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Abstract

In this note we present a new Rosenbrock solver which is third—order accurate for nonlin-
ear parabolic problems. Since Rosenbrock methods suffer from order reductions when they
are applied to partial differential equations, additional order conditions have to be satisfied.
Although these conditions have been known for a longer time, from the practical point of view
only little has been done to construct new methods. STEINEBACH [12] modified the well-known
solver RODAS of HAIRER and WANNER [1] to preserve its classical order four for special prob-
lem classes including linear parabolic equations. His solver RODASP, however, drops down to
order three for nonlinear parabolic problems. Our motivation here was to derive an efficient
third—order Rosenbrock solver for the nonlinear situation. Such a method exists with three
stages and two function evaluations only. A comparison with other third—order methods shows
the substantial potential of our new method.
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1 Introduction

Diverse physical phenomena occurring in a wide range of industrial application domains are mod-
elled by systems of time—-dependent partial differential equations (PDEs). Due to the great com-
plexity of the established models, the numerical analysis of PDEs is often the central tool to
assess the models and to gain profound knowledge about the underlying physical processes. Much
progress has been made in the development and design of efficient and robust simulation programs
for solving time-dependent PDEs. One of those programs is the KARDOS package which was
developed at the Konrad—Zuse—Zentrum in Berlin to solve a general class of nonlinear evolution
problems. The most important feature of KARDOS is that the quality of the numerical approxi-
mations is judged during the computation and an adaptive strategy is automatically determined
to improve the accuracy where needed [2]. KARDOS uses linearly implicit one—step methods of
Rosenbrock type and multilevel finite elements to discretize in time and space, respectively. In
the solution of PDEs using an adaptive mesh, one—step methods have an inherent advantage over
multistep methods such as BDF. Since each interpolation of variables onto a new mesh generates a
discontinuity in time, a multistep method usually must be restarted at lower order, whereas one—



step methods can continue at higher order. In addition, Rosenbrock methods avoid the solution
of nonlinear equations, working the exact Jacobian directly into the integration formula (ROSEN-
BROCK [8], HAIRER and WANNER [1]). Nowadays they are widely accepted to work satisfactorily
for moderate accuracy requirements which are typical for the solution of PDEs.

It is a known fact that one—step methods such as Rosenbrock, Runge-Kutta, and extrapolation
methods suffer from order reduction when they are applied to stiff ODEs and semi-discrete PDEs
(see e.g. SANZ—SERNA ET AL. [10], VERWER [14]). For nonlinear parabolic PDEs, this phenomenon
was theoretically investigated in a sequence of papers by LUBICH, OSTERMANN, and ROCHE [5,
6, 3, 4]. Their results show that the temporal order of convergence is mainly influenced by the
spatial regularity of the solution, which usually depends on the boundary conditions. Consequently,
Rosenbrock methods having a high order of accuracy will loose this advantage for real-life PDEs
supplemented with complex boundary conditions. To avoid this disturbing feature, additional
conditions on the coefficients have to be satisfied as shown in [6, 3]. Analogous conditions for the
stiff ODE case related to B—convergence properties were announced previously in [13, 11]. Improved
Rosenbrock methods which preserve the classical order of convergence for linear parabolic PDEs
were given by SCHOLZ [11] and STEINEBACH [12] up to order four. As a direct consequence of the
results given in [3], the family of 3—stage Rosenbrock methods proposed by Scrovz ([11], Prep. 5)
could be used to construct a third—order accurate method for nonlinear parabolic PDEs, but there
one of the intermediate time points lies outside the time step — a property which one should try
to avoid.

Our interest here is in the construction of a third—order method which evaluates the functions
at the beginning and at the end of each time step. Such methods are particularly valuable when
time—dependent terms are present in the PDE operator. More precisely, since a Rosenbrock method
evaluates the functions at t,+a;7, i = 1,2,..., to integrate from ¢, to t,4+1 with a step of length
T, rapid solution changes, e.g. due to time—-dependent boundary conditions or forcing functions,
can only be detected properly within the interval [t,,t, + ;7] where a,, = max; a;. Serious
errors in the numerical solution are possible with formulas the evaluations of which do not span
the whole interval [t,, tn+1]. It turns out that a third—order method with o, =1 exists for three
stages employing only two function evaluations. This method is A-stable with R(oc0)~0.73, fulfils
the additional conditions from [6, 3] for avoiding order reduction, and fulfils also the third-order
conditions for differential-algebraic equations (DAEs) of index one. We call this method ROS3P
where P stands for parabolic PDEs. A second—order embedding with the same stability properties
can be derived easily for error estimation.

We shall present comparative convergence results for a nonlinear parabolic equation derived
from the two—dimensional Burgers’ equation, illustrating that ROS3P behaves indeed like a third—
order method for nonlinear parabolic equations. It is worthwhile to mention that ROS3P which
was added to the KARDOS package performed better in various problem classes where complex
boundary conditions are present.

2 Rosenbrock Methods

Applied to the initial-value problem

Ou=F(t,u), u(0)=u, 0<t<T, (1)
with the step size 7> 0 a linearly implicit one—step method of Rosenbrock type has the form

i—1

(I — TYii 6uF(tn,un)) an = F(tn + Q;T, Uy + 7 Zl Ckinnj)
]:
i—1
+ T O (tn,un) X VijKnj + 7Y OtF (tn,uy), i =1,...,s, (2)
j=1
Upt1 = Up+T Z biKn;

=1



with
i—1 i
Q= Zaij , and 7y = Z’Yij :
j=1 j=1

The operator F'(t,u) in (1) stands either for a PDE operator supplemented with appropriate
boundary conditions or for a semi—discrete PDE operator which typically arises in the method of
lines approach. The notations d; and 9, denote partial derivatives with respect to ¢ and w.

For convenience, we set a;; =0 for j >1, ;; =0 for j >4, and use the notation

ﬂij = Q45 + Yij » Z ﬂl] , B= ﬂl]) i,j=1 >

b=(by,...,b)T, o= (a’f,..,ak)T, 1=(1,..., )T eR*.

S

We assume 7;; = v > 0 for all 4, which is the standard simplification to derive Rosenbrock
methods with one and the same matrix on the left—-hand side of (2).

3 Order Conditions for a Third—Order Method with s=3

The consistency conditions for order three are (see e.g. HAIRER and WANNER [1])

(Al)  bi+ba+bs = 1,

(A2)  bofa+b3fs = 3—7, 3)
(A3a) baad 4+ b33 = 1,

(A3b) bsfaflsa = §—7+7°.

Additional conditions have to be satisfied to avoid order reduction for one—step methods of
Rosenbrock type (see LUBICH and OSTERMANN [3]). To obtain full order three we have to fulfill

' BI(2B*1-a?) =0 for1<j<2,
which can be simplified taking into account (3) to

{(Bl) b3ﬂ32a§ = %—%’Y,
(B2) 7T o= $E:V3 (P -+§=0).

Using (B2) we find b3f33202 #0 in (B1). Consequently, 32 =0 in (A3b) due to (B2). Now we
fix 33, a2, and ag to compute b = (by, by, b3) from (A1)-(A3a). This leads to

%53 - (% - 7)a§

(4)

by = )
’ L a3
2 7 ()
by = 2 ,
’ B
by = 1—0by—bs.
Replacing bs in (B1), we derive
1—4y
6
ﬁ32 (3 6’)/) 79 o N2 53 ) ( )

and conclude remembering that 831 =3 — (32. The free parameters are 33, as, and as.



4 Algebraic Order Conditions for a Third—Order Method
with s=3

To reach order three for DAEs too, the following algebraic order condition has to be satisfied (see
ROCHE [7])

(C].) bziﬂggag + b3(w32a% + ’LU33C!§) =1 , (7)

where (w;;)f ;_; =B~'. A simple calculation shows

LEMMA 4.1 A Rosenbrock method which satisfies (A1)-(A3b) and (B1)—(B2) fulfils also (C1).

PROOF. Invert B and use (A3a), (B1), and (B2) to get (C1).

5 ROS3P — an A-stable Method

We choose y=+, =1/2 +/3/6 to get A-stability with |R(co)| ~ 0.73, where R(z)=1 + 2b" (I —
2B)~'1 is the stability function. The second value v =1/2 — v/3/6 does not give an A-stable
method, see Table 6.3 in [1]. In order to include only two function evaluations, one at the beginning
of the time step and one at the end, we set as; =a3; =1, and azs =0. From £ =0, we derive
721 = —1. Positive values for the vector b can be achieved by setting 3 =3/2 — 3, which yields
by =2/3, bo =0, and b3 =1/3. Simple calculations give 332 =1/2 — 27 and 31 =1 — 7 leading to
32 =1/2 — 27y and y3; = —. Finally, we construct an embedded method of second order replacing
the coefficients b; in (2) by different coefficients b;. Since B2 =0, we have to include all IA),', 1=1,2,3.
The order conditions are

Al) by +bo+bs = 1,
{() + by + )

(A2) 5353 = % -7

From (AQ) we find bs=1/3. We set by =1/3 and by =1/3 in order to fulfill (Al), which is only
one possibility. In this note we restrict ourselves to constant step sizes to merely illustrate that
ROS3P does not suffer from order reduction.

v = 7.886751345948129¢ — 01

a21 = 1.267949192431123e + 00 | c21 = —1.607695154586736¢ + 00
a3r = 1.267949192431123e + 00 | c31 = —3.464101615137755¢e + 00
az2 = 0.000000000000000e + 00 | c32 = —1.732050807568877¢ + 00

a1 = 0.000000000000000e +00 | v1 = 7.886751345948129¢ — 01
az = 1.000000000000000e + 00 —2.113248654051871e — 01
a3z = 1.000000000000000e + 00 | s —1.077350269189626e + 00

2
V)
I

my = 2.000000000000000e + 00 | 2.113248654051871e + 00
ma = 5.773502691896258e — 01 | o 1.000000000000000e + 00
mg = 4.226497308103742e — 01 | m3 = 4.226497308103742¢ — 01

Table 1: Set of coefficients for the 3—stage ROS3P method.

In the following, we give the defining formula coefficients for the transformed form of a Rosen-
brock scheme, which is usually employed in practice to avoid matrix—vector operations.



( I i—1
<E — 8UF(tn,Un)> Uni = F(tn + ;T up + Z aijUn]’)
j=1

T

i—1
+ E — Unj + T atF(tmun) ,
j=1

el
Upy1 = Un+ Y, miUni,
i=1
el
Unp+1 = Up + Z sznz -
\ i=1

The difference 4,41 — @n+1 can be used as a local error estimator. The coefficients of the whole
method called ROS3P are presented in Tab. 1.

6 Convergence Test

To test our scheme we consider the equation

o — vV +udpu +ufyu=0,0<t < T =0.1, (10)

defined on the domain Q= (0,1/2) x (0,1/2). The initial and Dirichlet boundary conditions
are chosen from the exact solution

u(z,y,t) = 1/(1 +exp((z +y —1)/(2v)).

We set ¥ =0.1 and solve the equation with the finite element code KARDOS for a sequence of
time steps 7n =T /N with N =10, 20,40, 80. Standard 4th—order Lagrange finite elements and a
uniform grid consisting of 16384 triangles are used to keep the spatial discretization to a nearly
insignificant level.

The global error is measured in the discrete norms

N 1/2
el vy = <m S lhun — u(tn>||2v>
n=0

where V=L?(Q) and V =H'() equipped with the norms

||’U||%2(Q) = /(21)2 dl‘dy, ||U||§{1(Q) = /Q (’U2 + (6z'U)2 + (8yv)2) dl’dy .
The numerically observed temporal order of convergence is computed by

Gnum =108y |lelliz, vy — 108 llelliz ., v) -

We have compared ROS3P with RODAS3 [9] and ROWDAS3 [7], which are also third-order
accurate for differential-algebraic equations, but do not satisfy conditions (4) which avoid order
reduction. The test case chosen is critical with respect to the attainable order due to the time—
dependent Dirichlet boundary conditions. The results given in Tab. 2 and Tab. 3 reveal that
RODAS3 and ROWDAS3 suffer from severe order reductions whereas the full order three of ROS3P
clearly shows up. The fractional order p = 2.25 for the /?(L?)-norm was explained theoretically
by LUBICH and OSTERMANN ([3], Theorem 5.2). A discussion about the order p =1.75 for the
I>(H")-norm can be found in LANG ([2], VL§1, Example 1).



RODASS3 ROWDA3 ROS3P
o llellizz2y  gnum | llellizz2y  qnum | llellizzzy  dnum
s | 6597y 9.037, 3.027,
sas | 187 226 | 1887 226 | 42377 @ 2.84
s | 2.86 2.26 | 3.93;5 226 | 569, @ 2.89
= | 599, 2.25 | 82277 226 | 7.39;0° 295

Table 2: Problem (10) with time-dependent Dirichlet boundary condi-
tions. The observed temporal orders of convergence measured in the
global L2-norm reveal p=2.25 for RODAS3 and ROWDA3, and p=3

for ROS3P.
RODAS3 ROWDAS3 ROS3P

T lellizcay  anum | llellizary  gnum | llellizgry  gnum
1 -5 -5 —6
i 4.027; 5.187, 4.917

1 -5 -5 -7
a5 1197, 1.76 1537, 1.76 7.507, 2.71
L 3.547.8 1.75 4.567.8 1.75 1.0577 2.83
400 . 10 . " 10 . . 10 .

1 —6 —6 —8
=5 1.05,, 1.75 1.35), 1.76 138, 2.93

Table 3: Problem (10) with time-dependent Dirichlet boundary condi-
tions. The observed temporal orders of convergence measured in the
global H'-norm reveal p=1.75 for RODAS3 and ROWDA3, and p=3
for ROS3P.
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