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ABSTRACT

We discuss compacti�cations of G{spaces from a new point of view that completely di�ers from our
earlier approaches. From a topologist's point of view, this new approach is more natural than the
previous ones. In addition, it enables a uni�ed discussion of the compacti�cation and the linearization
problem for G{spaces (which we shall discuss in a subsequent report). The central idea is to get a
su�ciently large 'natural' family of elementary compact G{spaces which can play the same role as the
interval [[ 0 ; 1 ]] in ordinary topology.
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1. Introduction

Before stating the main problem we establish some notation and terminology and give the necessary
de�nitions. For any topological space X and any point x 2 X the set of all neighbourhoods of x will
be denoted by Nx. The symbol G will always denote an arbitrary topological Hausdor� group. An
action of G on a space X is a mapping � : G�X ! X satisfying the following conditions: �(e; x) = x
and �(s; �(t; x)) = �(st; x) for all x 2 X and t; s 2 G (here e denotes the unit element of G). A
G{space X := hX; �i consists of a Hausdor� space X with a continuous action � of G on X (that
is, the action � : G � X ! X is jointly continuous). In that case we call X the phase space or
underlying topological space of X; usually we employ the same letter for a G{space and its underlying
topological space, using di�erent type faces (thus, Y has underlying space Y , Z has underlying space
Z, etc. ). If (P) is topological property that is applicable to topological spaces then we speak of a
(P){G{space X, or we say that the G{space X has (P), whenever its underlying space has (P); for
example, a compact G{space is a G{space with a compact (and always Hausdor�) phase space. If
X = hX; �i is a G{space then the mapping � is certainly separately continuous; thus, for every t 2 G
the mapping �t : x 7! �(t; x) : X ! X is a homeomorphism; similarly, for every x 2 X the mapping
�x : t 7! �(t; x) : G! X is continuous.

If hX; �i is a G{space then a subset Y of X is said to be invariant whenever �[G � Y ] � Y , or,
equivalently, �t[Y ] = Y for every t 2 G. In that case �jG�Y : G � Y ! Y is a continuous action of
G on Y . For simplicity, in such a case we shall always write � instead of �jG�Y ; thus, an invariant
subset Y of hX; �i gives rise to the G{space hY; �i.

Usually there is no need for a notational distinction between various actions and we shall often
just write tx for �(t; x). If X and Y are G{spaces then a mapping ' : X ! Y is called equivariant

whenever '(tx) = t'(x) for all (t; x) 2 G � X . A continuous equivariant mapping ' : X ! Y will
also be called a morphism of G{spaces; notation: ' : X ! Y. Properties for mappings will also be
used for morphisms of G{spaces; thus, ' : X ! Y is said to be open, an embedding, etc. whenever
the 'underlying' continuous mapping ' : X ! Y is open, or an embedding, etc.
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We need one more de�nition: let A be a set and for each a 2 A, let Xa = hXa; �ai be a G{space.
Then the product

Q
a2AXa is the G{space X := hX; �i with

X :=
Y
a2A

Xa and �(t; x) := (�a(t; xa))a2A

for t 2 G and x = (xa)a2A 2 X . Clearly, every projection X ! Xa is equivariant. If Z is a G{space
and for every a 2 A we have a morphism of G{spaces 'a : Z ! Xa, then the induced continuous
mapping ' : z 7! ('a(z))a2A : Z ! X is equivariant, hence a morphism of G{spaces from Z to X.
From ordinary topology we know that ' is an (equivariant) embedding iff the morphisms f'aga2A
separate points and closed subsets of Z, that is: for every closed subset B of Z and every point
z0 2 Z nB there exists an a 2 A such that 'a(z0) =2 'a[B] (closure in Xa).

Back in the late seventies, we were involved in a program investigating to which extend the category
of G{spaces has properties similar to the category of `ordinary' topological spaces (which can be
seen as G{spaces for the trivial group G = feg). See e. g. [1], [6], [9], [5] and [2]. In [7] and [8]
we considered the analog of the well-known result from ordinary topology that a topological space
can be topologically embedded in a compact Hausdor� space iff it is a Tychonov space. This is the
compacti�cation problem for G{spaces: for which topological groups G is it true that every Tychonov
G{space X can equivariantly be embedded in a compact G{space? In [8] it was shown that this is
true if G is locally compact. The methods used to prove this involved uniform structures. In [7] a
later proof (though appearing earlier) was published, using function algebras.

In the present paper we reconsider this problem, in a slightly more general form: given an arbi-
trary (not necessarily locally compact) topological group G, characterize the G{spaces that admit an
equivariant embedding into a compact G{space. Of course, these G{spaces are necessarily Tychonov,
but this is not a su�cient condition, as an example by Megrelishvili shows (see [4]). The present
approach looks very much like the simple method used to prove that every Tychonov space can be
embedded in a compact space: consider all continuous maps from that space to the 'elementary' com-
pact interval [[ 0 ; 1 ]]; these separate points and closed subsets, hence can be used to embed the space
into a product of copies of [[ 0 ; 1 ]]. In the same vain, for any Tychonov G{space X we shall look for
the class of all morphisms from X to 'elementary' compact G{spaces, and we shall try to single out
a subset f'a : X ! Yaga2A of this class such that the family f'aga2A separates the points and the
closed subsets of X . Then

' : x 7! ('a(x))a2A : X!
Y
a2A

Ya

is an equivariant topological embedding of X into a compact G{space.
So the whole problem boils down to �nding a su�ciently large set of compact G{spaces. At �rst

sight this seems not so easy: if G is some `wild' topological group it will probably have no non-trivial
continuous actions at all on simple compact spaces like the unit interval . The crucial step here is to
realize that the concept of `elementary' G{spaces may depend on the group G.

The basic question is: where do we �nd su�ciently many (compact) spaces on which G acts? A
natural candidate is the space C(G) of all continuous real-valued functions. The group G acts on this
space by means of the action �, which is de�ned by

�(t; f)(s) := f(st) for all (t; f) 2 G� C(G) and s 2 G :

Note that �e = idC(G) and that �s � �t = �st for all s; t 2 G, so that, indeed, � is an action of G
on C(G) (action by right translation). The subsets of C(G) that are invariant under this action will
be called �-invariant or right invariant. It will turn out that we will get su�ciently many compact
G{spaces when we consider the pointwise bounded, non-empty equicontinuous �-invariant subsets
of C(G) endowed with the topology of pointwise convergence. The strength of our methods lies in
their simplicity; in fact, anybody who has understood the proof of the well-known Ascoli Theorem
should be able to follow the arguments in this paper.
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2. Elementary compact G{spaces

The set o� all right-uniformly fleft-uniformlyg continuous functions on G will be denoted by RUC(G)
fby LUC(G), respectivelyg; the set of all bounded members of C(G) and RUC(G) will be denoted
by C�(G) and RUC�(G), respectively. We shall use the subscript p when these sets are considered
with the topology of pointwise convergence, as follows: Cp(G), etc. Closures in this topology are
denoted by the operator clp. (We shall use similar notation for spaces of continuous functions on any

topological space X .) It is important to note that, in general, the action � is not continuous on Cp(G)
and RUCp(G). Indeed, without further conditions on G we may only assume that for Z := Cp(G) or
RUCp(G) the mapping � : G�Z ! Z is separately continuous. Fortunately, there are many subsets Z
of Cp(G) such that � is continuous on G� Z:

(2.1) Lemma. Let Z be a �-invariant equicontinuous subset of Cp(G). Then � : G � Z ! Z is

jointly continuous. Moreover, Z � RUC(G).

Proof: It is su�cient to show that for every �xed s0 2 G the mapping (t; f) 7! �tf(s0) : G�Z ! Z
is continuous at the (arbitrarily chosen) point (t0; f0) 2 G � Z. To this end, let (t; f) 2 G � Z and
consider the inequality

j�tf(s0)� �t0f0(s0)j � jf(s0t)� f(s0t0)j+ jf(s0t0)� f0(s0t0)j : (1)

Let " > 0. The condition on f that the second term of the right-hand side of this inequality is smaller
than "=2 de�nes a neighbourhood U of f0 in Z. In view of the equicontinuity of Z at the point s0t0
there is a neighbourhood V of t0 in G such that the �rst term of the right-hand side of (1) is smaller
than "=2 for t 2 V . Hence the left-hand side of (1) is smaller than " for all (t; f) 2 V � U . This
completes the proof of the continuity of � on G� Z.

Finally, if f 2 Z then �tf 2 Z for all t 2 G, hence the family f�tfgt2G is equicontinuous, being a
subset of the equicontinuous set Z. Writing down what this means at the point e 2 G shows that for
every " > 0 there exists W 2 Ne such that jf(st)� f(t)j < " for all s 2 W and all t 2 G. This means
precisely that f 2 RUC(G). �

(2.2) Remarks. 1. An alternative presentation of the same proof would be: as Z is equicontinuous,
the evaluation mapping (s; f) 7! f(s) : G�Z ! Z is jointly continuous (see e. g. [3], 7.15, essentially
the same proof as the one presented above). This is easily seen to imply joint continuity of � on G�Z.
In fact, we are talking about equicontinuous subsets of C(G). On such sets the topologies of pointwise
convergence and the compact-open topology (which is the same as the topology of uniform convergence
on compact subsets of G) coincide. Taking this into account, the above lemma and its corollary below
are reformulations of well-known facts.

2. Actually, the above proof shows that � is already continuous on G � Z if every point of Z has
a neighbourhood (in the topology of pointwise convergence, of course) that is equicontinuous on G .
Conversely, if � is continuous on G� Z then the inequality

jf(s0t)� f(s0)j � j�tf(s0)� �ef0(s0)j+ jf0(s0)� f(s0)j

for f; f0 2 Z and s0; t 2 G, shows that every point of Z has a neighbourhood that is equicontinuous
on G.

3. The second part of (2.1) implies that it may not limit generality too much if we restrict our
attention to (equicontinuous) subsets of RUC(G).

In what follows, co (Y ) will denote the convex hull of the subset Y of a vector space. Thus, co (Y ) is
the set of all �nite sums of the form

P
i �iyi with yi 2 Y for all i, each �i � 0 and

P
i �i = 1.
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(2.3) Corollary. 1. Let Y be a pointwise bounded �-invariant equicontinuous subset of C�(G), let
Z := clp(Y ) and let K := clp co (Y ). Then Z and K are compact �-invariant equicontinuous subsets
of RUC�p (G), so Z := hZ; �i and K := hK; �i are compact G{spaces.

2. For f 2 RUC�(G), let Zf := clpf�tf ..
.
t 2 Gg and Kf := clp(co f�tf ..

.
t 2 Gg). Then Zf and Kf

are compact �-invariant equicontinuous subsets of RUC�p (G), and Zf := hZf ; �i and Kf := hKf ; �i are
compact G{spaces.

Proof: 1. We start with the observation that Z equals the closure of Y in R
G with its product

topology: as is well-known, this closure in RG is an equicontinuous set (this is part of most proofs of
the Ascoli Theorem; see e. g. [3], 7.14), hence it is included in C(G) and therefore equals Z. Next,
note that Z is pointwise bounded on G. The easy proof is as follows: if s 2 G then continuity of the
evaluation mapping �s : f 7! f(s) : Cp(G)! R implies that

Z(s) = �s
�
Y
�
� �s[Y ] = Y (s) ;

which is a bounded set in R. As Z is the clusure of Y in RG , this implies that Z is compact: it is
a closed subset of the compact product

Q
s2G Y (s). Finally, because every �s : Cp(G) ! Cp(G) is

continuous, �-invariance of Y implies �-invariance of clp Y = Z. Combine these observations with
Lemma (2.1), and the proof of the �rst part of this Corollary for Z is complete.

For K similar conclusions hold, because (like Z) it is the pointwise closure of an equicontinuous,
pointwise bounded �-invariant set, namely, co (Y ). We �rst show that the set co (Y ) is pointwise
bounded. Indeed, because Y is pointwise bounded there exists for every s 2 G a real number Ms > 0
such that Y (s) � [[�Ms ;Ms ]]. Now consider an element f of co (Y ), f =

P
i �ifi, a �nite sum with

fi 2 Y for all i, �i � 0 and
P

i �i = 1. Then for every s 2 G we have jf(s)j �
P

i �iMs = Ms

This shows that co (Y )(s) � [[�Ms ;Ms ]]. Hence co (Y ) is pointwise bounded. Moreover, since Y is
equicontinuous, an easy argument (very similar to the above) shows that co (Y ) is equicontinuous as
well. Finally, each �s is linear so it preserves convex combinations of elements of Y . This implies that
the set co (Y ) is �-invariant.
2. Let f 2 RUC�(G). Then it is straightforward to show that Of := f�tfgt2G is an equicontinuous
set; it is also obvious that it is a �-invariant set. Moreover, Of is pointwise bounded: for every s 2 G
we have Of (s) = f [sG] = f [G] which is a bounded set as f is a bounded function. So the second part
of the Corollary is a special case of the �rst part. �

(2.4) Remarks. 1. The above result can also be obtained as an easy consequence of the Ascoli
Theorem. To keep our results as clear as possible we instead choose to present the relevant parts of
the proof of that theorem.
2. There is a converse to Ascoli's theorem, saying that compactness (in the compact-open) topology
implies equicontinuity, provided the evaluation mapping is jointly continuous, which is e. g. the case
on locally compact spaces. Though G is not supposed to be locally compact we do have a jointly
continuous evaluation on the relevant sets. Claim: if Z is a compact �-invariant subset of Cp(G) then
Z is equicontinuous. The proof is easy: in (2.2)2 we have seen that joint continuity of � onG�Z implies
that each point of Z has an equicontinuous neighbourhood; compactness of Z implies that Z can be
covered by �nitely many of such neighbourhoods, which implies that Z is equicontinuous. (Alternative
proof: use that continuity of � on G�Z implies that the evaluation mapping (s; f) 7! f(s) : G�Z ! Z
is jointly continuous.)
3. Categorical arguments show that in the case that G is locally compact the G{space hCc(G); �i
plays the same role in the category of all G{spaces and equivariant continuous maps as R plays in the
category of ordinary topological spaces and continuous mappings (see [6] and [9]). Here Cc(G) is the
space C(G) endowed with the compact-open topology. The compact orbit closures in this G{space
coincide with the sets Zf with f 2 RUC�(G), so these sets are, in a sense, the 'smallest' compact
invariant subsets of RUC�(G). It are these sets which play the role of the closed bounded intervals
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in R (or, if convexity is an issue, consider the sets Kf ; but note that always Zf � Kf ). If G is
not locally compact we loose the G{space hCc(G); �i | the mapping � : G � Cc(G) ! Cc(G) need
not be continuous | but we retain the compact G{spaces hZf ; �i (or hKf ; �i) and, more generally,
the compact G{spaces hZ; �i with Z a closed pointwise bounded equicontinuous �-invariant subset of
Cp(G) (which, by (2.1), areous included in RUC(G)).

3. Compactification of G{spaces

(3.1) Lemma. Let hX; �i be a G{space and let f 2 C(X). The following conditions are equivalent:

(i) The set ff � �xgx2X is equicontinuous at e;

(ii)The set ff � �xgx2X is right uniformly equicontinuous on G.

Moreover, if f 2 C�(X) then this set is pointwise bounded on G.

Proof: Elementary (see [7]). (Note that `right uniformly equicontinuous' means: uniformly equicon-
tinuous (or: equi-uniformly continuous) when G is considered with its right uniform structure). �

(3.2) Remark. Condition (i) above means that for every " > 0 there exists U 2 Ne such that for
all t 2 U we have jf(tx) � f(x)j < " for all x 2 X . In the particular case that X = G and � is
the multiplication mapping in G this condition is nothing but the condition that f is right uniformly
continuous on G.

Let C(X) be the set of all f 2 C�(X) satisfying the conditions (i) and (ii) above. (Here one should see
the symbol C as the initial letter of `compact' rather than of `continuous': see (3.4) and (3.6)2 below.)

(3.3) Proposition. Let Z = hZ; �i be a compact G{space; then we have C(Z) = C(Z). In addition,

if ' : X! Z is a morphism of G{spaces then f � ' 2 C(X) for every f 2 C(Z).

Proof: For the �rst statement it is su�cient to show that C(Z) � C(Z). Let f 2 C(Z). Then f is
bounded. In addition, the mapping f � � : (t; z) 7! f(tz) : G� Z ! R is jointly continuous, hence an
elementary compactness argument shows that the set of all mappings f � �z : G ! R with z 2 Z is
equicontinuous. This shows that C(Z) � C(Z).

Now consider the G{space X = hX; �i and a morhism of G{spaces ' : X ! Z, and let f 2 C(Z).
Then for every x 2 X we have (f � ') � �x = f � �'(x), hence f(f � ') � �xgx2X � ff � �zgz2Z .
As the latter set is equicontinuous and pointwise bounded, also the former set is equicontinuous and
pointwise bounded. �

(3.4) Let X = hX; �i be a G{space and let f 2 C(X). Then it is obvious from (2.3)1 and the de�nition

of C(X) that fXf := clpff � �xgx2X and fKf := clp co (ff � �xgx2X) are closed, pointwise bounded,

�-invariant equicontinuous subsets of Cp(X). So we have the compact G{spaces fXf := hfXf ; �i andfKf := hfKf ; �i, the latter being a G{space on a compact convex subset of a locally convex topological
vector space with an action by means of a�ne mappings.

(3.5) Proposition. Let X := hX; �i be an arbitrary G{space and let f 2 C(X). Then the mapping

�f : x 7! f ��x : X ! fXf is a morphism of G{spaces, �f : X! fXf . Moreover, there exists ~f 2 C(fXf )

such that f = ~f ��f .

Proof: That �f is continuous follows immediately from the easy observation that, for every s 2 G,
the mapping x 7! (�fx)(s) = f(sx) : X ! R is continuous. A straightforward veri�cation shows that

the mapping �f is equivariant. Finally, it is easily veri�ed that the rule ~f(g) := g(e) for g 2 fXf

de�nes a continuos mapping ~f : fXf ! R which satis�es the required relationship f = ~f ��f . �
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(3.6) Remarks. 1. In this proposition we can, of course, replace Xf by Kf . In that case ~f may be
assumed to be a continuous a�ne function.

2. The previous propositions show that the members of C(X) are precisely the continuous functions
on X that `come from' equivariant compacti�cations of X. Di�erently from the procedure in [7] we
shall not use C(X) as an algebra of functions de�ning the `largest' G{compacti�cation of X. Rather,
we shall use the members of C(X) as the `topological counterparts' of the morphisms from X to the
`elementary' compact G{spaces (the latter are indexed by the former). In particular, they can be used
to see if the morphisms of G{spaces from X to compact G{spaces separate points and closed subsets
of X :

(3.7) Lemma. Let X be a G{space. Then C(X) separates points and closed subsets of X iff the

morphisms of G{spaces from X to compact G{spaces separate points and closed subsets of X .

Proof: Let A be a closed, non-empty subset of X and let x0 2 X nA.
"Only if": Let f 2 C(X) be such that f(x0) =2 f [A] (closure in R). This can be written as

(f � �x0)(e) =2 f(f � �x)(e)gx2A :

As the mapping �e : g 7! g(e) : Xf ! R is continuous, this implies that f ��x0 =2 ff � �xgx2A (closure

in Xf ). Thus, using the notation of (3.5), we have �f (x0) =2 �f [A], where �f is a morphism from X

to a compact G{space.

"If": Consider a morphism of G{spaces ' : X! Z with Z a compact Hausdor� space and assume
that '(x0) =2 '[A] (closure in Z). There exists g 2 C(Z) such that g(x0) = 0 and g[A] = f1g. Now
let f := g � '. Then by (3.3) we have f 2 C(X), and it is clear that f(x0) =2 f [A]. �

(3.8) Theorem. (See e. g. [8].) A G{space X admits an equivariant embedding in a compact

G{space iff C(X) separates points and closed subsets of X .

Proof: Clear from (3.7) and the fact that X admits an equivariant embedding in a compact G{space
iff there exists a set of morphisms from X to compact G{spaces which separate points and closed
subsets of X . �

(3.9) There is an amusing reformulation of this Theorem. To place it in its proper context we
remind the reader to the following known facts. If X = hX; �i is an arbitrary G{space then the
mapping � : t 7! �t from G into the group H(X) of all homeomorphisms of X onto itself is a group
homomorphism. If we give �[G] the quotient topology induced by � then the evaluation mapping
(h; x) 7! h(x) : �[G] � X ! X is easily seen to be jointly continuous (this is because � is jointly
continuous and the quotient map � : G! �[G] is open).

Consider the case that X is a dense invariant subset of the compact G{space Z = hZ; �i and
let � := �jG�X . By the preceding paragraph (but with Z instead of X), the evaluation mapping
�[G] � Z ! Z is jointly continuous when �[G] is given the quotient topology induced by �. A well-
known result (see, for example, [3], 7.5) implies that on �[G] this quotient topology is �ner than the
compact-open topology | which is the topology of uniform convergence because Z is compact.

Now identify the groups �[G] and �[G] with each other by identifying �t = �tjX with �t (t 2 G).
Then on this group the quotient topologies induced by � and � are the same, and, because X is
dense in Z, the topologies of uniform convergence on X and on Z coincide as well (of course, we give
X the relative uniformity of Z). It follows that also on �[G] the former topology is �ner than the
latter. Stated otherwise: the mapping � : G ! Hu(X) is continuous; here Hu(X) is the group of all
homeomorphisms of X endowed with the topology of uniform convergence.

This proves half of the following:
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(3.10) Corollary. The following conditions for a G{space X = hX; �i are mutually equivalent:

(i) X admits an equivariant embedding into a compact G{space;
(ii)There exists a uniformity onX (compatible with its topology) such that, if we give the groupH(X)

of all homeomorphisms of X into itself the topology of uniform convergence, then the mapping

t 7! �t : G! H(X) is continuous.

Proof: (i) =) (ii): In the remarks above we have shown that (i) implies (ii); we give an alternative
proof. Give X the uniform structure generated by C(X) (i. e., the weakest uniformity making all
members of C(X) uniformly continuous). By Theorem (3.8), condition (i) means that C(X) separates
points and closed subsets of X ; it follows that this uniformity is compatible with the topology of X .
We show that the mapping t 7! �t : G ! H(X) is continuous when H(X) is given the topology of
uniform convergence with respect to this uniformity. Let � be a member of this uniformity: there
are �nitely many elements fi 2 C(X), i = 1; : : : ; n, such that for every pair of points x; y 2 X the
conditions jfi(x) � fi(y)j < " for i 2 f1; : : : ; ng imply that (x; y) 2 �. Now let s 2 G. By the
de�nition of C(X), for every i 2 f1; 2; : : : ; ng there exists Ui 2 Ns such that jfi(tx) � fi(sx)j < " for
all t 2 Ui and x 2 X . Let U be the intersection of the neighbourhoods Ui of s for i = 1; 2; : : : ; n.
Then U 2 Ns and for all t 2 U we have (tx; sx) 2 � for all x 2 X . Thus, condition (ii) holds.
(ii) =) (i): Let U(X) denote the set of all bounded real-valued functions on X that are uniformly
continuous with respect to the uniformity in question. It is a straightforward exercise to show that
condition (ii) implies that U(X) � C(X). As the set U(X) separates point and closed subsets of X ,
the set C(X) does so as well. In view of (3.8) it follows that condition (i) is ful�lled. �

4. A sufficient condition

In this �nal section we present a construction that, for any G{space X = hX; �i, transforms a certain
type of real-valued continuous functions on X into members of C(X). This transformation is such that
if we start with a family of functions that separates points and closed subsets of the space X then
we end up with a subset of C(X) separating points and closed sets as well. This result generalizes the
old result (see [7], [8]) that if G is locally compact then every Tychonov G{space has an equivariant
compacti�cation. Another consequence will be that everyG{space that can equivariantly be embedded
in a locally convex linearG{space has an equivariant compacti�cation, thus providing a new and simple
proof of one of the results in [5]; see [10].

A real valued function f on X is called locally equicontinuous (with respect to the action �) whenever
f 2 C�(X) and, in addition, there exists a neighbourhood U of e in G (depending on f) such that
the family ff � �tgt2U is equicontinuous on X . Hence a non-negative continuous function f on X is
locally equicontinuous iff the following condition holds: there exists U 2 Ne such that

8x 2 X 8" > 0 9Wx 2 Nx such that jf(tx)� f(ty)j < " for all y 2Wx and t 2 U : (�)

The set of all bounded non-negative locally equicontinuous functions on X will be denoted LE+(X).
Note that if G is locally compact then each f of C(X) satis�es condition (�) with the same U .
Indeed, if U is a compact neighbourhood of e in G then joint continuity of the mapping f � � implies
equicontinuity of the family ff � �tgt2U on X .

(4.1) The construction. Let f 2 LE+(X), and �x U 2 Ne such that (�) holds. Since G is a Tychonov
space, the left uniformly continuous real-valued functions on G separate points and closed subsets
of G, hence there exists ' 2 LUC(G) such that 0 � '(t) � kfk + 2 for all t 2 G, '(e) = 0 and
'(t) = kfk + 2 for all t 2 G n U ; here kfk := supfjf(x)j ..

.
x 2 Xg. Observe that there is quite

some freedom here; if necessary, we can replace U by any smaller neighbourhood of e, replacing at
the same time ' by a function on G that ful�lls the above conditions with respect to this smaller
neighbourhood. Using any such ' we de�ne a new function ~f' : X ! R by

~f'(x) := inf
t2G

f'(t) + f(tx)g for x 2 X :
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Our aim is to show that ~f' 2 C(X) and that, if we apply this construction to a subset of LE+(X)
separating points and closed subsets of X then we obtain a subset of C(X) separating points and closed
subsets of X as well.

(4.2) Lemma. Let f 2 LE+(X) and ' be as in (4:1). Then ~f' 2 C(X).

Proof: First note that for every x 2 X we have

0 � ~f'(x) � '(e) + f(x) = f(x) � kfk : (1)

Hence ~f' is bounded. In order to prove that ~f' is continuous we �rst introduce the set

A' := ft 2 G ..
.
'(t) < kfk+ 1g :

It is clear that A' � U . Moreover, for all t 2 G nA' we have, by inequality (1) and our de�nitions,

'(t) + f(tx) � kfk+ 1 + f(tx) � kfk+ 1 � ~f'(x) + 1

for every x 2 X . This implies that

~f'(x) = inf
t2A'

f'(t) + f(tx)g for all x 2 X : (2)

Now let " > 0 and consider a point x 2 X . By condition (�) there exists W 2 Nx such that for all
y 2 W and all t 2 U we have jf(tx) � f(ty)j < ". Moreover, it follows from equation (2) that there
exists t1 2 A' � U such that '(t1) + f(t1x) < ~f'(x) + ". Fix any y 2 W . Because t1 2 U we have,
by the choice of W , f(t1y) < f(t1x) + ", hence

~f'(y) � '(t1) + f(t1y) � '(t1) + f(t1x) + " � ~f'(x) + 2" :

Similarly, ~f'(x) < ~f'(y) + 2". This completes the proof that ~f' is continuous at x.

Finally, we show that ~f' 2 C(X). To this end, consider a point (t; x) 2 G�X . Then

~f'(tx) = inf
s2G

f'(s) + f(stx)g

= inf
u2G

f'(ut�1)� '(u) + '(u) + f(ux)g

� inf
u2G

f'(ut�1)� '(u)g+ ~f'(x) :

But ' 2 LUC(G), so for given " > 0 there exists V 2 Ne such that j'(ut�1 � '(u)j < " for all u 2 G
and t 2 V �1. It follows that ~f'(tx) > ~f'(x) � " for all x 2 X and all t 2 V �1. Now replace in

this inequality x by tx with t 2 V ; because then t�1 2 V �1 we get ~f'(x) = ~f'(t
�1tx) > ~f'(tx) � ".

Combining these results we see that j ~f'(tx) � ~f'(x)j < " for all x 2 X and t 2 V \ V �1. This shows

that ~f' 2 C(X). �

(4.3) Lemma. Let g 2 LE+(X), letK be a closed set inX and let x0 2 XnK such that g(x0) =2 g[K].
Then there exists a uniformly continuous function  : R ! [[ 0 ; 1 ]] and an element ' 2 LUC(G) such

that for f :=  � g 2 LE+(X) we have ~f'(x0) =2 ~f'[K].
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Proof: There exists a uniformly continuous mapping  : R ! [[ 0 ; 1 ]] such that  (g(x0)) = 1 and
 [g[K]] = f0g. Then it is easily seen that f :=  � g 2 LE+(X); moreover, f(x0) = 1 and f [K] = f0g.
As f(x0) = 1, there exists V 2 Ne such that f(tx0) > 1=2 for all t 2 V . Now observe that if U 2 Ne

satis�es condition (�) of (4.1) then we may replace here U by the smaller neighbourhood U \ V of e.
So we may assume from the outset that U has, in addition to the properties mentioned in (4.1), the
property that f(tx0) > 1=2 for all t 2 U .

With this particular U select ' according to (4.1) and consider ~f' 2 C(X) (see (4.2)). Let A' be
de�ned as in the proof of (4.2). By equation (2) above we infer that

~f'(x0) = inf
t2A'

f'(t) + f(tx0)g ; (3)

and because A' � U it follows that the right-hand side of (3) is at least 1=2. So ~f'(x0) � 1=2. In

addition, by equation (1) in (4.2) it follows that for every point x 2 K we have 0 � ~f'(x) � f(x) = 0.

Hence ~f'[K] = f0g. �

(4.4) Corollary. If LE+(X) separates points and closed subsets of X then so does C(X).

Proof: Clear from (4.3). �

(4.5) Remark. Close inspection of the above proof shows that if a subset of LE+(X) separates
points and closed subsets of X , then a subset of C(X) of the same cardinality separates points and
closed sets of X . This is useful if one wants to make estimations of the weight of a possible equivariant
compacti�cation of X. See [7], [5].

(4.6) Corollary. If X is a Tychonov G{space such that a neighbourhood of e acts equicontinu-

ously on X with respect to a certain uniformity compatible with the topology of X , then X can be

equivariantly embedded in a compact G{space.

Proof: Clearly, for any uniformly continuous, bounded, non-negative function f : X ! R we have in
this situation f 2 LE+(X). As those uniformly contious functions separate points and closed subsets
of X , the result follows from (4.4) and (3.8). �

(4.7) Remarks. 1. This Corollary was presented by the present author at at the conference 'Topo-
logical Dynamics' in Oberwolfach in 1980; see Tagungsbericht 25/1980. It appears also in [5].

2. If G is locally compact then in every G-space X a (compact) neighbourhood of e acts equicontinu-
ously on X . In that case every Tychonov G{space has an equivariant compacti�cation. This was the
main result in [7, 8].
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