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In this paper we propose an efficient Monte Carlo scheme for simulating the stochastic
volatility model of Heston (1993) enhanced by a nonparametric local volatility compo-
nent. This hybrid model combines the main advantages of the Heston model and the
local volatility model introduced by Dupire (1994) and Derman & Kani (1998). In par-
ticular, the additional local volatility component acts as a “compensator” that bridges
the mismatch between the nonperfectly calibrated Heston model and the market quotes
for European-type options. By means of numerical experiments we show that our scheme
enables a consistent and fast pricing of products that are sensitive to the forward volatil-
ity skew. Detailed error analysis is also provided.

Keywords: Heston stochastic-local volatility; HSLV; stochastic volatility; local volatility;
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1. Introduction

For many years the local volatility (LV) model presented by Dupire (1994) and Der-
man & Kani (1998) is considered to be a standard model for pricing and managing
risks of structured products. The main advantage of the LV model is its natural
modeling of the market implied volatilities for plain vanilla options. As the input
for the LV model is an implied Black–Scholes volatility surface, it can be calibrated
exactly to any given set of arbitrage-free European vanilla option prices. Although

§Corresponding author.

1450045-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301659133?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1142/S0219024914500459


November 20, 2014 14:18 WSPC/S0219-0249 104-IJTAF SPI-J071
1450045

A. W. van der Stoep, L. A. Grzelak & C. W. Oosterlee

well accepted the LV model has certain limitations, for example, it generates flat-
tening implied forward volatilitie (Rebonato 1999). This may lead to a mispric-
ing of financial products like forward-starting or cliquet options. This problem is
often addressed by adopting a so-called sticky-skew technique which is based on
the forward volatilities “as seen today”. Alternatives for pricing such products are
stochastic volatility (SV) models, like the Heston (1993) and Schöbel–Zhu (1999)
models, where volatility is driven by an additional stochastic differential equation.
The SV models are considered to be more accurate choices (Engelmann et al. 2011,
Gatheral 2006) for pricing forward volatility sensitive derivatives. Additionally, the
volatilities in the SV models “move”, to a certain extent, independently of a change
in spot prices — a property which local volatility models do not have (Ren et al.
2007). Although the SV models have desired features for pricing they often can-
not be very well calibrated to a given set of arbitrage-free European vanilla option
prices. In particular, the accuracy of the Heston model for pricing short-maturity
options in the equity market is typically unsatisfactory (Engelmann et al. 2011).

In this paper, we consider a hybrid model which includes stochastic as well as
local volatility. We focus on the Heston stochastic volatility model enhanced by a
nonparametric local volatility component. Such a model, by construction, allows a
high-quality calibration to plain vanilla options, even for an initial set of Heston
parameters which is not very well calibrated to market data.

The evaluation of these stochastic-local volatility (SLV) models is however not
trivial. As the stock’s overall volatility consists of two different types of volatilities
(the stochastic and the local) it is challenging to account, in the calibration process,
for the correlation between these two.

Although the SLV hybrid models are rather new in the financial industry a
number of attempts for efficient model evaluation have been made already. Ren
et al. (2007) proposed a stochastic volatility model driven by a lognormal volatil-
ity process and developed a tailor-made algorithm for solving the corresponding
Kolmogorov forward PDE. An extension of this technique to the Heston SLV was
presented in the paper by Engelmann et al. (2011) where a finite volume scheme for
the model evaluation was used. Clark (2011) discusses SLV models in an FX con-
text. He mentions that for solving the forward Kolmogorov equation one can e.g. use
explicit finite differencing or ADI timestepping. Although the PDE-discretization
techniques are common practice in the financial industry in the context of the
local-volatility component, they are typically stable only for a very large number
of time-grid points requiring significant computational burden. Tian et al. (2012)
engaged a parallel GPU platform to accelerate these computations.

The authors in (Piterbarg & Capital 2006) moved away from the direct solution
of the SLV model and derived via the Markovian projection closed-form approxi-
mations to prices of European options on various underlyings. Work on Markovian
projections in the context of the SLV models has also been presented in (Henry-
Labordére 2009), where a so-called “effective local volatility” was derived. The
Markovian projections can be widely applied but require a number of conditional
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expectations to be determined. Very often these expectations are not available ana-
lytically and brute-force assumptions need to be imposed so that approximations
can be defined (Piterbarg 2006). Although mathematically appealing the Markovian
projection technique preserves only marginal densities and does not keep marginal
distributions of orders higher than one intact. Due to this, prices of securities
depending on stock values at multiple times, such as American options and bar-
riers, may significantly differ between the original model and the projected model.

Another attempt for solving the SLV model was presented in (Tataru et al.
2012) where a Levenberg–Marquardt optimization technique for a nonlinear Fokker–
Planck equation was applied. Another approach for simulation was proposed by
Deelstra & Rayée (2013). By assuming zero correlation between the volatility pro-
cess and the underlying asset it is possible to efficiently simulate the extended
Schöbel–Zhu model.

We present a Monte Carlo approach for efficient simulation of the Heston SLV
model. In particular, we develop a nonparametric numerical scheme for efficient
model evaluation. The scheme is model independent and can be applied to all SLV
hybrids, including those based on the SABR model. The technique introduced does
not require any advanced methods which makes it intuitive and easy to implement.
A similar idea was presented in (Guyon & Henry-Labordére 2012, Jourdain & Sbai
2012), based on kernel estimators in an interacting particle system.

The outline of this paper is as follows. In Sec. 2, we derive the full-scale SLV
model and highlight the issues related to efficient model evaluation. Section 3 con-
stitutes the core of this paper. We show there how, for a Monte Carlo simulation
scheme, nontrivial conditional expectations can be evaluated efficiently. We also dis-
cuss the simulation of the full-scale model and present how the “unbiased” Monte
Carlo scheme for the Heston model (Andersen 2008) can be adopted to the Heston
SLV (HSLV) model. In Sec. 4, some numerical examples are presented. We particu-
larly concentrate on forward-volatilities implied by the Heston SLV model. Section 5
focuses on the theoretical assessments of the model error and Sec. 6 concludes.

2. SLV Model

SLV model under consideration is driven by the following system of Stochastic
Differential Equations (SDEs):

dS(t)/S(t) = rdt + σ(t, S(t))ψ(V (t))dWx(t), (2.1)

dV (t) = av(t, V (t))dt + bv(t, V (t))dWv(t), (2.2)

dWx(t)dWv(t) = ρx,vdt, (2.3)

with correlation ρx,v between the corresponding Brownian motions, σ(t, S(t)) the
local volatility component, ψ(V (t)) controls the stochastic volatility, parameters
av(t, V (t)) and bv(t, V (t)) determine the drift and diffusion of the variance process,
respectively, and r is a constant interest rate.
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Note that the general SLV model described by the system of the SDEs in (2.1)
and (2.2) can collapse to either the pure SV model or to the LV model. If we set
the local volatility component σ(t, S(t)) = 1, then the model boils down to a pure
stochastic volatility model. On the other hand, if the stochastic component of the
variance bv(t, V (t)) is equal to 0, the model reduces to a local volatility model. Two
popular stochastic volatility models which fit into our framework are the Heston
SV model (Heston 1993) with the variance process driven by the CIR dynamics
(Cox 1985), ψ(V (t)) =

√
V (t) with av(t, V (t)) = κ(v̄ − V (t)) and bv(t, V (t)) =

γ
√

V (t), and the Schöbel–Zhu model (Schöbel & Zhu 1999) with ψ(V (t)) = V (t)
and av(t, V (t)) = κ(v̄ − V (t)), bv(t, V (t)) = γ. Parameter κ controls the speed of
mean-reversion, v̄ controls a long-term mean and γ determines the volatility of the
process V (t).

The SLV model described by Eqs. (2.1) and (2.2) is not completely determined
as σ(t, S(t)) is left unspecified. This function can take different forms. It can be, for
example, given by the constant elasticity of variance model, i.e. σ(t, S(t)) = σ̂Sβ(t),
which is a well-known parametric form for describing the volatility movements
in terms of the underlying asset S(t). Choosing a parametric form for the local
volatility, σ(t, S(t)), although very flexible and well accepted, has an undesired fea-
ture which is the need for model calibration, i.e. one needs to determine the SV
parameters and the LV parameters in the calibration procedure. As the calibration
may not always guarantee a sufficiently-well fit to market data we concentrate on
nonparametric forms for σ(t, S(t)) here.

The main concept for deriving a nonparametric LV component σ(t, S(t)) is as
follows: it is well known that from market data for the European-style options one
can determine the market implied density,a f̂S(x), of the stock S(T ). Furthermore,
by deriving the Kolmogorov forward equation for the underlying model we are able
to determine the density, fS(x), of the stock driven by the SDEs (2.1) and (2.2).
In a general setting these densities differ and only for a perfectly calibrated model
they are identical. As in the SLV framework we have one free parameter available,
namely σ(t, S(t)), we may choose the local component so that the densities implied
from the market and the model are equal. In the following we derive an expression
for the local volatility component σ(t, S(t)) in the stochastic-local volatility model.
Although the main result of the derivations (Eq. (2.9)) can be found in literature
(e.g. Ren et al. 2007), we include these to emphasize the role of the local volatility
component as a “compensator”, which is explicitly defined in terms of market prices.

2.1. Specifying σ(t, S(t))

Let us start with a European call option whose price is given by:

C(t0, t, S(t0), K) =
M(t0)
M(t)

E[(S(t) − K)+ | F(t0)],

aThis result is shown in Lemma 2.1.
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where the expectation is evaluated under the risk-neutral measure Q and the money-
savings account M(t) is given by dM(t) = rM(t)dt (with constant interest rate r
and M(t0) = 1). In the following derivations, we leave filtration F(t0) out in the
notation and we introduce the short-hand notation C(t, K) := C(t0, t, S(t0), K).

In order to obtain the dynamics of the call option price, we apply Itô’s lemma:

dC(t, K) =
(

d
1

M(t)

)
E[(S(t) − K)+] +

1
M(t)

dE[(S(t) − K)+]

= − r

M(t)
E[(S(t) − K)+]dt +

1
M(t)

E[d(S(t) − K)+], (2.4)

where Fubini’s theorem justifies the equality dE[(S(t) − K)+] = E[d(S(t) − K)+].
Regarding the right-hand side in (2.4), we cannot apply Itô’s lemma for the evalu-
ation of d(S(t) − K)+, as the convex function h(x) = (x − a)+ is not differentiable
at point x = a. Therefore, we will make use of a generalized version of Itô’s lemma
known as the Tanaka–Meyer formula (Karatzas & Shreve 1991, Protter 2005):

Theorem 2.1 (Tanaka–Meyer formula). Given a probability space (Ω,F , Q),
t0 ≤ t < ∞, let X(t) = X(t0)+ M̃(t)+V (t) be a continuous semimartingale, where
M̃ = {M̃(t),F(t)} is a continuous local martingale,b V = {V (t),F(t)} is a càdlàg
adapted processc of locally bounded variation. Then, for h(x) = (x−a)+ with a ∈ R :

h(X(t)) = h(X(t0)) +
∫ t

t0

1X(u)>adM̃(u) +
∫ t

t0

1X(u)>adV (u)

+
1
2

∫ t

t0

h′′(X(u))(dM̃(u))2.

Proof. A full proof can be found in Tanaka (1963).

Applying the Tanaka–Meyer formula,d we get

(S(t) − K)+ = (S(t0) − K)+ +
∫ t

t0

1S(u)>KdS(u) +
1
2

∫ t

t0

δ(S(u) − K)(dS(u))2,

which in a differential form is given by:

d(S(t) − K)+ = 1S(t)>KdS(t) +
1
2
δ(S(t) − K)(dS(t))2.

b fM is a local martingale provided that there is a nondecreasing sequence {τk} of stopping times
with the property that P(τk → ∞ as k → ∞) = 1 and such that for each k the stopped process
fM(t)(k) = fM(t ∧ τk) − fM(t0) is a martingale.
cV (t) is defined on the real numbers (or a subset of them) and is everywhere right-continuous and
has left limits everywhere.
dBy taking X(t) := S(t) we immediately notice that S(t) is a semimartingale, as S(t) = S(t0) +

r
R t
t0

S(u)du + fM(t), where
R t

t0
S(u)du is a càdlàg adapted process of locally bounded variation

and fM(t) is an H1 martingale and thus a local martingale as well (every martingale is a local
martingale).
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Substituting the dynamics of S(t), we obtain:

d(S(t) − K)+ = 1S(t)>K(rS(t)dt + σ(t, S(t))ψ(V (t))S(t)dWx(t))

+
1
2
δ(S(t) − K)σ2(t, S(t))ψ2(V (t))S2(t)dt.

The dynamics of the call price can be written as:

dC(t, K) = − r

M(t)
E[(S(t) − K)+]dt

+
1

M(t)
E[1S(t)>K(rS(t)dt + σ(t, S(t))ψ(V (t))S(t)dWx(t))]

+
1

2M(t)
E[δ(S(t) − K)σ2(t, S(t))ψ2(V (t))S2(t)]dt.

We simplify this equation by using the equality

E[(S(t) − K)+] = E[1S(t)>K(S(t) − K)]

= E[1S(t)>KS(t)] − KE[1S(t)>K ].

This gives us the following preliminary result:

Result 2.1. The dynamics of the European call option price C(t, K) :=
C(t0, t, S(t0), K) with S(t) and V (t) following the dynamics as given in (2.1)
and (2.2), respectively, are given by

dC(t, K) =
rK

M(t)
E[1S(t)>K ]dt +

1
2M(t)

E[δ(S(t) − K)σ2(t, S(t))ψ2(V (t))S2(t)]dt,

where each expectation is conditional on F(t0).

In the following, we use another result in our derivations:

Lemma 2.1. The European call option price C(t, K) := C(t0, t, S(t0), K) with S(t)
and V (t) following dynamics as given in (2.1) and (2.2), respectively, satisfies

−∂C(t, K)
∂K

=
1

M(t)
E[1S(t)>K | F(t0)] and − ∂C2(t)

∂K2
=

fS(K)
M(t)

,

where fS is the marginal probability density function of S(t).

Lemma 2.1 states a well-established result, see e.g. (Gatheral 2006). We return
to the dynamics of the call price given in Result 2.1 where we include the results
from Lemma 2.1, i.e.

dC(t, K) = −rK
∂C(t, K)

∂K
dt +

1
2M(t)

E[δ(S(t) − K)σ2(t, S(t))ψ2(V (t))S2(t)]dt,
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which is equivalent to:

2M(t)
(

dC(t, K) + rK
∂C(t, K)

∂K
dt

)
= E[δ(S(t) − K)σ2(t, S(t))ψ2(V (t))S2(t)]dt

=: A(t)dt.

We denote by A(t),

A(t) =
∫∫

R
δ(s − K)σ2(t, s)ψ2(u)s2fV,S(u, s)dsdu

=
∫

R
ψ2(u)

(∫

R
δ(s − K)s2σ2(t, s)fV,S(u, s)ds

)
du. (2.5)

Using properties of the Dirac delta functione the inner integral simplifies to:
∫

R
δ(s − K)s2σ2(t, s)fV,S(u, s)ds = K2σ2(t, K)fV,S(u, K). (2.6)

Then the expression for A(t) is given by

A(t) = K2σ2(t, K)
∫

R
ψ2(u)fV,S(u, K)du, (2.7)

which is equivalent to:

A(t) = K2σ2(t, K)fS(K)E[ψ2(V (t)) |S(t) = K].

The dynamics are given by:

dC(t, K) = −rK
∂C(t, K)

∂K
dt +

1
2M(t)

K2σ2(t, K)fS(K)E[ψ2(V (t)) |S(t) = K]dt.

Using the second equation in Lemma 2.1, we obtain:

dC(t, K) =
(
−rK

∂C(t, K)
∂K

− 1
2
K2σ2(t, K)E[ψ2(V (t)) |S(t) = K]

∂2C(t, K)
∂K2

)
dt,

(2.8)

which can be expressed as:

σ2(t, K)E[ψ2(V (t)) |S(t) = K] =
∂C(t,K)

∂t + rK ∂C(t,K)
∂K

1
2K2 ∂

2C(t,K)
∂K2

=: σ2
LV(t, K),

where σLV(t, K) denotes Dupire’s local volatility (Dupire 1994). We eventually find
the following relation:

σ2(t, K) =
σ2

LV(t, K)
E[ψ2(V (t)) |S(t) = K]

. (2.9)

The local volatility component σ2(t, K) consists of two ingredients: the determinis-
tic local volatility σLV(t, K) and the conditional expectation E[ψ2(V (t)) |S(t) = K].
Numerical evaluation of σLV(t, K) is already well-established in the literature, see

e
R

R δ(t − T )f(t)dt = f(T ).
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for example (Andreasen & Huge 2011, Coleman et al. 1998, De Marco et al. 2013).
On the other hand, the efficient computation of the conditional expectation in (2.9)
is not yet established. The difficulty lies in the fact that the joint distribution
of the variance V and the stock S, fV,S, is unknown. This is due to the fact
that the stock process, S(t), contains a local-volatility component σLV(t, S) which
is also not known analytically. The evaluation of the unknown expectation can
be either derived by solving a Kolmogorov forward PDE (e.g. Deelstra & Rayée
2013, Engelmann et al. 2011) or by applying a Markovian projection approxima-
tion (Henry-Labordére 2009, Piterbarg 2006, Piterbarg & Capital 2006). In this
paper, we concentrate on Monte Carlo evaluation of the SLV model. In the next
section, we present a numerical method which leads to efficient Monte Carlo model
evaluation.

3. Novel Technique for E[ψ2(V (t)) | S(t) = K]

In this section, we present a new efficient evaluation of a general SLV model. In
particular, by an Euler discretization we simulate the SLV model (2.1)–(2.2) as
follows:

si+1,j = si,j + rsi,j∆+ σ(ti, si,j)si,jψ(vi,j)
√
∆Zx, s0,j = S(t0), (3.1)

vi+1,j = vi,j + av(ti, vi,j)∆+ bv(ti, vi,j)
√
∆Zv, v0,j = v(t0), (3.2)

for j = 1, . . . , N and i = 0, . . . , M where Zx = Z1, Zv = ρx,vZ1 + (1 − ρ2
x,v)1/2Z2,

with Z1 and Z2 two independent standard normal variables. Further, ∆ is the
equidistant time-step given by ∆ = i T

M with M indicating the number of time
steps and T stands for final time. N corresponds to the total number of Monte
Carlo paths.

Using expression (2.9) for σ(t, S), System (3.1)–(3.2) becomes:

si+1,j = si,j + rsi,j∆+

√
σ2

LV(ti, si,j)
E[ψ2(V (ti)) |S(ti) = si,j ]

si,jψ(vi,j)
√
∆Zx, (3.3)

vi+1,j = vi,j + av(ti, vi,j)∆+ bv(ti, vi,j)
√
∆Zv. (3.4)

To determine the values of the paths for the next time-step, ti+1, one needs to
establish two main components, σ2

LV(ti, si,j) and E[ψ2(V (ti)) |S(ti) = si,j ]. As indi-
cated efficient evaluation of σ2

LV(ti, si,j) is already well established in the literature
(Andreasen & Huge 2011, De Marco et al. 2013). This is not the case for evalua-
tion of the conditional expectation. The main difficulty in its evaluation is that the
conditioning has to be performed on each individual stock realization si,j , i.e. as
we simulate a discretized system for (S, V ), each realization of si,j has exactly one
corresponding realization of the variance vi,j and this makes the evaluation of the
conditional expectation difficult.

In the next subsection, we present a nonparametric method for evaluating the
conditional expectation.

1450045-8
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3.1. Nonparametric method

Suppose that for a given time ti, i = 1, . . . , M we have N pairs of Monte Carlo
realizations (si,1, vi,1), (si,2, vi,2), . . . , (si,N , vi,N ) for which we wish to evaluate the
conditional expectation in (3.3). As for each si,j we have exactly one value vi,j the
conditional expectation will always be equal to ψ2(vi,j), which is undesired. Such a
problem is a natural consequence of discretization of the continuous system (S, V ).
Obviously, in order to obtain an accurate estimate we would need to have an infinite
set of paths, which is practically unfeasible.

The idea to overcome this problem is to group the pairs of realizations into
bundles which would provide a more accurate estimate for the desired expectation.
Let us divide the range of S(ti) into ( mutually exclusive bins (b1, b2], (b2, b3], . . . ,
(b#, b#+1], with b1 ≥ 0 and b#+1 < ∞.

Now, for any particular stock realization si,j , for which si,j ∈ (bk, bk+1] for some
k ∈ {1, 2, . . . , (} we introduce the following approximation:

E[ψ2(V (ti)) |S(ti) = si,j ] ≈ E[ψ2(V (ti)) |S(ti) ∈ (bk, bk+1]]. (3.5)

If we define the left and right boundaries of (bk, bk+1] to be si,j − ε and si,j + ε,
respectively, we obtain the following:

E[ψ2(V (ti)) |S(ti) = si,j ] = lim
ε→0+

E[ψ2(V (ti)) |S(ti) ∈ (si,j − ε, si,j + ε]]

= lim
ε→0+

E[ψ2(V (ti))1S(ti)∈(si,j−ε,si,j+ε]]
Q[S(ti) ∈ (si,j − ε, si,j + ε]]

. (3.6)

In the limiting case where both boundaries of the bin are equal to si,j the approx-
imation of the conditional expectation boils down to its exact value. This is an
indication for the appropriateness of the approximation in (3.5). The open question
that remains is how to choose proper bin boundaries bk for k = 1, . . . , ( + 1. We
consider two following choices in a Monte Carlo simulation framework.

We first order all the stock paths si,1, si,2, . . . , si,N and obtain the following
sequence: s̄i,1 ≤ s̄i,2 ≤ · · · ≤ s̄i,N , where s̄i,1 and s̄i,N are the minimal and maximal
values at time-step i, respectively. Then, we choose the bin boundaries bi,k, k =
1, . . . , ( + 1. A straightforward way is specifying these such that the bins have the
same size. We can also choose the boundaries depending on the number of paths
per bin. These two choices are established as follows:

(1) Define the bins with respect to an equidistant grid specified on the domain
s̄i,1 = bi,1 < bi,2 < · · · < bi,#+1 = s̄i,N such that for any u, v ∈ {1, . . . , (}, u (= v,
bi,u+1 − bi,u = bi,v+1 − bi,v. This is established by:

bi,k = s̄i,1 +
k − 1

(
(s̄i,N − s̄i,1), k = 1, . . . , ( + 1. (3.7)

(2) Specify the bins so that each bin contains an approximately equal number of
Monte Carlo paths:

bi,1 = s̄i,1, bi,#+1 = s̄i,N , bi,k = s̄i,(k−1)N/#, k = 2, . . . , (. (3.8)
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After determination of the bins, each pair (si,j , vi,j) is assigned to a bin according
to its si,j value. Let us denote the path numbers corresponding to the kth bin Bk

at time ti by Ji,k, that is Ji,k := {j|(si,j , vi,j) ∈ Bk}. Further, Nk is defined as the
number of paths in the kth bin, so Nk = |Ji,k|. We then have:

E[ψ2(V (ti)) |S(ti) = si,j ] ≈
E[ψ2(V (ti))1S(ti)∈(bi,k,bi,k+1]]

Q[S(ti) ∈ (bi,k, bi,k+1]]

≈
1
N

∑N
j=1 ψ2(vi,j)1si,j∈(bi,k,bi,k+1]

Q[S(ti) ∈ (bi,k, bi,k+1]]

=
1

Nα(k)

∑

j∈Ji,k

ψ2(vi,j), (3.9)

where α(k) := Q[S(ti) ∈ (bi,k, bi,k+1]] represents the probability of the stock being
in the kth bin. The second approximation is established by switching between the
expectation and the average, which is based on a finite number of (si,j , vi,j)-pairs.
The value of α(k) depends on the way the bins are chosen:

α(k) =

{
Nk/N, k = 1, . . . , ( for bins defined as in (3.7),

1/( for bins defined as in (3.8).

Remark 3.1. As it will be shown in Sec. 5.3, the choice of bins affects the conver-
gence of the nonparametric method. If we define the bins according to (3.8), bins
close to the mean of the joint density are much smaller than bins in the tails. This is
desirable as the region close to the mean contains many more observations, requir-
ing a higher accuracy and thus smaller bin sizes. We will choose bins according
to (3.8) in numerical experiments.

We summarize the nonparametric method in Algorithm 1.

Algorithm 1. Nonparametric method.

for each time-step ti, i = 1, . . . , M do
1 Generate N pairs of observations (si,j ,ψ2(vi,j)), j = 1, . . . , N .
2 Order the elements s̄i,j : s̄i,1 ≤ s̄i,2 ≤ · · · ≤ s̄i,N .
3 Determine the boundaries of ( bins (bi,k, bi,k+1], k = 1, . . . , ( according to

either (3.7) or (3.8).
4 For the kth bin approximate the conditional expectation by

E[ψ2(V (ti)) |S(ti) ∈ (bi,k, bi,k+1]] ≈ 1
Nα(k)

∑
j∈Ji,k

ψ2(vi,j), where Ji,k is
the set of path numbers j for which the observations are in the kth bin at
the ith time-step and α(k) represents the probability of the stock being
in the kth bin, which is determined by the choice of bins.

end
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We present two illustrative examples where this method for calculating the con-
ditional expectation is applied. Error analysis will be discussed in Sec. 5.

Experiment 3.1 (Illustrative examples). In order to illustrate how the introduced
algorithm works, we present two experiments. First, we consider a simple Monte
Carlo simulation consisting of nine paths. In the second experiment, we apply the
algorithm to calculate the conditional expectation for the Heston model. We start
with some assumptions. The initial values for the stock and variance process are
S(t0) = s0 = 1 and V (t0) = v0 = 0.1, respectively.

In order to obtain path realizations at time t1 we need to determine the condi-
tional expectation E[V (t0) |S(t0) = s0], which trivially gives E[V (t0) |S(t0) = s0] =
v0 = 0.1. This holds for all paths in this experiment. To determine the paths at
time t2 we calculate the expectation E[V (t1) |S(t1) = s1,j ], j = 1, . . . , 9, as follows.
First, we choose the number of bins, ( = 3, and sort the pairs (s1,j , v1,j) according
to their s1,j values. Then, we assign each pair to a bin — also according to the
s1,j values. Finally, we calculate for each bin an approximation of the conditional
expectation. The procedure is illustrated in the tables below:

j t0 t1

(s0, v0) E[V (t0)] (s1,j , v1,j)
1 (1, 0.1) 0.1 (1.9, 0.09)
2 (1, 0.1) 0.1 (0.9, 0.15)
3 (1, 0.1) 0.1 (1.2, 0.15)
4 (1, 0.1) 0.1 (0.5, 0.20)
5 (1, 0.1) 0.1 (1.6, 0.06)
6 (1, 0.1) 0.1 (1.1, 0.07)
7 (1, 0.1) 0.1 (1.7, 0.05)
8 (1, 0.1) 0.1 (1.2, 0.08)
9 (1, 0.1) 0.1 (0.4, 0.25)

⇒

j t1

(s1,j , v1,j)
9 (0.4, 0.25)




4 (0.5, 0.20)
2 (0.9, 0.15)
6 (1.1, 0.07)




3 (1.2, 0.15)
8 (1.3, 0.08)
5 (1.6, 0.06)




7 (1.7, 0.05)
1 (1.9, 0.09)

⇒ E[V (t1) |S(t1) ∈ (0, 0.9]]

≈ 1
3

∑
j v1,j = 0.2,

⇒ E[V (t1) |S(t1) ∈ (0.9, 1.3]]

≈ 1
3

∑
j v1,j = 0.1,

⇒ E[V (t1) |S(t1) ∈ (1.3, 1.9]]

≈ 1
3

∑
j v1,j = 0.067.

Let us consider a more practical example. We consider the Heston stochastic
volatility model. In this model ψ(x) =

√
x and the conditional expectation reads

E[V (ti) |S(ti) = si,j ]. The reason for considering the pure Heston model is that we
are able to determine the conditional expectation by the 2D-COS method (Ruijter &
Oosterlee 2012). A discussion of this calculation is provided in Sec. 5.2.

In Fig. 1, we compare the results for the conditional expectation from the pro-
posed scheme and the reference obtained by Fourier expansions. Each plot includes
a contour plot of the recovered density, the corresponding conditional expectation,
and its approximation. In the simulations we considered 1e5 Monte Carlo paths
with 2, 5 and 20 bins, respectively. We choose bins that contain equal numbers of
realizations. This yields smaller bins close to the mean of the joint density, see also
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Fig. 1. The approximation obtained by the nonparametric method converges to the conditional
expectation recovered by the COS method as the number of bins increases (2, 5 and 20 respec-
tively).

Remark 3.1. The approximation obtained by the algorithm introduced converges to
the reference.

Remark 3.2. An alternative method for estimating E[ψ2(V (ti)) |S(ti) = si,j ] is
by projecting ψ2(V (ti)) on a set of orthogonal polynomials ζk(·), k = 1, . . . , n :
ψ2(V (ti)) =

∑n
k=1 βkζk(S(ti)) + ε. By regressing ψ2(V (ti)) on functions ζk(·) the

conditional expectation can be calculated, as

E[ψ2(V (ti)) |S(ti) = si,j ] ≈ E
[

n∑

k=1

βkζk(S(ti))

∣∣∣∣∣ S(ti) = si,j

]
=

n∑

k=1

βkζk(si,j).

(3.10)

The above approximation for ψ2(V (ti)) is based on the assumption that the
conditional expectation is an element of the L2-space of square integrable functions
(relative to a particular measure). The conditional expectation can be represented
as a linear function of elements of a countable orthonormal basis. Applying the
approximation in (3.10) the discrete scheme described by (3.3) and (3.4) becomes:

si+1,j = si,j + rsi,j∆+

√
σ2

LV(ti, si,j)∑n
k=1 βkζk(si,j)

si,jψ(vi,j)
√
∆Zx,

vi+1,j = vi,j + κ(v̄ − vi,j)∆+ γ
√

vi,j

√
∆Zv,

(3.11)

where κ is the speed of mean-reversion, v̄ is the long-run variance and γ is the volatil-
ity of the variance process (“vol–vol”). Although intuitive and straightforward, the
regression-based alternative possesses the drawback that the Feller condition must
be satisfied to guarantee a positive conditional expectation for the whole range of
arguments. We show a numerical test in Fig. 2, where we consider a simple quadratic
polynomial: ζ1(x) = 1, ζ2(x) = x and ζ3(x) = x2.
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Fig. 2. The regression-based alternative: Feller satisfied (left) and not satisfied (right). Feller must
be satisfied in order to guarantee a nonnegative approximation of the conditional expectation. The
nonparametric method does not suffer from this restriction, as we see on the right.

Since in practice the Feller condition is often violated, regression-based methods
require additional tuning like including high-order polynomials or constraining of
regression coefficients. As such model improvements need to be done on case-by-case
basis we consider the nonparametric approach as preferable and use it throughout
this paper.

3.2. Continuous approximation

As the theoretical conditional expectation is continuously differentiable, we prefer
its approximation to satisfy this property too. Furthermore, at the right-hand side
of Fig. 2 we observe that at the left boundary of the strike range the fit of the
nonparametric approximation to the reference may be improved. In order to obtain
a continuous approximation that establishes this, we consider a linearization of the
estimated expectation obtained by the nonparametric method. This can be done by
connecting the mid-points of the approximations of the nonparametric method, see
Fig. 3. The mid-point approximation is continuous, but not necessarily continuously
differentiable.

In the following we refer to the continuous approximation as “nonparametric
method”.

Remark 3.3 (Generalization to early-exercise options). The approximation of the
expectation in the definition of the stochastic-local volatility by means of the con-
tinuous approximation based on the bins does not depend on any specific option
type or payoff. In this respect it can be combined with European, forward starting
options (as presented in this paper), but for example also with early-exercise options
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Fig. 3. The continuous approximation (“CA”) gives a better fit to the theoretical conditional
expectation, which is recovered by the COS method.

where it can be combined with the Least Squares Method (Longstaff & Schwartz
2001) or Stochastic Grid Bundling Method (Jain & Oosterlee 2013).

3.3. Efficient simulation scheme

The CIR-type process used for the dynamics of the variance in the Heston model
does not allow for negative realizations. Unfortunately, when applying the basic
Euler discretization scheme the variance process can become negative with nonzero
probability. Although several fixes like “absorption at zero” for handling negative
variance realizations are known in the literature (see (Lord et al. 2010) for an
overview), these improved methods are typically not free of bias.

In this section, we adopt the Quadratic Exponential (QE) scheme introduced by
Andersen (2008) and apply it for simulating the Heston SLV model. The main differ-
ence for Monte Carlo simulation between the pure Heston and the Heston SLV mod-
els lies in the fact that the variance of the latter is not only driven by the stochastic
volatility, but also by the local volatility component, which is state-dependent. This
requires an additional “freezing approximation”, which is not present in the deriva-
tion of the original QE scheme. Numerical experiments show that the additional
approximation still yields an accurate simulation scheme.

We start by recalling the dynamics of the Heston SLV model expressed in terms
of independent Brownian motions:

dS(t)/S(t) = rdt + σ(t, S(t))
√

V (t)(ρx,vdW̃v(t) +
√

1 − ρ2
x,vdW̃x(t)),

dV (t) = κ(V̄ − V (t))dt + γ
√

V (t)dW̃v(t),
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where ρx,v denotes correlation between the S(t) and V (t) processes. The discretiza-
tion of X(t) := log(S(t)) (“log-stock”) with σ̂(t, X(t)) := σ(t, eX(t)) reads:

X(t +∆) = X(t) +
∫ t+∆

t

(
r − 1

2
σ̂2(s, X(s))V (s)

)
ds

+ ρx,v

∫ t+∆

t
σ̂(s, X(s))

√
V (s)dW̃v(s)

+
√

1 − ρ2
x,v

∫ t+∆

t
σ̂(s, X(s))

√
V (s)dW̃x(s). (3.12)

The variance process V (t +∆) follows a scaled noncentral chi-squared distribution,
i.e.

V (t +∆) ∼ c(∆)χ2(d,λ(t, V (t))),

with

c(∆) =
γ2

4κ
(1 − e−κ∆), d =

4κV̄

γ2
, λ(t, V (t)) =

4κe−κ∆

γ2(1 − e−κ∆)
V (t) (3.13)

and χ2(d,λ(t, V (t))) representing a noncentral chi-squared distribution with d
degrees of freedom and noncentrality parameter λ(t, V (t)). Furthermore, by
integrating the variance process, we find:

∫ t+∆

t

√
V (s)dW̃v(s) =

1
γ

(
V (t +∆) − V (t) − κV̄∆+ κ

∫ t+∆

t
V (s)ds

)
.

(3.14)

In the last integral in (3.12) the local and stochastic volatilities are coupled. This
complicates the simulation as we are not able to directly use the integrated variance
from (3.14). As any Monte Carlo simulation involving a local-volatility component
requires many time-steps, we perform local-freezing of σ̂(s, X(s)) in (3.12), i.e.

∫ t+∆

t
σ̂(s, X(s))

√
V (s)dW̃v(s) ≈ σ̂(t, X(t))

∫ t+∆

t

√
V (s)dW̃v(s). (3.15)

Due to the approximation in (3.15) we can use (3.14) in (3.12):

X(t +∆) ≈ X(t) +
∫ t+∆

t

(
r − 1

2
σ̂2(s, X(s))V (s)

)
ds

+
ρx,vσ̂(t, X(t))

γ

(
V (t +∆) − V (t) − κV̄∆+ κ

∫ t+∆

t
V (s)ds

)

+
√

1 − ρ2
x,v

∫ t+∆

t
σ̂(s, X(s))

√
V (s)dW̃x(s). (3.16)
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In the Euler discretization all integrals w.r.t. time can be approximated by∫ b
a f(x)dx ≈ (b − a)f(a). The discretized process for X(t) then reads:

X(t +∆) ≈ X(t) + r∆− 1
2
σ̂2(t, X(t))V (t)∆

+
1
γ
ρx,vσ̂(t, X(t))(V (t +∆) − V (t) − κV̄∆+ κV (t)∆)

+
√

1 − ρ2
x,v

∫ t+∆

t
σ̂(s, X(s))

√
V (s)dW̃x(s).

Furthermore, by the Itô isometry we have
∫ t+∆

t
σ̂(s, X(s))

√
V (s)dW̃x(s) ∼ Z̃x

√∫ t+∆

t
σ̂2(s, X(s))V (s)ds, (3.17)

where Z̃x ∼ N(0, 1). The integral at the right-side of (3.17) can also be approxi-
mated by the Euler discretization, i.e.

∫ t+∆
t σ̂2(s, X(s))V (s)ds ≈ σ̂2(t, X(t))V (t)∆.

With this, the discretization scheme becomes

vi+1,j ∼ c(∆)χ2(d,λ(ti, vi,j)),

xi+1,j = xi,j + r∆− 1
2
σ̂2(ti, xi,j)vi,j∆+

ρx,v

γ
σ̂(ti, xi,j)(vi+1,j − κv̄∆+ vi,jc1)

+ ρ1

√
σ̂2(ti, xi,j)vi,j∆Z̃x,

with ρ1 = (1 − ρ2
x,v)1/2, c1 = κ∆ − 1, where c(∆), d and λ(t, V (t)) are defined

in (3.13) and

σ̂2(ti, xi,j)
def= σ2(ti, exi,j ) =

σ2
LV(ti, si,j)

E[V (ti) |S(ti) = si,j ]
. (3.18)

In (3.18) we compute Dupire’s local volatility,

σ2
LV(ti, si,j) =

∂C(t,s)
∂t + rs∂C(ti,s)

∂s
1
2s2 ∂

2C(ti,s)
∂s2

∣∣∣∣∣
s=si,j ,t=ti

by using the following finite difference approximations:

∂C(t, si,j)
∂t

∣∣∣∣
t=ti

≈ C(ti + h1, si,j) − C(ti, si,j)
h1

,
∂C(ti, s)

∂s

∣∣∣∣
s=si,j

≈ C(ti, si,j + h2) − C(ti, si,j)
h2

and
∂2C(ti, s)

∂s2

∣∣∣∣
s=si,j

≈ C(ti, si,j + h2) − 2C(ti, si,j) + C(ti, si,j − h2)
h2

2

. (3.19)

For stability reasons the derivatives are often expressed in terms of implied
volatilities (Deelstra & Rayée 2013). As in practice a continuum of European call
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Table 1. Average error |σ̄market− σ̄SLV| from Monte Carlo simulations of the HSLV model
with the Euler and efficient (“low-bias”) schemes using 20 random seeds, for multiple
time-step sizes ∆ and strikes K. Numbers in parentheses are standard deviations over
the seeds.

Error (%): |σ̄market − σ̄SLV|

K 70% 100% 150%

∆ Euler Low-bias Euler Low-bias Euler Low-bias

1 6.05 (0.08) 5.91 (0.11) 6.06 (0.09) 5.65 (0.11) 5.23 (0.17) 4.67 (0.16)
1/2 3.81 (0.12) 1.53 (0.14) 4.12 (0.12) 1.37 (0.17) 3.51 (0.19) 0.86 (0.25)
1/4 2.70 (0.12) 0.64 (0.14) 3.01 (0.13) 0.55 (0.14) 2.66 (0.20) 0.31 (0.24)
1/8 1.71 (0.13) 0.31 (0.19) 1.92 (0.15) 0.25 (0.20) 1.74 (0.23) 0.13 (0.25)
1/16 0.98 (0.16) 0.22 (0.17) 1.08 (0.17) 0.19 (0.19) 1.04 (0.22) 0.13 (0.27)
1/32 0.41 (0.26) 0.15 (0.18) 0.45 (0.30) 0.12 (0.18) 0.37 (0.42) 0.07 (0.23)

prices in time-to-maturity and strike is not available, some interpolation may be
required. Detailed discussion on this is provided in the literature (e.g. Andreasen &
Huge 2011).

Numerical comparisons between the Euler and the original QE scheme have
been provided in the literature (Andersen 2008). We perform an experiment with
our version of the Monte Carlo scheme in the follow-up section, because our scheme
is slightly different due to the local volatility component which requires an additional
approximation (local freezing of the state-dependent local volatility).

Experiment 3.2 (Efficient simulation scheme). We compare the scheme we pro-
pose with the basic Euler discretization scheme. We consider parameter values based
on Case III of Andersen (2008), i.e. for T = 5 we consider the Heston SLV model
with κ = 1.05, γ = 0.95, v̄ = 0.0855, v0 = 0.0945, ρx,v = −0.315 and r = 0. We
perform a Monte Carlo simulation consisting of 20 seeds, 5e4 paths per seed. The
number of bins is set to 20.

For different time-step sizes ∆ and strikes K we calculate the absolute error
in implied volatilities |σ̄market − σ̄SLV|, where σ̄market and σ̄SLV denote volatilities
implied by the market and the HSLV model, respectively. As in Andersen (2008),
we generate synthetic reference implied volatility values given a pure Heston model,
applying a Fourier-based pricing technique. Analogously, we calculate by means of
finite difference approximations the derivatives of European call prices involved in
Dupire’s local volatility component.

Results are presented in Table 1. The efficient (“low-bias”) simulation scheme
outperforms the Euler scheme: it gives a higher accuracy and we observe faster
convergence to the reference for a decaying time-step size.

4. Numerical Results

Using the simulation scheme introduced in the previous section, we perform Monte
Carlo experiments for the pricing of European call and forward-starting options
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with the Heston SLV model. The results are compared against the Heston and the
standard local volatility models.

In this experiment, we investigate the performance of the Heston SLV model
with respect to the quality of a pre-calibrated Heston model. In the case the Heston
model is well calibrated we expect a limited contribution of the local volatility
component. On the other hand, if the underlying Heston model is not sufficiently
well calibrated, the local volatility contribution should be more pronounced. We
then expect the quality of the fit to be more sensitive to the estimation of the
conditional expectation discussed in previous sections. In the simulations we thus
distinguish between two cases: a case in which the Heston model is well calibrated
and one in which it is insufficiently well calibrated. Each of these variants of the
Heston model is used in the Heston SLV model.

The simulation of the European-style options is performed for maturities (in
years) T = {0.5, 2, 5, 8, 10}, while the pricing of the forward starting options will
be done for the following pairs: {T1, T2} = {2, 4} and {T1, T2} = {6, 8}. Our Monte
Carlo simulation is performed with 5e5 paths and 100 time-steps per year. The num-
ber of bins is set to 20. In Sec. 5.3, we show that the accuracy of the nonparametric
method is already satisfactory for a smaller number of bins.

4.1. European call options

In this experiment, we consider real-life examples. As described the input for the
Heston SLV model is a calibrated Heston model. It is therefore important to check
how well the Heston SLV model performs depending on the quality of the pre-
calibrated Heston model. In this section, we consider two scenarios where the Heston
model is well and insufficiently calibrated to market data.

In the first experiment we consider the Heston SLV model with the well-
calibrated underlying Heston model. For times to maturity 2 and 8 years we display
the results in Fig. 4. As the mismatch between the pure Heston model and the mar-
ket is small, the contribution of the local-volatility component σLV(t, S(t)) is limited
in the first test.

In Fig. 5, we display results of the second experiment, in which the Heston
model is insufficiently calibrated. We observe that in this case the local volatil-
ity term can compensate for the large gap between the market and the Heston
model.

For times to maturity 0.5, 2, 5, 8 and 10 years results are given in Table 2
where we display the market implied volatility σ̄market and the error in implied
volatilities εmodel := σ̄market − σ̄model, where σ̄model denotes the volatility implied
by a particular model. We observe a good fit of the LV model as well as the Heston
SLV model to the quotes. The fit of the Heston SLV model can be explained by the
mimicking theorem of Gyöngy (1986), which states that given a general Itô process,
a Markov process containing a local volatility component with the same marginal
distributions exists.
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Fig. 4. Implied volatility European call option. T = 2 (left), T = 8 (right), well calibrated Heston
model.
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Fig. 5. Implied volatility European call option. T = 2 (left), T = 8 (right), insufficiently calibrated
Heston model.

For illustration purposes, in Appendix A we show pricing errors for Case II,
T = 2 obtained by using 20, 30 and 40 bins. The error for close-to-ATM strikes
decreases when 20, 30 and 40 bins are chosen, respectively.

4.2. Forward starting options

With the pricing of European call options we see that the local volatility term in
the Heston SLV model acts a compensator that bridges the gap between the market
and calibrated Heston SV prices — even in the case of an unsatisfactory calibration.
In this experiment, we price forward starting options that start at time T1 years
and mature at time T2. As prices of forward starting options are not observable
in the market, we discriminate between the LV, SLV and the calibrated Heston
models. We first consider the case with T1 = 2, T2 = 4 and a well calibrated Heston
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Table 2. Errors in implied volatilities for the local volatility (εLV), Heston SLV (εSLV) and the
pure Heston (εH) models for a well (Case I) and insufficiently (Case II) calibrated Heston model
for multiple times to maturity and strikes.

European call options — error in implied volatilities [%]

T Strike σ̄market εLV Case I Case II

εSLV εH εSLV εH

0.5y 0.81 25.17 0.05 0.06 −0.32 −0.04 −1.87
0.90 21.75 −0.03 0.01 −0.47 −0.15 −3.03
1.00 17.70 −0.11 −0.06 −0.63 −0.32 −4.45
1.11 15.26 −0.12 −0.01 −0.28 −0.24 −3.71
1.24 16.00 −0.10 −0.08 0.16 0.21 0.18

2y 0.73 23.38 0.00 0.08 −0.33 −0.04 −1.82
0.81 20.82 −0.02 0.05 −0.39 −0.09 −2.46
1.00 15.28 −0.01 0.02 −0.45 −0.20 −3.44
1.24 13.65 0.01 0.10 0.08 −0.06 0.07
1.53 15.94 0.03 −0.18 0.42 0.06 4.15

5y 0.60 22.70 0.02 0.12 −0.16 −0.04 −0.39
0.75 19.23 0.01 0.09 −0.22 −0.09 −0.99
1.00 14.69 0.01 0.07 −0.24 −0.13 −1.45
1.32 12.79 0.02 0.09 0.14 −0.12 0.97
1.75 14.41 0.06 −0.09 0.46 −0.06 4.44

8y 0.52 22.46 −0.01 0.08 −0.06 −0.05 0.49
0.70 19.16 −0.01 0.06 −0.12 −0.08 −0.09
0.99 14.88 −0.01 0.05 −0.15 −0.10 −0.55
1.41 12.76 −0.01 0.05 0.17 −0.09 1.38
1.87 13.66 −0.02 −0.09 0.45 −0.06 4.14

10y 0.48 22.40 0.03 0.08 −0.02 −0.04 0.87
0.66 19.22 0.02 0.06 −0.08 −0.06 0.30
0.98 15.09 0.01 0.04 −0.12 −0.07 −0.18
1.46 12.82 0.01 0.04 0.18 −0.06 1.46
2.17 13.83 −0.02 −0.20 0.50 0.00 4.62

model, see the plot on the left side in Fig. 6. We observe that the volatility implied
by the LV model is much flatter than the volatilities implied by the Heston SV
and SLV models. Although it has approximately the same value at the lower and
upper bounds of the strike range, this does not hold in the ATM region. As the
Heston model is almost perfectly calibrated, it is no surprise that the Heston and
SLV implied volatilities are almost identical.

For the case where the Heston model is insufficiently calibrated, we observe that
the SLV model provides a forward smile that is located between the ones implied
by the Heston and the LV models. One may consider the results by the SLV model
to represent somehow “advanced interpolation” between the Heston and the local
volatility models, i.e. the SLV model can be considered as a nonlinear combination
of the LV and the SV models.

The results we obtain are in line with those of Engelmann et al. (2011), who
observe that the forward implied volatilities do not become flat as for the local
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Fig. 6. Implied volatility forward starting option. T1 = 2, T2 = 4, well calibrated (left) and insuf-
ficiently well calibrated (right) Heston model.
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Fig. 7. Implied volatility forward starting option. T1 = 6, T2 = 8, well calibrated (left) and poorly
calibrated (right) Heston model.

volatility model and preserve a shape very similar to the Heston model. For T1 = 6
and T2 = 8 similar results are observed, see Fig. 7.

4.3. Calculation time

Considering the speed of the nonparametric method, we calculate the time it takes
to evaluate the conditional expectation for a given number of paths or bins. First,
we investigate the relation between calculation time and the number of bins. We fix
the number of paths at 1e5. Table 3 shows that the calculation time behaves linearly
in the number of bins. This also holds for the relation between the calculation time
and the number of paths (the number of bins is fixed at 20), see Table 4.

1450045-21



November 20, 2014 14:18 WSPC/S0219-0249 104-IJTAF SPI-J071
1450045

A. W. van der Stoep, L. A. Grzelak & C. W. Oosterlee

Table 3. Timing results for different numbers of bins (number of paths fixed at 1e5).

#Bins 10 20 30 40 50 60 70 80 90 100

Time [ms] 15.6 23.7 32.9 41.6 49.9 59.0 67.9 75.9 84.5 93.9

Table 4. Timing results for different numbers of paths (number of bins fixed at 20).

#Paths [1e5] 1 2 3 4 5 6 7 8 9 10

Time [ms] 28.0 51.1 77.9 105.0 131.5 158.9 185.9 214.1 244.3 269.0

In our numerical experiments we choose 20 bins and 1e5 paths, which implies
that the calculation of the conditional expectation by the nonparametric method
takes less than 2.5e–2 seconds per time step.f As an indication regarding the total
CPU time, we can solve the problem for T = 1 with 5 · 104 paths, 100 time-
steps a year, and 5 bins in approximately 14 seconds (in Matlab on a i5-2400 CPU
@3.10GHz, 4GB). In Sec. 5.3, we consider the dependence of the accuracy and
the number of bins in more detail for the nonparametric method. A result of this
analysis is that the accuracy of the method is quite insensitive to the number of
bins.

5. Error Analysis

In Sec. 3, we tested the performance of the nonparametric method (and the
regression-based alternative) for a pure Heston SV model. We considered this model,
as the 2D-COS method (Ruijter & Oosterlee 2012) provided us with an accu-
rate approximation of the conditional expectation. In particular, we compared an
approximation from the nonparametric method to the recovered conditional expec-
tation. However, our main interest lies in the Heston SLV model. In the Monte Carlo
pricing of European call options and forward starting options a bias is introduced,
which is due to three error sources. The first error originates from approximations
in the calculation of Dupire’s local volatility term (3.18). In particular, we use finite
differences for the three derivatives in (3.19). Further, the discretization of the
continuous dynamics to the efficient simulation scheme introduced a discretization
error. Last, at each time step we approximate E[V (t) |S(t) = s] by means of the
nonparametric method. These three sources of error generate an error e = C − C̃,
where C is the call price from the “original” Heston SLV model and C̃ is the price
obtained by the discrete Heston SLV model.

fTheoretically, both experiments should result in exactly the same calculation time, i.e. the second
time in Table 3 should be equal to the first time in Table 4. This is not the case due to Monte
Carlo noise.
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Ignoring the bias originating from the finite differences and the discretization
(since these errors are well understood), the price mismatch is driven by the differ-
ence in conditional expectations ‖g − ĝ‖, based on the governing PDEs, as in (Guo
et al. 2013). Here, g(s) := E[V (t) |S(t) = s] denotes the theoretical conditional
expectation (in the Heston SLV model) and ĝ is its piecewise linear continuous
approximation we obtain by the nonparametric method. We now provide a pricing
error bound that is implied by the mismatch between g and ĝ.

5.1. Bound on pricing error

In this section, we turn to classical PDE error analysis to make some statements
about the approximation errors encountered.

By nonarbitrage assumptions, one can derive the HSLV PDE which defines the
value of a European-style option:

0 =
∂C

∂t
+ rs

∂C

∂s
+ κ(V̄ − V )

∂C

∂V
+

1
2
V s2σ

2
LV(t, s)
g(s)

∂2C

∂s2
+

1
2
γ2V

∂2C

∂V 2

+ ρx,vγV s

√
σ2

LV(t, s)
g(s)

∂2C

∂s∂V
− rC, (5.1)

with t ∈ [0, T ), g(s) = E[V (t) |S(t) = s] and spatial coordinates {s, V } ∈
[0, +∞)×[0, +∞). Of course, we will solve the discrete version of the PDE on a finite
domain.

Since the expectation in (5.1) is not known analytically we can estimate it by
means of Monte Carlo simulation. The resulting, approximating pricing PDE then
reads:

0 =
∂C̃

∂t
+ rs

∂C̃

∂s
+ κ(V̄ − V )

∂C̃

∂V
+

1
2
V s2σ

2
LV(t, s)
ĝ(s)

∂2C̃

∂s2
+

1
2
γ2V

∂2C̃

∂V 2

+ ρx,vγV s

√
σ2

LV(t, s)
ĝ(s)

∂2C̃

∂s∂V
− rC̃, (5.2)

with the pre-calibrated function ĝ(s) as described in Sec. 3.1. The PDEs in (5.1)
and (5.2) can be written, in shorthand notation, as follows:

∂C

∂t
+ L1C = 0,

∂C̃

∂t
+ L2C̃ = 0, (5.3)

with the corresponding operators L1, as in (5.1) and L2, as in (5.2). Again, C is
the solution from the full-scale HSLV PDE, whereas C̃ is the solution from the
approximating PDE with the estimated function ĝ(t). Both PDEs are accompanied
by the same boundary and final conditions. For the error, e := C − C̃, we find:

∂e

∂t
+ L1C − L2C̃ = 0, (5.4)
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which can be re-written as:
∂e

∂t
+ L1C − (L1C̃ + (L2 − L1)C̃) = 0 (5.5)

and we arrive at the following equation:

∂e

∂t
+ L1e = (L2 − L1)C̃, (5.6)

subject to homogeneous boundary and final conditions. Notice that the right-hand
side of the equation serves as a source term.

Based on the form in (5.6), multiplying both sides by e, and integration over
domain Ω, gives us:

∫

Ω
e
∂e

∂t
dΩ+

∫

Ω
eL1edΩ =

∫

Ω
e(L2 − L1)C̃dΩ. (5.7)

Integration by parts, as follows,
∫

Ω
e
∂e

∂t
dΩ =

1
2

d
dt

∫

Ω
e2dΩ =

1
2

d
dt

‖e‖2
L2(Ω), (5.8)

inserted in Eq. (5.7), results in:

1
2

d
dt

‖e‖2
L2(Ω) = −

∫

Ω
eL1edΩ+

∫

Ω
e(L2 − L1)C̃dΩ. (5.9)

Applying classical PDE theory, in particular the Lax–Friedrich inequality and
Grönwall’s lemma (for more details, see (Guo et al. 2013, Necas 2012), gives:

‖e‖L2(Ω) ≤
∫ t

0
‖(L2 − L1)C̃‖L2(Ω)eα(s−t)ds

≤ 1
α

(1 − e−αt) sup
s∈(0,t)

‖(L2 − L1)C̃‖L2(Ω) ≤
1
α

sup
s∈(0,t)

‖(L2 − L1)C̃‖L2(Ω),

where α is some positive constant, related to the V -ellipticity of the form
∫
Ω eL1edΩ

(Necas 2012).
We use the notation U := (L2 − L1)C̃ and find the following operator:

U =
1
2
V σ2

LV(t, s)s2

[
ĝ(s) − g(s)
ĝ(s)g(s)

]
∂2C̃

∂s2

+ ρx,vγV sσLV(t, s)

[√
ĝ(s) −

√
g(s)√

ĝ(s)g(s)

]
∂2C̃

∂s∂V
.

Assessing the appropriate norm yields:

‖U‖L2(Ω) =

∥∥∥∥∥
1
2
V σ2

LV(t, s)s2

[
ĝ(s) − g(s)
ĝ(s)g(s)

]
∂2C̃

∂s2

+ ρx,vγV sσLV(t, s)

[√
ĝ(s) −

√
g(s)√

ĝ(s)g(s)

]
∂2C̃

∂s∂V

∥∥∥∥∥
L2(Ω)

,
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which can be bounded by:

‖U‖L2(Ω) ≤
1
2
s2
maxV |σ2

LV(t, s)|
∣∣∣∣
ĝ(s) − g(s)
ĝ(s)g(s)

∣∣∣∣

∥∥∥∥∥
∂2C̃

∂s2

∥∥∥∥∥
L2(Ω)

+ |ρx,v|γsmaxV |σLV(t, s)|

∣∣∣∣∣

√
ĝ(s) −

√
g(s)√

ĝ(s)g(s)

∣∣∣∣∣

∥∥∥∥∥
∂2C̃

∂s∂V

∥∥∥∥∥
L2(Ω)

.

Then, we have:

‖e‖L2(Ω) ≤
1
α

sup
s∈(0,t)



1
2
s2
maxV |σ2

LV(t, s)|
∣∣∣∣
ĝ(s) − g(s)
ĝ(s)g(s)

∣∣∣∣

∥∥∥∥∥
∂2C̃

∂s2

∥∥∥∥∥
L2(Ω)

+ |ρx,v|γsmaxV |σLV(t, s)|

∣∣∣∣∣

√
ĝ(s) −

√
g(s)√

ĝ(s)g(s)

∣∣∣∣∣

∥∥∥∥∥
∂2C̃

∂s∂V

∥∥∥∥∥
L2(Ω)



. (5.10)

This latter inequality bound gives a representation of the parameters and functions
that have an impact on the error made when solving for C̃, as an approximation
for C. As both ∂2 eC

∂s∂V and ∂2 eC
∂s2 are small for large V -values, the error is governed by

the difference between the conditional expectation g from the HSLV model and its
approximation ĝ, which is obtained from the nonparametric method, as discussed
in Sec. 3.1.

Regarding the difference in conditional expectations g and ĝ, it is clear that
the accuracy of the approximation ĝ improves if the number of paths and bins
simultaneously approach infinity, i.e.

lim
N→∞,#→∞

‖g − ĝ‖ = 0,

where N and ( denote the number of paths and bins, respectively. In the following,
we quantify the performance of the nonparametric method by considering the pure
Heston SV model.

5.2. Performance

To assess the performance of the nonparametric method, we need to determine a
highly accurate reference value. As pointed out, it is difficult to find this condi-
tional expectation explicitly. We can analyze the performance of approximating the
conditional expectation for the case of the pure Heston model, i.e. the case where
σLV(t, s) = 1.

We make use of the COS method (Fang & Oosterlee 2008, Ruijter & Ooster-
lee 2012). This introduces a well-understood error between the recovered and the
theoretical conditional expectation for the Heston SV model. For a more detailed
discussion on this, see (Fang & Oosterlee 2008).

Let gH(s) be the conditional expectation in the Heston SV model, obtained by
the 2D-COS method. We determine an approximation ĝH by means of the nonpara-
metric method. To measure the performance of the nonparametric method, we are
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interested in the mismatch in conditional expectations ‖gH − ĝH‖. In the L2-norm,
the mismatch from the Monte Carlo simulation can be written as:

M∑

i=1

‖gH − ĝH‖2
L2(Ω) =

M∑

i=1

#∑

k=1

∫

Bi,k

(gH(s) − ĝH(s))2ds, (5.11)

where Ω is the s domain and Bi,k denotes the kth bin at the ith time-step, k =
1, . . . , (, i = 1, . . . , M . Note that gH is a smooth function, whereas ĝH is piecewise
linear.

We now specify the error
∫
Bi,k

(gH(s) − ĝH(s))2ds for one particular bin and
time-step, which we state in a lemma.

Lemma 5.1. For an arbitrary bin B with boundaries [bl, br], the error between gH

and ĝH has size

‖gH − ĝH‖2
L2(B) = c2

1∆s +
1
12

(c2
2 − 2c1g

(2)
H (sm))∆s3

+
1

240
(2(g(2)

H (sm))2 − c1g
(4)
H (sm) − c2g

(3)
H (sm))∆s5 + O(∆s7),

where sm denotes the midpoint of [bl, br] and ∆s := br − bl, ∆ĝH := ĝH(br)− ĝH(bl),
c1 := 1

2 ((gH(bl) − ĝH(bl)) + (gH(br) − ĝH(br))) and c2 := −g(1)
H (sm) + ∆bgH

∆s .

Proof. For a proof, see Appendix B.

5.3. Numerical experiment : Choice of bins

We now discuss the performance of the nonparametric method with respect to the
choice of bins. In particular, we consider the error |gH(K) − ĝH(K)| for K = 40%,
K = 100% and K = 160%. The bins are either chosen with respect to an equidistant
grid — see (3.7) — or are equally weighted as in (3.8). Parameter values are γ = 0.2,
κ = 0.2, r = 0, ρx,v = −0.6, S0 = 1, v0 = 0.04, v̄ = 0.04 and we consider the error at
particular time t = 2. We choose the number of bins between 1 and 20. Our Monte
Carlo simulation is performed with 1e6 paths. Results are displayed in Fig. 8.

For deep in-the-money and out-the-money strikes the choice of bins does not
affect the performance of the nonparametric method. However, at K = 100% choos-
ing equally weighted bins yields a faster convergence to the reference gH(100) than
when we choose bins equidistantly. This is due to the natural weighting of the bins
defined by (3.8), which provides highest accuracy in the ATM region. Further, for
all strikes we note that in order to have a high-quality estimate of the conditional
expectation, it is not required to use a large number of bins.

In Fig. 8, we observe highly satisfactory convergence up to 15 bins. With a
further increase of the number of bins convergence may stagnate since there is an
insufficient number of paths in each bin. In such a case the number of Monte Carlo
paths may need to be increased and we should improve the interpolation (continuous
approximation, see Sec. 3.2).
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Fig. 8. Convergence of the nonparametric method for two choices of bins.

6. Conclusion

In this paper, we have presented a new Monte Carlo scheme for efficient evaluation
of a general SLV model. We have considered the Heston SLV model in numerical
experiments. For evaluating this model we have approximated a problematic condi-
tional expectation in a nonparametric way, which is intuitive and easy to implement.
This approximation is embedded in a simulation scheme that is strongly based on
the QE scheme of Andersen (2008) and introduces less bias than more common
Euler schemes. By means of numerical experiments and an error analysis we have
shown that European-style options can accurately be priced by our method. Fur-
thermore, it enables a consistent and fast pricing of products that are sensitive to
the forward volatility smile.

Appendix A. Additional Pricing Experiments

We price European call options (T = 2) with the Heston SLV model using 20, 30
and 40 bins, where the Heston model is insufficiently calibrated (Case II in Table 2).
Results are given in Table A.1. The error for close-to-ATM strikes decreases when
20, 30 and 40 bins are chosen, respectively.

Appendix B. Proof of Lemma 5.1

For an arbitrary bin B with boundaries [bl, br], the piecewise linear continuous
approximation of g(s) can be specified by

ĝH(s) =
∆ĝH

∆s
s +

ĝH(bl)br − ĝH(br)bl

∆s
, (B.1)

where ĝH(bl) and ĝH(br) are approximations of gH(bl) and gH(br), respectively, and
∆s := br − bl and ∆ĝH := ĝH(br)− ĝH(bl). As gH(s) is smooth, we can express it as
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Table A.1. SLV pricing errors for Case II, T = 2,
with 20, 30 and 40 bins.

σ̄market − σ̄SLV [%], Case II, T = 2

Strike 20 bins 30 bins 40 bins

0.73 −0.04 −0.01 −0.02
0.81 −0.09 −0.03 −0.02
1.00 −0.2 −0.07 −0.05
1.24 −0.06 −0.03 0.00
1.53 0.06 0.02 0.08

a Taylor series around the midpoint of [bl, br], which we call sm:

gH(s) = gH(sm) +
∞∑

n=1

g(n)
H (sm)

n!
(s − sm)n. (B.2)

Assuming ∆s to be small, we compute the square of the local L2 error

‖gH − ĝH‖2
L2(B) =

∫

B
(gH(s) − ĝH(s))2ds =

∫ br

bl

(gH(s) − ĝH(s))2ds, (B.3)

where we use (B.1) and (B.2) up to some significant order. Combining (B.2)
and (B.3):

‖gH − ĝH‖2
L2(B) =

∫ br

bl

(
gH(sm) − ĝH(s) +

∞∑

n=1

g(n)
H (sm)

n!
(s − sm)n

)2

ds. (B.4)

We now derive an expression for gH(sm)− ĝH(s). The first step is plugging in (B.1).
This gives:

gH(sm) − ĝH(s) = gH(sm) − ∆ĝH

∆s
s − ĝH(bl)br − ĝH(br)bl

∆s
. (B.5)

Using the Taylor series expression in (B.2), we have for an arbitrary s:

gH(sm) = gH(s) −
∞∑

n=1

g(n)
H (sm)

n!
(s − sm)n.

Expanding gH(sm) at the boundary points and by plugging this result into (B.5)
we find

gH(sm) − ĝH(s) =
1
2
(gH(bl) + gH(br))

− 1
2

( ∞∑

n=1

g(n)
H (sm)

n!

(
−1

2
∆s

)n

+
∞∑

n=1

g(n)
H (sm)

n!

(
1
2
∆s

)n
)

− ∆ĝH

∆s
s − ĝH(bl)br − ĝH(br)bl

∆s
,

where we have used the relations bl − sm = − 1
2∆s and br − sm = 1

2∆s. Odd terms
in the two Taylor series cancel each other out. Even terms are equal. This results
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in:

gH(sm) − ĝH(s) =
1
2
(gH(bl) + gH(br)) −

∑

n=2,4,6

g(n)
H (sm)

n!

(
1
2
∆s

)n

− ∆ĝH

∆s
s − ĝH(bl)br − ĝH(br)bl

∆s
.

Now, after some algebraic manipulations we end up with

gH(sm) − ĝH(s) = −
∑

n=2,4,6

g(n)
H (sm)
2n · n!

(∆s)n − (s − sm)∆ĝH

∆s
+ c1 + O(∆s8),

where

c1 :=
1
2
((gH(bl) − ĝH(bl)) + (gH(br) − ĝH(br))).

The constant c1 can be considered as the average error at the boundaries of the
interval. Plugging this result into (B.4) yields

‖gH − ĝH‖2
L2(B)

=
∫ br

bl

(
6∑

n=1

g(n)
H (sm)

n!
(s − sm)n

−
∑

n=2,4,6

g(n)
H (sm)
2n · n!

(∆s)n − (s − sm)∆ĝH

∆s
+ c1 + O(∆s8)

)2

ds. (B.6)

Evaluating (B.6) yields the result in Lemma 5.1.
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