
Weak Arithmetic Completeness of
Object-Oriented First-Order Assertion Networks

?

Stijn de Gouw2,3, Frank de Boer2,3, Wolfgang Ahrendt1, and Richard Bubel4

1 Chalmers University, Göteborg, Sweden
2 CWI, Amsterdam, The Netherlands
3 Leiden University, The Netherlands

4 Technische Universität Darmstadt, Germany

Abstract. We present a completeness proof of the inductive assertion
method for object-oriented programs extended with auxiliary variables.
The class of programs considered are assumed to compute over structures
which include the standard interpretation of Presburger arithmetic. Fur-
ther, the assertion language is first-order, i.e., quantification only ranges
over basic types like that of the natural numbers, Boolean and Object.

1 Introduction

In [5], Cook introduced a general condition of completeness of Hoare logics in
terms of the expressibility of the weakest precondition. Harel defined in [9] a
general class of (first-order) structures which include the standard interpretation
of Peano Arithmetic. For this class standard coding techniques suffice to express
the weakest precondition. This is not the case for programs with general abstract
data structures as studied by Tucker and Zucker in [18]. They prove therefore
expressibility of the weakest precondition in a weak second-order language which
contains quantification over finite sequences.

In this paper we study arithmetic completeness of inductive assertion net-
works [7] for proving correctness of object-oriented programs. Our main con-
tribution shows that the inductive assertion method is complete for a class of
programs which compute over weak arithmetic structures. Such structures in-
clude the standard interpretation of Presburger arithmetic. Though multiplica-
tion can be simulated in the programming language by repeated addition using a
while loop, omitting multiplication limits the expressiveness of the assertion lan-
guage severely, as can be seen by the following argument. In a Turing complete
programming language, any recursively enumerable set is the weakest precondi-
tion of some program. But by Presburger’s result [16], formulas of Presburger
arithmetic define only recursive sets, and hence, cannot express the weakest
precondition (nor strongest postcondition) of arbitrary programs.

? This research is partly funded by the EU project FP7-231620 HATS:
Highly Adaptable and Trustworthy Software using Formal Models
(http://www.hats-project.eu/)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301659113?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We show however that the strongest postcondition is expressible using only
Presburger arithmetic for object-oriented programs, when appropriately instru-
mented with auxiliary array variables. In particular we demonstrate that treat-
ing arrays as objects allows a direct representation of a computation at the
abstraction level of both the programming language and the first-order logic
and enables us to express arbitrary properties of the heap in first-order logic.
As a practical consequence, any first-order logic theorem prover can be used
to prove verification conditions of instrumented object-oriented programs. In
contrast to second-order logic (as used by Tucker and Zucker) or recursive pred-
icates (separation logic) which are traditionally used to express heap properties,
first-order logic has desirable proof-theoretical properties: first-order logic is the
strongest logic satisfying completeness and the Löwenheim-Skolem theorem [10].
Our approach is tool supported by a special version of KeY [4], a state-of-the-art
prover for Java. On the theoretical side we show that the above expressiveness
result implies completeness: for any valid pre-/postcondition specification of an
object-oriented program there is an inductive assertion network of the program
extended with auxiliary variables.

Finally, using auxiliary variables allows us to restrict the network to recursive
assertions in case the given pre- and postcondition are recursive. This possibility
is of fundamental practical importance as recursive assertions are effectively
computable and, hence, we can use them for run-time checking of programs.

Related work. In [6] completeness of the inductive assertion method has been
studied for recursive programs only and without the use of auxiliary variables.
The absence of auxiliary variables made it necessary to resort to an infinite
collection of intermediate assertions. Apt showed in [2] that recursive assertions
are complete for while programs extended with auxiliary variables. In this paper
we combine and extend on the above results by showing that recursive assertions
are complete for object-oriented programs extended with auxiliary variables.

Completeness of Hoare logics for object-oriented programs is also formally
proven e.g. in [15]. This completeness result however is based on the expressibility
of the strongest postcondition in a weak second-order language which contains
quantification over finite sequences. In [3] completeness for an object-oriented
core language without object creation is proven assuming the standard inter-
pretation of Peano arithmetic for the expressibility of the weakest precondition.
We are not aware of any other completeness result based on weak arithmetic
structures using only Presburger arithmetic and an assertion language which
only contains quantification over basic types., i.e., integer, Boolean and Object.

2 The Programming and Specification Language

We introduce now our core object-oriented language. The language is strongly
typed and contains the primitive types Presburger and Boolean. The only oper-
ations provided by Presburger are those of Presburger arithmetic (0, successor
and addition). The only operations allowed on Booleans are those of Boolean

algebra. Additionally there are user-defined class types C, predefined class types
T [] of unbounded arrays in which the elements are of type T and a union type
Object. Arrays can be dynamically allocated and are indexed by natural num-
bers. Multi-dimensional arrays are modeled (as in Java) as arrays of arrays. We
assume a transitive reflexive subtype relation between types with Object being
the supertype of any class type. Our language can be statically type checked.

2.1 Syntax

Expressions of our language are side-effect free and generated by the grammar:
e ::= u |e.x |null |e1 = e2 | if b then e fi | if b then e1 else e2 fi |e1[e2] |f(e1, . . . , en) |C(e)

Variables are indicated by u while x denotes a typical field. The Boolean expres-
sion e1 = e2 denotes the test for equality between the values of e1 and e2. For
object expressions we use Java reference semantics, i.e., to be equal e1 and e2
must denote the same object identity. The expression if b then e fi has value e if
the Boolean expression b is true, otherwise it has an arbitrary value. This expres-
sion allows a systematic approach to proving properties about partial functions.
A conditional expression is denoted by if b then e1 else e2 fi. The motivation for
including it in our core language is that it significantly simplifies treatment of
aliasing. If e1 is an expression of type T [] and e2 is an expression of type Pres-
burger then e1[e2] is an expression of type T , also called a subscripted variable.
Here T itself can be an array type. For example, if a is an array variable of type
Presburger[][] then the expression a[0] denotes an array of type Presburger[].
The function f(e1, ..., en) denotes a Presburger arithmetic or Boolean operation
of arity n. For class types C the Boolean expression C(e) is true if and only
if the dynamic type of e is C. Dynamic binding can be simulated in our core
language with such expressions. Expressions of a class type can only be com-
pared for equality, dereferenced, accessed as an array if the object is of an array
type, or appear as arguments of a class predicate, if-expression, or conditional
expression.

The language of statements is generated by the following grammar:
s ::= s1; s2 | if b then s2 else s3 fi | while e do s od | abort |

e0.m(e1, ..., en) | u := new | u := e | e1[e2] := e | e1.x := e
The abort statement causes a failure. A statement u := new assigns to the pro-
gram variable u a newly created object of the declared type (possibly an array
type) of u. Objects are never destroyed. We assume every statement and expres-
sion to be well-typed. A program in our language consists of a main statement
together with sets for variable-, field- and method declarations (respectively Var
and FC, MC for every class C).

Assertions are generated by the following first-order language:
φ ::= b | φ1 ∧ φ2 | φ1 ∨ φ2 | φ→φ2 | ∃l : φ | ∀l : φ

Here, b is a Boolean expression and l is a logical variable of any type.

2.2 Semantics

The basic notion underlying the semantics of both the programming language
and the assertion language is that of a many-sorted structure of the form

(dom(Presburger), {true, false}, dom(T1), . . . , dom(Tn), I)
where Ti for 1 ≤ i ≤ n, denotes a class type, array type or some abstract data
type and I denotes an interpretation I of the non-logical function and predicate
symbols (i.e. arithmetic and logical operations). The non-logical symbols include
at least (i) variables declared in Var; (ii) for every class C, its fields declared in
FC; (iii) for every class C a unary predicate C of type Object→ Boolean; and (iv)
for each array type T [] an access function []T [] of type Presburger→ (T []→ T).
The domains of different class types are assumed to be disjoint. There is no need
for a separate sort for Object, semantically this set is simply the union of all
the sorts for the class types (which includes array types). It is crucial here that
the structure fixes the standard interpretation of both the types Presburger
and Boolean, and the arithmetical and logical operations defined on them. The
interpretation of the other sorts and operations are user-defined (i.e. not fixed).

We write M(s) instead of I(s) for the interpretation of the non-logical sym-
bol s and M(T) for the sort dom(T) in a structure M of our language.

If u is declared in Var as a variable of type T , it is interpreted as an individual
of the sort M(T). A field x ∈ FC of type T is interpreted as a unary function
M(C)→M(T). Array access functions []T [] are interpreted as binary functions
M(Presburger)→ (M(T [])→M(T)). Thus array indices can be seen as fields.

Semantics of Expressions and Statements. The meaning of an expression e of
type T is a total function [[e]] that maps a structure M to an individual of M(T).
This function is defined by induction on e. Here are the main cases:

– [[e1.x]](M) = M(x)([[e1]](M)).
– [[e1[e2]]](M) = M([]T [])([[e2]](M))([[e1]](M))

where e1 has the array type T [] and e2 has type Presburger.
– [[C(e1)]](M) = true iff [[e1]](M) ∈M(C)

As the meaning function of our semantics is total, some meaning is assigned to
the expression null .x. However, in the execution of programs their meaning is
given operationally by executing the abort statement.

Statements in our language are deterministic and can fail (abort) or diverge.
We define the meaning of a statement in terms of a small-step operational se-
mantics, and use the (quite common) notation

〈s,M〉 −→ 〈s′,M ′〉
to express that executing s in structure M , results after one step in the state-

ment s′ and structure M ′. We use −→∗ for the reflexive transitive closure of this
transition relation. We omit s′ if s immediately terminates from M . Since calls
can appear in statements, the definition of the above transition relation depends
in general on the method declarations. Note that throughout execution, assign-
ments to variables and fields change the structure in the interpretation of the
variables and fields respectively. The interpretation of the array access function
changes due to assignments to subscripted variables. Moreover during execut-
ing, the sorts dom(Ci) containing instances of Ci are extended with new objects
by object creations u := new. Statements do not affect the sorts Presburger,
Boolean, and the interpretation of the other non-logical symbols.

The meaning of normal assignments, conditional statements and while loops
is defined in the standard way. Hence, we focus on the semantics of array creation.
First define for each type a default value: initPresburger = 0, initBoolean = false
and initC = null. For the selection of a new object of class C we use a choice
function ν on a structure M and class C to get a fresh object ν(M,C) of class C
which satisfies ν(M,C) 6∈M(T) for any type T (in particular, ν(M,C) 6∈M(C)).
Clearly, without loss of generality we may assume that ν(M,C) only depends on
M(C) in the sense that this choice function preserves the deterministic nature
of our core language (formally: ν(M,C) = ν(M ′,C) if M(C) = M(C)). Non-
deterministic (or random) selection of a fresh object would require reasoning
semantically up to a notion of isomorphic models which would unnecessarily
complicate proofs.

Let u be of type T []. The semantics of an array creation is modeled by:

〈u := new,M〉 −→M ′

where M ′ is changed from M as follows: Let o denote the object identity chosen
by ν(M,T []), i.e, o = ν(M,T []) then

1. M ′(T []) = M(T []) ∪ {o}.
2. M ′([]T [])(n)(o) = initT for all n ∈M(Presburger).

3. M ′(u) = o.

The second clause states that all array elements have initially their default value.

The operational semantics of a program is given by the one of its main
statement, executed in the initial structure M0. In M0, for every class type C
no objects other than nullC exist, and all variables have their default value.

Semantics of Assertions. The semantics of assertions is defined by the usual
Tarski truth definition. Interestingly, even though we allow quantification over
array objects, all assertions are first-order formulas (interpreted over arbitrary
structures obeying the first-order Presburger and Boolean algebra axioms, in-
cluding non-standard interpretations). This is because of a subtle difference in
meaning between modeling arrays as sequences (not first-order), or as point-
ers to sequences (first-order [17, 12]): In case s ranges over (finite) sequences
∃s : s[0] = 0 expresses that there exists a sequence s of natural numbers, of
which the first is 0. This sequence itself is not an element of the domain of a
structure for our many-sorted dynamic logic language, but rather a sequence of
elements of the domain Presburger. In this interpretation the above formula is
valid. In this paper we model arrays as pointers to data-structures in the heap
(e.g., structure) as in Java. If a is a logical variable of type Presburger[] then
∃a : a[0] = 0 asserts the existence of an array object (an individual of the sort
for Presburger[]) in which currently the first element is 0. This formula is not
valid, for it is false in all structures in which no such array exists. Note that the
extensionality axiom ∀a, b, n : a[n] = b[n]→ a = b for arrays is also not valid.

3 Inductive Assertion Networks

We extend Floyd’s inductive assertion method to object-oriented programs. An
inductive assertion network is a labelled transition system where transitions
are labelled with conditional assignments of (local) variables. A labelled tran-
sition may fire if its (pre-)condition is satisfied. The corresponding assignment
is executed and the state updated accordingly. Obviously control-flow graphs of
imperative programs fall into the class of these transition systems. The labelled
transition system is extended to an assertion network by assigning each state a
(set of) assertions. An assertion network is called inductive if and only if when-
ever M(φ) holds for a structure (state) M and the condition of a transition is
satisfied, then the assertion φ′ assigned to the resulting structure holds as well.

We extend Floyd’s notion of an inductive assertion network to object-oriented
programs: besides basic assignments, transitions can be labelled with object cre-
ations and assignments to fields and subscripted variables. This requires a cor-
responding extension for computing verification conditions, taking for example
aliasing into account. Finally we need in general auxiliary variables to describe
the object structures in the heap. Because, for instance, first-order logic itself
cannot express reachability in linked lists (see Section 5).

As one main feature of our semantics is to model object creation as exten-
sion of the underlying structure’s domain, the rule for deleting assignments to
auxiliary variables as introduced in Owicki and Gries [14] for reasoning about
shared variable concurrency is not sound anymore. Clearly we cannot remove
the dynamic allocation of the auxiliary variable u even if u does not appear in
the assertions (an assignment u := new in fact may validate an assertion ∃l : φ,
where the logical variable is of the same type as u). To obtain a complete in-
ductive assertion method we allow method signatures extended with auxiliary
formal parameters.

A basic assertion network of a program extended with auxiliary variables
associates assertions with each (sub)statement of the program. A (finite) set of
verification conditions for this annotated program is then generated fully auto-
matically by means of the weakest precondition calculus defined in [1] extended
with a substitution for the (dynamic) creation of arrays. The verification condi-
tions of the pre- and postcondition of a method call are defined in the standard
way in terms of the pre- and postcondition of the method body, modeling pa-
rameter passing by substitution.

4 Expressiveness

In this section we first investigate the expressiveness of auxiliary variables. This
leads to the following main result: the set of reachable states at each control
point of a general class of instrumented programs is expressible in a first-order
assertion language with equality, unbounded arrays and addition. This forms the
basis for the completeness of our object-oriented inductive assertion method.

4.1 Instrumentation

Below we show how the computation history of instrumented programs can be
stored in auxiliary variables in a canonical manner. The instrumentation must
be faithful to the original program:

Definition 1 (Faithful Instrumentation). Given a set of auxiliary variables,
an instrumented program is faithful to the original program if neither the value
of the normal (non-auxiliary) variables nor the termination behavior is affected
by the instrumentation.

Intuitively the instrumentation adds auxiliary array variables to the original
program which record only the changes to the values of variables and fields of
the program (including those of an array type). In comparison to storing the full
state at each computation step, this allows for a fairly simple update mechanism
for the auxiliary variables. Faithful instrumentations allow the expression of
properties of the original program which cannot be expressed in first-order logic
formulas directly. We now list the auxiliary variables, along with a description
how they are set during the execution of instrumented programs, assuming a
unique line number for each (sub)statement:

– A one-dimensional array variable pc of Presburger[] to record the history
of the program counter. The intention is that if pc[i] = j, then line j was
executed in the i-th step of the computation.

– A variable |pc| of type Presburger containing the number of completed com-
putation steps.

– For each variable u of a type T an array variable u′ with content type T , and
an array variable u′′ of type Boolean. If in the i-th step of the computation
the value v is assigned to u, then u′[i] = v, and u′′[i] = true. If the i-th step
does not involve an assignment to variable u, we have u′[i] = initT , where
T is the type of u, and u′′[i] = false, which is the default Boolean value.

– For each field x an array x′ of pairs < o, v > (where o is an object identity
and v a value)5, and an array x′′ of Boolean. In analogy to the two arrays
storing the changes to variables, these two arrays store the changes to the
field. The extra object identity is needed to identify the object whose field
was changed.

– For each array type T occurring in the program, a one-dimensional array
variable Arr′T of Boolean storing the computation steps in which the inter-
pretation of an array object of type T was changed, and a one-dimensional
array ArrT of triples < o, n, v > storing the new values of the changed
element in that array (o is an array object, n an array index and v a value).

– A method parameter loc of type Presburger, which stores the line number
on which the call was made.

As two examples we show how the instrumentation of the basic assignment
and method call is performed in Figures 1 and 2. The control structures are

5 Such a type can be easily defined in our language as a class with two fields

pc[|pc|] := j ;
u′[|pc|] := e ;

j : u := e ;
u′′[|pc|] := true ;
|pc| := |pc| + 1 ;

Fig. 1. Instrumentation of the state-
ment u := e on line number j

pc[|pc|] := j ;
x′[|pc|] :=< e, e′ > ;

j : e.x := e′ ;
x′′[|pc|] := true ;
|pc| := |pc| + 1 ;

Fig. 2. Instrumentation of the state-
ment e.x := e′ on line number j

simply instrumented by updates to the variable pc to record the flow of control.
Additionally in a call we pass the line number as a parameter which is used
upon return. Given a line number j, by next(j) we denote the line number of
the statement which will be executed in the next step of the computation.

To instrument a program with a main statement smain and method bodies
B1, . . . , Bn, label first each program statement uniquely. Then apply the instru-
mentation given above to smain to obtain s′main and to each method body Bi

to obtain the statement B′i. Next, define a statement init which creates new ob-
jects for the auxiliary array variables, and sets |pc| := 0. The final instrumented
program is given by the main statement init; s′main and method bodies B′i.

Theorem 1. The above instrumentation is faithful to the original program.

4.2 Weak Arithmetic Completeness

Completeness of basic inductive assertion networks has been proven in [6, 11],
provided that suitable intermediate assertions exist in the assertion language.
Here we demonstrate how to find such assertions for the class of instrumented
object-oriented programs as defined previously.

Recall that programs start executing in a fixed initial structure (see Section 2
on semantics of statements). Hence from a purely semantic viewpoint, the inter-
mediate assertion at location l can simply be chosen as the set of all structures
reachable in l from the initial structure. Such reachability predicates are remi-
niscent of the most general correctness formulae introduced by Gorelick in [8] to
show completeness for a Hoare logic for recursive programs.

Definition 2. Let P be a program with statement s on line number l. The reach-
ability predicate Rl denotes the set of states {M |〈P,M0〉 −→∗ 〈s; s′,M〉}, where
M0 is a standard model (the initial structure, see Section 2), and s′ is the re-
mainder of the program to be executed.

It remains to show that our first-order assertion language which only assumes
the standard interpretation of Presburger arithmetic is expressive enough to de-
fine the above reachability predicates syntactically. This is indeed the case for
instrumented programs. For such programs, the state-based encoding of the com-
putation allows recovering the computation of the instrumented program in the
assertion language without using a Gödel encoding (which relies on the presence

of multiplication in the assertion language). Our results are not restricted to the
specific instrumentation defined in the previous section. In general any faith-
ful instrumentation which allows recovering the computation in the assertion
language can be used.

We now describe how the computation of instrumented programs can be re-
covered in the assertion language. Given an uninstrumented program P and a
computation step i (i.e. a number), define an assertion COMPP,i which com-
pletely describes the state change induced by the i-th computation step in the
instrumented version of P . For an assignment u := e with line number j we
define COMPP,i by

pc[i]=j→(pc[i+1]=next(j)∧u′[i+1]=Val(e, i)∧u′′[i+1]= true∧nochangej(i))

Assignments to fields or subscripted variables can be handled similarly to the
variable assignment above. The expression Val(e, i) stands for the value of the
expression e after the i-th computation step. The interesting case is when e is a
(subscripted) variable or field. We show the case when e is a variable u of type T :

Val(u, i) = z ↔ (initT = z ∧ ∀n ≤ |pc| : u′′[n] = false) ∨
(∃n ≤ i : u′′[n] ∧ u′[n] = z ∧ ∀k(n<k < |pc|) : u′′[n] = false)

The first disjunct asserts that Val(u, i) is determined by the last assignment to u
which occurred before or on computation step i. The second disjunct asserts that
if there was no such assignment, the variable has retained its initial value. The
value of a Boolean condition in a given computation step can also be determined
easily using the Val function.

The predicate nochangej(i) asserts that only the auxiliary variables repre-
senting the l.h.s. of the assignment with line number j are affected by the i-
th computation step, i.e., all the other auxiliary variables indicate at the i-th
step that their represented program variables have not changed. For example,
for a program variable u of type T this is expressed simply by the assertion
u′[i] = initT ∧ u′′[i] = false; and for arrays of type T this is expressed by
ArrT [i] = null∧Arr′T [i] = false. Note that we make use of the initial default
values of the auxiliary variables. We denote by nochange(i) that all auxiliary
variables indicate at the i-th step that their program variables have not changed.

To express the reachability predicate at a location l, one must further assert
that the current values of the normal (non-auxiliary) variables, fields and array
access function are those stored in the auxiliary variables at l (but before the
statement at l is executed). Let us abbreviate such an assertion by aux(l). To
see how aux(l) can be defined in our assertion language, note that for a variable
u it simply reduces to the assertion u = Val(u, l) as defined above. For arrays, a
universal quantification ranging over all array indices is necessary. For instance,
∀n : a[n] = V al(a[n], l) characterizes the full contents of the array a at location
l. Thus aux(l) can now be expressed as the (finite) conjunction of such assertions
for all variables, fields and arrays. The reachability predicates of instrumented
programs can now be readily defined:

Theorem 2. Let P be an arbitrary program, and let P∗ be the instrumented
version of P . Then the reachability predicate Rl of P∗ is defined by the assertion:

aux(l) ∧ pc[|pc|] = l ∧ ∀0 ≤ i < |pc| : COMPP,i ∧ nochange
where nochange stands for nochange(0) ∧ ∀i > |pc| : pc[i] = 0 ∧ nochange(i).

The next theorem now follows by construction of the reachability predicates:

Theorem 3. Let P∗ be a program instrumented with auxiliary variables as de-
scribed above, and let P ′ be its annotation with at each location l an assertion
which defines Rl. A partial correctness formula {p}P*{q} is true in the initial
model if and only if all generated verification conditions for the assertion network
{p}P ′{q} are true.

The above theorem states that we can derive any true correctness formula in
first-order logic. For proving the generated verification conditions we can take as
axioms all first-order sentences true in the initial model6 (and use any off-the-
shelve theorem prover for first-order logic). This normally results in ineffective
proof systems, since by Gödels incompleteness theorem the axioms are typically
not recursively enumerable. However by excluding multiplication from the asser-
tion language, it follows from Presburgers result that the set arithmetical axioms
is recursive. Thus if the other types are also interpreted in such a way that their
first-order theory is recursive, the truth of the generated verification conditions
is decidable.

5 Example: Expressing and Verifying Reachability

In the previous section the reachability predicates were defined uniformly. In
this section we show how to reduce the complexity of the instrumentation sig-
nificantly by exploiting the structure of a given program and property to prove.

Consider a queue data structure where items of type Presburger can be added
to the beginning of the queue and removed from the end of the queue. The queue

 2

val next

 25

val next

first last

 3

val next

Old first

...

Fig. 3. Queue resulting from first.enqueue(2)

is backed up by a linked
list using a next field which
points to the next item in the
queue. The public interface of

such a queue contains of (i) two global variables pointing to its first and last
element, (ii) an enqueue(v) method which adds v to the beginning of the queue
and (iii) a dequeue method which removes the last item from the queue. Figure 3
visualises the result of the method call first.enqueue(2), where first initially
(i.e. before executing the call) points to an item with value 3, and last points to
an item with value 25. Let reach(f, l, a, n) abbreviate the assertion

n ≥ 0 ∧ a[0] = f 6= null 6= a[n] = l ∧ l.next = null
∧ ∀j(0 ≤ j < n) : a[j] 6= null ∧ a[j].next = a[j + 1]

Intuitively this assertion specifies that an array a stores the linked list, and that
l is reachable from f by repeated dereferencing of field next.

6 This set is sometimes called the first-order theory of a structure

Using an auxiliary array b to store the new linked list, we can now express
that if this reachability property was initially true then it holds again after
executing enqueue(v):

{∃a, n : reach(first, last, a, n)}
z := new; z.next := first ; z. val := v; first := z
b := new; b[0] := first ; i := 0;
while b[i] 6= last do b[i+1] := b[i]. next; i := i+1 od;
{∃a, n : reach(first, last, a, n)}

Strictly speaking this is a property of this particular instrumented version of
enqueue(v): the original version does not even have the auxiliary array b. How-
ever as the above instrumentation is faithful to the original version, it follows
that last is reachable from first in the original program (by repeated derefer-
encing of next), for otherwise ∃a, n : reach(first, last, a, n) would not hold in
any faithful instrumentation.

As our semantics are based on abstract object creation (not yet created objects
play no role in structures, and are not referable in assertions), a correspond-
ing proof theory is needed to verify the above instrumented program. Based
on [1], we have extended their approach to support dynamically created ar-
rays. The new rules are fully implemented in a special version of KeY, available
at http://keyaoc.hats-project.eu. Only one interaction with KeY is required to
verify the specified reachability property for method enqueue(v), namely the
provision of a loop invariant, everything else was fully automatic.

6 Conclusions

Scope of the Programming Language. We want to stress that our core language
contains all necessary primitive constructs from which more intricate features
can be handled by a completely mechanical translation. The features to which
this transformational approach applies include failures and bounded arrays. In-
heritance and dynamic binding have been addressed in [3]. These transforma-
tions allow us to treat object creation orthogonally to such features, and thereby
indicates our approach scales up to modern languages.

Expressibility of Weakest Precondition. General results of Olderog [13] show
there is a certain symmetry between the expressibility of strongest postconditions
and weakest preconditions. To prove the result, Olderog makes a constant domain
assumption which requires a different modeling of object creation than in our
case where we support abstract object creation. Hence one cannot in general
refer to the final values of the variables in assertions evaluated in an initial
state. Consequently Olderog’s result does not apply here: object creation breaks
the symmetry between strongest postconditions and weakest preconditions.

Recursive Assertions. Apt et al. [2] prove that even for recursive preconditions
and postconditions, the intermediate assertions cannot be chosen recursively for

general programs, but only for a class of suitably instrumented programs. Our
assertions defining reachability are currently not recursive due to unbounded
quantification over array indices (see Section 4.2). However, if we restrict to
bounded arrays then we only need bounded quantification in the expression of
the reachability predicates. The trade-off is a significantly more complicated in-
strumentation as at each computation step a reallocation of the auxiliary (array)
variables becomes necessary.

References

1. W. Ahrendt, F. S. de Boer, and I. Grabe. Abstract object creation in dynamic
logic. In A. Cavalcanti and D. Dams, editors, FM, volume 5850 of LNCS, pages
612–627. Springer, 2009.

2. K. R. Apt, J. A. Bergstra, and L. G. L. T. Meertens. Recursive assertions are not
enough - or are they? Theor. Comput. Sci., 8:73–87, 1979.

3. K. R. Apt, F. S. de Boer, E.-R. Olderog, and S. de Gouw. Verification of object-
oriented programs: A transformational approach. JCSS, 78(3):823 – 852, 2012.

4. B. Beckert, R. Hähnle, and P. Schmitt, editors. Verification of Object-Oriented
Software: The KeY Approach, volume 4334 of LNCS. Springer, 2007.

5. S. A. Cook. Soundness and completeness of an axiom system for program verifi-
cation. SIAM J. Comput., 7(1):70–90, 1978.

6. J. de Bakker and L. Meertens. On the completeness of the inductive assertion
method. Journal of Computer and System Sciences, 11(3):323 – 357, 1975.

7. R. W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor, Mathe-
matical Aspects of Computer Science, volume 19 of Proc. of Symposia in Applied
Mathematics, pages 19–32. AMS, 1967.

8. G. Gorelick. A complete axiomatic system for proving assertions about recursive
and non-recursive programs. Technical Report 75, Univ. of Toronto, 1975.

9. D. Harel. Arithmetical completeness in logics of programs. In G. Ausiello and
C. Böhm, editors, ICALP, volume 62 of LNCS, pages 268–288. Springer, 1978.

10. P. Lindström. On extensions of elementary logic. Theoria, 35(1):1–11, 1969.
11. Z. Manna. Mathematical theory of partial correctness. In E. Engeler, editor,

Symposium on Semantics of Algorithmic Languages, volume 188 of Lecture Notes
in Mathematics, pages 252–269. Springer, 1971.

12. J. McCarthy. Towards a mathematical science of computation. In IFIP, pages
21–28. North-Holland, 1962.

13. E.-R. Olderog. On the notion of expressiveness and the rule of adaption. Theor.
Comput. Sci., 24:337–347, 1983.

14. S. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs i.
Acta Inf., 6:319–340, 1976.

15. C. Pierik. Validation Techniques for Object-Oriented Proof Outlines. PhD thesis,
Universiteit Utrecht, 2006.

16. M. Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. Comptes
Rendus du I congrs de Mathmaticiens des Pays Slaves, pages 92–101, 1929.

17. N. Suzuki and D. Jefferson. Verification decidability of presburger array programs.
J. ACM, 27(1):191–205, Jan. 1980.

18. J. Tucker and J. Zucker. Program correctness over abstract data types, with error-
state semantics. Elsevier Science Inc., 1988.

