
Run-Time Verification of Black-Box
Components using Behavioral Specifications:

An Experience Report on Tool Development ?

Frank S. de Boer1,2 and Stijn de Gouw1,2

1 CWI, Amsterdam, The Netherlands
2 Leiden University, The Netherlands

Abstract. We introduce a generic component-based design of a run-
time checker, identify its components and their requirements, and eval-
uate existing state of the art tools instantiating each component.

1 Introduction

Run-time assertion checking is one of the most useful techniques for detecting
faults, and can be applied during any program execution context, including
debugging, testing, and production [3]. Compared to program logics, assertion
checking emphasizes executable specifications. Whereas program logics statically
cover all possible execution paths, run-time assertion checking is fully automated,
and applies on demand to the actual runs of the program.

By their very nature, assertions are state-based in that they describe proper-
ties of the program variables (fields of classes and local variables of methods). In
general, assertions expressed in languages supporting design by contract (like the
Java Modeling Language (JML) [1]) cannot be used to specify the interaction
protocol between objects or components, in contrast to other formalisms such
as message sequence charts and UML sequence diagrams. Nor can state-based
assertions be used to specify component interfaces since such interfaces do not
have a state3.

This paper reports on an integrated tool environment which provides a
smooth integration of the specification and run-time checking of both data- and
protocol-oriented properties of component interfaces. The basic idea underlying
our framework is the representation of message sequences as words of a language
generated by a grammar. The formalism of attribute grammars allows the high-
level specification of user-defined abstractions of message sequences in terms
of attributes of grammars describing these sequences. We introduce a generic

? This research is partly funded by the EU project FP7-231620 HATS:
Highly Adaptable and Trustworthy Software using Formal Models
(http://www.hats-project.eu/)

3 JML uses model variables for interface specifications. However, a separate represents
clause is needed for a full specification, and such clauses can only be defined once
an implementation has been given (and is not implementation independent).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301659117?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

component-based design which supports run-time checking of assertions about
these attributes, which involves parsing the generated sequences of messages. We
identify the components and their requirements, and evaluate existing state of
the art tools which instantiate the components of the generic tool architecture.

Related Work. A preliminary version describing a prototype of an instantiation
of our tool architecture was presented at the workshop “Formal Techniques for
Java-Like Programs 2010” and appeared in its informal proceedings4. This pro-
totype was based on state of the art tools. However, for industrial usage we need
a component-based design (as described above), and an experience report on
various instantiations of the generic tool design.

There exist many other interesting approaches to run-time verification and
monitoring of message sequences which however do not address its integration
with the general context of run-time assertion checking, e.g. JML: PQL, Trace-
matches, JmSeq, LARVA, Jass and JavaMOP. Due to space limitations we do
not further discuss these approaches individually.

2 The Modeling Framework

Abstracting from implementation details (such as field values of objects), an
execution of a Java program can be represented by its global communication
history : the sequence of messages corresponding to the invocation and comple-
tion of (possibly static) methods. Similarly, the execution of a single object can
be represented by its local communication history, which consists of all messages
sent and received by that object. The behavior of a program (or object) can then
be defined as the set of its allowed histories. Whether a history is allowed de-
pends in general both on data (the contents of the messages, e.g. parameter and
return values of method calls) and protocol (the order between messages). The
question arises how such allowed sets of histories can be defined conveniently. In
this section we show how attribute grammars provide a powerful and declarative
way to define such sets. We will use the interface of the Java BufferedReader

(Figure 1) as a running example to explain the basic modeling concepts.

interface BufferedReader {
void close();
int read();

}

Fig. 1. Relevant methods of the
BufferedReader Interface

S ::= open C1 assert open.caller != null
==> open.caller == C1.caller;

| ε
C ::= read C1 C.caller = C1.caller;

| close S1 C.caller = close.caller;
| ε C.caller = null;

Fig. 2. Extended Attribute Grammar mod-
eling the behavior of a BufferedReader

To each method m in the interface we associate two communication events:
‘call-m’ and ‘return-m’. The observable communication history of an object of a

4 Available in the ACM Digital Library with the title “Prototyping a tool environment
for run-time assertion checking in JML with communication histories”, authored by
Frank S. de Boer, Stijn de Gouw and Jurgen Vinju



3

class implementing the above interface consists of sequences of communication
events.

Context-free grammars provide a declarative way to define the allowed histo-
ries of an object. The context-free grammar underlying the attribute grammar
in Figure 2 generates the valid histories for BufferedReader, describing the
prefix closure of sequences of the terminals call-BufferedReader’, ‘call-read’ and
‘call-close’ as given by the regular expression (call-BufferedReader call-read*
call-close). Note that since grammars specify invariant properties of the ongo-
ing behavior of an object, they must be prefix-closed. In general, communication
events form the terminal symbols of the grammar, and non-terminal symbols
specify the valid sequences of communication events.

While context-free grammars provide a convenient way to specify the pro-
tocol structure of the valid histories, they do not take data such as parameters
and return values of method calls and returns into account. Thus the question
arises how to specify the data-flow of the valid histories. To that end, we extend
the grammar with attributes. A terminal symbol ‘call-m’ has built-in attributes
‘caller’, ‘callee’ and the parameter names for respectively the actual parameters
and object identities of the caller and callee. A terminal ‘return-m’ addition-
ally has an attribute result referring to the return value. Non-terminals have
user-defined attributes to define data properties of sequences of events. However
the attributes themselves do not alter the language generated by the attribute
grammar, they only define properties of data-flow of the history. We extend the
attribute grammar with assertions to specify properties of attributes. For exam-
ple, in the attribute grammar in Figure 2 a user-defined attribute ‘caller’ for the
non-terminal ‘C’ is defined storing the identity of the object which closed the
BufferedReader (and is null if the reader was not closed yet). The assertion
allows only those histories in which the object which opened (created) the reader
also closed it.

Assertions can be placed at any position in a production rule and are eval-
uated there. Note that assertions appearing directly before a terminal can be
seen as a precondition of a terminal, whereas post-conditions are placed directly
after the terminal. This is in fact a generalization of traditional pre- and post-
conditions for methods as used in design-by-contract: a single terminal ‘call-m’
can appear in multiple productions, each of which followed by a different asser-
tion. Hence different preconditions (or postconditions) can be used for the same
method, depending on the context (grammar production) in which the call was
made.

3 Generic Tool Architecture

Given a Java interface specified with an attribute grammar, we would like to test
whether an object implementing the interface satisfies the properties defined in
the grammar at every point in its lifetime. In this section we describe a generic
tool architecture which achieves this. Four different components are combined:
a state-based assertion checker, a parser generator, a debugger and a general
tool for meta-programming. Traditionally these tools are used for very diverse



4

purposes and don’t need to interact with each other. We therefore investigate
requirements needed to achieve a seamless integration of these components, mo-
tivated by describing the workflow of the run-time checker.

Suppose that during execution of a Java program, a method of a class (sub-
sequently referred to as CUT, the ‘class under test’) which implements an inter-
face specified by an attribute grammar is called. The new history of the object
on which the method was called should be updated to reflect the addition of
the method call. To represent the history of an object of CUT, the Meta-
Programming tool generates for each method m in CUT two classes call-m

and return-m. These classes contain the following fields: the object identitity
of the callee, the identity of the caller and the actual parameters. Additionally
return-m contains a field result containing the return value. A Java List con-
taining instances of call-m and return-m then stores the history of an object
of CUT.

Fig. 3. Generic Tool Architecture

The meta-programming tool further
generates code for a wrapper class which
replaces the original main class. This
wrapper class contains a field H, a Java
map containing pairs (id, h) of an ob-
ject identity id and its local history h.
The new main class executes the origi-
nal program inside the Debugger. The
Debugger is responsible for monitoring
execution of the program. It must be ca-
pable of temporarily ‘pausing’ the pro-
gram whenever a call or return occurs,
and execute user-defined code to update
H appropriately . Moreover the Debug-
ger must be able to read the identity of
the callee, caller and parameters/return-

value.

After the history is updated the run-time checker must decide whether it still
satisfies the specification (the attribute grammar). Observe that a communica-
tion history can be seen as a sequence of tokens (in our setting: communication
events). Since the attribute grammar together with the assertions generate the
language of all valid histories, checking whether a history satisfies the specifica-
tion reduces to deciding whether the history can be parsed by a parser for the
attribute grammar, where moreover during parsing the assertions must evaluate
to true. Therefore the Parser Generator creates a parser for the given attribute
grammar. Since the history is a heterogenous list of call-m and return-m ob-
jects, the parser must support parsing streams of tokens with user-defined types.
Assertions in general describe properties of Java objects, and the grammar con-
tains assertions over attributes, the attributes must be normal Java variables.
Consequently the parser generator must allow arbitrary user-defined java code
(to set the attribute value) in rule actions. The use of Java code ensures the
attribute values are computable. Since assertions are allowed in-between any



5

two (non)-terminals, the parser generator should support user-defined actions
between arbitrary grammar symbols. At run-time, the parser is triggered when-
ever the history of an object is updated. The result is either a parse error,
which indicates that the current communication history has violated the pro-
tocol structure specified by the attribute grammar, or a parse tree with new
attribute values. During parsing, the Assertion Checker evaluates the asser-
tions in the grammar on the newly computed attribute values. To avoid parsing
the whole history of a given object each time a new call or return is appended,
ideally the parser should support incremental parsing [4]. An incremental parser
computes a parse tree for the new history based on the parse trees for prefixes of
the history. In our setting, the attribute grammar specifies invariant properties
of the ongoing behavior. Hence the parser constructs a new parse tree after each
call/return, consequently parse trees for all prefixes of the current history can
be exploited for incremental parsing.

4 Instantiating the Generic Tool Architecture

The previous section introduced the generic tool architecture, which was based
on four different components: meta-programming, debugger, parser generator
and state-based run-time assertion checker. Here we instantiate these four com-
ponents with particular (state of the art) tools, and report our experiences.

Rascal [5] is a powerful tool-supported meta-programming language tailored
for program analysis, program transformation and code generation. We wrote a
Rascal program of approximately 600 lines in total which generates the classes
call-m, return-m, the new main class, and glue code to trigger the debugger
and parser. Rascal is still in an alpha stage, it is not fully backwards compatible
and we discovered numerous bugs in Rascal during development of the Rascal
program. However overall our experience was quite positive. All bugs were fixed
quickly by the Rascal team, and its powerful parsing, pattern matching and
transforming concrete syntax features proved indispensable.

We evaluated Sun’s implementation of the Java Debugging Interface for the
debugger component. It is part of the standard Java Development Kit, hence
maintenance of the debugger is practically guaranteed. The Sun debugger starts
the original user program in a virtual machine which is monitored for occurences
of MethodEntryEvent (method calls) and MethodExitEvent (method returns).
It allows defining event handlers which are executed whenever such events occur.
It also allows retrieving the caller, callee, parameters values and return value of
events using StackFrames. The Sun debugger meets all requirements for the
debugger stated above. As the main disadvantage, we found that the current
implementation of the debugger is very slow. In fact it was responsible for the
majority of the overhead of the run-time checker. This is not necessarily prob-
lematic: as testing is done during development, the debugger will typically not be
present in performance critical production code. Moreover, one usually wants to
test only up to a certain bound (for instance, in time, or in the number of events),
and report on results once the bound is exceeded. Nonetheless, for testing up to
huge bounds, a different implementation for the debugger is needed.



6

We instantiated the parser generator component with ANTLR, a state of
the art parser generator. It generates fast recursive descent parsers for Java
and allows grammar actions and custom token streams. It even supports con-
ditional productions: such productions are only chosen during parsing whenever
an associated Boolean expression (the condition) is true. Attribute grammars
with conditional productions express protocols that depend on data which are
typically not context-free. ANTLR can only handle LL(*) grammars5, and it
lacks support for incremental parsing, though this is planned by the ANTLR
developers. We could not find any Java parser generator which supports general
context-free grammars and incremental parsing of attribute grammars.

We tested two state-based assertion languages: standard Java assertions and
the Java Modeling Language (JML). Both languages suffice for our purposes.
JML is far more expressive than the standard Java assertions, though its tool
support is not ready for industrial usage. In particular, the last stable version of
the JML run-time assertion checker dates back over 8 years, when for instance
generics were not supported yet. The main reason is that JML’s run-time asser-
tion checker only works with a proprietary implementation of the Java compiler,
and unsurprisingly it is costly to update the proprietary compiler each time the
standard compiler is updated. This problem is recognized by the JML develop-
ers [2]. OpenJML, a new pre-alpha version of the JML run-time assertion checker
integrates into the standard Java compiler, and initial tests with it provided
many valuable input for real industrial size applications. See the Sourceforge
tracker for the kind of issues we have encountered when using OpenJML.

A (variant of) the above tool suite can be obtained from http://www.cwi.

nl/~cdegouw. It was applied successfully to an industrial size case study of the
eCommerce software company Fredhopper.

References

1. L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens, K. R. M.
Leino, and E. Poll. An overview of JML tools and applications. International
Journal on Software Tools for Technology Transfer, 7(3):212–232, 2005.

2. P. Chalin, P. R. James, and G. Karabotsos. Jml4: Towards an industrial grade ive
for java and next generation research platform for jml. In VSTTE, pages 70–83,
2008.

3. L. A. Clarke and D. S. Rosenblum. A historical perspective on runtime assertion
checking in software development. ACM SIGSOFT Software Engineering Notes,
31(3):25–37, 2006.

4. G. Hedin. Incremental attribute evaluation with side-effects. In D. Hammer, editor,
Compiler Compilers and High Speed Compilation, 2nd CCHSC Workshop, Berlin
GDR, October 10-14, 1988, Proceedings, volume 371 of Lecture Notes in Computer
Science, pages 175–189. Springer, 1988.

5. P. Klint, T. van der Storm, and J. Vinju. Rascal: a domain specific language for
source code analysis and manipulation. In A. Walenstein and S. Schupp, editors,
SCAM 2009, pages 168–177, 2009.

5 A strict subset of the context-free grammars. Left-recursive grammars are not LL(*).


