provided with Neumann boundary conditions for n and c2,

� � (rn) = 0 and � � (rc2) = 0 (� = outward unit normal vector): (3)

We choose parameters as in [1],

" = 0:001;  = 0:005; � = 10; d2 = 0:001; � = 0:1; � = 0;

and in addition use these parameters with zero di�usion for n (" = 0). In this case we also apply
Neumann boundary conditions for n. We emphasize that boundary conditions have no notable
inuence on the solution in our simulations because the cell density near the boundary is virtually
zero during simulation time. The initial conditions for tumour cells and MDE (which are produced
by the tumour) are concentrated in the centre of the domain and given by

n(0; x) = c2(0; x) := exp

�
�kx� (0:5; 0:5)k22

0:0025

�
:

A hypothetical heterogeneous ECM initial distribution is assumed as depicted in Figure 1 (left) [1].
The �nal simulation time for the described setup is T = 15. Questions on this model are, for in-
stance, how far tumour cells can invade into the surrounding tissue and under which circumstances
the initial cell mass does break up into pieces.
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Figure 1: Heterogeneous ECM (c1) initial condition of Example 1.1.1 (left). Initial conditions for Exam-
ple 1.1.2 (right) { the smooth function is the initial TAF concentration c2 and the function which is zero
except for the blocks on the right boundary is the initial cell distribution n.

1.1.2 A tumour angiogenesis model

Angiogenesis is the outgrowth of new blood vessels from a pre-existing vascular network. This
model considers the case that this process is induced by a tumour which aims to establish a
connection to the blood network { and hence nutrient supply { in order to be able to grow further.
It has two components. Component n is the density of endothelial cells which line the blood vessels
and hence n is a measure of the density of the developing network. The concentration of tumour
angiogenesis factor (TAF) is denoted by c1. TAF is secreted by the tumour and stimulates blood
vessel growth. The model equations are given by [5]

@n

@t
= "�n�r � (n �rc1) + �n(1� n)maxf0; c1 � c?g � �n;

@c1
@t

= �c1 � �c1 � �nc1
 + c1

:

(4)

We consider two cases, the case with di�usion for n with " = 0:001 and the case without di�usion
as is also done in [7, 8]. Otherwise we take the parameter values from [5] given by

� = 10; � = 4;  = 1; � = 0:7; � = 1; � = 100; c? = 0:2 :

A single tumour is located on the left edge of the spatial domain (x = 0) and we choose the initial
condition for the TAF concentration c1 as given in Figure 1 (right). This �gure (right) also depicts
the initial cell concentration n corresponding to a parent blood vessel on the right boundary of
the domain (x = 1) with some already developed capillary sprouts. We prescribe the following
boundary conditions for c1(t; x; y),

c1(t; 0; y) = c1(0; 0; y); c1(t; 1; y) = c1(0; 1; y); c1;y(t; x; 0) = c1;y(t; x; 1) = 0:

An inow boundary condition for n on the right boundary only is used if " = 0,

n(t; 1; y) = n(0; 1; y):

In the other case, " = 0:001, we add Neumann boundary conditions for n on the remaining part
of the boundary.
The �nal simulation time for the described setups are T = 1:3 for " = 0 and T = 1:1 for " = 0:001.
Thereafter the assumptions underlying the model do not hold anymore because the blood vessels
have reached the tumour and other processes take over.
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1.2 The numerical approach

We obtain numerical solutions of these problems by following the `method of lines'. That means
that we consider the discretization of the spatial operators and the time integration separately. For
the spatial discretization we use the Eulerian grid approach on an equidistant grid. The di�usion
terms are approximated by second order central di�erences. For our application this standard
di�usion discretization works satisfactorily. For the taxis term standard central di�erencing cannot
be used as this would lead to wiggles and negative concentrations in the solution. Similar as with
the more common advection dominated advection-di�usion problems, these arise in the vicinity
of steep gradients when the transport of n induced by the taxis term is much stronger than the
di�usion transport. We therefore approximate the taxis term by the ux limited, upwind biased
� = 1

3 discretization with the van Leer ux limiter (second order), see [7, 13]. For the current taxis
problem this special discretization has been extensively examined in [7]. We refer to that paper
for details and for the discretization of the boundary conditions.

The result of the spatial discretization is an initial-value problem for a huge system of sti�, nonlinear
ordinary di�erential equations (ODEs) which remains to be numerically integrated in time. We
denote this system by

y0(t) = F (t; y(t)); y(0) = y0; t 2 [0; T ]: (5)

Hence the solution vector y is the grid function containing all semi-discrete approximations to the
population density n and the chemicals ci. We are especially interested in the numerical integration
of these large ODE systems by means of splitting techniques. Using low order explicit Runge-Kutta
methods and linearly implicit Runge-Kutta-Rosenbrock methods, we compare two such techniques,
operator splitting (OPS) and approximate matrix factorization (AMF).
The usefulness of splitting techniques becomes evident when we write the vector function F as

F (t; y) = F0(t; y) + F1(t; y); (6)

where we have collected all terms from the taxis discretization in F0 and all di�usion and reaction
terms in F1. We separate these terms because the system y0(t) = F1(t; y(t)) generally requires an
implicit treatment because of sti�ness, whereas the semi-discrete taxis system y0(t) = F0(t; y(t))
is better solved explicitely because this is often more e�cient. The splitting techniques OPS and
AMF make use of this separation and treat F0 and F1 di�erently. We can further split F1 by
separating terms of x- and y-di�usion discretization and reaction terms,

F1(t; y) = FDx
(t; y) + FDy

(t; y) + FR(t; y): (7)

This secondary splitting will be used to reduce linear algebra costs.

1.3 Description of contents

In Section 2 we review some positivity results for explicit Runge-Kutta (ERK) methods and give
two methods (modi�ed Euler (ME) and RK32 [9]) which are appropriate for the solution of our
semi-discrete taxis system y0(t) = F0(t; y(t)). Positivity of the numerical solution is important in
our application because the population density n feeds back into the reaction terms and negative
values lead to unstable behaviour (negative values make also no sense biologically). The popula-
tion density contains steep fronts in the solution and this causes problems if the time integration
method is not selected carefully.

In Section 3 we propose to apply the linearly implicit 2-stage, 2nd order Rosenbrock-W method
ROS2 earlier used in [23]. This is done by using an inexact Jacobian which does not take the Jaco-
bian matrix of F0 into account. The resulting method therefore only requires the solution of linear
systems coming from the Jacobian matrix of the di�usion-reaction function F1. These matrices
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are broadly banded. To make the required numerical linear algebra amenable, the approximate
matrix factorization (AMF) technique is applied. The resulting scheme is named AMF-ME be-
cause the underlying ERK method is ME. However, the ERK scheme RK32 has more favourable
stability and positivity properties than ME. Therefore we also propose an L-stable, 3-stage, 2nd-
order Rosenbrock-W method with underlying explicit scheme RK32. Our hope is that the good
properties of RK32 and of Rosenbrock-W methods combine in the resulting scheme which we refer
to as AMF-RK32.

In Section 4 we turn our attention to operator splitting (OPS). While AMF can be viewed as
splitting on the level of the linear algebra, OPS involves splitting at the ODE level itself. The
OPS technique is well-known and has been proven useful in a wide variety of multi-dimensional
time-dependent PDE calculations. For example, the application of OPS to a model describing a
spatial pattern formation process of bacteria is discussed by Tyson et al. in [22]. In most cases
OPS introduces a splitting error (see e.g. [17]), but it has the great advantage that di�erent parts
of the ODE are separated more strictly and special purpose solvers can be applied. In this section
we present two Strang-type operator splitting methods which treat ODEs with right-hand side
F0 explicitly (ME or RK32) and ODEs with right-hand side F1 with ROS2 employing AMF. The
resulting schemes are named OPS-ME and OPS-RK32.

Altogether we have four di�erent methods from two di�erent approaches. These are compared
and evaluated in Section 5 for application to the invasion and angiogenesis models. Finally, we
summarize our results and present conclusions in Section 6.

2 Positivity of ERK methods

In this section we consider initial-value problems for systems of ODEs

y0(t) = f(t; y(t)); t � t0; y(t0) = y0: (8)

We assume that f has the property

f is continuous and (8) has a unique solution for all t0 2 R and all y0 2 Rm . (9)

The IVP (8) is called positive if f has the property (9) and solution y(t) � 0 for all t � t0 whenever
y0 � 0. The following lemma from [11] characterizes positive ODE systems (see also [13]).

Lemma 1

Let f satisfy condition (9). The IVP (8) associated with this function is positive if and only if for
all t and any vector v 2 Rm and all i = 1(1)m,

vi = 0; vj � 0 for all j 6= i ) fi(t; v) � 0:

The proposed discretization in space of our models leads to ODE systems (5) which satisfy the
conditions of the lemma (this is also true if F0 or F1 are zero) [7, 13]. Hence it is natural to seek
numerical approximations which also remain positive if time proceeds. Di�culties arise mainly
from the discretization of the taxis part and these occur if the cell density equation has steep
moving front solutions. These fronts typically occur when the di�usion part is much smaller than
the taxis part, which is the case for our models. As stated in the introduction, we want to solve
ODEs with right-hand side taxis function F0 with low order, positive explicit methods. In [9] this
issue is considered for explicit Runge-Kutta (ERK) methods. Here we repeat the main results from
that paper.

Let g(t) � 0 be a given continuous, vector-valued function, � � 0 a real number and de�ne

L+g (�) := ff jf(t; y) = Py + g(t) where P 2 Rm;m ; P + �I � 0g: (10)
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IVPs with right-hand side functions taken from this class are positive. Positivity of one-step
methods applied to problems (8) from the class L+g (�) has been investigated in [3]. There it is
proven that explicit methods applied with time step size � yield positive numerical solutions if
�� � � (in the case of g = 0), where � is the so-called threshold factor of absolute monotonicity of
the stability polynomial of the method. These threshold factors are considered in [15], where it is
shown that � = 1 for all s-stage ERK methods of order s. However, at the cost of one additional
function evaluation, one can achieve � = 2 (s-stage ERK methods of order s�1 [15]), which means
a doubling of the maximum value of � . For 3-stage methods of order 2 this is the case if the
stability polynomial takes the form 1 + z + 1

2z
2 + 1

12z
3. The Butcher array of the corresponding

class of ERK methods is given in Figure 2 (left). We note that this stability polynomial has also
an enlarged stability region compared to s-stage ERK methods of order s with s = 2; 3.

0
1

12
0

1
b3

�
1
2
� b2

12
� 
�



b3
0

1� b2 � b3 b2 b3

(b2;b3;2R;
b3; 6=0)

0
1
2 0

1
2

1
2 0

1
3

1
3

1
3

0
1 0

1
2

1
2

Figure 2: Butcher arrays for a general 3-stage, 2nd-order ERK method with optimal positivity on the
class L+0 (�) (left), for method RK32 (middle) and method ME (right).

The free parameters in Figure 2 (left) can be �xed by considering positivity for nonlinear problems.
As far as we know two approaches exist. One is by Horv�ath [11]. He considers subclasses of
dissipative, positive problems. Here the characteristic constant of the ERK scheme is the radius
of absolute monotonicity of the method (see also [16]). This radius is bounded from above by the
threshold factor of absolute monotonicity. The other approach was proposed by Shu and Osher
[20], see also [13]. Here the ERK scheme is written as a convex combination of forward Euler
steps for which the time step restriction for positivity for speci�c problems is easily established.
This results in a characteristic constant called positivity factor in terms of the parameters of the
convex combination. The maximum allowable time step size for positivity of the method is then
proportional to this positivity factor.

It turns out [9] that there exists exactly one choice of parameters in Figure 2 (left) such that
the resulting method has a radius of absolute monotonicity equal to two and this is optimal. This
method has b2 = b3 = 1=3 and  = 1=2, see Figure 2 (middle) and is called RK32. RK32 is also the
only method with a non-zero radius of absolute monotonicity from this class which has a positivity
factor two and this is also optimal. Further, the scheme RK32 is also positive when applied to
problems from L+g (�) under the step size restriction �� � � = 2 and again this is optimal within
the method class of Figure 2 (left).

Within the OPS and AMF approach we will compare RK32 with the popular 2-stage, 2nd-order
modi�ed Euler scheme (ME), see Figure 2 (right). ME has threshold factor, radius of absolute
monotonicity and positivity factor equal to one and is hence optimal in the class of 2-stage, 2nd-
order ERK methods.

3 The Rosenbrock AMF methods

3.1 AMF-ME

Verwer et al. [23] successfully applied the 2-stage, 2nd-order Rosenbrock-W method ROS2 to
advection-di�usion-reaction problems from atmospheric air pollution modelling. The methodology
applied in that paper also appears to be of interest for taxis-di�usion-reaction equations. Because
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our current models give rise to autonomous systems, we consider for ROS2 the autonomous form
as used in [23]. This form, with the matrix A appearing at the left side only, reads

yn+1 = yn + �
�
3
2k1 +

1
2k2
�
;

y
(1)
n+1 = yn + �k1;

(I � �A) k1 = F (yn);

(I � �A) k2 = F (y
(1)
n+1)� 2k1;

(11)

where yn is the approximation to y(tn), � is the step size taken from tn to tn+1 and A is an
arbitrary approximation to the Jacobian matrix F 0(yn) (W-method property). If we take for A the
zero matrix, the modi�ed Euler method ME is obtained. We have 2nd-order consistency for any
matrix A and any value of the parameter . L-stability is obtained for  = 1 �p2=2. We select
the smaller value  = 1�p2=2 because with the larger one there does not exist a � > 0 such that
the method is positive on class (10) (this is the case for all  > 1=2). The auxiliary value

y
(1)
n+1 = yn + �k1

provides a 1st-order embedded solution which will be used for variable step size control.

Low order Rosenbrock methods are e�cient for a wide range of sti� ODE problems, see e.g.
[10]. However, applying ROS2 involves two linear solves with the matrix I � �A. Consequently,
choosing A equal to the full Jacobian

F 0(yn) = F 0
0(yn) + F 0

1(yn) = F 0
0(yn) + F 0

Dx
(yn) + F 0

Dy
(yn) + F 0

R(yn)

seems not practical due to the huge matrix size (semi-discrete PDE problems). Moreover, due to
the ux-limiter used in the taxis discretization, F is only Lipschitz continuous so that the Jacobian
might not even exist. The same situation occurs in the air pollution application of [23] where ROS2
is applied with a matrix A approximating the true Jacobian. For the taxis models we use a similar
approximation which yields the following choice for the matrix I � �A,

I � �A :=
�
I � �F 0

R(yn)
��

I � �F 0
Dy

(yn)
��

I � �F 0
Dx

(yn)
�
: (12)

This approximation is made in two steps. First, we have neglected the taxis Jacobian F 0
0(yn) which

overcomes the possible di�culty of non-existence. This choice further underlies the assumption
that when applied to

y0(t) = F0(y(t)); (13)

the explicit method ME has satisfactory positivity and stability properties. Second, we have
approximated the remainder matrix I � �F 0

1(yn) by the factorized expression (12). With this
factorization we avoid linear solves which are still expensive because F 0

1(yn) has a bandwidth
O �h�1�, h denoting the spatial grid size. For e�ciency it is important that the matrices involved
are banded with a small bandwidth independent of h. This holds with (12). This property is
especially pro�table for the �ne spatial resolutions required in our models to resolve steep fronts
for the cell density. The factorization is known as `Approximate Matrix Factorization' (AMF)
which is in use for a long time already for solving multi-space dimensional time-dependent PDE
problems, see e.g. [2, 6, 12, 14, 18].

AMF does not a�ect the order of consistency because ROS2 is of 2nd-order for any choice of A.
It does of course a�ect the stability of the original ROS2 used with A = F 0(yn). In [23] it is
argued that with (12) the stability of the resulting AMF-ME method is mainly governed by the
stability of method ME applied to the advection part only. A similar conclusion can be drawn for
the taxis-di�usion-reaction problems. If the split matrices do not commute then the order of the
factors in the AMF can be important for the performance of the method and the best choice is
problem speci�c.
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3.2 AMF-RK32

In Section 2 we have argued that method RK32 from Figure 2 will solve the semi-discrete taxis
system (13) with less time steps than method ME. We have therefore searched for a 3-stage
Rosenbrock-W method of 2nd-order with underlying ERK scheme RK32. After some standard
calculations we have chosen the following formula,

(I � �A) ki = F

0
@yn +

�

2

i�1X
j=1

kj

1
A+ �A

i�1X
j=1

ijkj ; i = 1; 2; 3;

yn+1 = yn +
�

3

3X
i=1

ki;

(14)

where

21 = �(3 + 31 + 32); 32 = 1=2� 3;

31 =
�1

1 + 232

�
63 � 122 + 6(1 + 32) + 2232 �

1

2

�
;

 = 1� 1

2

p
2 cos � +

1

2

p
6 sin �;

with � = 1
3 arctan

�
1
4

p
2
�
. The parameters were chosen such that the method is L-stable and

3rd-order for constant coe�cient linear problems. The value for  is approximately 0.43586652.
The intermediate approximation

y
(2)
n+1 = yn +

�

2
(k1 + k2)

provides a cheap 1st-order embedded solution for variable step size control. The scheme is to
be rearranged such that A appears only on the left-hand side of the equations, similar as for
ROS2. One then can apply the method with the approximate matrix factorization (12) in the
same manner. We call the resulting method AMF-RK32. The factorization does not a�ect the
order of accuracy because (14) is a Rosenbrock-W method. Stability can be analysed in the same
way as in [23].

4 The operator splitting methods

Whereas the AMF methods perform a splitting at the linear algebra level, it is also possible to
directly split at the problem level, that is, to apply operator splitting. Like approximate factoriza-
tion, operator splitting is a popular approach for solving multi-space dimensional time-dependent
PDE problems. Operator splitting has been considered in [7] for the tumour angiogenesis model.
The method proceeds as follows. Given an approximation yn at time tn and a step size � , we
compute

yn+1 = �0

��
2
; tn +

�

2

�
�1 (�; tn) �0

��
2
; tn

�
yn; (15)

where �0 and �1 are approximate evolution operators of F0 and F1, respectively. Speci�cally,
�i(�; ~t)u approximates the solution of the initial-value problem (here in non-autonomous form)

y0(t) = Fi(t; y(t)); t � ~t; y(~t) = u;

at t = ~t + � . This form is known as Strang-splitting [21]. If the operators �i are at least 2nd-
order accurate approximations of the exact evolution operators, then the order of consistency of the
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approximation (15) equals two. The stability and positivity of (15) is determined by the associated
properties of �0 and �1.

It is e�ective to select an explicit method for �0 and an implicit method for �1. We have already all
necessary ingredients available and will use the ROS2 scheme with AMF for the implicit method,
see Section 3.1, and replace F by F1 in the method (11). The explicit method will be either
ME or RK32. We refer to the resulting operator splitting schemes as OPS-ME and OPS-RK32,
respectively. Operator splitting is applied in the order given in (15) because then we use only half
the step size of the splitting step for the explicit method. This doubles the stability and positivity
domain of the explicit method and hence is expected to lead overall to less time steps.

5 Numerical Experiments

Following standard practice, we have implemented the four methods with variable step sizes [10, 19].
The embedded �rst order solution of the Rosenbrock scheme is used to obtain an estimate of the
local error of the current step in the two AMF methods. The time step is selected on the basis
of an error per step (EPS) control which aims to keep this estimate below a mixed (relative and
absolute) threshold depending on the user supplied tolerance TOL (= ATOL = RTOL). The second
order solution is used to advance an accepted step (local extrapolation [19, p. 342]). The two OPS
methods use Richardson extrapolation to obtain a local error estimate of the current step and then
the same EPS control to select the step size. They step forward with the solution obtained after
two half-steps (doubling [19, p. 364], no local extrapolation to third order).
Jacobians are evaluated at the beginning of a time step (AMF) or at the beginning of a Richard-
son step (OPS). We compute �nite di�erence approximations to the true Jacobians of the split
functions.
We compare the solutions, ycomp, of the ODE systems at �nal time (corresponding to the examples
considered here) computed with our methods against reference solutions yref . We obtain these
reference solutions of the ODE systems with the standard integrator VODPK [4] requiring a
tolerance TOL = 10�12. Hence spatial errors play no role in the error measurements but splitting
errors do. The error estimate err := kycomp � yrefk between computed solutions and reference
solutions is measured in the scaled l2-norm,

kvk =
�
1

m
vTv

�1=2

; v 2 Rm :

This norm is also used in the �gures below.
In all test cases the four integration schemes are run for seven tolerance values TOL = 10�3; 10�3:5;
: : : ; 10�6.
By way of comparison we also apply VODPK using the same range of tolerance values. VODPK is
a variable-coe�cient ODE solver with the preconditioned Krylov method GMRES for the solution
of linear systems. It is based on the VODE and LSODPK packages. We use this method without
preconditioning, with default parameters and set MF=21 (method based on BDF formulas up to
order 5 with a scaled, preconditioned, incomplete version of GMRES).

5.1 Tumour Invasion Model | Example 1.1.1

The solution n of the cell density equation of this problem has an initial peak in the centre of
the domain. This peak spreads outward moving up gradients of the ECM density c1 which is
heterogeneous initially. This leads to a heterogeneous pattern in the cell density solution. These
patterns are sharper if there is no cell di�usion (a break up of the initially compact cell mass can
be observed) and more smeared with cell di�usion (the break up of cell mass is not so pronounced
in this case). The total cell mass in the domain is a conserved quantity of the model. The tumour
cells release MDE (c2) which (slowly) di�uses within the spatial domain. MDE in turn degrades
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ECM and hence leads to new gradients in the ECM density which give rise to further migration of
the cells. The most interesting solution of this model is the cell density and Figure 3 gives solution
plots at three di�erent output times for the cases with and without cell di�usion.

Figure 3: Simulation results for the cell density equation of the tumour invasion model. The top row is
with cell di�usion and the bottom row without. The output times are given in the title of each plot.

Figures 4 and 5 give accuracy{CPU time plots for the tumour invasion model with and without
cell di�usion, respectively. The left-hand plots correspond to a spatial grid width of h = 1=100
and the right-hand plots to h = 1=200.
VODPK turns out to be very e�cient for this example. Due to increasing sti�ness, this advantage
decreases for the �ner grid resolution and more signi�cantly if the (small) di�usion coe�cient
d2 = 0:001 is enlarged by a factor of 10 (see Figure 6) or 100.
We note that the AMF schemes can be applied with even less stringent tolerance requirements ( e.g.
up to TOL = 10�2) in the case with cell di�usion (Figure 4) and then these schemes outperform
VODPK (for consistency we do not plot these data points here). In case of cell di�usion, and in
general for the OPS schemes, slight stability problems were observed for less stringent values of
TOL.
We further observe that a decrease of the required accuracy TOL by a factor 10 results in an
achieved accuracy improvement of only a factor � 5:5 for both OPS schemes but of a factor � 10
for the AMF methods (the numbers are for the h = 1=100 case with cell di�usion). This behaviour
is caused by the di�erent local error control mechanisms which are employed in the codes and is
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Figure 4: Results for the tumour invasion model with cell di�usion on a spatial grid with h = 1=100 (left)
and h = 1=200 (right).

-6

-5.5

-5

-4.5

-4

-3.5

-3

100 1000

lo
g_

10
(e

rr
)

CPU time (seconds)

Tumour Invasion without cell diffusion, h=1/100

OPS-ME
OPS-RK32

AMF-ME
AMF-RK32

VODPK

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

1000 10000

lo
g_

10
(e

rr
)

CPU time (seconds)

Tumour Invasion without cell diffusion, h=1/200

OPS-ME
OPS-RK32

AMF-ME
AMF-RK32

VODPK

Figure 5: Results for the tumour invasion model without cell di�usion on a spatial grid with h = 1=100
(left) and h = 1=200 (right).

explained in detail in [19, p. 350]. The true (global) error en = y(tn)� yn satis�es approximately
(under suitable assumptions)

en � TOL

for the error per step control with local extrapolation as used in the AMF codes but only

en � TOLp=(p+1)

for the error per step control (without local extrapolation) as used in the OPS schemes (p = 2).
The same proportionality factors multiplied by the step size � result for the controlled local errors
[19, p. 339 and p. 344]. These results suggest that we should expect a factor of � 4:6 for the
OPS schemes which we clearly have. Also, we should be able to obtain tolerance proportionality
for the OPS schemes if we require modi�ed tolerances TOLmod := TOL3=2 and Figure 7 shows the
expected results: we achieve a factor of � 12. (The same behaviour but with marginally smaller
numbers is observed for the case h = 1=100 without cell di�usion.)
We remark that the very stringent (modi�ed) tolerance requirements lead to many rejected steps
in the OPS methods in the case without cell di�usion. This is not the case for more relaxed
tolerances and also not if cell di�usion is present in the model. The rejected steps are not caused
by small negative solution values but rather by the less smooth solution in this case which makes
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Figure 6: Results for the tumour invasion model with (left) and without (right) cell di�usion on a spatial
grid with h = 1=100. We changed the model parameter d2 to a value of 0:01 in this experiment.

high accuracies di�cult to attain. Except for this situation, there are only a few rejected steps for
all codes and test cases.
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Figure 7: Results for the tumour invasion model with (left) and without (right) cell di�usion on a spatial
grid with h = 1=100. The OPS methods are applied with modi�ed tolerances here.

Returning to Figures 4 and 5, we clearly see that the AMF schemes are more suitable than the OPS
methods for the test case with cell di�usion; without cell di�usion, the situation is the opposite
and the OPS schemes generally demonstrate a better performance.
It can also be observed that for cruder tolerances the methods based on RK32 have a slightly im-
proved behaviour compared to the corresponding methods based on ME. We credit this advantage
to the improved stability of RK32.
Finally, all tested codes preserve the initial cell mass up to a di�erence of the size of unit round
o�.

5.2 Tumour Angiogenesis Model | Example 1.1.2

The solution n of the equation for the endothelial cell density of this problem has initially peaks
near the right boundary of the domain. The cells there are migrating to the left | forming a
stream which moves up the present TAF (c1) gradient as time proceeds. No cell proliferation takes
place in the beginning of the simulation because the c1 concentration at the cells is below the
threshold c?. Later proliferation leads to a strong, local increase of the cell density. The cells also
take up TAF. This results in changes in the TAF gradients and causes lateral cell movement and
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hence a widening of the cell streams. The cell streams turn towards the centre of the TAF source
(the tumour) once they are close enough to the left boundary. Figure 8 gives cell density plots at
three di�erent output times for the model with and without cell di�usion. Note that the process
proceeds faster if cell di�usion is present and that in this case also the lateral cell movement is
more pronounced (leading to a closed wave front towards �nal time).

Figure 8: Simulation results for the cell density equation of the tumour angiogenesis model. The top row
is with cell di�usion and the bottom row without. The output times are given in the title of each plot.

Figures 9 and 10 give accuracy{CPU time plots for the angiogenesis model with and without cell
di�usion, respectively. The left-hand plots correspond to a spatial grid width of h = 1=100 and
the right-hand plots to h = 1=200.
In all four test situations and up to moderate accuracy the AMF and OPS schemes are clearly much
more e�cient than the standard code VODPK. This is especially true for the �ner grid resolution
(right-hand plots) due to increasing sti�ness. VODPK is more e�cient for higher accuracy demands
because of its higher order. However, we note that the point of intersection between the VODPK
curve and the OPS-RK32 curve is at a higher achieved accuracy on the �ner grid, i.e., if the
spatial accuracy is increased then the splitting schemes are also more e�cient for higher temporal
accuracy.
Also we observe that the OPS schemes are more e�cient than the AMF methods and this observa-
tion is independent of the choice of the cell di�usion coe�cient ". This is in contrast to the tumour
invasion test case. In accordance with the tests from the previous section (but more evident), we
see that the splitting methods based on RK32 are more suitable than those based on ME for the
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Figure 9: Results for the angiogenesis model with cell di�usion on a spatial grid with h = 1=100 (left)
and h = 1=200 (right). AMF-RK32 failes for TOL = 10�3 in the left plot, and additional points for TOL
up to 10�8 are plotted for VODPK.
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Figure 10: Results for the angiogenesis model without cell di�usion on a spatial grid with h = 1=100 (left)
and h = 1=200 (right). VODPK failes for TOL = 10�3 in the case of h = 1=200.

kind of problems under consideration.
Table 1 gives the number of performed and rejected steps of the di�erent methods for the test
case without cell di�usion on the coarse grid. The number of steps for the OPS scheme given
in the table should be doubled because each counted step consists of two half steps taken in the
Richardson procedure. Even with this doubling, the number of time steps taken by the OPS
schemes is considerably less than those taken by the AMF methods or VODPK. This certainly is a
valuable property of the OPS schemes which will pay o� even more if right-hand side evaluations
become more expensive. We further observe that the schemes based on RK32 require less steps
than their counterparts based on ME to achieve the same accuracy. Improved stability (and maybe
also positivity) properties of RK32 should be the reason for this. All these observations manifest
themselves in the accuracy{CPU time plots in Figures 9 and 10.
A look at the development of the most negative component of the solution during the course of
integration reveals that as soon as this value becomes too negative then there will be a rejected
step. After this rejected step the integration can proceed or, especially for very low tolerances, more
rejected steps follow. Possible ways out of this problem are to apply clipping to each step solution,
i.e., setting all negative solution values to zero, or to employ the methods with a su�ciently high
accuracy requirement. The �rst approach interferes with mass conservation but the e�ect should
in general be minimal, see e.g. [23]. However, as there are only few step rejections in the tolerance
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OPS-ME OPS-RK32 AMF-ME AMF-RK32 VODPK
TOL steps (rej) err steps (rej) err steps (rej) err steps (rej) err steps (rej) err

10�3 60 ( 10) -2.07 35 ( 2) -1.99 175 ( 1) -1.18 148 ( 7) -2.15 506 ( 0) -0.86
10�4 75 ( 0) -2.33 60 ( 0) -2.34 463 ( 0) -2.37 306 ( 0) -2.76 641 ( 0) -1.19
10�5 157 ( 0) -2.85 126 ( 0) -2.89 1444 ( 0) -3.22 941 ( 0) -3.55 821 ( 2) -2.37
10�6 337 ( 1) -3.49 278 ( 2) -3.57 4557 ( 0) -4.20 2953 ( 0) -4.53 1028( 3) -3.52

Table 1: Integration statistics for the angiogenesis model without di�usion on the coarse grid (h = 1=100).
The number of steps is including rejected steps but rejected steps on integration start-up are not counted.
The achieved error err is given as logarithm to the base 10. The number of steps for the OPS schemes
should be doubled because each counted step consists of two half steps taken in the Richardson procedure.

range considered here, no additional measures were taken.

6 Discussion

We have solved semi-discretizations of two taxis-reaction-di�usion models from mathematical bi-
ology by splitting methods. The two splitting approaches di�er mainly in the way how the taxis
discretization is treated in the time stepping process: AMF does not split the system at the ODE
level but neglects the taxis part in the Jacobian approximation used in the scheme and OPS, based
on Strang-splitting, separates the taxis and the reaction-di�usion parts completely. It is of special
advantage for the OPS schemes that there we only split sti� from nonsti� parts of the ODE and
hence the splitting error is small. The splitting error is expected to be larger if also sti� processes
are split by a Strang-type scheme but in our methods this part (F1) is treated with the AMF
approach and so we circumvent this di�culty.
Our numerical experiments also demonstrated that the choice of the underlying ERK scheme is
important for the performance of the splitting methods. The RK32 scheme appears to be a suitable
candidate.
The comparison of the splitting schemes with the standard integrator VODPK shows the potential
of the OPS and AMF methods. This is especially true as we have not tuned our schemes for the
given examples. For instance we compute and decompose the required Jacobians in our schemes
for every time step even if they are constant (e.g. for the di�usion discretization) in our special
cases. We have done so in order to give our numerical test results a more general meaning.
Finally, we would recommend the application of OPS-RK32 or AMF-RK32 for the simulation of
taxis-reaction-di�usion models in the lower and moderate accuracy range. For the angiogenesis
problem, the operator splitting scheme OPS-RK32 performs best overall.
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