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Delta modeling is an approach to facilitate automated product derivation for software

product lines. It is based on a set of deltas specifying modifications that are

incrementally applied to a core product. The applicability of deltas depends on

application conditions over features. This paper presents abstract delta modeling, which

explores delta modeling from an abstract, algebraic perspective. Compared to previous

work, we take a more flexible approach to conflicts between modifications by introducing

the notion of conflict-resolving deltas. Furthermore, we extend our approach to allow the

nesting of delta models for increased modularity. We also present conditions on the

structure of deltas to ensure unambiguous product generation.

1. Introduction

A software product line (SPL) is a set of software systems, called products, with well-

defined commonalities and variabilities (Clements & Northrop, 2001; Pohl et al., 2005).

Software product line engineering aims at developing this set of systems by managed

reuse in order to reduce time to market and to increase product quality.

1.1. Motivation

Product line variability at the requirements level is predominantly represented by fea-

ture models (Kang et al., 1990; van Deursen & Klint, 2002). Features are user-visible

increments of product functionality (Batory et al., 2004). Each product in the product

line is identified by a valid feature configuration, i.e., a legal combination of features

from the feature model. In order to be able to automatically derive a product for a par-

ticular feature configuration, some correspondence between the features on the feature
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modeling level and the reusable product line artifacts has to be introduced. Delta model-

ing (Schaefer et al., 2009; Schaefer, 2010; Schaefer et al., 2010) is a modular, yet flexible

and expressive modeling approach for expressing product line variability on the artifact

level. In the delta modeling approach, a product line is represented by a core product

and a set of product deltas. Product deltas specify modifications to the core product

required to generate further products of the product line. Each delta has an application

condition specifying the feature configurations to which the modifications are applicable,

thereby connecting features on the feature modeling level with product line artifacts. A

product corresponding to a feature configuration is obtained by applying the deltas with

a valid application condition to the core product.

However, the order in which the deltas are applied may influence the resulting com-

posite modification. A conflict between deltas arises if their specified modifications do

not commute, meaning that if they are applied in different orders they result in different

modifications. In previous work, deltas were either considered incomparable (Schaefer,

2010), which required writing additional deltas for every conflicting combination, or they

had to be ordered in a very restrictive way to avoid conflicts explicitly (Schaefer et al.,

2010). In this article, we generalize existing delta modeling approaches and present an

abstract, algebraic formalization of delta modeling. Abstract delta modeling goes beyond

existing work with its novel treatment of conflicts between deltas. As a main contribution

of this article, we introduce the notion of conflict-resolving deltas that relaxes previous

restrictions and makes delta modeling of product lines even more flexible. A conflict-

resolving delta, which is applied after two conflicting deltas, eliminates any conflict that

the deltas could introduce. If for every pair of conflicting deltas a conflict-resolving delta

exists, all possible sequences of deltas represent the same modification and thus generate

a uniquely-defined product. In order to ensure this result for every valid feature con-

figuration, we provide efficient-to-check conditions requiring only the inspection of the

product line directly, without having to generate and check all products.

1.2. Approach

The abstract delta modeling formalism consists of a number of ingredients, depicted

in Figure 1, along with the operations between them: the basic ingredients are a set of

possible products, a set of features, and a collection of deltas (delta monoid). A product

line is defined as a feature model denoting the set of possible feature configurations, a core

product, the deltas specifying modifications to the core product, a partial order on those

deltas restricting their order of application and, lastly, their application conditions. By

selecting a particular feature configuration, one can derive a delta model consisting of an

ordered collection of the modifications necessary to generate the corresponding product.

The process of derivation puts the selected modifications in a linear order compatible

with the partial order in order to obtain a valid, ideally unique, composite modification.

Finally, the delta application function applies the selected modifications to the core

product to produce a product for a given feature configuration. (Delta application can also

be partially applied to a modification to produce a function from products to products.)

The concepts of abstract delta modeling can be instantiated for different kinds of devel-
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Delta monoid: (D, ·, ε) (Def. 1)

Product set: P Feature set: F

Product Line: PL = (Φ, c,D,≺, γ) (Def. 16)

Delta Model: DM = (D,≺) (Def. 7)

Composite Delta: x = xn · . . . ·x1 (Def. 1)

Product → Product: f Product (Def. 17)

feature configuration: PL�F (Def. 17)

derivation: derv(DM) (Def. 8)

partial delta application:
x(−) (Defs. 2 & 3)

delta application to core:
x(c) (Defs. 2 & 3)

application to
core: f(c)

Fig. 1. Relationship between artefacts. Relevant definition numbers are indicated in

parentheses.

opment artifacts, such as documentation, models or code. We demonstrate the approach

by presenting an instantiation of abstract delta modeling for object-oriented implemen-

tations of software product lines and extend this with method wrapping, a key opera-

tion from aspect-oriented programming (Kiczales et al., 1997) and approaches based on

step-wise refinement (Batory et al., 2004). We demonstrate that existing abstract for-

malizations of product line composition can be seen as instantiations of abstract delta

modeling. Furthermore, we extend the formalism with nested delta models as an addi-

tional way of imposing structure and increasing modularity. Nested delta models allow a

group of deltas to be treated as a single delta. They are processed atomically, avoiding

interference with unrelated deltas in the outer model. Thus, nesting can greatly simplify

delta models, by allowing modifications to be specified within separate deltas without

worrying about interference from other deltas.

This paper is organized as follows. Section 2 gives an overview of delta modeling and

describes the Editor product line, which is used as illustrative example in this article.

Section 3 presents delta models and criteria for their unambiguity. Section 4 shows how

to define product lines over delta models and how to transfer the unambiguity properties

to this level. Section 5 presents the concrete class of deltas over object-oriented programs

to illustrate the approach. Section 6 introduces nested delta models and explores their

expressiveness. Section 7 relates our approach to existing algebraic approaches from the

literature. Finally, Sections 8 and 9 present related work and conclusions.

This article extends our previous work on abstract delta modeling (Clarke et al., 2010)

by providing additional examples, the notion of nested delta model, and a complete

formalism including all proofs.
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2. Delta Modeling Overview and Running Example

In principle, (abstract) delta modeling can be applied to different kinds of development

artifacts, such as documentation, models or code. The key objectives for developing prod-

uct lines using delta modeling are minimizing (code) duplication and unnecessary depen-

dencies between deltas, as well as providing the maximum opportunity for concurrent

development of deltas.

In this article, we illustrate the concepts of delta modeling using object-oriented im-

plementations of software product lines, where a delta comprises a set of modifications to

an object-oriented program. In this section, we briefly explain object-oriented software

deltas. They will be formally introduced in Section 5. A software delta for object-oriented

programs can add, remove and modify classes. Class modifications may be subdivided

into class updates and class replacements. Updating a class may consist of adding and

removing fields and methods, as well as replacing implementations of existing methods.

A class replacement is semantically the same as removing an existing class and then

adding a new one with the same name.

The base of a software product line developed using delta modeling is a core product.

If there is an existing legacy application, this can be chosen as the core product in order

to save development effort, following the extractive product line development principles

suggested by Krueger (2002). Having a solid core architecture, which is reusable among

all products, is a favorable characteristic of a software product line (Pohl et al., 2005).

Alternatively, if there is no legacy code, the ‘empty product’ could be chosen as core

product and all functionality could be introduced by deltas. This has advantages for the

evolution of the product line, as pointed out by Schaefer & Damiani (2010), for example,

when mandatory features become optional.

One approach to developing the deltas that realize the different products of a prod-

uct line is to use the product line’s feature model as a template. More specifically, its

subfeature relation. We could specify exactly one delta df for each feature f , with the

requirement that df must be applied before dg, denoted by df ≺ dg, whenever g is a

subfeature of f . In this way, the structure of the delta model mimics the structure of the

feature model. Each of these deltas only implements its corresponding feature and can

be developed without taking possible conflicts into account.

Implementation conflicts between deltas can certainly occur, however. In our case this

happens when two unordered deltas manipulate the same program entity in different

ways. For each implementation conflict, a conflict-resolving delta has to be provided to

ensure that a unique product implementation can be generated for each feature configu-

ration. The application condition of a conflict-resolving delta is generally the intersection

of the application conditions of the conflicting deltas. Furthermore, the conflict-resolving

delta has to be later in the application order ≺ than both conflicting deltas. In general,

deltas placed later in the application order can also be used to combine the functionality

of other deltas, for example, to implement desired interactions between features.
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Fig. 2. Feature model of the Editor product line.

2.1. Editor Feature Model

We now introduce a product line of code editors that will be used as an illustrative

example throughout this article. First, we describe the features of the editor product

line, and then the software deltas providing the implementation.

The Editor product line consists of a set of valid feature configurations corresponding

to different editor instantiations. Figure 2 depicts the feature model of the Editor product

line. In the diagram, every box represents a feature. A line with an open circle at the end

stands for the optional subfeature relation. A horizontal line segment indicates exclusive

choice between subfeatures. A subfeature can only be selected if its parent feature is also

selected. The Editor product line has the following features.

— Editor (Ed) is the only mandatory feature of the product line representing basic

editing functionality.
— Printing (Pr) allows the user to print the content of an editor window.
— Syntax Highlighting (SH ) colors code for easier recognition of programming language

constructs.
— Error Checking (EC ) performs simple grammatical analysis on code and underlines

certain errors. Hovering over an error gives extra information in a tooltip.
— The optional subfeature Semantic Analysis (SA) of the feature Error Checking per-

forms more sophisticated error analysis of program code.
— Tooltip Info (TI ) gives information about code fragments by hovering over them. The

features Tooltip Info and Error Checking are mutually exclusive, since both produce

different kinds of tooltips.

This product line consists of 16 different editors, as there are 16 possible feature config-

urations.

2.2. Software Deltas

Firstly, the Editor product line uses the empty program as the core product—the product

line is implemented entirely by deltas.
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(u) Editor

print(): void { D }

d2

Pr

(u) Editor

font(c: int): Font { E }

d3

SH

(u) Editor

font(c: int): Font { F }

onMouseOver(c: int): void { G }

d4

EC

(r) Editor

model: Model;

getModel(): Model { A }

font(c: int): Font { B }

onMouseOver(c: int): void { C }

d1

Ed

(u) Editor

onMouseOver(c: int): void { H }

d5

TI

(u) Editor

semAnalyzer: SemanticAnalyzer;

font(c: int): Font { I }

onMouseOver(c: int): void { J }

(r) SemanticAnalyzer

analyze(m: Model): void { K }

getErrors(): Errors { L }

d6

SA

(u) Editor

print(): void { M }

d7

Pr ∧ SH

(u) Editor

font(c: int): Font { N }

d8

SH ∧ EC

(u) Editor

font(c: int): Font { O }

d9

SH ∧ SA

Fig. 3. Graphical representation of the delta model for the Editor product line.

Figure 3 shows the deltas of the Editor product line using a UML-like notation. The

dashed boxes represent software deltas; they are named using a label in their top-left

corner and contain class replacements and class updates. Method implementations are

denoted using an italic capital letter. For instance, delta d1 provides the basic functional-

ity of an editor by adding a new class Editor. It is declared as a replacement (as opposed

to an update) using the annotation (r). The class contains a field and three methods. All

other deltas update this class (indicated by the annotation (u)) by adding and modify-

ing methods. For instance, delta d2 adds the print method, and delta d3 modifies the

implementation of font with a new method body E. Besides updating the Editor class,

delta d6 also adds a new class of its own.

The deltas are decorated with their application conditions (bottom right of each box),

which are propositional logic formulas linking the delta to the set of feature configura-

tions for which it is applicable. The arrows between the deltas represent the application

order—deltas later in the order are applied later. By not placing an order between two

deltas, the designer indicates that the order in which the deltas are applied should not

matter. Delta d1 is applicable in any valid feature configuration, because it is anno-

tated only with the mandatory Ed feature. Deltas d2, . . . , d5 implement the four optional

features of the product line, Pr , SH , EC and TI . They are applied whenever their corre-
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sponding feature is selected. All of those deltas could be developed concurrently without

considering potential conflicts. Delta d6 implements the subfeature SA of the feature

EC . It is applied whenever the SA feature is selected. (It also requires that feature EC

is selected, but this is omitted as it is implied by the feature model.)

Deltas d3 and d4 are in conflict, because they both redefine the font method inde-

pendently (the two deltas are not ordered). This conflict is resolved by conflict-resolving

delta d8. Delta d8 is selected only if the two conflicting deltas are also selected and ap-

plied later in the order to resolve their conflict and provide the appropriate semantics for

the combination of the SH and EC features. The similar conflict between deltas d3/d8

and d6 is resolved by conflict-resolving delta d9. Note that a conflict-resolving delta for

the apparent onMouseOver conflict between deltas d4 and d5 is not required, because the

EC and TI features are mutually exclusive in the feature model; thus the two deltas are

never applied together, and so there is no conflict to resolve.

Delta d7 appears later in the order than d2 (printing) and d3 (syntax highlighting).

When both deltas d2 and d3 are selected, namely, when Pr ∧ SH holds, delta d7 imple-

ments the desired interaction between these two features, providing printouts containing

syntax highlighting, by overwriting the print method and using the syntax highlighting

information of delta d3.

3. Abstract Delta Modeling

This section presents the core ingredients of abstract delta modeling. Product modifi-

cations and their composition will form a monoid, called a delta monoid. Delta models

are built on top of this monoid as partially ordered collections of modifications, where

the order constrains the possible ways in which those modifications can be applied. It

is important that a delta model defines unambiguous modifications in order to obtain

a distinct product. Thus to formalise the notion of an ambiguous delta model and the

resolution of the ambiguity, we define the notions of conflict and conflict-resolving deltas.

In addition, we develop conditions to ensure that a delta model is unambiguous.

3.1. Products and Deltas

In existing compositional approaches to implementing software product lines, such as

feature-oriented programming (Batory et al., 2004) and delta-oriented programming

(Schaefer et al., 2010), a member product of an SPL is obtained by the application

of a number of modifications x1, . . . , xn to a core product c, denoted as xn(· · ·x1(c) · · ·).
In feature-oriented programming, the core product is determined by one or more base

modules. The modifications are specified by feature modules that extend and refine

the core product. In delta-oriented programming, the core product is typically some

valid product of the product line, which deltas subsequently refine. As both approaches

treat the core product as a constant element, which generally contains the bulk of

the code of the product line, it is useful to focus on the modifications as sequences

such as xn · . . . ·x1, where · is sequential composition. The above product then becomes

(xn · . . . ·x1)(c). It may still be possible to reason about the core product if we choose
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to see it as a modification xc applied to some initial (empty) product 0, i.e. c = xc(0).

Thus (xn · . . . ·x1)(c) = (xn · . . . ·x1 ·xc)(0), so usually nothing is lost by restricting our

attention to modifications.

In abstract delta modeling, the main object of interest is the delta monoid. A delta

monoid is a monoid of modifications D, called deltas, that act (on the left) on the set

of products P. A delta monoid can contain different kinds of deltas for different kinds

of development artefacts (e.g., documentation, models or code) and for different levels

of abstraction (e.g., when working on component level or working on class level). The

concrete nature of the modifications specified in the deltas depends on the capabilities of

the underlying modeling or programming languages. The example in Section 2 considers

modifications to object-oriented programs by adding, removing and modifying classes,

methods and fields.

Firstly, we assume a set of products, P. The set of possible modifications to products

forms a delta monoid, as follows.

Definition 1 (Delta Monoid). A delta monoid is a monoid (D, ·, ε), where D is a

set of product modifications (referred to as deltas), and the operation · : D × D → D
corresponds to their sequential composition. y ·x denotes the modification applying first

x and then y. The neutral element ε of the monoid corresponds to modifying nothing.

The operation · is associative, though not inherently commutative, as the order between

two deltas may be significant. Two deltas x, y ∈ D are said to be non-commutative if

y ·x 6= x · y. This notion will later form the basis of our definition of conflict.

Applying a delta to a product results in another product. This is captured by the

notion of delta application.

Definition 2 (Delta Application). Delta application is an operation −(−) : D×P →
P. If d ∈ D and p ∈ P, then d(p) ∈ P is the product resulting from applying delta d to

product p.

Delta application will often satisfy the stronger property of being a monoid action.

Definition 3 (Delta Action). A delta application operation −(−) : D × P → P is

called a delta action if it satisfies the conditions (y ·x)(p) = y(x(p)) and ε(p) = p, for all

x, y ∈ D and p ∈ P.

Given a delta action, a notion of equivalence can be defined on deltas, namely that

for x, y ∈ D, x ≡ y iff for all p ∈ P : x(p) = y(p). A more precise notion of non-

commutativity would be that x · y 6≡ y ·x. Based upon this notion of equivalence, the

quotient delta monoid (D/≡), defined in the usual fashion, could be used in place of D.

Definition 4 (Deltoid). A deltoid is a 5-tuple (P,D, ·, ε,−(−)), where P is a product

set, (D, ·, ε) is a delta monoid and −(−) is a delta application operator.

A deltoid completely defines a concrete domain and abstraction level for product lines.
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3.2. Notions of Expressiveness

The expressiveness of a particular deltoid can be characterised in terms of the existence

of an element in the product set from which all products can be generated—called an

initial product—and the ability to transform each product in the product set into every

other product via the application of deltas—called maximal expressiveness.

Definition 5 (Initial Product). Given a deltoid (P,D, ·, ε,−(−)), a product p ∈ P is

an initial product iff ∀p′ ∈ P : ∃x ∈ D : x(p) = p′.

Definition 6 (Maximal Expressivity). A deltoid (P,D, ·, ε,−(−)) is said to be max-

imally expressive iff ∀p, p′ ∈ P : ∃x ∈ D : x(p) = p′.

Note that for a maximally expressive deltoid, every product is an initial product.

Some formalisms have no notion of initial product. In aspect-oriented programming

(Kiczales et al., 1997), for example, where advice is woven in at pointcuts which have to be

already defined in the existing classes of a base program, advice can only add statements

before, after or around existing statements identified by the pointcut. However, advice

can neither add new classes nor remove them. A delta monoid that is able to add but

not to remove elements will not be maximally expressive. The OOP and AOP deltoids

presented in Section 5 are both maximally expressive, as they have these capabilities.

3.3. Delta Models

A delta model describes the set of deltas required to build a specific product, along with

a strict partial order on those deltas, restricting the order in which they may be applied.

For example, Figure 3 showed the base delta model for the Editor product line.

Definition 7 (Delta Model). A delta model is a tuple (D,≺), where D ⊆ D is a finite

set of deltas and ≺ ⊆ D ×D is a strict partial order† on D. x ≺ y states that x should

be applied before, though not necessarily directly before, y.

The partial order between the deltas captures the intuition that a subsequent delta has

full knowledge of (and access to) earlier deltas and more authority over modifications

to the product. The possibility of using a partial order, rather than a total order or

unordered set of deltas, is important for expressing certain design intentions regarding

the interdependency of deltas, as well as to avoid and resolve conflicts (Section 3.4).

The semantics of a delta model is defined by its derivations. A derivation is a delta

formed by a sequential composition of all deltas from D, respecting the partial order.

Definition 8 (Derivation). Given a delta model DM = (D,≺), its derivations are

defined to be

derv(DM)
def
=

{
xn · . . . ·x1 | x1, . . . , xn is a linear extension‡ of (D,≺)

}
.

† Recall that a strict partial order is irreflexive, asymmetric and transitive.
‡ Recall that a linear extension is a total order compatible with the partial order.
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Observe that when D is empty, derv(DM) = {ε}. Also note that derv(DM) may po-

tentially generate more than one distinct derivation, as non-commutative deltas may be

applied in different orders. However, it is desirable that all derivations of a delta model

have the same effect, as this corresponds to generating a unique product. This motivates

the following definition.

Definition 9 (Unique Derivation). A delta model DM = (D,≺) is said to have a

unique derivation iff xn · . . . ·x1 = x′n · . . . ·x′1 for all pairs of linear extensions (x1, . . . , xn)

and (x′1, . . . , x
′
n) of (D,≺), or, equivalently, iff |derv(DM)| = 1.

3.4. Unambiguity of Delta Models

The property that a delta model has a unique derivation can be checked by brute force.

This means generating all derivations (in the worst case, n! derivations for n deltas),

and then checking that they all correspond. In order to allow for a more efficient way

to establish this property, we introduce unambiguous delta models, which rely on the

notions of conflicting deltas and conflict-resolving deltas.

Two deltas in a delta model are in conflict if they are non-commutative and no order

is placed upon them. Generally, two conflicting deltas are independently modifying the

same part of a product in different ways, meaning that multiple distinct derivations may

be possible. For example, in Figure 3 deltas d3 and d4 are in conflict, since they both

redefine the font method in different ways.

Definition 10 (Conflict). Given a delta model DM = (D,≺), x, y ∈ D are said to be

in conflict, denoted x E y, iff the following condition holds:

x E y
def
= y ·x 6= x · y ∧ x 6≺ y ∧ y 6≺ x.

One way to ensure a unique derivation is to avoid conflicts by always enforcing an order

between non-commutative deltas (Schaefer et al., 2010). However, features with conflict-

ing implementations often correspond to independent concepts. Kästner et al. (2009) call

the issue of modeling such situations the optional feature problem. Imposing an order on

the deltas of conceptually orthogonal features is often inappropriate, as some (unrelated)

functionality may be inadvertently and silently overwritten. Furthermore, sometimes nei-

ther of the original choices in functionality is exactly what is required, and instead some

combination has to be used.

The alternative is to allow conflicts, but to provide additional, subsequently-applied

deltas to resolve them. In Figure 3, the conflict-resolving delta for the conflict between

deltas d3 and d4 is delta d8, which combines the functionality introduced by d3 and d4.

Definition 11 (Conflict-Resolving Delta). Given a delta model DM = (D,≺) and

x, y ∈ D which are in conflict, we say that a delta z ∈ D resolves their conflict iff the

following property holds:

(x, y) C z
def
= x ≺ z ∧ y ≺ z ∧ ∀d ∈ D∗ : z · d · y ·x = z · d ·x · y,

in which D∗ denotes the sequences of compositions of deltas from D.
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Conflict-resolving deltas take the role of derivative modules (Kästner et al., 2009) or

lifters (Prehofer, 1997). An unambiguous delta model is a delta model containing a

conflict-resolving delta for every conflicting pair of deltas.

Definition 12 (Unambiguous Delta Model). Given a delta model (D,≺), we say

that the model is unambiguous iff

∀x, y ∈ D : x E y ⇒ ∃z ∈ D : (x, y) C z.

If we ignore the application conditions in Figure 3, the underlying delta model of the

presented product line is not unambiguous, since d4 and d5 are in conflict without a

conflict-resolving delta. However, in Section 4 we explain that we never take derivations

directly from the underlying model, but first apply a feature selection, by which certain

deltas are filtered out. Since the two deltas in question have mutually exclusive application

conditions, they are never applied together and every selected delta model (Definition 17)

for the Editor product line will be unambiguous.

If a delta model is unambiguous, it can be shown to have a unique derivation. In order

to prove this, some intermediate results are required. Lemma 1 states that in an unam-

biguous delta model, any two deltas in a derivation are either ordered or commutative.

Lemma 1. Given an unambiguous delta modelDM = (D,≺) and d2 · y ·x · d1 ∈ derv(DM),

where x, y ∈ D and d1, d2 ∈ D∗. Then either x ≺ y or d2 · y ·x · d1 = d2 ·x · y · d1.

Proof. By case distinction on the unambiguity of DM for deltas x and y:

— Case y ·x = x · y. It follows directly that d2 · y ·x · d1 = d2 ·x · y · d1.

— Case x ≺ y. Immediate.

— Case y ≺ x. Cannot happen, as d2 · y ·x · d1 is a linear extension of ≺.

— Case ∃z ∈ D : (x, y) C z. Firstly, from the definition of conflict resolving delta we have

that x, y ≺ z, hence there exist d′2, d
′′
2 ∈ D∗ such that d2 · y ·x · d1 = d′2 · z · d′′2 · y ·x · d1.

From the remaining condition on z, we have z · d′′2 · y ·x = z · d′′2 ·x · y, from which we

deduce d2 · y ·x · d1 = d′2 · z · d′′2 · y ·x · d1 = d′2 · z · d′′2 ·x · y · d1 = d2 ·x · y · d1.

Lemma 2 states that removing a minimal element of the partial order preserves the

unambiguity of delta models.

Lemma 2. If DM = (D,≺) is an unambiguous delta model and w is minimal in ≺, then

(D \ {w} ,≺′), where ≺′ is ≺ restricted to D \ {w}, is also an unambiguous delta model.

Proof. If (D,≺) is unambiguous, then ∀x, y ∈ D : x E y ⇒ ∃z ∈ D : (x, y) C z. For this

to be true in D \ {w} we need to show that there are no x and y such that x E y with

w such that (x, y) C w. But w could not have been a conflict resolver, as it is minimal,

contradicting conditions x ≺ w and y ≺ w of (x, y) C w.

Lemma 3 states that a minimal element in the partial order can be moved to the front

of any derivation of an unambiguous delta model, without changing the meaning of that

derivation.
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Lemma 3. Given an unambiguous delta modelDM = (D,≺). Let xn · . . . ·x1 ∈ derv(DM),

where {x1, . . . , xn} = D, with xi minimal in ≺. Then

xn · . . . ·x1 = xn · . . . ·xi+1 ·xi−1 · . . . ·x1 ·xi.

Proof. By induction on i:

— Case i = 1. Immediate.

— Case i > 1. As xi is minimal, xi−1 6≺ xi holds. Lemma 1 implies that xn · . . . ·x1 =

xn · . . . ·xi+1 ·xi−1 ·xi ·xi−2 · . . . ·x1. Now xi is in position i − 1, so induction gives

that xn · . . . ·xi+1 ·xi−1 ·xi ·xi−2 · . . . ·x1 = xn · . . . ·xi+1 ·xi−1 · . . . ·x1 ·xi.

The following theorem states that every unambiguous delta model has a unique deriva-

tion. This reduces the effort of checking that all possible derivations of a delta model

have the same effect to checking that all conflicts between pairs of deltas are eliminated

by conflict-resolving deltas.

Theorem 1. An unambiguous delta model has a unique derivation.

Proof. Given unambiguous delta model DM = (D,≺). Proceed by induction on the

size of D:

— Case |D| = 0. Immediate as derv(DM) = {ε}.
— Case |D| = 1. Immediate as derv(DM) = {x}, where D = {x}.
— Case |D| > 1. For any two d1, d2 ∈ derv(DM), let d1 = d′1 ·x and d2 = d′2 ·x · d′′2 ,

where x ∈ D and d′1, d
′
2, d
′′
2 ∈ D∗. As x is the last element of d1, it must be minimal

in ≺. Thus, by Lemma 3, d′2 ·x · d′′2 = d′2 · d′′2 ·x. Now by Lemma 2, DM ′ = (D \
{x} ,≺′), where ≺′ is ≺ restricted to D \ {x}, is an unambiguous delta model, and

d′1, d
′
2 · d′′2 ∈ derv(DM ′). By the induction hypothesis, d′1 = d′2 · d′′2 and thus d1 =

d′1 ·x = d′2 · d′′2 ·x = d′2 ·x · d′′2 = d2. Hence, |derv(DM)| = 1.

3.5. Consistent Conflict Resolution

Although the notion of unambiguous delta model alleviates the task of establishing that

a delta model has a unique derivation, unambiguity is still quite complex to check. The

reason is that the definition of a conflict-resolving delta (Definition 11) quantifies over

all elements of D∗. Hence, in order to check that a delta is indeed a conflict resolver, all

these sequences of deltas have to be inspected. Naturally, we could restrict the checks to

consider only relevant elements of D∗, but instead in this section, we propose a simpler

criterion to make checking ambiguity more feasible for interesting classes of deltoids. The

consistent conflict resolution property states that if a delta z resolves an (x, y)-conflict

when applied directly after x and y, it also resolves the conflict after the application of

any sequence of intermediate deltas.

Definition 13 (Consistent Conflict Resolution). A delta monoid (D, ·, ε) is said to

exhibit consistent conflict resolution iff the following condition holds:

∀x, y, z ∈ D : z · y ·x = z ·x · y ⇒ ∀d ∈ D : z · d · y ·x = z · d ·x · y.
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If a delta monoid (D, ·, ε) exhibits consistent conflict resolution, then a delta model (D,≺)

with D ⊆ D is also said to exhibit the property.

The consistent conflict resolution property is checked at the level of the underlying delta

monoid, rather than for any specific delta model. Hence, it has to be established only once

for a given delta monoid and then holds for all delta models based on that monoid. Then

to establish the unambiguity of a delta model exhibiting consistent conflict resolution,

it is sufficient to check that for each pair of conflicting deltas x and y there exists a

conflict-resolving delta z, such that x ≺ z ∧ y ≺ z ∧ z · y ·x = z ·x · y; there is no

need to quantify over all possible intermediate sequences of deltas. Consequently, the

unambiguity of delta models can be established much more efficiently. This is formalized

in the next theorem.

Theorem 2. Given a delta model DM = (D,≺) exhibiting consistent conflict resolution.

For all deltas x, y ∈ D which are in conflict and z ∈ D such that x ≺ z and y ≺ z,

if z · y ·x = z ·x · y, then (x, y) C z.

Proof. From the definition of consistent conflict resolution, we have the following:

z · y ·x = z ·x · y ⇒ ∀d ∈ D : z · d · y ·x = z · d ·x · y
⇒ ∀d ∈ D∗ : z · d · y ·x = z · d ·x · y.

Combined with the facts x ≺ z and y ≺ z, this is precisely the definition of (x, y) C z.

4. Product Lines

Using the introduced concepts of delta models, products and delta application, we can

now abstractly define product lines. We extend the concept of unambiguity to the level

of product lines and provide an efficient condition to efficiently check it.

4.1. Defining Product Lines

A product line is organised around a set of features. Let F denote a set of features, which

are merely labels without any inherent meaning.

At the highest level of abstraction, the set of products in a product line is represented

by a feature model. Many formal descriptions (Kang et al., 1990; van Deursen & Klint,

2002; Heymans et al., 2008) agree that a feature model determines a set of valid feature

configurations.

Definition 14 (Feature Model). A feature model Φ ⊆P(F) is a set of sets of features

from F . Each F ∈ Φ is a set of features corresponding to a valid feature configuration.

For example, the Editor product line from Section 2 is described by the feature model
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depicted in Figure 2. The set of valid feature configurations is the following:

Φ =


{Ed, Pr} , {Ed, Pr, SH} , {Ed, Pr, SH,EC} , {Ed, Pr, SH,EC, SA} ,
{Ed, Pr, SH, TI} , {Ed, Pr,EC} , {Ed, Pr,EC, SA} , {Ed, Pr, T I} ,
{Ed, SH} , {Ed, SH,EC} , {Ed, SH,EC, SA} , {Ed, SH, TI} ,
{Ed,EC} , {Ed,EC, SA} , {Ed, TI} , {Ed}

 .

For the sake of simplicity, our formalism does not consider extended feature models, such

as cardinality-based or attributed feature models (Czarnecki et al., 2004; Czarnecki &

Kim, 2005), though we believe that they can be handled in a straightforward fashion.

In order to bridge the gap between features and product line artifacts, application con-

ditions are introduced. An application condition is associated with a delta and determines

the feature configurations to which the delta is applicable.

Definition 15 (Application Function and Condition). Let D ⊆ D be a set of

deltas. An application function γ : D →P(P(F)) gives the feature configurations each

delta x ∈ D is applicable to. Thus, F ∈ γ(x) denotes that delta x is applicable for feature

configuration F . The set γ(x) is called the application condition for delta x.

The application conditions of the Figure 3 deltas are shown in the form of propositional

logic formulae, in which the atomic formulas are feature names.

A product line is defined by its feature model, describing the set of valid feature

configurations, a core product, a base delta model, containing the modifications used to

obtain further products, and an application function, associating features and deltas.

Definition 16 (Product Line). A product line is a tuple PL = (Φ, c,D,≺, γ), where

— Φ is a feature model,

— c ∈ P is the core product,

— (D,≺) is a delta model, and

— γ is an application function with domain D such that ∀x ∈ D : γ(x) ⊆ Φ.

If feature configuration F is valid according to Φ, its corresponding product is defined

using the delta model containing only the deltas applicable to F .

Definition 17 (Selected Delta Model). Given a product line PL = (Φ, c,D,≺, γ),

the selected delta model for feature configuration F ∈ Φ, denoted PL � F , is the delta

model (DF ,≺F ) where DF = { d ∈ D | F ∈ γ(d) } is the set of applicable deltas, and ≺F

is ≺ restricted to DF .

The derivation(s) of this delta model will be applied to the core product to generate the

product(s) corresponding to feature configuration F . The set of products generated from

a product line given a feature configuration is defined as follows.

Definition 18 (Generated Products). Given a product line PL = (Φ, c,D,≺, γ), the

set of generated products for feature configuration F ∈ Φ is defined as:

prod(PL, F )
def
= {x(c) | x ∈ derv(PL�F ) } .
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Note that the above definition of ‘product’ slightly deviates from existing literature,

where a product is uniquely defined for a given feature configuration. Our ‘product’

refers to a specific implementation. There may be ambiguity in the derivation process

resulting in more than one implementation per feature configuration. Having a unique

implementation for a given feature configuration is a property we strive for in Section 4.2.

4.2. Unambiguity of Product Lines

As argued in Section 3, unambiguity of delta models is a desired property because it

ensures a unique derivation and, consequently, a unique generated product. We now lift

unambiguity to the product line level. A product line is unambiguous if every selected

delta model is unambiguous. This means that every valid feature configuration yields a

uniquely defined product implementation.

Definition 19 (Unambiguous Product Line). A product line PL = (Φ, c,D,≺, γ)

is unambiguous iff

∀F ∈ Φ : PL�F is an unambiguous delta model.

The unambiguity of a product line can be checked by generating the selected delta

models of all valid feature configurations and checking the unambiguity using the criteria

proposed in Section 3. However, as the set of feature configurations is often exponential

in the number of features, this naive approach would be rather expensive. Instead, we

propose the notion of a globally unambiguous product line which implies product line

unambiguity. First, we introduce a shorthand notation for the set of feature configurations

for which two deltas x and y are applicable.

Notation. Given a product-line (Φ, c,D,≺, γ), the set of valid feature configurations to

which the deltas x, y ∈ D apply is denoted:

Vx,y def
= γ(x) ∩ γ(y).

A product line is globally unambiguous if for any two conflicting deltas x and y applied

together for a set of feature configurations, there is a conflict-resolving delta z applicable

in at least the same set of feature configurations. Global unambiguity of a product line

can be checked by inspecting the product line only once and does not require all selected

delta models to be generated.

Definition 20 (Globally Unambiguous Product Line). A product line (Φ, c,D,≺, γ)

is called globally unambiguous if and only if for all x, y ∈ D such that x E y and Vx,y 6= ∅,

there exists a z ∈ D such that Vx,y ⊆ γ(z) and (x, y) C z.

The following theorem states that any globally unambiguous product line is also an

unambiguous product line. In the following proof, we annotate the E and C operators

with the delta model for which they apply, e.g., x EDM y and (x, y) CDM z.

Theorem 3. A globally unambiguous product line is unambiguous.
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Proof. Assume PL = (Φ, c,D,≺, γ) is a globally unambiguous product line. Let F ∈ Φ

be a valid feature configuration. We show that DM = PL�F = (DF ,≺F ) is an unam-

biguous delta model.

Given arbitrary x, y ∈ DF (so also x, y ∈ D), perform a case analysis on the global

unambiguity of PL (Definition 20). Observe that F ∈ Vx,y, otherwise x and y would not

be in DF . Now for the cases:

— Case ¬(x E(D,≺) y). So also ¬(x EDM y).

— Case Vx,y = ∅. Cannot happen, otherwise x, y /∈ DF .

— Case ∃z ∈ D : Vx,y ⊆ γ(z) ∧ (x, y) C(D,≺) z. Note that z ∈ DF , as Vx,y ⊆ γ(z). It

follows that (x, y) CDM z (Definition 17).

So, for all x, y ∈ DF , either ¬(x EDM y) or ∃z ∈ DF : (x, y) CDM z. Hence, DM is an

unambiguous delta model (Definition 12).

A product line can be unambiguous without being globally unambiguous if conflicts

between two deltas x and y are resolved by different conflict-resolving deltas z for different

feature configurations.

5. A Deltoid for Object-Oriented Programs

This section presents a concrete deltoid for object-oriented programs to demonstrate our

approach. Deltas manipulate object-oriented programs on a coarse-grained level. That

is, a delta can add, remove or modify classes. Modifications of classes include addition,

removal and replacement of fields and methods. In this section, we abstract away from

issues such as well-typedness. For more details on how to compositionally type check

product lines, the reader is referred to Schaefer et al. (2011).

Notation. Let f : X⇀Y denote that f is a partial function from X to Y . If f(x) is

undefined for x ∈ X, write f(x) = ⊥, where ⊥ /∈ Y .

Notation. Given a set X where − /∈ X, define the notation:

X−
def
= X ∪ {−} .

The deltas presented in this section will be based on partial functions. ⊥ will denote that

the function is not defined for a particular element, whereas − denotes the removal of

the element.

5.1. Software Products

For simplicity, we abstract from a concrete programming language, as well as from con-

crete implementations of methods, and focus on the structural aspects of object-oriented

programs. First we introduce Ic and Im, denoting sets of identifiers used for naming

classes and methods/fields respectively, and M, a set of method and field definitions.

A class is defined as a partial mapping from identifiers to method and field definitions.

Definition 21 (Class Definitions). The collection of class definitions is the set of
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partial functions Ψ = Im⇀M. One such class definition ψ ∈ Ψ maps some identifiers

to their definition. Unmapped identifiers are not defined in the class.

As an example, consider the following class definition. Only the explicitly mentioned iden-

tifiers are considered to be defined. Italic capital letters refer to method implementations,

where different letters represent distinct implementations.
f 7→ f(): void { A },

g 7→ g(): bool { B },

i 7→ i: int

 .

A program is a set of classes, mapping identifiers to class definitions.

Definition 22 (Programs). We define the set of products P as the set of programs in

an object-oriented language: P = Ic⇀Ψ.

As an example, consider the following program definition:

C 7→


f 7→ f(): void { A },

g 7→ g(): bool { B },

i 7→ i: int

 ,

D 7→
{

h 7→ h(x: int): int { C },

b 7→ b: bool

}
,

E 7→
{

i 7→ i: int
}


.

5.2. OOP Software Deltas

OOP software deltas modify a program by adding, modifying and removing classes.

A class modification includes adding, replacing and removing methods and fields, or

replacing the class entirely. To ensure that composition of deltas produces a closed form,

we distinguish between updating a class and replacing it. A class replacement completely

replaces an existing class (i.e. deletes the old one and puts a new one in its place).

A class update modifies the original class at the method/field level. Modifying a class

that does not exist is treated as adding a new class. The definition of an OOP software

delta captures this set of program modifications. In contrast to previous work (Schaefer

et al., 2010), the removal of an element in this concrete deltoid does not require that the

element is already present, nor does addition require its absence. This ensures that every

derivation of deltas is well-defined.

Definition 23 (OOP Software Deltas). The set of software deltas is defined as

D = Ic⇀({r} × (Im⇀M) ∪ {u} × (Im⇀M−))−.

r and u represent ‘replace’ and ‘update’, respectively. Mapping an identifier to − indicates

removal from the product. ε = λx.⊥ is the empty delta, modifying nothing.

On the top level, Definition 23 defines a delta as a partial function from identifiers

representing class names to class-level operations, which are class removals (−), class

replacements (tagged with r) or class updates (tagged with u). Class replacements are
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partial functions from method and field name identifiers to method and field definitions.

Class updates are similar, but also allow methods and fields to be removed (−).

The following example of an OOP software delta contains three class-level operations:

class C is updated by removing field/method f and adding method z and field i; class D

is removed and class E is replaced with a new class.
C 7→ u


f 7→ −,
z 7→ z(): void { D },

i 7→ i: float

 ,

D 7→ −,
E 7→ r

{
b 7→ b: bool

}


.

Applying this delta to the example program defined at the end of Section 5.1 results in

the following (formally defined in Definition 25):
C 7→


z 7→ z(): void { D },

g 7→ g(): bool { B },

i 7→ i: float

 ,

E 7→
{

b 7→ b: bool
}

 .

Now we introduce some notation required for the next few definitions.

Notation. Given a binary operation # : S×S′ → S′′ for some sets S, S′, S′′ that contain

⊥, and some set of identifiers I, the derived operation # : (I → S)× (I → S′)→ (I →
S′′) applies # to the codomain of two partial functions. For all i ∈ I, a : I → S and

b : I → S′:

(a# b)(i)
def
= a(i) # b(i).

When a class update is applied where no class is present or when a class update is

composed with a class removal, any method and field removals need to be discarded

from the resulting class update, as they no longer make sense. The following notation

captures this.

Notation. Given a class update f : Im⇀M−, define f∗ : Im⇀M as f without any

method or field removals. For all i ∈ Im:

f∗(i)
def
=

{
⊥ if f(i) = −
f(i) otherwise.

Now we define the sequential composition of software deltas y ·x = y⊕C x, which com-

bines class-level modifications to produce composite modifications. This operation de-

pends on operation ⊕M , defined below, for combining method definitions.

Definition 24 (Sequential Composition of OOP Software Deltas). The sequential

composition of OOP software deltas · : D ×D → D is defined as

y ·x def
= y⊕C x,



Abstract Delta Modeling 19

where the operator ⊕C , working on the level of class modifications, with e, f : Im⇀M−
and g, h : Im⇀M, is

⊕C ⊥ − u f r h

⊥ ⊥ − u f r h

− − − − −
u e u e r e∗ u (e⊕M f) r (e⊕M h)∗

r g r g r g r g r g

and ⊕M , working on the level of method and field definitions, with m,n ∈M, is

⊕M ⊥ − n

⊥ ⊥ − n

− − − −
m m m m .

The ⊕C and ⊕M operators formalize the intuition that their left-hand operand has priority

over their right-hand operand, since it represents the delta that is applied later. −, r g

and m act as left-zero elements in these operations, i.e. they completely overwrite the

right-hand operand. ⊥ is a neutral element. u e represents a class update, which indicates

that the left-hand operand only overwrites the right-hand at the method-level, not the

class level.

The options for combining methods are limited here, since ⊕M only supports removing

and replacing methods. However, Section 5.3 will redefine ⊕M to allow method wrapping.

We now illustrate two of the more complicated cases from the tables above. Say we

have two class operations, both updates:

u h
def
= u


x 7→ x(): void { A },

y 7→ −,
z 7→ z: int

 u e
def
= u


w 7→ w(): bool { B },

x 7→ −,
z 7→ z: float

 .

The composition of these two deltas, according to Definition 24, is another class update,

which applies first u h and then u e:

u e⊕C u h = u (e⊕M h) = u


w 7→ w(): bool { B },

x 7→ −,
y 7→ −,
z 7→ z: float

 .

Another interesting case appears when a class update is composed with a class replace-

ment. Take the following class replacement:

r f
def
= r

{
x 7→ x(): void { A },

z 7→ z: int

}
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Being a replacement, it cannot contain method or field removals, since they would not

make sense. Its composition with u e would also be a class replacement:

u e⊕C r f = r (e⊕M f)∗ = r

{
w 7→ w(): bool { B },

z 7→ z: float

}
.

Note that the ∗ operator discards (x 7→ −) from the result. As we are replacing an

entire class, there will be no x to remove.

Definition 24 makes the notion of non-commutativity concrete: two OOP software

deltas are non-commutative if they map the same identifier to two different definitions,

that is, if they modify the same field, method or class in incompatible ways.

OOP software deltas satisfy the following properties. The proofs of Lemmas 4 to 6 are

subsumed by the proofs of analogous properties of AOP software deltas (Lemmas 8 to 10),

as they are a conservative extension of OOP software deltas. These proofs appear in the

appendix.

Lemma 4. OOP software deltas are a delta monoid (cf. Definition 1).

Lemma 5. OOP software deltas exhibit consistent conflict resolution (cf. Definition 13).

With this result, it is easy to verify that the Editor product line from Section 2 is globally

unambiguous. There are three pairs of deltas in conflict: d3 E d4, d3 E d6 and d8 E d6. The

first conflict is resolved by d8. The second and third conflict have the same resolver d9.

By the choice of γ, the conflict-resolving delta is present in each feature configuration

in which the conflicting deltas appear, and if it is applied directly after the conflicting

deltas, it makes them commute again. By Lemma 5, these conditions are enough to ensure

global unambiguity.

Finally, we define OOP software delta application to apply an OOP software delta to

a program.

Definition 25 (OOP Software Delta Application). Given delta x ∈ D and product

p ∈ P, OOP software delta application is an operation −(−) : D × P → P defined as

follows:

x(p)
def
= x�C p,

where the operators �C , with e : Im⇀M− and g, h : Im⇀M, and �M , with m,n ∈M,

are defined as

�C ⊥ h

⊥ ⊥ h

− ⊥ ⊥
u e e∗ e�M h

r g g g

�M ⊥ n

⊥ ⊥ n

− ⊥ ⊥
m m m .

For example, say we have a product containing class definition h and a delta containing

class update u e:
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h
def
=

{
x 7→ x(): void { A },

z 7→ z: int

}
u e

def
= u


w 7→ w(): bool { B },

x 7→ −,
z 7→ z: float

 .

Applying u e to h results in a new class definition:

u e�C h = e�M h =

{
w 7→ w(): bool { B },

z 7→ z: float

}
.

Lemma 6. OOP software delta application is a delta action (cf. Definition 3).

The proof appears in the appendix. Finally, OOP software deltas can be applied to

construct any product from any other product.

Lemma 7. OOP software deltas are maximally expressive (cf. Definition 6).

Proof. Because any method and class can be removed, all elements not required can

be removed using a delta. New elements can be added using an additional delta. The

composition of these deltas is the delta required to complete the proof.

Since Lemma 7 states that all products in P are initial products, it follows directly that

the empty program, which we use as the core product in our running example, is an initial

product too.

Corollary. The empty program λx.⊥ ∈ P is an initial product.

Now is a good moment to illustrate product generation (Definition 18) for the Editor

product line. We want the product for feature configuration F = {Ed, SH,EC, SA} ∈ Φ.

The selected delta model is PL�F = (DF ,≺F ), with DF = {d1, d3, d4, d6, d8, d9} and

≺F =

{
(d1, d3), (d1, d4), (d1, d6), (d1, d8), (d1, d9), (d3, d8),

(d3, d9), (d4, d6), (d4, d8), (d4, d9), (d6, d9), (d8, d9)

}
.

Since the Editor product line is globally unambiguous, it is sufficient to select one deriva-

tion of the delta model, such as x = d9 · d8 · d6 · d4 · d3 · d1. Applying Definition 24, x is

defined as follows:

Editor 7→

r


model 7→ model: Model;,

semAnalyzer 7→ semAnalyzer: SemanticAnalyzer;,

getModel 7→ getModel(): Model { A },

font 7→ font(c: int): Font { O },

onMouseOver 7→ onMouseOver(c: int): void { J }

 ,

SemanticAnalyzer 7→

r

{
analyze 7→ analyze(m: Model): void { K },

getErrors 7→ getErrors(): Errors { L }

}


.

Applying x to c (Definition 25) results in a product that has the same form (only without

the annotation r), since the core product is the empty program c = λx.⊥.
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Note that for the sake of simplicity we chose to ignore many features of OOP in

this deltoid. Fully featured object-oriented languages would support concepts such as

interfaces and inheritance. It is not difficult to extend the deltoid of this section with

those concepts. For example, P could support classes with inheritance accompanied by

more sophisticated deltas in D which can add and remove subclass relationships.

5.3. A Deltoid for Aspect-Oriented Programming

In AOP (Kiczales et al., 1997) and in languages based on feature-oriented program-

ming (Prehofer, 1997; Apel et al., 2009b), delta-oriented programming (Schaefer et al.,

2010), context-oriented programming (Costanza & Hirschfeld, 2005) and step-wise re-

finement (Batory et al., 2004), it is possible to refine a method implementation in such a

way that it uses the previous method implementation. This can be thought of as method

wrapping, and is realised, for example, by the original keyword in delta-oriented pro-

gramming. The following is a simple delta-oriented programming example illustrating

the idea.

class A {
int m() { E }

}
delta D {

modifies class A {
modifies int m() { F ; int x = original(); G }

}
}

Applying delta D to class A results in a new implementation of m, which effectively cor-

responds to the old implementation placed where the call to original() is made:

class A {
int original_m() { E }
int m() { F ; int x = original_m(); G }

}

To model this approach, we adapt the OOP software deltas (Sections 5.1 and 5.2) to

include method wrapping by modifying method bodies M in classes and deltas to have

the following (abstract) grammar:

M3 wb ::= b | w[m] | w[ ] b is a normal method body

B 3 m ::= b | w[m]

W 3 w[ ] ::= e[ ] | w[w[ ]] e is a basic method wrapper

The notation w[ ] denotes a wrapping method with a hole in it, where the hole corre-

sponds to the place where the call to the original method is made, and w[m] denotes

that body m is wrapped by w. Methods with a hole do not appear in products.

Given these ingredients, only the definitions of ⊕M and �M from Definitions 24 and 25

need to change. In the following, m,n denote methods with no hole.
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⊕M ⊥ − n v[ ]

⊥ ⊥ − n v[ ]

− − − − −
m m m m m

w[ ] w[ ] − w[n] w[v[ ]]

�M ⊥ n

⊥ ⊥ n

− ⊥ ⊥
m m m

w[ ] ⊥ w[n] .

The example above has the following correspondence with our setting:

— b = int m() { B },

— w[ ] = int m() { C; int x = [ ]; D }, and

— w[b] = int m() { C; int x = B; D }.

The AOP software deltas enjoy the same properties as the OOP software deltas. Proofs

of Lemmas 8 to 10 appear in the appendix.

Lemma 8. AOP software deltas are a delta monoid (cf. Definition 1).

Lemma 9. AOP software deltas exhibit consistent conflict resolution (cf. Definition 13).

Lemma 10. AOP software delta application is a delta action (cf. Definition 3).

Lemma 11. AOP software deltas are maximally expressive (cf. Definition 6).

Proof. Follows from the fact that AOP software deltas are a conservative extension of

OOP software deltas.

6. Nested Delta Models

This section extends the notion of abstract delta modeling to incorporate nested delta

models. Nested delta models can express the isolated, atomic application of a collection

of deltas within a model by allowing a delta model to be used as a delta in another model.

Nested deltas are useful when refactoring a delta into two deltas; grouping the two deltas

together avoids creating conflicts, because the two deltas would be treated atomically.

As an example of a nested delta model consider Figure 4. In this figure delta d4 from

the Editor product line is refactored into two deltas d1
4 and d2

4, the first handling the

font method and the second handling the onMouseOver method. To avoid having to

introduced extra ordering into the delta model to preserve the original semantics, the

two deltas obtained from the refactoring are grouped in a nested delta model, which

replaces d4.

Observe from this example that nesting allows greater modularity and structure in

delta models, in particular by allowing local refactoring of deltas without worrying about

potential interference from other deltas. This is because the derivation function, defined

below, treats nesting deltas atomically. The definition imposes the further requirement

that nested delta models are unambiguous. This enforces in a kind of local consistency,

avoiding the problem whereby refactoring introduces ambiguities that need to be resolved

outside of the nested delta model.
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(u) Editor

font(c: int): Font { F }

onMouseOver(c: int): void { G }

d4

EC

=⇒
(u) Editor

font(c: int): Font { F }

d1
4

EC

(u) Editor

onMouseOver(c: int): void { G }

d2
4

EC

EC

Fig. 4. Refactoring of delta d4 into a nested delta model with deltas d14 and d24.

Nested delta models, along with nested delta monoids, and new notions of derivation

and composition, are given by the following construction.

Definition 26. Given a delta monoid (D, ·, ε), its corresponding nested delta monoid is

the monoid (DN , •, ε) as follows:

D0
N = D

DM i+1
N = {(D,≺) | D ⊆ Di

N , ≺ is a strict partial order on D

and |derv((D,≺))| = 1}
Di+1

N = D ∪DM i+1
N

DN =
⋃
i≥0

Di
N .

derv(m) = {m} , where m ∈ D
derv((D,≺)) =

⋃
x1, . . . , xn is a linear

extension of ≺

xn • . . . • x1, where (D,≺) ∈ DN \ D.

N1 •N2 = derv(N1) · derv(N2), for N1, N2 ∈ DN .

Note that the definition of N1 •N2 abuses notation: technically, derv(N1) and derv(N2)

return singleton sets, but the definition of N1 • N2 implicitly treats them as the sole

elements of that set.

Treating nested delta monoids as delta monoids and nested delta models as delta mod-

els, the definitions of unique derivation (Definition 9), conflict (Definition 10), conflict-

resolving delta (Definition 11) and unambiguous delta model (Definition 12) carry across.

For product lines containing nested deltas, application conditions can apply at all

levels of nesting. This definition can readily be formulated inductively, along the lines of

Definition 26.
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Definition 27 (Nested Delta Model with Application Conditions). A nested

delta model with application conditions is a triple (D,≺, γ) where the elements of D are

either modifications m ∈ D or nested delta models with application conditions, ≺ is

as before, and γ : D → P(P(F )), such that if N = (D′,≺′, γ′) ∈ D, then γ(N) =⋃
d∈D′ γ′(d).

For reasons of simplicity, the condition γ(N) =
⋃

d∈D′ γ′(d) derives the application con-

dition of the whole nested delta model at some level based on the those of its inner deltas;

if at least one inner delta is applicable, then the nested delta model is applicable as well.

Based on Definition 27, we can now define nested product lines:

Definition 28 (Nested Product Line). A nested product line is a tuple

PL = (Φ, c,D,≺, γ), where

— Φ is a feature model,

— c ∈ P is the core product, and

— (D,≺, γ) is a nested delta model with application conditions.

The nested delta model selected for given a feature configuration is obtained by recurs-

ing the nested delta model with application conditions of the nested product line, and

selecting the relevant ingredients.

Definition 29 (Selected Nested Delta Model). Given a nested product line PL =

(Φ, c,D,≺, γ), a selected nested delta model for a feature configuration F ∈ Φ, denoted

as PL�F , is the nested delta model (D,≺, γ)�F , where −�F is defined on nested delta

models as

m�F = m

(D,≺, γ)�F = (DF ,≺F )

where DF = { d�F | d ∈ D,F ∈ γ(d) } and

≺F is ≺ restricted to DF .

The definition of generated products (Definition 18) is as before.

6.1. Expressiveness

Nested delta models are more expressive than the old ‘flat’ delta models in the following

sense: there exists a set of deltas and a way of ordering and nesting them such that its

set of linear extensions cannot be expressed using the same deltas in a flat model.

Consider the following nested delta model N . We prove that there exists no flat delta

model that has the same derivations (ignoring equations and considering just the se-

quences of deltas from D).
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x

y

z N = ({({x, y} , {(x, y)}), z} ,∅)

derv(N) = {z · y ·x, y ·x · z}

To find a flat delta model N ′ = ({x, y, z},≺′) such that derv(N ′) = derv(N), consider

all possible partial orders ≺′ over 3 elements:

≺′ = ∅ =⇒ | derv(N ′)| = 6

≺′ = {(A,B)} s.t. {A,B} ⊆ {x, y, z} =⇒ | derv(N ′)| = 3

≺′ = {(A,B), (B,C)} s.t. {A,B,C} = {x, y, z} =⇒ | derv(N ′)| = 1

≺′ = {(A,B), (A,C)} s.t. {A,B,C} = {x, y, z} =⇒ derv(N ′) = {C ·B ·A, B ·C ·A}
≺′ = {(A,C), (B,C)} s.t. {A,B,C} = {x, y, z} =⇒ derv(N ′) = {C ·B ·A, C ·A ·B}.

As the number of derivations of N is 2, only the last two cases are relevant. If N were

expressible via a flat delta model, there would exist a bijection between {A,B,C} and

{x, y, z} such that either {C ·B ·A,B ·C ·A} = {z · y ·x, y ·x · z} or {C ·B ·A,C ·A ·B} =

{z · y ·x, y ·x · z}. However no such bijection exists, hence, there exists no flat delta model

N ′ such that derv(N ′) = derv(N). Since any flat delta model, trivially, is a nested delta

model, this shows that nested delta models are strictly more expressive than flat delta

models.

7. Related Algebraic Approaches

Other algebraic approaches describing the underlying structure of software product lines

have been proposed (Apel et al., 2010; Batory & Smith, 2007). These formalise the

mechanisms underlying AHEAD (Batory et al., 2004), GenVoca (Batory & O’Malley,

1992), and FeatureHouse (Apel et al., 2009b). The first difference with our approach is

that we present machinery to consider the collection of modifications for an entire product

line, rather than a single product at a time, and thus are able to talk about conflicts and

conflict resolution at the level of the product line. The second difference is that those

approaches generally arrange ‘deltas’ into introductions and modifications—introductions

correspond to the core ingredients of product, whereas modifications modify existing

ingredients, whereas we assume a single, unified collection of deltas. Here we compare

our approach with two recent proposals, namely, the Quark model (Apel et al., 2010) and

Finite Map Spaces (Batory & Smith, 2007). From an algebraic perspective, these two

proposals are quite similar, so we consider them together. By encoding these frameworks,

we demonstrate that our formalism is sufficient to express these using simpler notions,

as well as providing an alternative foundation for tools based on these formalisms.

This section gives an overview of Quarks and Finite Map Spaces in Section 7.1 and

presents encodings of key elements of these formalisms into our setting in Sections 7.2

to 7.4.
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7.1. Quarks and Finite Map Spaces

Both Apel et al. (2010) and Batory & Smith (2007) base the description of a product on

the following ingredients (our notation):

— introductions: a commutative idempotent monoid (I,+, 0), where + : I × I →
I, of which some are ‘atomic’ and form a basis = ⊆ I (in the sense of vector

spaces/modules).

— modifications: a monoid (M, •, 1), where • : M ×M →M .

— an operation � : M × I → I applying modifications to introductions, satisfying

– M is a monoid action over I: 1� i = i and (m • n)� i = m� (n� i) ,

– Distributivity: m� (i+ j) = m� i+m� j, and

– m� 0 = 0.

— products: elements of I, which are of the form
∑n

j=1(mj � ij), where each mj ∈ M
and ij ∈ =.

Introductions and modifications are combined to form quarks Q, which correspond to

our deltas. Different notions of quark and quark composition (� : Q × Q → Q) have

been defined—corresponding approximately to our notion of delta monoid—to capture

combinations of the following operations:

— local composition: apply modifications to elements already in the product;

— global composition: apply modifications to all elements of the final product, and thus

their application is delayed until after all introductions have been made; and

— modifiers of modifiers: modify modifications rather than elements of the product.

In addition to the quark and quark composition, the unit of quark composition and an

operation image : Q → I used when extracting the final product from a quark need

to specified. The image operation also applies globally applicable operations at the last

minute, where relevant.

local quark composition (Apel et al., 2010)

— Q = I ×M — an introduction and a local modification

— 〈i2, l2〉� 〈i1, l1〉 = 〈i2 + (l2 � i1), l2 • l1〉
— unit is 〈0, 1〉
— image(〈i, l〉) = i

global quark composition (Apel et al., 2010)

— Q = I ×M — an introduction and a global modification

— 〈i2, g2〉� 〈i1, g1〉 = 〈(g2 • g1)� (i2 + i1), g2 • g1〉
— unit is 〈0, 1〉
— image(〈i, g〉) = i

full quark composition (Apel et al., 2010)

— Q = M×I×M — a global modification, an introduction, and a local modification

— 〈g2, i2, l2〉� 〈g1, i1, l1〉 = 〈g2 • g1, (g2 • g1)� (i2 + (l2 � i1)), l2 • l1〉
— unit is 〈1, 0, 1〉
— image(〈g, i, l〉) = i
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full quark composition (Batory & Smith, 2007)

— Q = M×I×M — a global modification, an introduction, and a local modification

— 〈g2, i2, l2〉� 〈g1, i1, l1〉 = 〈g2 • g1, i2 + (l2 � i1), l2 • l1〉
— unit is 〈1, 0, 1〉
— image(〈g, i, l〉) = g � i

modifiers of modifiers (Batory & Smith, 2007)

— Q = (M →M)×M × I ×M — a modifier of modifiers, a global modification, an

introduction, and a local modification

— 〈h2, g2, i2, l2〉� 〈h1, g1, i1, l1〉 = 〈h2 ◦ h1, g2 • g1, i2 + (l2 � i1), l2 • l1〉
— unit is 〈id , 1, 0, 1〉
— image(〈h, g, i, l〉) = Rh(g � i).

The function Rh used in the definition of modifiers of modifiers applies the modifiers.

Given a modifier of modifiers h : M →M , Batory & Smith (2007) introduce the a set of

rewriting rules defining a function Rh to recursively apply all higher-order modifications.

Their definition is equivalent to the following set of equations, where m,m′ ∈M , i, i′ ∈ I,

and i ∈ = is a basis element:

Rh(m) = h(m)

Rh(0) = 0

Rh(i) = i

Rh(i+ i′) = Rh(i) +Rh(i′)

Rh(m •m′) = Rh(m) •Rh(m′)

Rh(m� i) = Rh(m)�Rh(i).

Note that Rh is overloaded to apply to both elements of M and of I.

Our observation is that this definition amounts to saying that h : M → M acts like

monoid homomorphism on the modifications lifted to introductions. Thus:

Rh

 n∑
j=1

mj � ij

 =

n∑
j=1

(h(mj)� ij).

For local quark composition, Batory & Smith (2007)’s full quark composition, and

modifiers of modifiers, the quark composition operation � forms a monoid over the

corresponding set of quarks, with the appropriate tuple of units as the unit for �.

Delta application −(−) : Q × I → I (Definition 2) can be defined, for example, as

q(p) = image(q � 〈p, 1〉), where q ∈ Q is a quark and p ∈ I is the core product. Note that

the term 〈p, 1〉 needs to be adapted depending on the notion of quark being used.

In the absence of other axioms, the other kinds of quarks above do not form a delta

monoid; global quark composition and full quark composition (Apel et al., 2010) are

not even associative. In addition, Apel et al.’s global quark composition and full quark

composition produce results such as the following (for global quark composition):

(〈i3, g3〉� 〈i2, g2〉)� 〈i1, g1〉 = 〈((q3 • g2) • g1)� (((g3 • g2)� (i3 + i2)) + i1), (q3 • g2) • g1〉.
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which applies modifications g3 and g2 multiple times. To get this composition to behave,

strong idempotence criteria are proposed (Apel et al., 2010), but these exclude modifica-

tions such as method wrapping. In addition, delta application is an action only for local

quark composition.

We now describe how to encode local quark composition, full quark composition (Ba-

tory & Smith, 2007), and modifiers of modifiers (Batory & Smith, 2007) more directly

in our setting. From our perspective, introductions play a dual role. They correspond

to (elements of) products, as well as represent one kind of delta; modifications are the

other kind. That is, an introduction i ∈ I in a delta corresponds to introducing a new

element into a product and a modification m ∈M corresponds to an operation modifying

an existing element. In our encoding, we make introductions a kind of modification and

eliminate quarks from the local composition variant. By ignoring the distinction between

modifications and introductions, we can focus on deltas alone, and work in a simpler

algebraic setting. For full quark composition and modifiers of modifiers, the notion of

quark needs to be reintroduced.

7.2. Encoding Local Quark Composition.

Before proceeding, recall that 〈0, 1〉 is the unit of � for local quark composition, and

that, apart from the monoid laws for �, we have that 〈i1,m1〉 = 〈i2,m2〉 if and only if

i1 = i2 and m1 = m2.

The following definition introduces delta monoid MI consisting of deltas that are se-

quences of modifications m ∈M and introductions i ∈ I. We show that this is equivalent

to Q = I ×M with � corresponding to local quark composition.

Definition 30 (Delta monoid MI). Given a monoid (M, •, 1), a commutative monoid

(I,+, 0), and an operation � : M × I → I satisfying the equations, for all m,n ∈M and

i, j ∈ I:

(a) 1� i = i

(b) (m • n)� i = m� (n� i)
(c) m� (i+ j) = (m� i) + (m� j)
(d) m� 0 = 0.

Define delta monoid MI = ((M ∪ I)∗, ·, ε) of finite sequences of elements of M and I,

where · is concatenation with unit the empty sequence ε, subject to the following equa-

tions (m,n ∈M , i, j ∈ I, and µ, ν, η ∈MI):

(1) ε ·µ = µ = µ · ε
(2) µ ·(ν · η) = (µ · ν) · η
(3) m · i = (m� i) ·m
(4) i · j = i+ j = j + i = j · i

(5) i · i = i+ i = i

(6) m ·n = m • n
(7) ε = 0 = 1.

Definition 30 forms a delta monoid by taking sequences of modifications and introduc-

tions, modulo the given equations. The equations interpret various combinations of el-

ements of MI in terms of the original collection of operations. The most interesting is

3, which applies a modification m to an introduction i, via m � i, and shuffles m later

in the sequence to apply to subsequent introductions. Note that Equations 1 and 2 are
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redundant and follow from the fact that · is concatenation and ε its unit, but we include

them for completeness.

Delta action is defined inductively over the elements of MI , applying each element of

MI to I via the appropriate function from the original monoids.

Definition 31. The delta action −(−) : MI × I → I for MI is defined inductively as

follows:

ε(p) = p

m(p) = m� p
i(p) = i+ p

(µ · ν)(p) = µ(ν(p)).

where m ∈M , i ∈ I, µ, ν ∈MI and p ∈ I.

The following lemma captures that our notion of delta action is sensible, in that it pre-

serves the equations in Definition 30. More precisely, given elements µ, ν ∈ MI that are

perhaps syntactically distinct but equal by the equations, then they produce equal results

when applied to a product p ∈ I—recall that we consider elements of I as both intro-

ductions and ultimately as products. The proof of Lemma 12 appears in the appendix.

Lemma 12. For all µ, ν ∈MI and all p ∈ I, if µ = ν by Equation 1–7 of Definition 30,

then µ(p) = ν(p).

We now show the equivalence of quarks and MI by producing homomorphisms in each

direction. The following is a monoid homomorphism from quarks to MI .

Definition 32. Define J−K : Q→MI as

J〈i,m〉K = i ·m.

Lemma 13. The function J−K : Q→ MI is a homomorphism. That is, J〈0, 1〉K = ε and

for all q, q′ ∈ Q, Jq � q′K = JqK ·Jq′K.

The proof of Lemma 13 appears in the appendix.

The mapping from MI to quarks defined in the following is also a monoid homomor-

phism, by definition.

Definition 33. Define 〈〈−〉〉 : MI → Q as

〈〈ε〉〉 = 〈0, 1〉
〈〈m〉〉 = 〈0,m〉
〈〈i〉〉 = 〈i, 1〉

〈〈µ · ν〉〉 = 〈〈µ〉〉� 〈〈ν〉〉.

Quarks with local quark composition are isomorphic to MI (Theorem 4), supporting our

claim that making the distinction between introductions and modifications is unneces-

sary. The proof of the following theorem appears in the appendix.
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Theorem 4. For all q, q′ ∈ Q and µ, ν ∈MI , we have

(1) 〈〈JqK〉〉 = q,

(2) J〈〈µ〉〉K = µ,

(3) if q = q′, then JqK = Jq′K, and

(4) if µ = ν via Equation 1–7 of Definition 30, then 〈〈µ〉〉 = 〈〈ν〉〉.

Finally, Theorem 5 shows that not only are quarks and MI isomorphic, but their notions

of delta action correspond, so they will generate the same products. Again, its proof can

be found in the appendix.

Theorem 5. For all q ∈ Q and all p ∈ I,

image(q � 〈p, 1〉) = JqK(p)

and for all µ ∈MI and all i ∈ I,

image(〈〈µ〉〉� 〈p, 1〉) = µ(p).

7.3. Encoding Batory and Smith’s Full Quark Composition.

Encoding full quark composition is straightforward. To do so, we adapt the encod-

ing above to use quarks Q = M × MI , where quark composition is 〈m,µ〉� 〈n, ν〉 =

〈m • n, µ · ν〉 and define delta application −(−) : Q×I → I to be 〈m,µ〉(p) = m�(µ(p)),

relying on the definition of delta action for MI (Definition 31).

The full quark 〈g, i, l〉 is encoded as 〈g, J〈i, l〉K〉 = 〈g, i · l〉, using Definition 32. The

results from the previous section can be extended to establish an isomorphism between

the two forms of quark, in the obvious manner.

It is easy to show that the notions of delta application for full quark composition and

this encoding coincide. On one hand, for full quark composition

image(〈g, i, l〉� 〈1, p, 1〉) = image(〈g, i+ (l � p), l〉)
= g � (i+ (l � p))

On the other hand, for our encoding:

〈g, Ji, lK〉(p) = g � ((Ji, lK)(p))

= g � (i · l)(p)
= g � (i(l(p)))

= g � (i+ (l � p)).

However, in the absence of other assumptions, this notion of delta application is not an

action—that is (q � q′)(p) = q(q′(p)) does not hold in general—as for example:

(〈m,µ〉� 〈n, ν〉)(p) = 〈m • n, µ · ν〉(p)
= (m • n)� ((µ · ν)(p))

= (m • n)� (µ(ν(p)))

whereas

〈m,µ〉(〈n, µ〉(p)) = m� (µ(n� (ν(p)))).
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If we instantiate µ and ν with m′ and n′, such that m 6= m′ and n 6= n′, we have in the

first case:

(m • n)�m′(n′(p)) = (m • n)� (m′ � (n� p))
= (m • n •m′ • n′)� p

and in the second case

m� (m′(n� n′(p))) = m� (m′ � (n� (n′ � p)))
= (m •m′ • n • n′)� p.

However, (m • n •m′ • n′)� p and (m •m′ • n • n′)� p are equal in general only if • is

commutative.

7.4. Encoding Batory and Smith’s Modifiers of Modifiers.

Encoding modifiers of modifiers is also relatively straightforward. We assume that such

modifiers, h : M →M , are endomorphisms on the monoid of modifications, as described

above when introducing Rh: that is, h(1) = 1 and h(m2 •m1) = h(m2) • h(m1), for all

m1,m2 ∈M .

We can extend the previous encoding to apply higher-order modifiers to global modi-

fications as follows:

— quarks: Q = (M →M)×M ×MI consist of a modifier of modifiers, a global modifi-

cation, and a delta
— composition: 〈h2, g2, µ2〉� 〈h1, g1, µ1〉 = 〈h2 ◦ h1, g2 • g1, µ2 ·µ1〉, and
— delta application is 〈h, g, µ〉(p) = hI(g) � hI(µ)(hI(p)), where hI : MI → MI is

h : M →M lifted to MI , defined by the following:

– hI(ε) = ε

– hI(µ · ν) = hI(µ) ·hI(ν)

– hI(i) = i

– hI(m� i) = h(m)� hI(i).

Note that hI is essentially Rh : I → I, defined above, lifted from an overloaded function

on M and I to a function on MI .

Delta application for Batory & Smith (2007) of quark 〈h, g, i, l〉 to product p is:

image(〈h, g, i, l〉� 〈id , 1, p, 1〉) = image(〈h, g, i+ (l � p), l〉)
= Rh(g � (i+ (l � p)))
= Rh(g)� (Rh(i) + (Rh(l)�Rh(p))).

Our delta application produces the same result:

(〈h, g, J〈i, l〉K〉)(p) = 〈h, g, i · l〉(hI(p))

= hI(g)� (hI(i · l))(hI(p))

= hI(g)� (hI(i) ·hI(l))(hI(p))

= hI(g)� hI(i)(hI(l)(hI(p)))

= hI(g)� (hI(i) + (hI(l)� hI(p)).
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Again delta application is not an action, for the same reason as for full quark composition.

8. Related Work

In general, approaches facilitating automated product generation for software product

lines can be classified in two main directions (Kästner et al., 2008). Firstly, annota-

tive approaches, such as conditional compilation, frames (Zhang & Jarzabek, 2003) or

Colored Featherweight Java (CFJ) (Kästner & Apel, 2008), annotate a model of

the complete product line based on product features and remove irrelevant annotated

product parts to obtain a product for a particular feature configuration.

Secondly, compositional approaches, such as delta modeling (Schaefer et al., 2009;

Schaefer, 2010; Schaefer et al., 2010; Schaefer & Damiani, 2010), associate product frag-

ments to product features, which are assembled to implement a particular feature config-

uration. A prominent example of this approach is AHEAD (Batory et al., 2004), which

can be applied on the design as well as on the implementation level. In AHEAD, a

product is built by stepwise refinement of a base module with a sequence of feature

modules. Design-level models can also be constructed using aspect-oriented composition

techniques (Heidenreich & Wende, 2007; Völter & Groher, 2007; Noda & Kishi, 2008).

Apel et al. (2009a) apply model superposition to compose model fragments. Perrouin

et al. (2008) obtain a product model by model composition and subsequently refinement

by model transformation. In Haugen et al. (2008), a set of models is represented by a

base model with associated variability and resolution models determining how modeling

elements of the base model have to be replaced for a particular product model.

On the programming language level, several program modularization techniques (Lopez-

Herrejon et al., 2005), such as aspects (Kästner et al., 2007), framed aspects (Loughran

& Rashid, 2004), mixins (Smaragdakis & Batory, 2002), hyperslices (Tarr et al., 1999) or

traits (Ducasse et al., 2006; Bettini et al., 2010), can be used to implement features in a

compositional fashion. In addition, the modularity concepts of recent languages, such as

Scala (Odersky, 2007) or NewSpeak (Bracha, 2007), can be used to represent prod-

uct features. CeasarJ (Mezini & Ostermann, 2004) and Aspectual Feature Modules (Apel

et al., 2008b) are proposed as a combination of feature modules and aspects to modularize

crosscutting concerns.

The notion of program delta was introduced by Lopez-Herrejon et al. (2005) to describe

the modifications of object-oriented programs. Schaefer et al. (2009) introduced delta

modeling as a means to develop product line artifacts suitable for automated product

derivation and implemented it using frame technology (Zhang & Jarzabek, 2003). In sub-

sequent work (Schaefer, 2010), delta modeling was extended to a seamless model-based

development approach for SPLs, where an initial product line representation is stepwise

refined until an implementation can be generated. The conceptual ideas of delta mod-

eling have also been instantiated on the programming language level in an extension of

Java with core and delta modules allowing the automatic generation of Java-based prod-

uct implementations (Schaefer et al., 2010). In Schaefer & Damiani (2010) and Schaefer

et al. (2011), a version of delta-oriented programming is proposed where products are

generated only from delta modules applied to the empty product.
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Originally, the delta model of a product line consisted of a single core and a set of

incomparable product deltas (Schaefer et al., 2009; Schaefer, 2010). Conflicts between

deltas applicable for the same feature configuration were prohibited. In order to express

all possible products, an additional delta covering the combination of the potentially

conflicting deltas had to be specified leading to code duplication. Subsequently, a partial

order between deltas was introduced (Schaefer et al., 2010; Schaefer & Damiani, 2010;

Schaefer et al., 2011). However, it was required that conflicts were avoided by specifying

an appropriate order. In contrast, in this paper, a more flexible notion of conflict and

conflict resolution is proposed that allows intermediate conflicts between deltas as long

as they are eliminated later in a derivation by a conflict-resolving delta. The notion of

conflict-resolving deltas is similar to lifters (Prehofer, 1997) or derivatives (Liu et al.,

2006; Kästner et al., 2009) in feature-oriented programming, which are used to facilitate

the correct interaction between different feature modules. A delta that is applied for

the combination of certain features to resolve a conflict can fill in the role of a lifter or

derivative. However, deltas are more expressive than lifters or derivatives, as deltas allow

the removals of entities and the specification of complex application conditions to deal

with arbitrary combinations of features.

The definition of a conflict as a lack of commutativity between modifications is also

discussed in the context of program refactoring (Mens et al., 2005). The underlying for-

malisation uses graph transformation systems and critical pair analysis. Oldevik et al.

(2009) define a conflict in a sequence of model transformations to occur if two transfor-

mations do not commute. A similar notion of conflict related to non-commutativity is

observed by Apel et al. (2008a) when two aspects advise shared join points. In order to

make non-commutative aspects commute, the aspects have to be refactored following a

particular scheme. In contrast, in delta modeling, the conflicting deltas do not have to

be changed, only a conflict-resolving delta has to be added.

On a completely different note, the version control system Darcs is formalised in terms

of patch theory (Jacobson, 2009). The underlying formalism has some similarities with

our work. Most notable is that ‘patches’ are modeled using a semigroup with inverses.

This structure is a monoid at heart, with additional properties (such as inverses) that do

not entirely make sense in our setting. The most significant similarity is that they deal

with conflictors (entities for resolving conflicts), which are similar to our conflict-resolving

deltas. Conflictors have a more complex set of properties than our conflict-resolving deltas

due to the added structure of their core setting. Patch theory should nonetheless offer

inspiration to guide future research.

9. Conclusion

Delta modeling is an approach to facilitating automated product derivation for software

product lines. In this paper, we studied the conceptual ideas of delta modeling in an ab-

stract, algebraic setting. One contribution of this work is the novel treatment of conflicts

between deltas by explicit conflict-resolving deltas. In order to ensure that for every valid

feature configuration a unique product is generated, a conflict-resolving delta has to ex-

ist for every pair of conflicting deltas in the model. We presented efficiently computable
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conditions that allow checking the unambiguity of a product line without requiring that

all products be generated. Further, we extended the formalism with nested delta mod-

els to provide additional means for imposing structure in a delta model and to increase

modularity.

For future work, we will be using the ideas of abstract delta modeling for the implemen-

tation of variability within the HATS ABS language (Hähnle, 2010). ABS is an abstract

executable modeling language for adaptable, object-oriented, distributed systems. By

defining delta modification operations for ABS modeling entities, the variability of an

ABS model can be specified by an ABS model delta. An ABS model for a particular con-

figuration in space or in time can be generated from a core ABS model by application of

ABS model deltas. The abstract, algebraic results presented in this article, in particular

regarding consistent conflict resolution, can be immediately transfered to ABS models.

Finally, variants of abstract delta modeling, such as basing the framework on partial

monoids with a partial composition operation, will be investigated.

References

Apel, S., Janda, F., Trujillo, S. & Kästner, C. 2009a Model Superimposition
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Appendix A. Proofs

The first part of this appendix gives proofs of properties for the OOP software deltoid and

the AOP software deltoid (Section 5). Because the AOP software deltoid is a conservative

extension of the OOP software deltoid, we give only proofs for the former. Relevant proofs

for the OOP software deltas can be obtained by ignoring cases involving wrapping. The

definitions of B, M, and W used are those found in Section 5.3. The second part of the

appendix gives proofs for properties stated in Section 7.

A.1. Useful Lemmas

The following lemmas will be useful later on. Their proofs are all straightforward from

the definitions.

Lemma 14. If f ∈ (I⇀M−) and g ∈ (I⇀M−), then (f ⊕M g)∗ = (f ⊕M g∗)∗.

Lemma 15. If f ∈ (I⇀M−) and g ∈ (I⇀M), then (f ⊕M g)∗ = f �M g

Lemma 16. If f ∈ (I⇀M−) and g ∈ (I⇀M−), then (f ⊕M g)∗ = f �M g∗.

Lemma 17. If f ∈ (I⇀M), then f∗ = f .

A.2. Proof of Lemma 8 (and hence Lemma 4)

Proof. We show that · is associative and λx.⊥ is its neutral element. We start by

working at the level of method modifications, then consider class-level modifications.

First, note that if an operator # is associative, then operator # is also associative. For

arbitrary a, b, c ∈ M ∪ {−,⊥}, we show that ⊕M is associative, i.e. (a ⊕M b) ⊕M c =

a⊕M (b⊕M c), by case distinction on a:

— Case a = ⊥.

(a⊕M b)⊕M c = (⊥⊕M b)⊕M c = b⊕M c = ⊥⊕M (b⊕M c) = a⊕M (b⊕M c).

— Case a = −.

(a⊕M b)⊕M c = (−⊕M b)⊕M c = −⊕M c = − = −⊕M (b⊕M c) = a⊕M (b⊕M c).

— Case a = m for some m ∈ B.

(a⊕M b)⊕M c = (m⊕M b)⊕M c = m⊕M c = m = m⊕M (b⊕M c) = a⊕M (b⊕M c).

— Case a = w[ ] for some w[ ] ∈ W. We make a case distinction on b:

– Case b = ⊥.

(a⊕M b)⊕M c = (w[ ]⊕M ⊥)⊕M c = w[ ]⊕M c = w[ ]⊕M (⊥⊕M c) = a⊕M (b⊕M c).

– Case b = −.

(a⊕M b)⊕M c = (w[ ]⊕M −)⊕M c = −⊕M c =

− = w[ ]⊕M − = w[ ]⊕M (−⊕M c) = a⊕M (b⊕M c).
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– Case b = m for some m ∈ B.

(a⊕M b)⊕M c = (w[ ]⊕M m)⊕M c = w[m]⊕M c =

w[m] = w[ ]⊕M m = w[ ]⊕M (m⊕M c) = a⊕M (b⊕M c).

– Case b = u[ ] for some u[ ] ∈ W. We make a case distinction on c:

• Case c = ⊥.

(a⊕M b)⊕M c = (w[ ]⊕M u[ ])⊕M ⊥ = w[u[ ]]⊕M ⊥ = w[u[ ]] =

w[ ]⊕M u[ ] = w[ ]⊕M (u[ ]⊕M ⊥) = a⊕M (b⊕M c).

• Case c = −.

(a⊕M b)⊕M c = (w[ ]⊕M u[ ])⊕M − = w[u[ ]]⊕M − = − = w[ ]⊕M −
= w[ ]⊕M (u[ ]⊕M −) = a⊕M (b⊕M c).

• Case c = m for some m ∈ B.

(a⊕M b)⊕M c = (w[ ]⊕M u[ ])⊕M m = w[u[ ]]⊕M m =

w[u[m] = w[ ]⊕M u[m] = w[ ]⊕M (u[ ]⊕M m) = a⊕M (b⊕M c).

• Case c = v[ ] for some v[ ] ∈ W.

(a⊕M b)⊕M c = (w[ ]⊕M u[ ])⊕M v[ ] = w[u[ ]]⊕M v[ ] = w[u[v[ ]]]

= w[ ]⊕M u[v[ ]] = w[ ]⊕M (u[ ]⊕M v[ ]) = a⊕M (b⊕M c).

Thus ⊕M is associative. Consequently, so is ⊕M .

For arbitrary a, b, c ∈ {r} × (I⇀M) ∪ {u} × (I⇀M−) ∪ {−,⊥}, we show that ⊕C is

associative, i.e. (a⊕C b)⊕C c = a⊕C (b⊕C c) by case distinction on a:

— Case a = ⊥.

(a⊕C b)⊕C c = (⊥⊕C b)⊕C c = b⊕C c = ⊥⊕C (b⊕C c) = a⊕C (b⊕C c).

— Case a = −.

(a⊕C b)⊕C c = (−⊕C b)⊕C c = −⊕C c = − = −⊕C (b⊕C c) = a⊕C (b⊕C c).

— Case a = r f for some f ∈ (I⇀M).

(a⊕C b)⊕C c = (r f ⊕C b)⊕C c = r f ⊕C c = r f = r f ⊕C (b⊕C c) = a⊕C (b⊕C c).

— Case a = u f for some f ∈ (I⇀M−). We make a case distinction on b:

– Case b = ⊥.

(a⊕C b)⊕C c = a⊕C c = a⊕C (b⊕C c).

– Case b = −. For some f ∈ (I⇀M−):

(a⊕C b)⊕C c = (u f ⊕C −)⊕C c = r f∗ ⊕C c = r f∗

= u f ⊕C − = u f ⊕C (−⊕C c) = a⊕C (b⊕C c).

– Case b = r g for some g ∈ (I⇀M).

(a⊕C b)⊕C c = (u f ⊕C r g)⊕C c = r (f ⊕M g)∗ ⊕C c = r (f ⊕M g)∗

= u f ⊕C r g = u f ⊕C (r g ⊕C c) = a⊕C (b⊕C c).
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– Case b = u g for some g ∈ (I⇀M−). We make a case distinction on c:

• Case c = ⊥.

(a⊕C b)⊕C c = (a⊕C b)⊕C ⊥ = a⊕C b = a⊕C (b⊕C ⊥) = a⊕C (b⊕C c).

• Case c = −.

(a⊕C b)⊕C c = (u f ⊕C u g)⊕C − = u (f ⊕M g)⊕C − =

r (f ⊕M g)∗
?
= r (f ⊕M g∗)∗ = u f ⊕C r g∗ =

u f ⊕C (u g ⊕C −) = a⊕C (b⊕C c).

Step
?
= follows from Lemma 14.

• Case c = r h for some h ∈ (I⇀M).

(a⊕C b)⊕C c = (u f ⊕C u g)⊕C r h = u (f ⊕M g)⊕C r h =

r ((f ⊕M g)⊕M h)∗ = r (f ⊕M(g⊕M h))∗ = u f ⊕C r (g⊕M h)∗ =

u f ⊕C (u g ⊕C r h) = a⊕C (b⊕C c).

• Case c = u h for some h ∈ (I⇀M−).

(a⊕C b)⊕C c = (u f ⊕C u g)⊕C u h = u (f ⊕M g)⊕C u h =

u ((f ⊕M g)⊕M h) = u (f ⊕M(g⊕M h)) = u f ⊕C u (g⊕M h) =

u f ⊕C (u g ⊕C u h) = a⊕C (b⊕C c).

Thus ⊕C is associative. Consequently, so are ⊕C and ·.
Neutrality of λx.⊥ in · follows directly from the definition of ⊕C .

A.3. Proof of Lemma 9 (and hence Lemma 5)

For this case, we state and prove a lemma which will prove invaluable later on. Firstly,

define (overload) (−)∗ :M∪{⊥,−} →M∪{⊥} as (−)∗ = ⊥, (⊥)∗ = ⊥, (m)∗ = m, for

m ∈M.

Lemma 18. Given a, d ∈M∪ {−,⊥}.
1 Given b ∈M∪ {−,⊥}. If (a⊕M b∗)∗ = a∗, then (a⊕M d⊕M b∗)∗ = (a⊕M d)∗.

2 Given b ∈M∪ {⊥}. If (a⊕M b)∗ = a∗, then (a⊕M d⊕M b)∗ = (a⊕M d)∗.

3 Given b, c ∈ M ∪ {−,⊥}. If a ⊕M b ⊕M c = a ⊕M c ⊕M b, then a ⊕M d ⊕M b ⊕M c =

a⊕M d⊕M c⊕M b.

4 Given b ∈ M ∪ {−,⊥} and c ∈ M ∪ {⊥}. If (a ⊕M b)∗ = (a ⊕M (c ⊕M b)∗)∗, then

(a⊕M d⊕M b)∗ = (a⊕M d⊕M (c⊕M b)∗)∗.

5 Given b, c ∈M∪{⊥}. If (a⊕M b)∗ = (a⊕M c)∗, then (a⊕M d⊕M b)∗ = (a⊕M d⊕M c)∗.

Proof. Case 1.

Assume that (a⊕M b∗)∗ = a∗, where b ∈M∪ {−,⊥}. By case distinction on a:

— a = ⊥. Hence b∗ = ⊥, thus b = ⊥ or b = −. In the both cases (a ⊕M d ⊕M b∗)∗ =

(a⊕M d⊕M ⊥)∗ = (a⊕M d)∗.

— a = −. Then clearly (a⊕M d⊕M b∗)∗ = (−)∗ = (a⊕M d)∗.

— a = m for some m ∈ B. Then clearly (a⊕M d⊕M b∗)∗ = (m)∗ = (a⊕M d)∗.
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— a = w[ ] for some w[ ] ∈ W. Hence b = ⊥ or b = −. In the both cases, as with a = ⊥,

(a⊕M d⊕M b∗)∗ = (a⊕M d⊕M ⊥)∗ = (a⊕M d)∗.

Case 2.

Assume that (a⊕M b)∗ = a∗, where b ∈M∪ {⊥}. By case distinction on a:

— a = ⊥. Hence b∗ = ⊥, thus b = ⊥. Now (a⊕M d⊕M b)∗ = (a⊕M d⊕M ⊥)∗ = (a⊕M d)∗.

— a = −. Then clearly (a⊕M d⊕M b)∗ = (−)∗ = (a⊕M d)∗.

— a = m for some m ∈ B. (a⊕M d⊕M b)∗ = (m)∗ = (a⊕M d)∗.

— a = w[ ] for some w[ ] ∈ W. Hence b = ⊥. Thus, as with a = ⊥, Now (a⊕M d⊕M b)
∗ =

(a⊕M d⊕M ⊥)∗ = (a⊕M d)∗.

Case 3.

For arbitrary a, b, c ∈M∪{−,⊥}, assume a⊕M b⊕M c = a⊕M c⊕M b. Then for arbitrary

k ∈M∪ {−,⊥}, we show that a⊕M k⊕M b⊕M c = a⊕M k⊕M c⊕M b, by case distinction

on a:

— Case a = ⊥.

a⊕M b⊕M c = a⊕M c⊕M b ⇐⇒ ⊥⊕M b⊕M c = ⊥⊕M c⊕M b

⇐⇒ b⊕M c = c⊕M b

Hence a⊕M k ⊕M b⊕M c = a⊕M k ⊕M c⊕M b for all k.

— Case a = −.

Observe that −⊕M d = − for all d. Thus a⊕M k⊕M b⊕M c = −⊕M k⊕M b⊕M c = − =

−⊕M k ⊕M c⊕M b = a⊕M k ⊕M c⊕M b for all k.

— Case a = m for some m ∈ B.

Observe that m ⊕M d = m for all d. Thus a ⊕M k ⊕M b ⊕M c = m ⊕M k ⊕M b ⊕M c =

m = m⊕M k ⊕M c⊕M b = a⊕M k ⊕M c⊕M b for all k.

— Case a = w[ ] for some w[ ] ∈ W.

Consider the following table whose elements are (a⊕M b⊕M c, a⊕M c⊕M b)—omitting

entries above the diagonal for reasons of symmetry:

b
\c ⊥ − n v[ ]

⊥ (w[ ], w[ ])

− (−,−) (−,−)

m (w[m], w[m]) (w[m],−) (w[m], w[n])

u[ ] (w[u[ ]], w[u[ ]]) (−,−) (w[u[m]], w[n]) (w[u[v[ ]]], w[v[u[ ]]])

Clearly a⊕M b⊕M c = a⊕M c⊕M b only when b = ⊥, c = ⊥ or b = c. It is straightforward

to see in these cases that a⊕M k ⊕M b⊕M c = a⊕M k ⊕M c⊕M b for all k.

Thus ∀a, b, c ∈ M ∪ {−,⊥} : a ⊕M b ⊕M c = a ⊕M c ⊕M b ⇒ ∀k ∈ M ∪ {−,⊥} :

a⊕M k ⊕M b⊕M c = a⊕M k ⊕M c⊕M b.

Case 4.

Assume that (a⊕M b)∗ = (a⊕M (c⊕M b)∗)∗, where b ∈M∪ {−,⊥} and c ∈M∪ {⊥}.
By case distinction on a:

— a = ⊥. This means that b∗ = (c⊕M b)∗. Case analysis on c results in the following:
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– c = ⊥: Hence (a ⊕M d ⊕M c ⊕M b)∗ = (a ⊕M d ⊕M ⊥ ⊕M b)∗ = (a ⊕M d ⊕M b)∗, as

desired.

– c = m, b = m: Hence (a⊕M d⊕M c⊕M b)
∗ = (a⊕M d⊕Mm⊕Mm)∗ = (a⊕M d⊕Mm)∗ =

(a⊕M d⊕M b)∗, as desired.

– c = −, b = −. Hence, (a⊕M d⊕M c⊕M b)
∗ = (a⊕M d⊕M−⊕M−)∗ = (a⊕M d⊕M−)∗ =

(a⊕M d⊕M −)∗, as desired.

– c = w[ ], b = −:

– c = −, b = −. Hence, (a⊕Md⊕Mc⊕Mb)
∗ = (a⊕Md⊕Mw[ ]⊕M−)∗ = (a⊕Md⊕M−)∗ =

(a⊕M d⊕M −)∗, as desired.

— a = −. Hence (a⊕M d⊕M b)∗ = (−)∗ = (a⊕M d⊕M (c⊕M b)∗)∗.

— a = m for some m ∈ B. Hence (a⊕M d⊕M b)∗ = (m)∗ = (a⊕M d⊕M (c⊕M b)∗)∗.

— a = w[ ] for some w[ ] ∈ W. Again we can deduce that b∗ = (c⊕M b)∗, and perform

the same case analysis as for a = ⊥. The cases are written sufficiently generally to

apply directly here.

Case 5.

Assume that (a⊕M b)∗ = (a⊕M c)∗, where b, c ∈M∪ {⊥}. By case distinction on a:

— a = ⊥. From this we deduce that b = c, and hence (a⊕M d⊕M b)∗ = (a⊕M d⊕M c)∗.

— a = −. Hence (a⊕M d⊕M b)∗ = (−)∗ = (a⊕M d⊕M c)∗.

— a = m for some m ∈ B. Hence (a⊕M d⊕M b)∗ = (m)∗ = (a⊕M d⊕M c)∗.

— a = w[ ] for some w[ ] ∈ W. From this we deduce that b = c, and hence (a⊕M d⊕M

b)∗ = (a⊕M d⊕M c)∗.

Now we begin the main proof. Let Y = ({r}× (I⇀M))∪ ({u}× (I⇀M−))∪{−,⊥}.
It is clear that for x, y, z ∈ D, z · y ·x = z ·x · y implies z · d · y ·x = z · d ·x · y if and only

if for all i ∈ I : z(i)⊕Cy(i)⊕Cx(i) = z(i)⊕Cx(i)⊕Cy(i) implies z(i)⊕Cd(i)⊕Cy(i)⊕Cx(i) =

z(i)⊕C d(i)⊕C x(i)⊕C y(i) (? ? ?). Note that each x(i), y(i), z(i), d(i) ∈ Y.

So we must show that for p, q, r ∈ Y that if p⊕C q⊕C r = p⊕C r⊕C q, then for all o ∈ Y
p⊕C o⊕C q ⊕C r = p⊕C o⊕C r ⊕C q.

Assume p⊕C q ⊕C r = p⊕C r ⊕C q. Let o ∈ Y.

Firstly by considering the different cases for o, we see that when o = ⊥, we have that

p⊕C o⊕C q⊕C r = p⊕C q⊕C r, from which the result follows, and when o = − or o = r f ,

we have that for all x o⊕C x = o, from which the desired result again quickly follows.

Assume that o = u d. We proceed by case analysis on p.

— Case p = ⊥.

From the definition of ⊕C , it is clear that ⊥ is the unit of ⊕C , thus ⊥ ⊕C q ⊕C r =

⊥⊕C r ⊕C q implies that q ⊕C r = r ⊕C q, from which the result follows immediately.

— Case p = −.

From the definition of ⊕C , it is clear that for all q we have − ⊕C q = −, from which

the result follows immediately.

— Case p = r h for some h ∈ (I⇀M).
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From the definition of ⊕C , it is clear that for all q we have r h⊕C q = r h, from which

the result follows immediately.

— Case p = u h for some h ∈ (I⇀M−).

Firstly observe, as before, if q = ⊥ or r = ⊥, then q ⊕C r = r ⊕C q, from which the

desired result follows.

The following table contains (p⊕C q⊕C r, p⊕C r⊕C q) for the remaining combinations,

again removing symmetry.

q\
r − u f r f

− (r h∗, r h∗)

u e (r (h⊕M e∗)∗, r h∗) (u (h⊕M(e⊕M f)), u (h⊕M(f ⊕M e)))

r e (r (h⊕M e)∗, r h∗) (r (h⊕M e)∗, r (h⊕M(f ⊕M e)∗)∗) (r (h⊕M e)∗, r (h⊕M f)∗)

Note that we can determine the values for p ⊕C o ⊕C q ⊕C r and p ⊕C o ⊕C r ⊕C q) by

replacing h by h⊕M d in each case.

Now we perform a case analysis based on these entries:

— Case q = r = −. Easy.

— Case q = u e, r = −. From the table we deduce (h⊕M e∗)∗ = h∗. The desired result,

namely ((h⊕M d)⊕M e∗)∗ = (h⊕M d)∗, follows from Lemma 18(1), lifted from ⊕M to

⊕M .

— Case q = r e, r = −. From the table we deduce (h⊕M e)∗ = h∗. The desired result,

namely ((h⊕M d)⊕M e)∗ = (h⊕M d)∗ follows from Lemma 18(2), lifted from ⊕M to

⊕M .

— Case q = u e, r = u f . From the table we deduce h⊕M(e⊕M f) = h⊕M(f ⊕M e).

The desired result, namely (h⊕M d)⊕M(e⊕M f) = (h⊕M d)⊕M(f ⊕M e), follows from

Lemma 18(3), lifted from ⊕M to ⊕M .

— Case q = r e, r = u f . From the table we deduce (h⊕M e)∗ = (h⊕M(f ⊕M e)∗)∗.

The desired result, namely ((h⊕M d)⊕M e)∗ = ((h⊕M d)⊕M(f ⊕M e)∗)∗, follows from

Lemma 18(4), lifted from ⊕M to ⊕M .

— Case q = r e, r = r f . From the table we deduce (h⊕M e)∗ = (h⊕M f)∗. The desired

result, namely ((h⊕M d)⊕M e)∗ = ((h⊕M d)⊕M f)∗, follows from Lemma 18(5), lifted

from ⊕M to ⊕M .

Thus we have that for all p, q, r ∈ Y, that p ⊕C q ⊕C r = p ⊕C r ⊕C q implies that

∀o ∈ Y : p⊕C o⊕C q ⊕C r = p⊕C o⊕C r ⊕C q.

Hence from (? ? ?), we have the desired result.

A.4. Proof of Lemma 10 (and hence Lemma 6)

We start by working at the level of method modifications, then consider class-level mod-

ifications.

For arbitrary a, b ∈M∪{−,⊥} and arbitrary c ∈M∪{⊥}, we show that (a⊕Mb)�Mc =

a�M (b�M c) by case distinction on a:
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— Case a = ⊥.

(a⊕M b)�M c = (⊥⊕M b)�M c = b�M c = ⊥�M (b�M c) = a�M (b�M c).

— Case a = −.

(a⊕M b)�M c = (−⊕M b)�M c = −�M c = ⊥ = −�M (b�M c) = a�M (b�M c).

— Case a = m for some m ∈ B.

(a⊕M b)�M c = (m⊕M b)�M c = m�M c = m = m�M (b�M c) = a�M (b�M c).

— Case a = w[ ] for some w[ ] ∈ W. We make a case distinction on b.

– Case b = ⊥.

(a⊕M b)�M c = (w[ ]⊕M ⊥)�M c = w[ ]�M c = w[ ]�M (⊥�M c) = a�M (b�M c).

– Case b = −.

(a⊕M b)�M c = (w[ ]⊕M −)�M c = −�M c = ⊥ =

w[ ]�M ⊥ = w[ ]�M (−�M c) = a�M (b�M c).

– Case b = m for some m ∈ B.

(a⊕M b)�M c = (w[ ]⊕M m)�M c = w[m]�M c = w[m] = w[ ]�M m

= w[ ]�M (m�M c) = a�M (b�M c).

– Case b = u[ ] for some u[ ] ∈ W. We make a case distinction on c.

• Case c = ⊥.

(a⊕M b)�M c = (w[ ]⊕M u[ ])�M ⊥ = w[u[ ]]�M ⊥ = ⊥
= w[ ]�M ⊥ = w[ ]�M (u[ ]�M ⊥) = a�M (b�M c).

• Case c = m for some m ∈ B.

(a⊕M b)�M c = (w[ ]⊕M u[ ])�M m = w[u[ ]]�M m = w[u[m]]

= w[ ]�M w[m] = w[ ]�M (u[ ]�M m) = a�M (b�M c).

Thus ∀a, b ∈M∪ {−,⊥} : ∀c ∈M∪ {⊥} : (a⊕M b)�M c = a�M (b�M c). Consequently,

also ∀f, g ∈ (I⇀M−) : ∀h ∈ (I⇀M) : (f ⊕M g)�M h = f �M(g�M h) holds.

Now we move to class-level modifications. For arbitrary a, b ∈ {r} × (I⇀M) ∪ {u} ×
(I⇀M−) ∪ {−,⊥} and arbitrary c ∈ (I⇀M) ∪ {⊥}, we show that (a ⊕C b) �C c =

a�C (b�C c) by case distinction on a:

— Case a = ⊥.

(a⊕C b)�C c = (⊥⊕C b)�C c = b�C c = ⊥�C (b�C c) = a�C (b�C c).

— Case a = −.

(a⊕C b)�C c = (−⊕C b)�C c = −�C c = ⊥ = −�C (b�C c) = a�C (b�C c).

— Case a = r f for some f ∈ (I⇀M).

(a⊕C b)�C c = (r f ⊕C b)�C c = r f �C c = f = r f �C (b�C c) = a�C (b�C c).

— Case a = u f for some f ∈ (I⇀M−). We make a case distinction on b:
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– Case b = ⊥.

(a⊕C b)�C c = (a⊕C ⊥)�C c = a�C c = a�C (⊥�C c) = a�C (b�C c).

– Case b = −.

(a⊕C b)�C c = (u f ⊕C −)�C c = r f∗ �C c = f∗ = u f �C ⊥
= u f �C (−�C c) = a�C (b�C c).

– Case b = r g for some g ∈ (I⇀M).

(a⊕C b)�C c = (u f ⊕C r g)�C c = r (f ⊕M g)∗ �C c
?
= (f ⊕M g)∗ = f �M g

= u f �C g = u f �C (r g �C c) = a�C (b�C c).

Step
?
= follows from Lemma 15.

– Case b = u g for some g ∈ (I⇀M−). We make a case distinction on c:

• Case c = ⊥.

(a⊕C b)�C c = (u f ⊕C u g)�C ⊥ = u (f ⊕M g)�C ⊥ = (f ⊕M g)∗
?
= f ⊕M g∗ = u f �C g

∗ = u f �C (u g �C ⊥) = a�C (b�C c).

Step
?
= follows from Lemma 16.

• Case c = h for some h ∈ (I⇀M).

(a⊕C b)�C c = (u f ⊕C u g)�C h = u (f ⊕M g)�C h = (f ⊕M g)�M h

= f �M(g�M h) = f �M(u g �C h) = u f �C (u g �C h) = a�C (b�C c).

Thus (y⊕C x)�C p = y�C(x�C p) also holds for all x, y ∈ D and p ∈ P. Or in standard

notation: (y ·x)(p) = y(x(p)).

A.5. Proof of Lemma 12

Proof. We need to show that this holds for each axiom in Definition 30.

1(ε ·µ)(p) = ε(µ(p)) = µ(p) = µ(ε(p)) = (µ · ε)(p).
2(µ ·(ν · η))(p) = µ((ν · η)(p)) = µ(ν(η(p))) = (µ · ν)(η(p)) = ((µ · ν) · η)(p).

3(m · i)(p) = m(i(p)) = m � (i + p) = (m � i) + (m � p) = (m � i) + m(p) =

(m� i)(m(p)) = ((m� i) ·m)(p).

4(i · j)(p) = i(j(p)) = i+(j+p) = j+(i+p) = (j · i)(p). This is also equal to (i+ j)(p)

and (j + i)(p), as, for example i+ (j + p) = (i+ j) + p = (i+ j)(p).

5(i · i)(p) = i(i(p)) = i+(i+p) = (i+ i)+p = (i+ i)(p). Also, (i+ i)+p = i+p = i(p).

6(m ·n)(p) = m(n(p)) = m� (n� p) = (m • n)� p = (m • n)(p).

71(p) = 1� p = p = ε(p) = p = 0 + p = 0(p).

A.6. Proof of Lemma 13

Proof. Firstly, J〈0, 1〉K = 0 · 1 = ε · ε = ε. Secondly, let q = 〈i,m〉 and q′ = 〈i′,m′〉. On

one hand, J〈i,m〉� 〈i′,m′〉K = J〈i+m� i′,m •m′〉K = (i+m� i′) ·(m•m′). On the other

hand, J〈i,m〉K ·J〈i′,m′〉K = i ·m · i′ ·m′ = i ·(m� i′) ·(m ·m′) = (i+m� i′) ·(m •m′).
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A.7. Proof of Theorem 4

Proof.

1〈〈J〈i, l〉K〉〉 = 〈〈l · i〉〉 = 〈0, l〉� 〈i, 1〉 = 〈i+ (1� 0), 1 • l〉 = 〈i+ 0, 1 • l〉 = 〈i, l〉.
2By induction on µ.

— Case i. J〈〈i〉〉K = J〈i, 1〉K = i · 1 = i · ε = i.

— Case m. J〈〈m〉〉K = J〈0,m〉K = 0 ·m = ε ·m = m.

— Case µ · ν: J〈〈µ • ν〉〉K = J〈〈µ〉〉� 〈〈ν〉〉K = J〈〈µ〉〉K ·J〈〈ν〉〉K = µ · ν. using Lemma 13 and

induction hypothesis.

3Associativity is preserved as • is associative. That 〈0, 1〉 is the unit of � is preserved

by J−K follows from the fact that 0 = 1 = ε and ε is the unit of ·. Finally, if 〈i1,m1〉 =

〈i2,m2〉, then i1 = i2 and m1 = m2. Now J〈i1,m1〉K = m1 · i1 = m2 · i2 = J〈i2,m2〉K.
4We need to show that the axioms in Definition 30 are preserved by 〈〈−〉〉.
(1) Follows because 〈〈ε〉〉 = 〈0, 1〉 is the unit of �.

(2) Follows because � is associative.

(3) 〈〈m · i〉〉 = 〈0,m〉� 〈i, 1〉 = 〈m� i,m〉 which is the same as 〈〈(m� i) ·m〉〉 =

〈m� i, 1〉� 〈0,m〉 = 〈m� i,m〉.
(4) 〈〈i · j〉〉 = 〈i, 1〉� 〈j, 1〉 = 〈i+ j, 1〉 = 〈〈i+ j〉〉, which is clearly also equal to 〈〈j + i〉〉
and 〈〈j · i〉〉.
(5) 〈〈i · i〉〉 = 〈i, 1〉� 〈i, 1〉 = 〈i+ i, 1〉 = 〈i, 1〉 = 〈〈i〉〉.
(6) 〈〈m ·n〉〉 = 〈0,m〉� 〈0, n〉 = 〈0 + (m� 0),m • n〉 = 〈0,m • n〉 = 〈〈m • n〉〉.
(7) By definition we have 〈〈ε〉〉 = 〈0, 1〉, 〈〈0〉〉 = 〈0, 1〉, and 〈〈1〉〉 = 〈0, 1〉.

A.8. Proof of Theorem 5

Proof. Firstly, image(〈i,m〉� 〈p, 1〉) = image(〈i+ (m� p),m〉) = i + (m � p) and

J〈i,m〉K(p) = (i ·m)(p) = i(m(p)) = i+ (m� p).
Secondly, we prove by induction using the stronger hypothesis that for all µ ∈MI and

all i ∈ I, there exists an m such that 〈〈µ〉〉� 〈p, 1〉 = 〈µ(p),m〉. Proceed by induction on

form of µ:

— Case i. 〈〈i〉〉� 〈p, 1〉 = 〈i, 1〉� 〈p, 1〉 = 〈i+ p, 1〉. Now i(p) = i+ p, as desired.

— Case m. 〈〈m〉〉� 〈p, 1〉 = 〈0,m〉� 〈p, 1〉 = 〈m� p,m〉. Now m(p) = m� p, as desired.

— Case µ · ν. 〈〈µ · ν〉〉� 〈p, 1〉 = 〈〈µ〉〉� 〈〈ν〉〉� 〈p, 1〉. By the induction hypothesis, there

exists an m such that 〈〈ν〉〉� 〈p, 1〉 = 〈ν(p),m〉. Similarly, applying the induction

hypothesis to µ ∈ MI and 〈ν(p),m〉 ∈ P , we obtain that there exists an n such that

〈〈µ〉〉� 〈ν(p),m〉 = 〈µ(ν(p)), n〉. By Definition 30 this equals 〈(µ · ν)(p), n〉, and we are

done.


