Centrum voor Wiskunde en Informatica
REPORTRAPPORT

ROS3P -- An Accurate Third--Order Rosenbrock Solver Designed for Parabolic Problems
J. Lang, J.G. Verwer

Modelling, Analysis and Simulation (MAS)
MAS-R0013 May 31, 2000

Report MAS-R0013
ISSN 1386-3703
CWI
P.O. Box 94079

1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics and Computer Science. CWI is part of the Stichting Mathematisch Centrum (SMC), the Dutch foundation for promotion of mathematics and computer science and their applications.
SMC is sponsored by the Netherlands Organization for Scientific Research (NWO). CWI is a member of ERCIM, the European Research Consortium for Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 205929333
Telefax +31 205924199

ROS3P - An Accurate Third-Order Rosenbrock Solver Designed for Parabolic Problems

Jens Lang
ZIB
Takustr. 7, D-14195 Berlin-Dahlem, Germany
J.G. Verwer
CWI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
lang@zib.de, jan.verwer@cwi.nl

Abstract

In this note we present a new Rosenbrock solver which is third-order accurate for nonlinear parabolic problems. Since Rosenbrock methods suffer from order reductions when they are applied to partial differential equations, additional order conditions have to be satisfied. Although these conditions have been known for a longer time, from the practical point of view only little has been done to construct new methods. Steinebach [12] modified the well-known solver RODAS of Hairer and Wanner [1] to preserve its classical order four for special problem classes including linear parabolic equations. His solver RODASP, however, drops down to order three for nonlinear parabolic problems. Our motivation here was to derive an efficient third-order Rosenbrock solver for the nonlinear situation. Such a method exists with three stages and two function evaluations only. A comparison with other third-order methods shows the substantial potential of our new method.

2000 Mathematics Subject Classification: Primary: 65M12, 65L06.
1998 ACM Computing Classification System: G.1.7 and G.1.8.
Keywords and Phrases: Nonlinear parabolic equations, Rosenbrock methods, order reduction. Note: Work carried out under subtheme MAS1.1-Atmospheric Flow and Transport Problems.

1 Introduction

Diverse physical phenomena occurring in a wide range of industrial application domains are modelled by systems of time-dependent partial differential equations (PDEs). Due to the great complexity of the established models, the numerical analysis of PDEs is often the central tool to assess the models and to gain profound knowledge about the underlying physical processes. Much progress has been made in the development and design of efficient and robust simulation programs for solving time-dependent PDEs. One of those programs is the Kardos package which was developed at the Konrad-Zuse-Zentrum in Berlin to solve a general class of nonlinear evolution problems. The most important feature of KARDOS is that the quality of the numerical approximations is judged during the computation and an adaptive strategy is automatically determined to improve the accuracy where needed [2]. Kardos uses linearly implicit one-step methods of Rosenbrock type and multilevel finite elements to discretize in time and space, respectively. In the solution of PDEs using an adaptive mesh, one-step methods have an inherent advantage over multistep methods such as BDF. Since each interpolation of variables onto a new mesh generates a discontinuity in time, a multistep method usually must be restarted at lower order, whereas one-
step methods can continue at higher order. In addition, Rosenbrock methods avoid the solution of nonlinear equations, working the exact Jacobian directly into the integration formula (ROSENbrock [8], Hairer and Wanner [1]). Nowadays they are widely accepted to work satisfactorily for moderate accuracy requirements which are typical for the solution of PDEs.

It is a known fact that one-step methods such as Rosenbrock, Runge-Kutta, and extrapolation methods suffer from order reduction when they are applied to stiff ODEs and semi-discrete PDEs (see e.g. Sanz-Serna et al. [10], Verwer [14]). For nonlinear parabolic PDEs, this phenomenon was theoretically investigated in a sequence of papers by Lubich, Ostermann, and Roche [5, $6,3,4]$. Their results show that the temporal order of convergence is mainly influenced by the spatial regularity of the solution, which usually depends on the boundary conditions. Consequently, Rosenbrock methods having a high order of accuracy will loose this advantage for real-life PDEs supplemented with complex boundary conditions. To avoid this disturbing feature, additional conditions on the coefficients have to be satisfied as shown in [6, 3]. Analogous conditions for the stiff ODE case related to B-convergence properties were announced previously in [13, 11]. Improved Rosenbrock methods which preserve the classical order of convergence for linear parabolic PDEs were given by Scholz [11] and Steinebach [12] up to order four. As a direct consequence of the results given in [3], the family of 3 -stage Rosenbrock methods proposed by Scholz ([11], Prep. 5) could be used to construct a third-order accurate method for nonlinear parabolic PDEs, but there one of the intermediate time points lies outside the time step - a property which one should try to avoid.

Our interest here is in the construction of a third-order method which evaluates the functions at the beginning and at the end of each time step. Such methods are particularly valuable when time-dependent terms are present in the PDE operator. More precisely, since a Rosenbrock method evaluates the functions at $t_{n}+\alpha_{i} \tau, i=1,2, \ldots$, to integrate from t_{n} to t_{n+1} with a step of length τ, rapid solution changes, e.g. due to time-dependent boundary conditions or forcing functions, can only be detected properly within the interval $\left[t_{n}, t_{n}+\alpha_{m} \tau\right]$ where $\alpha_{m}=\max _{i} \alpha_{i}$. Serious errors in the numerical solution are possible with formulas the evaluations of which do not span the whole interval $\left[t_{n}, t_{n+1}\right]$. It turns out that a third-order method with $\alpha_{m}=1$ exists for three stages employing only two function evaluations. This method is A -stable with $R(\infty) \approx 0.73$, fulfils the additional conditions from [6,3] for avoiding order reduction, and fulfils also the third-order conditions for differential-algebraic equations (DAEs) of index one. We call this method ROS3P where P stands for parabolic PDEs. A second-order embedding with the same stability properties can be derived easily for error estimation.

We shall present comparative convergence results for a nonlinear parabolic equation derived from the two-dimensional Burgers' equation, illustrating that ROS3P behaves indeed like a thirdorder method for nonlinear parabolic equations. It is worthwhile to mention that ROS3P which was added to the Kardos package performed better in various problem classes where complex boundary conditions are present.

2 Rosenbrock Methods

Applied to the initial-value problem

$$
\begin{equation*}
\partial_{t} u=F(t, u), \quad u(0)=u_{0}, \quad 0<t \leq T, \tag{1}
\end{equation*}
$$

with the step size $\tau>0$ a linearly implicit one-step method of Rosenbrock type has the form

$$
\left\{\begin{align*}
\left(I-\tau \gamma_{i i} \partial_{u} F\left(t_{n}, u_{n}\right)\right) K_{n i} & =F\left(t_{n}+\alpha_{i} \tau, u_{n}+\tau \sum_{j=1}^{i-1} \alpha_{i j} K_{n j}\right) \tag{2}\\
+\tau \partial_{u} F\left(t_{n}, u_{n}\right) & \sum_{j=1}^{i-1} \gamma_{i j} K_{n j}+\tau \gamma_{i} \partial_{t} F\left(t_{n}, u_{n}\right), i=1, \ldots, s \\
u_{n+1} & =u_{n}+\tau \sum_{i=1}^{s} b_{i} K_{n i}
\end{align*}\right.
$$

with

$$
\alpha_{i}=\sum_{j=1}^{i-1} \alpha_{i j}, \quad \text { and } \quad \gamma_{i}=\sum_{j=1}^{i} \gamma_{i j} .
$$

The operator $F(t, u)$ in (1) stands either for a PDE operator supplemented with appropriate boundary conditions or for a semi-discrete PDE operator which typically arises in the method of lines approach. The notations ∂_{t} and ∂_{u} denote partial derivatives with respect to t and u.

For convenience, we set $\alpha_{i j}=0$ for $j \geq i, \gamma_{i j}=0$ for $j>i$, and use the notation

$$
\begin{gathered}
\beta_{i j}=\alpha_{i j}+\gamma_{i j}, \quad \beta_{i}=\sum_{j=1}^{i-1} \beta_{i j}, \quad B=\left(\beta_{i j}\right)_{i, j=1}^{s}, \\
b=\left(b_{1}, \ldots, b_{s}\right)^{T}, \quad \alpha^{k}=\left(\alpha_{1}^{k}, \ldots, \alpha_{s}^{k}\right)^{T}, \quad \mathbf{1}=(1, \ldots, 1)^{T} \in \mathbb{R}^{s} .
\end{gathered}
$$

We assume $\gamma_{i i}=\gamma>0$ for all i, which is the standard simplification to derive Rosenbrock methods with one and the same matrix on the left-hand side of (2).

3 Order Conditions for a Third-Order Method with s=3

The consistency conditions for order three are (see e.g. Hairer and Wanner [1])

$$
\left\{\begin{array}{rl}
(A 1) \quad b_{1}+b_{2}+b_{3} & =1 \tag{3}\\
(A 2) \quad b_{2} \beta_{2}+b_{3} \beta_{3} & =\frac{1}{2}-\gamma \\
(A 3 a) & b_{2} \alpha_{2}^{2}+b_{3} \alpha_{3}^{2}
\end{array}=\frac{1}{3}, ~ 子 \quad b_{3} \beta_{2} \beta_{32}=\frac{1}{6}-\gamma+\gamma^{2} .\right.
$$

Additional conditions have to be satisfied to avoid order reduction for one-step methods of Rosenbrock type (see Lubich and Ostermann [3]). To obtain full order three we have to fulfill

$$
b^{T} B^{j}\left(2 B^{2} \mathbf{1}-\alpha^{2}\right)=0 \quad \text { for } 1 \leq j \leq 2,
$$

which can be simplified taking into account (3) to

$$
\left\{\begin{array}{rl}
(B 1) & b_{3} \beta_{32} \alpha_{2}^{2} \tag{4}
\end{array}=\frac{1}{6}-\frac{2}{3} \gamma, ~ 子 ~\left(\gamma^{2}-\gamma+\frac{1}{6}=0\right)\right.
$$

Using (B2) we find $b_{3} \beta_{32} \alpha_{2}^{2} \neq 0$ in (B1). Consequently, $\beta_{2}=0$ in (A3b) due to (B2). Now we fix β_{3}, α_{2}, and α_{3} to compute $b^{T}=\left(b_{1}, b_{2}, b_{3}\right)$ from (A1)-(A3a). This leads to

$$
\left\{\begin{align*}
b_{2} & =\frac{\frac{1}{3} \beta_{3}-\left(\frac{1}{2}-\gamma\right) \alpha_{3}^{2}}{\alpha_{2}^{2} \beta_{3}} \tag{5}\\
b_{3} & =\frac{\frac{1}{2}-\gamma}{\beta_{3}} \\
b_{1} & =1-b_{2}-b_{3}
\end{align*}\right.
$$

Replacing b_{3} in (B1), we derive

$$
\begin{equation*}
\beta_{32}=\frac{1-4 \gamma}{(3-6 \gamma) \alpha_{2}^{2}} \beta_{3} \tag{6}
\end{equation*}
$$

and conclude remembering that $\beta_{31}=\beta_{3}-\beta_{32}$. The free parameters are β_{3}, α_{2}, and α_{3}.

4 Algebraic Order Conditions for a Third-Order Method with $\mathrm{s}=3$

To reach order three for DAEs too, the following algebraic order condition has to be satisfied (see Roche [7])

$$
\begin{equation*}
(C 1) \quad b_{2} w_{22} \alpha_{2}^{2}+b_{3}\left(w_{32} \alpha_{2}^{2}+w_{33} \alpha_{3}^{2}\right)=1 \tag{7}
\end{equation*}
$$

where $\left(w_{i j}\right)_{i, j=1}^{s}=B^{-1}$. A simple calculation shows

LEMMA 4.1 A Rosenbrock method which satisfies (A1)-(A3b) and (B1)-(B2) fulfils also (C1).
PROOF. Invert B and use (A3a), (B1), and (B2) to get (C1).

5 ROS3P - an A-stable Method

We choose $\gamma=\gamma_{+}=1 / 2+\sqrt{3} / 6$ to get A-stability with $|R(\infty)| \approx 0.73$, where $R(z)=1+z b^{T}(I-$ $z B)^{-1} \mathbf{1}$ is the stability function. The second value $\gamma_{-}=1 / 2-\sqrt{3} / 6$ does not give an A-stable method, see Table 6.3 in [1]. In order to include only two function evaluations, one at the beginning of the time step and one at the end, we set $\alpha_{21}=\alpha_{31}=1$, and $\alpha_{32}=0$. From $\beta_{21}=0$, we derive $\gamma_{21}=-1$. Positive values for the vector b can be achieved by setting $\beta_{3}=3 / 2-3 \gamma$, which yields $b_{1}=2 / 3, b_{2}=0$, and $b_{3}=1 / 3$. Simple calculations give $\beta_{32}=1 / 2-2 \gamma$ and $\beta_{31}=1-\gamma$ leading to $\gamma_{32}=1 / 2-2 \gamma$ and $\gamma_{31}=-\gamma$. Finally, we construct an embedded method of second order replacing the coefficients b_{i} in (2) by different coefficients \hat{b}_{i}. Since $\beta_{2}=0$, we have to include all $\hat{b}_{i}, i=1,2,3$. The order conditions are

$$
\left\{\begin{array}{rl}
(\hat{A} 1) & \hat{b}_{1}+\hat{b}_{2}+\hat{b}_{3} \tag{8}
\end{array}=1, ~ 子 ~(\hat{A} 2) \quad \hat{b}_{3} \beta_{3}=\frac{1}{2}-\gamma .\right.
$$

From $(\hat{A} 2)$ we find $\hat{b}_{3}=1 / 3$. We set $\hat{b}_{1}=1 / 3$ and $\hat{b}_{2}=1 / 3$ in order to fulfill ($\hat{A} 1$), which is only one possibility. In this note we restrict ourselves to constant step sizes to merely illustrate that ROS3P does not suffer from order reduction.

$\gamma=7.886751345948129 e-01$	
$a_{21}=1.267949192431123 e+00$	$c_{21}=-1.607695154586736 e+00$
$a_{31}=1.267949192431123 e+00$	$c_{31}=-3.464101615137755 e+00$
$a_{32}=0.000000000000000 e+00$	$c_{32}=-1.732050807568877 e+00$
$\alpha_{1}=0.000000000000000 e+00$	$\gamma_{1}=7.886751345948129 e-01$
$\alpha_{2}=1.000000000000000 e+00$	$\gamma_{2}=-2.113248654051871 e-01$
$\alpha_{3}=1.000000000000000 e+00$	$\gamma_{3}=-1.077350269189626 e+00$
$m_{1}=2.000000000000000 e+00$	$\hat{m}_{1}=2.113248654051871 e+00$
$m_{2}=5.773502691896258 e-01$	$\hat{m}_{2}=1.000000000000000 e+00$
$m_{3}=4.226497308103742 e-01$	$\hat{m}_{3}=4.226497308103742 e-01$

Table 1: Set of coefficients for the 3-stage ROS3P method.
In the following, we give the defining formula coefficients for the transformed form of a Rosenbrock scheme, which is usually employed in practice to avoid matrix-vector operations.

$$
\left\{\begin{align*}
\left(\frac{I}{\tau \gamma}-\partial_{u} F\left(t_{n}, u_{n}\right)\right) U_{n i}= & F\left(t_{n}+\alpha_{i} \tau, u_{n}+\sum_{j=1}^{i-1} a_{i j} U_{n j}\right) \\
& +\sum_{j=1}^{i-1} \frac{c_{i j}}{\tau} U_{n j}+\tau \gamma_{i} \partial_{t} F\left(t_{n}, u_{n}\right), \tag{9}\\
u_{n+1}= & u_{n}+\sum_{i=1}^{s} m_{i} U_{n i}, \\
\hat{u}_{n+1}= & u_{n}+\sum_{i=1}^{s} \hat{m}_{i} U_{n i} .
\end{align*}\right.
$$

The difference $u_{n+1}-\hat{u}_{n+1}$ can be used as a local error estimator. The coefficients of the whole method called ROS3P are presented in Tab. 1.

6 Convergence Test

To test our scheme we consider the equation

$$
\begin{equation*}
\partial_{t} u-\nu \nabla^{2} u+u \partial_{x} u+u \partial_{y} u=0,0<t \leq T=0.1, \tag{10}
\end{equation*}
$$

defined on the domain $\Omega=(0,1 / 2) \times(0,1 / 2)$. The initial and Dirichlet boundary conditions are chosen from the exact solution

$$
u(x, y, t)=1 /(1+\exp ((x+y-t) /(2 \nu)) .
$$

We set $\nu=0.1$ and solve the equation with the finite element code Kardos for a sequence of time steps $\tau_{N}=T / N$ with $N=10,20,40,80$. Standard 4th-order Lagrange finite elements and a uniform grid consisting of 16384 triangles are used to keep the spatial discretization to a nearly insignificant level.

The global error is measured in the discrete norms

$$
\|\epsilon\|_{l_{N+1}^{2}(V)}=\left(\tau_{N} \sum_{n=0}^{N}\left\|u_{n}-u\left(t_{n}\right)\right\|_{V}^{2}\right)^{1 / 2}
$$

where $V=L^{2}(\Omega)$ and $V=H^{1}(\Omega)$ equipped with the norms

$$
\|v\|_{L^{2}(\Omega)}^{2}=\int_{\Omega} v^{2} d x d y, \quad\|v\|_{H^{1}(\Omega)}^{2}=\int_{\Omega}\left(v^{2}+\left(\partial_{x} v\right)^{2}+\left(\partial_{y} v\right)^{2}\right) d x d y .
$$

The numerically observed temporal order of convergence is computed by

$$
q_{\text {num }}=\log _{2}\|\epsilon\|_{l_{N+1}^{2}(V)}-\log _{2}\|\epsilon\|_{l_{2 N+1}^{2}(V)} .
$$

We have compared ROS3P with RODAS3 [9] and ROWDA3 [7], which are also third-order accurate for differential-algebraic equations, but do not satisfy conditions (4) which avoid order reduction. The test case chosen is critical with respect to the attainable order due to the timedependent Dirichlet boundary conditions. The results given in Tab. 2 and Tab. 3 reveal that RODAS3 and ROWDA3 suffer from severe order reductions whereas the full order three of ROS3P clearly shows up. The fractional order $p=2.25$ for the $l^{2}\left(L^{2}\right)$-norm was explained theoretically by Lubich and Ostermann ([3], Theorem 5.2). A discussion about the order $p=1.75$ for the $l^{2}\left(H^{1}\right)$-norm can be found in LaNg ([2], VI. $\S 1$, Example 1).

	RODAS3		ROWDA3		ROS3P							
τ	$\\|\epsilon\\|_{l^{2}\left(L^{2}\right)}$	$q_{\text {num }}$	$\\|\epsilon\\|_{l^{2}\left(L^{2}\right)}$	$q_{\text {num }}$	$\\|\epsilon\\|_{l^{2}\left(L^{2}\right)}$	$q_{n u m}$						
$\frac{1}{100}$	6.59_{10}^{-7}		9.03_{10}^{-7}		3.02_{10}^{-7}							
$\frac{1}{200}$	1.37_{10}^{-7}	2.26	1.88_{10}^{-7}	2.26	4.23_{10}^{-8}	2.84						
$\frac{1}{400}$	2.86_{10}^{-8}	2.26	3.93_{10}^{-8}	2.26	5.69_{10}^{-9}	2.89						
$\frac{1}{800}$	5.99_{10}^{-9}	2.25	8.22_{10}^{-9}	2.26	7.39_{10}^{-10}	2.95						

Table 2: Problem (10) with time-dependent Dirichlet boundary conditions. The observed temporal orders of convergence measured in the global $L^{2}-$ norm reveal $p=2.25$ for RODAS3 and ROWDA3, and $p=3$ for ROS3P.

	RODAS3		ROWDA3		ROS3P							
τ	$\\|\underline{\epsilon}\\|_{l^{2}\left(H^{1}\right)}$	$q_{n u m}$	$\\|\underline{\epsilon}\\|_{l^{2}\left(H^{1}\right)}$	$q_{n u m}$	$\\|\underline{\epsilon}\\|_{l^{2}\left(H^{1}\right)}$	$q_{n u m}$						
$\frac{1}{100}$	4.02_{10}^{-5}		5.18_{10}^{-5}		4.91_{10}^{-6}							
$\frac{1}{200}$	1.19_{10}^{-5}	1.76	1.53_{10}^{-5}	1.76	7.50_{10}^{-7}	2.71						
$\frac{1}{400}$	3.54_{10}^{-6}	1.75	4.56_{10}^{-6}	1.75	1.05_{10}^{-7}	2.83						
$\frac{1}{800}$	1.05_{10}^{-6}	1.75	1.35_{10}^{-6}	1.76	1.38_{10}^{-8}	2.93						

Table 3: Problem (10) with time-dependent Dirichlet boundary conditions. The observed temporal orders of convergence measured in the global $H^{1}-$ norm reveal $p=1.75$ for RODAS3 and ROWDA3, and $p=3$ for ROS3P.

References

[1] E. Hairer and G. Wanner, Solving ordinary differential equations II, stiff and differentialalgebraic problems, second edition, Springer-Verlag, Berlin, Heidelberg, New York (1996)
[2] J. Lang, Adaptive multilevel solution of nonlinear parabolic PDE systems. Theory, algorithm, and applications., Habilitation thesis, FU Berlin, 1999, ftp://ftp.zib.de/pub/zib-publications/reports/SC-99-20.ps
[3] Ch. Lubich and A. Ostermann, Linearly implicit time discretization of non-linear parabolic equations, IMA J. Numer. Anal. 15, 555-583 (1995)
[4] Ch. Lubich and A. Ostermann, Runge-Kutta approximation of quasi-linear parabolic equations, Math. Comp. 64, 601-627 (1995)
[5] A. Ostermann and M. Roche, Runge-Kutta methods for partial differential equations and fractional orders of convergence, Math. Comp. 59, 403-420 (1992)
[6] A. Ostermann and M. Roche, Rosenbrock methods for partial differential equations and fractional orders of convergence, SIAM J. Numer. Anal. 30, 1084-1098 (1993)
[7] M. Roche, Rosenbrock methods for differential algebraic equations, Numer. Math. 52, 45-63 (1988)
[8] H. H. Rosenbrock, Some general implicit processes for the numerical solution of differential equations, Computer J. 5, 329-331 (1963)
[9] A. Sandu, J.G. Verwer, J.G. Blom, E.J. Spee, G.R. Carmichael, and F.A. Potra, Benchmarking stiff ODE solvers for atmospheric chemistry problems II: Rosenbrock solvers, Atmos. Environ. 31, 3459-3472 (1997)
[10] J. M. Sanz-Serna, J. G. Verwer, and W. H. Hundsdorfer, Convergence and order reduction of Runge-Kutta schemes applied to evolutionary problems in partial differential equations, Numer. Math. 50, 405-418 (1986)
[11] S. Scholz, Order barriers for the B-convergence of ROW methods, Computing 41, 219-235 (1989)
[12] G. Steinebach, Order-reduction of ROW-methods for DAEs and method of lines applications, Preprint 1741 (1995), Technische Hochschule Darmstadt, Germany
[13] K. Strehmel and R. Weiner, B-convergence results for linearly implicit one step methods, BIT 27, 264-281 (1987)
[14] J.G. VERWER, Convergence and order reductions of diagonally implicit Runge-Kutta schemes in the method of lines, in: D.F. Griffiths, G.A. Watson (eds.), Numerical Analysis, pp. 220237, Pitman Research Notes in Mathematics, Boston, 1986

