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ABSTRACT

PSIDE – Parallel Software for Implicit Differential Equations – is a code for solving implicit differential equations

on shared memory parallel computers. In this paper we describe the user interface.
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1. Introduction

PSIDE solves Implicit Differential Equations (IDEs) of the form

g(t, y, y′) = 0 , g, y ∈ IRd,
t0 ≤ t ≤ tend, y(t0) = y0 , y′(t0) = y′0 ,

(1.1)

were y0 and y′0 are such that g(t0, y0, y
′
0) = 0 (for higher-index problems the initial values have to

satisfy more conditions; see §4). It uses the four-stage Radau IIA method. The nonlinear systems are
solved by a modified Newton process, in which every Newton iterate itself is computed by means of the
Parallel Iterative Linear system Solver for Runge–Kutta (PILSRK) proposed in [HS97]. This process
is constructed such that the four stage values can be computed simultaneously, thereby making PSIDE
suitable for execution on four processors; see §7 for installation instructions. Full details about the
algorithmic choices and the implementation of PSIDE can be found in [SLV98b].
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2. Subroutine heading of PSIDE

PSIDE is a Fortran 77 routine, whose heading reads

SUBROUTINE PSIDE(NEQN,Y,DY,GEVAL,
+ JNUM,NLJ,NUJ,JEVAL,
+ MNUM,NLM,NUM,MEVAL,
+ T,TEND,RTOL,ATOL,IND,
+ LRWORK,RWORK,LIWORK,IWORK,
+ RPAR,IPAR,IDID)
INTEGER NEQN,NLJ,NUJ,NLM,NUM,IND(*),LRWORK,LIWORK,

+ IWORK(LIWORK),IPAR(*),IDID
DOUBLE PRECISION Y(NEQN),DY(NEQN),T,TEND,RTOL(*),ATOL(*),

+ RWORK(LRWORK),RPAR(*)
LOGICAL JNUM,MNUM
EXTERNAL GEVAL,JEVAL,MEVAL

C
C INTENT(IN) NEQN,JNUM,NLJ,NUJ,MNUM,NLM,NUM,TEND,RTOL,ATOL,IND,
C + LRWORK,LIWORK
C INTENT(INOUT) Y,DY,T,RWORK,IWORK,RPAR,IPAR
C INTENT(OUT) IDID

The variables listed under INTENT(IN), INTENT(INOUT), and INTENT(OUT) are input, update and
output variables, respectively.

3. Arguments

NEQN
On entry, this is the dimension d of the IDE (1.1), the number of equations to be solved.

Y(NEQN)
On entry, this array contains the initial value y0.
On exit, Y contains y(T), the computed solution approximation at T.
(After successful return, T = TEND.)

DY(NEQN)
On entry, this array contains the initial value y′0.
On exit, DY contains y′(T), the computed derivative approximation at T.
(After successful return, T = TEND.)

GEVAL
This is the subroutine which you provide to define the IDE

SUBROUTINE GEVAL(NEQN,T,Y,DY,G,IERR,RPAR,IPAR)
INTEGER NEQN,IERR,IPAR(*)
DOUBLE PRECISION T,Y(NEQN),DY(NEQN),G(NEQN),RPAR(*)

C INTENT(IN) NEQN,T,Y,DY
C INTENT(INOUT) IERR,RPAR,IPAR
C INTENT(OUT) G

For the given values of T, Y, and DY the subroutine should return the residual of the IDE

G = g(T, Y, DY).
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You must declare the name GEVAL in an external statement in your program that calls PSIDE.

IERR is an integer flag which is always equal to zero on input. Subroutine GEVAL should set
IERR = -1 if GEVAL can not be evaluated for the current values of Y and DY. PSIDE will then
try to prevent IERR = -1 by using a smaller stepsize.

All other parameters have the same meaning as within subroutine PSIDE.

JNUM
To solve the IDE it is necessary to use the partial derivatives J = ∂g/∂y. The solution will be
more reliable if you provide J via the subroutine JEVAL, in this case set JNUM = .FALSE.. If
you do not provide a subroutine to evaluate J , provide a dummy JEVAL, set JNUM = .TRUE. and
PSIDE will approximate J by numerical differencing.

NLJ and NUJ
If J is a full matrix, set NLJ = NEQN, otherwise set NLJ and NUJ equal to the lower bandwidth
and upper bandwidth of J , respectively.

JEVAL
This is the subroutine which you provide to define J (if JNUM .EQ. .FALSE.)

SUBROUTINE JEVAL(LDJ,NEQN,NLJ,NUJ,T,Y,DY,DGDY,RPAR,IPAR)
INTEGER LDJ,NEQN,NLJ,NUJ,IPAR(*)
DOUBLE PRECISION T,Y(NEQN),DY(NEQN),DGDY(LDJ,NEQN),RPAR(*)

C INTENT(IN) LDJ,NEQN,NLJ,NUJ,T,Y,DY
C INTENT(INOUT) RPAR,IPAR
C INTENT(OUT) DGDY

For the given values of T, Y, and DY the subroutine should return the partial derivatives, such
that

• DGDY(I,J) contains ∂gI(T, Y, DY)/∂yJ if J is a full matrix (NLJ = NEQN);

• DGDY(I-J+NUJ+1,J) contains ∂gI(T, Y, DY)/∂yJ if J is a band matrix (0 ≤ NLJ < NEQN)
(LAPACK / LINPACK / BLAS storage).

You must declare the name JEVAL in an external statement in your program that calls PSIDE.

LDJ denotes the leading dimension of J .

All other parameters have the same meaning as within subroutine PSIDE.

MNUM
To solve the IDE it is necessary to use the partial derivatives M = ∂g/∂y′. The solution will
be more reliable if you provide M via MEVAL, in this case set MNUM = .FALSE.. If you do not
provide a subroutine to evaluate M , provide a dummy MEVAL, set MNUM = .TRUE. and PSIDE
will approximate M by numerical differencing.

NLM and NUM
If M is a full matrix, set NLM = NEQN, otherwise set NLM and NUM equal to the lower bandwidth
and upper bandwidth of M , respectively. It is supposed that NLM .LE. NLJ and NUM .LE. NUJ.

MEVAL
This is the subroutine which you provide to define M (if MNUM .EQ. .FALSE.)
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SUBROUTINE MEVAL(LDM,NEQN,NLM,NUM,T,Y,DY,DGDDY,RPAR,IPAR)
INTEGER LDM,NEQN,NLM,NUM,IPAR(*)
DOUBLE PRECISION T,Y(NEQN),DY(NEQN),DGDDY(LDM,NEQN),RPAR(*)

C INTENT(IN) LDM,NEQN,NLM,NUM,T,Y,DY
C INTENT(INOUT) RPAR,IPAR
C INTENT(OUT) DGDDY

For the given values of T, Y, and DY the subroutine should return the partial derivatives, such
that

• DGDDY(I,J) contains ∂gI(T, Y, DY)/∂y′J if M is a full matrix (NLM = NEQN);

• DGDDY(I-J+NUM+1,J) contains ∂gI(T, Y, DY)/∂y′J if M is a band matrix (0 ≤ NLM < NEQN)
(LAPACK / LINPACK / BLAS storage).

You must declare the name MEVAL in an external statement in your program that calls PSIDE.

LDM denotes the leading dimension of M .

All other parameters have the same meaning as within subroutine PSIDE.

T
On entry, T must specify t0, the initial value of the independent variable.
On successful exit (IDID .EQ. 1), T contains TEND.
On an error return, T is the point reached.

TEND
On entry, TEND must specify the value of the independent variable at which the solution is
desired.

RTOL and ATOL
You must assign relative RTOL and absolute ATOL error tolerances to tell the code how small you
want the local errors to be. You have two choices

• both RTOL and ATOL are scalars (set IWORK(1) = 0): the code keeps, roughly, the local
error of Y(I) below RTOL*ABS(Y(I))+ATOL;

• both RTOL and ATOL are vectors (set IWORK(1) = 1): the code keeps the local error of Y(I)
below RTOL(I)*ABS(Y(I))+ATOL(I).

In either case all components must be non-negative.

IND
If IWORK(2) .EQ. 1 , then IND should be declared of length NEQN and IND(I) must specify the
index of variable I. If IWORK(2) .EQ. 0 , then IND is not referenced and the problem is assumed
to be of index 1.
See §4 for information how to determine the index of variables of certain problem classes.

LRWORK
On entry LRWORK must specify the length of the RWORK array. You must have for the full partial
derivatives case (when NLJ = NEQN)

LRWORK .GE. 20 + 27*NEQN + 6*NEQN**2 ,

for the case where M is banded and J is full (when NLJ = NEQN and NLM < NEQN)

LRWORK .GE. 20 + (27 + NLM+NUM+1 + 5*NEQN)*NEQN ,
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and for the case where both partial derivatives are banded (when NLJ < NEQN)

LRWORK .GE. 20 + (27 + NLJ+NUJ+NLM+NUM+2 + 4*(2*NLJ+NUJ+1))*NEQN .

RWORK
Real work array of length LRWORK. RWORK(1), . . . ,RWORK(20) serve as parameters for the code.
For standard use, set RWORK(1), . . . ,RWORK(20) to zero before calling.

On entry:

– if RWORK(1) .GT. 0D0 then PSIDE will use RWORK(1) as initial stepsize instead of deter-
mining it internally.

On exit:

– RWORK(1) contains the stepsize used on the last successful step.

LIWORK
On entry LIWORK must specify the length of the IWORK array. You must have

LIWORK .GE. 20 + 4*NEQN.

IWORK
Integer work array of length LIWORK. IWORK(1), . . . ,IWORK(20) serve as parameters for the code.
For standard use, set IWORK(1), . . . ,IWORK(20) to zero before calling.

On entry:

– if IWORK(1) .EQ. 1 then RTOL and ATOL are vectors instead of scalars,

– if IWORK(2) .EQ. 1 then IND is a vector,

– set IWORK(10) = 0 if PSIDE is called for the first time; for subsequent calls of PSIDE do
not reinitialize the parameters IWORK(10), . . . ,IWORK(19) to zero.

On exit:

– IWORK(10) contains the number of successive PSIDE calls,

– IWORK(11) contains the number of g evaluations,

– IWORK(12) contains the number of J and M evaluations (J and M are computed in tandem
and count as 1),

– IWORK(13) contains the number of LU-decompositions.

– IWORK(14) contains the number of forward/backward solves,

– IWORK(15) contains the total number of steps (including rejected steps),

– IWORK(16) contains the number of rejected steps due to error control,

– IWORK(17) contains the number of rejected steps due to Newton failure,

– IWORK(18) contains the number of rejected steps due to excessive growth of the solution,

– IWORK(19) contains the number of rejected steps due to IERR .EQ. -1 return of GEVAL.

The integration characteristics in IWORK(11), . . . ,IWORK(14) refer to an implementation on a
one-processor computer. When implemented on a parallel computer with four processors, one
may divide these numbers by four to obtain the number of sequential evaluations, decompositions
and solves.
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RPAR and IPAR
RPAR and IPAR are double precision and integer arrays which you can use for communication
between your calling program and the subroutines GEVAL, and/or JEVAL, MEVAL. They are not
altered by PSIDE. If you do not need RPAR and IPAR, ignore these parameters by treating them
as dummy arguments. If you choose to use them, dimension them in GEVAL and/or JEVAL, MEVAL
as arrays of appropriate length. Because of the parallel implementation of PSIDE, GEVAL must
not alter RPAR and IPAR to prevent concurrent updating. JEVAL and MEVAL may alter them.

IDID
On exit:

– if IDID .EQ. 1 then the integration was successful,

– if IDID .EQ. -1 then PSIDE could not reach TEND because the stepsize became too small,

– if IDID .EQ. -2 then something else went wrong. For example this happens when the
input was invalid. An error message will be printed.

4. Index determination

As mentioned before, it is important for higher-index problems to set the index of the variables in the
vector IND. In this section we specify for certain problem classes, which can easily be written in the
form (1.1), how this should be done. The results were taken from [HLR89]. For higher-index problems
in these classes we also list the additional conditions that have to be fulfilled by the initial values. We
refer to [SLV98b] for information on how PSIDE uses IND. If φ is a function of q, then we will denote
the (partial) derivative of φ with respect to q by φq.

4.1 ODEs
First of all, Ordinary Differential Equations (ODEs), which are of the form

y′ = f(t, y) , y, f ∈ IRd,
t0 ≤ t ≤ tend, y(t0) = y0 ,

are of index 1, i.e. we can set IWORK(2) = 0.

4.2 DAEs of index 1
The class of Differential–Algebraic Equations (DAEs) takes the form

y′ = f(t, y, z) , y, f ∈ IRd1 ,

0 = g(t, y, z) , z, g ∈ IRd2 ,
t0 ≤ t ≤ tend, y(t0) = y0 , z(t0) = z0 ,

(4.1)

where y0 and z0 are such that g(t0, y0, z0) = 0. If gz is invertible in the neighborhood of the solution,
then (4.1) is of index 1 and IWORK(2) = 0 is the right setting.

4.3 IDEs with invertible mass matrix
Also of index 1 are problems of the form

M(y)y′ = f(t, y) , y, f ∈ IRd,
t0 ≤ t ≤ tend, y(t0) = y0 ,

where M(y) (often called the mass matrix ) is invertible in the neighborhood of the solution. Again,
set IWORK(2) = 0.
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4.4 DAEs of index 2
An often arising subclass of (4.1) where gy is not invertible is

y′ = f(t, y, z) , y, f ∈ IRd1 ,

0 = g(t, y) , z, g ∈ IRd2 ,
t0 ≤ t ≤ tend, y(t0) = y0 , z(t0) = z0 ,

(4.2)

where y0 and z0 are such that g(t0, y0) = 0 and gy(t0, y0)f(t0, y0, z0) = 0. If gyfz is invertible in the
neighborhood of the solution, then (4.2) is of index 2. The variables y and z are of index 1 and 2,
respectively, so set IND(I) = 1 if I corresponds to a y-component, and IND(I) = 2 if I corresponds to
a z-component.

4.5 IDEs of index 3
If the problem is of the form

y′ = f(t, y, z) , y, f ∈ IRd1 ,

z′ = k(t, y, z, u) , z, k ∈ IRd2 ,

0 = g(t, y) , u, g ∈ IRd3 ,
t0 ≤ t ≤ tend, y(t0) = y0 , z(t0) = z0 , u(t0) = u0 ,

(4.3)

where gyfzku is invertible in the neighborhood of the solution and y0, z0 and u0 satisfy the conditions

g(t0, y0) = 0 ,
gy(t0, y0)f(t0, y0, z0) = 0 ,
gyy(t0, y0)(f(t0, y0, z0), f(t0, y0, z0))+

gy(t0, y0)(fy(t0, y0, z0)f(t0, y0, z0) + fz(t0, y0, z0)k(t0, y0, z0)) = 0 ,

then (4.3) is an IDE of index 3. The variables y, z and u are of index 1, 2 and 3, respectively, so set
IND(I) = 1 if I corresponds to a y-component, IND(I) = 2 if I corresponds to a z-component, and
IND(I) = 3 if I corresponds to a u-component.

4.6 Multibody systems of index 3
In mechanics one often encounters the problem

q′ = u , q, u ∈ IRd1 ,

M(q)u′ = f(t, q, u) +GT(q)λ , f ∈ IRd2 ,

0 = g(t, q) , λ, g ∈ IRd3 ,
t0 ≤ t ≤ tend, q(t0) = q0 , u(t0) = u0 , λ(t0) = λ0 ,

(4.4)

where G(q) = gq, the matrix M(q) non-singular in the neighborhood of the solution and q0, u0 and
λ0 are such that they satisfy

g(t0, q0) = 0 ,
G(t0, q0)u0 = 0 ,
gqq(t0, q0)(u0, u0) +G(t0, q0)M−1(q0)(f(t0, q0, u0) +GT(q0)λ0) = 0 .

We could rewrite the system to the form (4.3) by premultiplying both sides of the u′-equation by
M−1(q). Consequently, (4.4) is of index 3 and the variables q, u and λ are of index 1, 2 and 3,
respectively, so set IND(I) = 1 if I corresponds to a q-component, IND(I) = 2 if I corresponds to a
u-component, and IND(I) = 3 if I corresponds to a λ-component.
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5. Examples

Machine readable versions of the following two example drivers are available from [SLV98a].

5.1 Van der Pol problem
Here we give a simple example, solving the Van der Pol problem, an ODE of dimension 2.

5.1.1 Driver for Van der Pol problem
PROGRAM VDPOL

C
C PSIDE example: Van der Pol problem
C
C - ODE of dimension 2 y’ = f
C - formulated as general IDE g = f - y’ = 0
C - analytical partial derivative J (full 2x2 matrix) dg/dy = df/dy
C - analytical partial derivative M (band matrix) dg/dy’ = -I
C

INTEGER NEQN,NLJ,NUJ,NLM,NUM
LOGICAL JNUM,MNUM
PARAMETER (NEQN=2,NLJ=NEQN,NUJ=NEQN,NLM=0,NUM=0)
PARAMETER (JNUM=.FALSE., MNUM=.FALSE.)
INTEGER LRWORK, LIWORK
PARAMETER (LRWORK = 20+27*NEQN+6*NEQN**2, LIWORK = 20+4*NEQN)

INTEGER IND,IWORK(LIWORK),IPAR,IDID
DOUBLE PRECISION Y(NEQN),DY(NEQN),T,TEND,RTOL,ATOL,

+ RWORK(LRWORK),RPAR

EXTERNAL VDPOLG,VDPOLJ,VDPOLM

INTEGER I

C initialize PSIDE

DO 10 I=1,20
IWORK(I) = 0
RWORK(I) = 0D0

10 CONTINUE

C consistent initial values

T = 0D0
Y(1) = 2D0
Y(2) = 0D0
DY(1) = 0D0
DY(2) = -2D0

TEND = 41.5D0

C set scalar tolerances

RTOL = 1D-4
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ATOL = 1D-4

WRITE(*,’(1X,A,/)’) ’PSIDE example solving Van der Pol problem’

CALL PSIDE(NEQN,Y,DY,VDPOLG,
+ JNUM,NLJ,NUJ,VDPOLJ,
+ MNUM,NLM,NUM,VDPOLM,
+ T,TEND,RTOL,ATOL,IND,
+ LRWORK,RWORK,LIWORK,IWORK,
+ RPAR,IPAR,IDID)

IF (IDID.EQ.1) THEN
WRITE(*,’(1X,A,F5.1)’) ’solution at t = ’, TEND
WRITE(*,*)
DO 20 I=1,NEQN

WRITE(*,’(4X,’’y(’’,I1,’’) =’’,E11.3)’) I,Y(I)
20 CONTINUE

WRITE(*,*)
WRITE(*,’(1X,A,I4)’) ’number of steps =’, IWORK(15)
WRITE(*,’(1X,A,I4)’) ’number of f-s =’, IWORK(11)
WRITE(*,’(1X,A,I4)’) ’number of J-s =’, IWORK(12)
WRITE(*,’(1X,A,I4)’) ’number of LU-s =’, IWORK(13)

ELSE
WRITE(*,’(1X,A,I4)’) ’PSIDE failed: IDID =’, IDID

ENDIF

END

SUBROUTINE VDPOLG(NEQN,T,Y,DY,G,IERR,RPAR,IPAR)
INTEGER NEQN,IERR,IPAR(*)
DOUBLE PRECISION T,Y(NEQN),DY(NEQN),G(NEQN),RPAR(*)
G(1) = Y(2)-DY(1)
G(2) = 500D0*(1D0-Y(1)*Y(1))*Y(2)-Y(1)-DY(2)
RETURN
END

SUBROUTINE VDPOLJ(LDJ,NEQN,NLJ,NUJ,T,Y,DY,DGDY,RPAR,IPAR)
INTEGER LDJ,NEQN,NLJ,NUJ,IPAR(*)
DOUBLE PRECISION T,Y(NEQN),DY(NEQN),DGDY(LDJ,NEQN),RPAR(*)
DGDY(1,1) = 0D0
DGDY(1,2) = 1D0
DGDY(2,1) = -1000D0*Y(1)*Y(2)-1D0
DGDY(2,2) = 500D0*(1D0-Y(1)*Y(1))
RETURN
END

SUBROUTINE VDPOLM(LDM,NEQN,NLM,NUM,T,Y,DY,DGDDY,RPAR,IPAR)
INTEGER LDM,NEQN,NLM,NUM,IPAR(*)
DOUBLE PRECISION T,Y(NEQN),DY(NEQN),DGDDY(LDM,NEQN),RPAR(*)
DGDDY(1,1) = -1D0
DGDDY(1,2) = -1D0
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RETURN
END

5.1.2 Output for Van der Pol problem
This is the output of the example given in the previous subsection.

PSIDE example solving Van der Pol problem

solution at t = 41.5

y(1) = 0.194E+01
y(2) = -0.140E-02

number of steps = 22
number of f-s = 214
number of J-s = 2
number of LU-s = 88

5.2 Pendulum problem
Here we give a simple example, solving the Pendulum problem, an IDE of dimension 5 and index 3.

5.2.1 Driver for Pendulum problem
PROGRAM PENDUL

C
C PSIDE example: Pendulum problem
C
C - IDE of dimension 5
C
C p’ = q
C M q’ = f - G^T lambda
C 0 = g(p)
C
C - index of p = 1; index of q = 2; index of lambda = 3
C - formulated as general IDE: g(t,y,y’) = 0
C - analytical partial derivative J (full 5x5 matrix)
C - analytical partial derivative M (band matrix)
C

INTEGER NEQN,NLJ,NUJ,NLM,NUM
LOGICAL JNUM,MNUM
PARAMETER (NEQN=5,NLJ=NEQN,NUJ=NEQN,NLM=0,NUM=0)
PARAMETER (JNUM=.TRUE., MNUM=.TRUE.)
INTEGER LRWORK, LIWORK
PARAMETER (LRWORK = 20 + (27 + NLM+NUM+1 + 5*NEQN)*NEQN,

+ LIWORK = 20 + 4*NEQN)

INTEGER IND(NEQN),IWORK(LIWORK),IPAR,IDID
DOUBLE PRECISION Y(NEQN),DY(NEQN),T,TEND,RTOL,ATOL,

+ RWORK(LRWORK),RPAR

DOUBLE PRECISION GRAV,MASS,LEN
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PARAMETER(GRAV=1D0,MASS=1D0,LEN=1D0)

EXTERNAL PENG,PENJ,PENM

INTEGER I

C initialize PSIDE

DO 10 I=1,20
IWORK(I) = 0
RWORK(I) = 0D0

10 CONTINUE

C consistent initial values

DO 20 I=1,NEQN
Y(I) = 0D0
DY(I) = 0D0

20 CONTINUE
T = 0D0
Y(1) = LEN
DY(4) = -GRAV/MASS

TEND = 10D0

C set index of variables

IWORK(2) = 1
IND(1) = 1
IND(2) = 1
IND(3) = 2
IND(4) = 2
IND(5) = 3

C set scalar tolerances

RTOL = 1D-4
ATOL = 1D-4

WRITE(*,’(1X,A,/)’) ’PSIDE example solving Pendulum problem’

CALL PSIDE(NEQN,Y,DY,PENG,
+ JNUM,NLJ,NUJ,PENJ,
+ MNUM,NLM,NUM,PENM,
+ T,TEND,RTOL,ATOL,IND,
+ LRWORK,RWORK,LIWORK,IWORK,
+ RPAR,IPAR,IDID)

IF (IDID.EQ.1) THEN
WRITE(*,’(1X,A,F5.1)’) ’solution at t = ’, TEND
WRITE(*,*)
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DO 30 I=1,NEQN
WRITE(*,’(4X,’’y(’’,I1,’’) =’’,E11.3)’) I,Y(i)

30 CONTINUE
WRITE(*,*)
WRITE(*,’(1X,A,I5)’) ’number of steps =’, IWORK(15)
WRITE(*,’(1X,A,I5)’) ’number of f-s =’, IWORK(11)
WRITE(*,’(1X,A,I5)’) ’number of J-s =’, IWORK(12)
WRITE(*,’(1X,A,I5)’) ’number of LU-s =’, IWORK(13)

ELSE
WRITE(*,’(1X,A,I4)’) ’PSIDE failed: IDID =’, IDID

ENDIF

END

SUBROUTINE PENG(NEQN,T,Y,DY,G,IERR,RPAR,IPAR)
INTEGER NEQN,IERR,IPAR(*)
DOUBLE PRECISION T,Y(NEQN),DY(NEQN),G(NEQN),RPAR(*)
DOUBLE PRECISION GRAV,MASS,LEN
PARAMETER(GRAV=1D0,MASS=1D0,LEN=1D0)
G(1) = DY(1)-Y(3)
G(2) = DY(2)-Y(4)
G(3) = MASS*DY(3)+Y(1)*Y(5)
G(4) = MASS*DY(4)+Y(2)*Y(5)+GRAV
G(5) = Y(1)*Y(1)+Y(2)*Y(2)-LEN*LEN
RETURN
END

SUBROUTINE PENJ(LDJ,NEQN,NLJ,NUJ,T,Y,DY,DGDY,RPAR,IPAR)
INTEGER LDJ,NEQN,NLJ,NUJ,IPAR(*)
DOUBLE PRECISION T,Y(NEQN),DY(NEQN),DGDY(LDJ,NEQN),RPAR(*)
INTEGER I,J
DO 20 J=1,NEQN

DO 10 I=1,NEQN
DGDY(I,J) = 0D0

10 CONTINUE
20 CONTINUE

DGDY(1,3) = -1D0
DGDY(2,4) = -1D0
DGDY(3,1) = Y(5)
DGDY(3,5) = Y(1)
DGDY(4,2) = Y(5)
DGDY(4,5) = Y(2)
DGDY(5,1) = 2D0*Y(1)
DGDY(5,2) = 2D0*Y(2)
RETURN
END

SUBROUTINE PENM(LDM,NEQN,NLM,NUM,T,Y,DY,DGDDY,RPAR,IPAR)
INTEGER LDM,NEQN,NLM,NUM,IPAR(*)
DOUBLE PRECISION T,Y(NEQN),DY(NEQN),DGDDY(LDM,NEQN),RPAR(*)
DOUBLE PRECISION GRAV,MASS,LEN
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PARAMETER(GRAV=1D0,MASS=1D0,LEN=1D0)
DGDDY(1,1) = 1D0
DGDDY(1,2) = 1D0
DGDDY(1,3) = MASS
DGDDY(1,4) = MASS
DGDDY(1,5) = 0D0
RETURN
END

5.2.2 Output for Pendulum problem
This is the output of the example given in the previous subsection.

PSIDE example solving Pendulum problem

solution at t = 10.0

y(1) = -0.812E+00
y(2) = -0.584E+00
y(3) = -0.631E+00
y(4) = 0.877E+00
y(5) = 0.175E+01

number of steps = 142
number of f-s = 2880
number of J-s = 82
number of LU-s = 564

6. PSIDE and the ‘Test set for Initial Value Problem solvers’

A more involved driver for PSIDE is supplied with the ‘Test set for Initial Value Problem solvers’,
which is available via the World Wide Web [LS98]. This test platform not only contains the Fortran 77
routines for many test problems, but also drivers for the solvers DASSL [Pet91], MEBDFDAE [Cas98],
RADAU [HW98], RADAU5 [HW96], VODE [BHB97], and PSIDE. This means that if one wants to
solve a particular set of differential equations with PSIDE, it suffices to write the code that defines the
problem in the test set format and link it with PSIDE and the test set driver. An additional benefit
is that it is easy to compare solvers mutually. To give an impression of the performance of PSIDE in
relation to that of the other solvers, we give in Figure 1–2 work-precision diagrams for two problems
from [LS98]. They correspond to the Medical Akzo Nobel problem, a set of semi-discretized partial
differential equations of dimension 400 which describe the injection of a medicine in a tumorous tissue,
and the NAND gate, a set of 14 implicit differential equations of index 1 which model a electrical
circuit performing the logical NOT(AND) operation. To produce these diagrams, we used for every solver
a range of input tolerances, measured the accuracy delivered by the solver in number of correct digits
and plotted these numbers against the CPU times needed for the runs on a logarithmic scale. The
PSIDE-1 curves correspond to timings on a one-processor machine, the PSIDE-4 curves were obtained
by dividing the one-processor timings by the speed-up factors on four processors. For an explanation
how these factors were obtained, we refer to [LS98]. Results of MEBDFDAE, RADAU, RADAU5 and
VODE are not included in Figure 2, because these solvers can not handle implicit differential equations
directly. From Figure 1 we see that for the Medical Akzo Nobel problem PSIDE on one processor
is about as efficient as DASSL, MEBDFDAE and VODE and less efficient than RADAU5, whereas
PSIDE using four processors is the most efficient solver. Figure 2 reveals that for the NAND gate
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DASSL performs better than PSIDE in one-processor mode, but for higher tolerances worse if four
processors are used. These figures are quite representative for the numerous comparisons in [LS98],
which show that the speed-up factor of PSIDE with respect tot the other solvers is between 1.14
and 3.28, depending on problem and solver.

Integration characteristics, complete descriptions of the test problems and the test set format, full
details about the work-precision diagrams, as well as comparisons for other test problems, can be
found in [LS98].

7. Installing PSIDE

7.1 Parallelism
The Fortran 77 source of PSIDE [SLV98a] contains Cray autotasking directives [Cra94]. Because
of the high-level parallelism – the four stage values can be computed in parallel (cf. [SLV98b, Sec-
tion 2]) – we explicitly autotask the loops that should be computed in parallel. If you are not working
on a Cray, it should be almost trivial to change the given autotasking directives to facilitate your
compiler. The autotasking directives appear in the source code as CMIC$ DOALL PRIVATE(VAR1,...)
SHARED(VAR1,...), beginning at column 1. The DOALL directive indicates that the DO loop that begins
on the next line may be executed in parallel. PRIVATE(...) specifies that each processor will have its
own private copy of these variables. SHARED(...) identifies those variables that are shared between
processors.

7.2 Linear algebra
For PSIDE’s linear algebra we chose to use LAPACK. However, if you do not have available on your
system both

• a machine tuned LAPACK [ABB+95], and

• a machine optimized BLAS

we suggest you use the linear algebra routines available at [SLV98a]. Of course the latter will work,
however, it may give much worse performance.
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