
Context-free coalgebras

Joost Winter, Marcello M. Bonsangue, Jan J. M. M. Rutten

January 20, 2013

Abstract

In this article, we provide a coalgebraic account of parts of the mathematical theory un-
derlying context-free languages. We characterize context-free languages, and power series and
streams generalizing or corresponding to the context-free languages, by means of systems of
behavioural differential equations; and prove a number of results, some of which are new, and
some of which are new proofs of existing theorems, using the techniques of bisimulation and
bisimulation up to linear combinations. Furthermore, we establish a link between automatic
sequences and these systems of equations, allowing us to, given an automaton generating an
automatic sequence, easily construct a system of behavioural differential equations yielding this
sequence as a context-free stream.

Contents

1 Introduction 2

2 Preliminaries 4
2.1 Monoids and automata . 4

2.1.1 Monoids . 4
2.1.2 Automata as coalgebras . 5

2.2 Semirings and beyond . 7
2.2.1 Semirings . 7
2.2.2 Modules . 7
2.2.3 Formal power series . 8
2.2.4 Streams . 10

3 Rational systems 10
3.1 Bisimulations up to linear combinations . 12

4 Context-free systems 14
4.1 Systems of equations and the Greibach normal form 19

5 Coinductive counting and combinatorics 20
5.1 Grammars and derivations . 21
5.2 Counting problems . 21

6 The zip-, even- and odd-operations 25
6.1 Generalizing to zipk and unzipi,k . 27

1

7 Fields and automatic sequences 28
7.1 Preliminaries . 28
7.2 Automatic sequences . 28
7.3 Automatic sequences are context-free . 30
7.4 Generalizing to arbitrary fields . 32

8 Conclusions 33

1 Introduction

During the last 15 years, a coalgebraic picture of the theory of automata and formal languages has
emerged and been further developed. The earliest traces of this picture date back to work by Janusz
A. Brzozowski who introduced the idea of derivatives of regular expressions in [Brz64]. This idea
of input derivatives was linked to the more abstract notion of a F -coalgebra for a functor F by the
third author of the present article in [Rut98], and further developed in e.g. [Rut03], [Rut08], and
[SBBR10].

In [WBR11], we extended this coalgebraic picture further, giving a characterization of the
context-free languages as solutions to systems of behavioural differential equations, in which all Br-
zozowski derivatives are presented as polynomials over the set of variables, and in [BRW12], we have
generalized the theory to formal power series in noncommuting variables, providing a new character-
ization of so-called algebraic or context-free power series, coinciding with the familiar generalization
from context-free languages to algebraic power series.

In the present article, we will provide a more systematic account of this framework. It turns
out that important classes of formal languages and formal power series—finitary, rational, and
algebraic (or context-free) series, respectively—can each be characterized as solutions to some format
of systems of behavioural differential equations.

The simplest class of systems, which will be recalled in Section 2, consists of equations in which
each derivative is presented simply as another state (or, equivalently, as a variable or nonterminal):
these systems can be seen as describing deterministic automata and generalizations thereof. As an
example of such a system, consider the deterministic automaton (presented without initial state)

x y z

a
b

a

b

a

b

which corresponds to the following system of behavioural differential equations:

o(x) = 0 xa = y xb = x
o(y) = 0 ya = z yb = x
o(z) = 1 za = z zb = x

Here, the equation o(x) = 0 can be read as ‘x is a non-accepting state’, o(z) = 1 as ‘z is an accepting
state’, and xa = y as ‘x makes an a-transition to y’.

In Section 3, we will combine the notions of automata and modules yielding the notion of a
linear automaton, and recall some of the main ideas and results regarding rational power series and
linear automata. This class of series can be characterized by systems of behavioural differential
equations, in which every derivative is presented as a linear combination of states. For example, the
nondeterministic automaton

2

x y z
a

a, b

a

is in direct correspondence with the system of behavioural differential equations

o(x) = 0 xa = x+ y xb = x
o(y) = 0 ya = z yb = 0
o(z) = 1 za = 0 zb = 0.

In this system, for example, the equation xa = x+ y can be read as ‘x makes a-transitions to x and
y’, and yb = 0 can be read as ‘y makes no b-transitions’.

In Section 4 we will consider a class of systems which yields a class of automata with an even
richer structure than that of linear automata, and establish in Section 4.1 its equivalence with
existing notions of context-freeness or algebraicity. Here, the derivatives of all nonterminals are
presented as polynomials with coefficients in the underlying semiring.

An example of such a system is the following

o(x) = 1 xa = xy xb = 0
o(y) = 0 ya = 0 yb = 1

and we will see in Section 4 that in this system x can be interpreted as the language {anbn |n ∈ N}.
Although closely related to pushdown automata (with a single state), these systems correspond more
directly to context-free grammars in Greibach normal form. For example, the system above is in
direct correspondence with the following grammar:

x→ 1 | axy
y → b

Next, we will consider of a number of preservation results, and concrete constructions of new
context-free systems of behavioural differential equations from old systems, providing some deeper
links with the classical theory of context-free languages and automatic sequences. In Sections 6, we
will introduce the zip operation and a number of related operations, and show that these operations
all preserve context-freeness. Finally, in 7, we will connect our notion of context-free power series
to the theory of automatic sequences by showing that streams over finite fields are context-free
if and only if they are algebraic, and furthermore present a simple method to extract systems of
behavioural differential equations from automatic sequences.

The subject matter of this article can perhaps best be characterized as coalgebraic automata
theory. Although closely related to the traditional, algebraic, approach to automata theory, and
benefitting greatly from usage of traditional algebraic structures, our approach differs by making ex-
tensive usage of bisimulations (and bisimulations up to linear combinations), systems of behavioural
differential equations, and final coalgebra semantics, and by altogether omitting the usage of matri-
ces. Combined, these techniques enable us to provide proofs that are often more concise than the
traditional ones, and different in style, often establishing close connections between the behaviour of
automata, and algebraic properties characterizable by simple equations. Our approach also relates
to the more abstract world of universal coalgebra [Rut00], in the sense that many of the notions that
will be used in this article can be directly seen as instances of more abstract, categorically defined,
notions from universal coalgebra.

The present article is an extended and thoroughly revised version of [BRW12]. Other than pro-
viding a more systematic account of context-free power series and streams, many of the propositions
and theorems are presented with new, coinductive, proofs, many of which use the technique of bisim-
ulations up to linear combinations. Most of the propositions and theorems will be accompanied with

3

full proofs, partly because this article has a strong focus on the proof technique of bisimulation and
bisimulation up to linear combinations. Compared to [BRW12], the present article also makes a
shift, away from term algebras and towards the usage of polynomials as fundamental structures; and
more broadly speaking, a step away from category theory and towards classical algebra.

Acknowledgements: We would like to express our gratitude to Christophe Reutenauer, for point-
ing us towards the article by Michel Fliess [Fli74], in which two notions of algebraicity are related,
as well as to Jean Berstel, Jeffrey Shallit, Jean-Paul Allouche and Arto Salomaa. We thank the
referees of the original CMCS paper for providing constructive comments, and we thank Jurriaan
Rot, Helle Hansen, and Alexandra Silva for discussions and criticism. Finally, we would like to thank
the participants in the Representing Streams workshop that was held in Leiden in December 2012,
for discussion, criticism, and exploration of new ideas.

2 Preliminaries

We will first start by covering some of the background material: some parts of the material covered
in this section can be considered ‘standard’ or classical (monoids, semirings, formal power series);
the part on automata as coalgebras, although nonstandard in a sense, has been covered extensively
in earlier papers (see e.g. [Rut98], [BBB+12]). In order to both increase accessibility, and to make
this article as self-containing as possible, we include all definitions and the most important results
from these underlying frameworks in this section.

2.1 Monoids and automata

2.1.1 Monoids

A monoid (M, ·, 1) consists of a set M , together with a distinguished element 1 ∈M , and a multipli-
cation operator · : M×M →M , such that 1 is a unit for M , that is, for all m ∈M 1 ·m = m = m ·1,
and the operator · is associative, that is, for all m,n, p ∈M , m · (n · p) = (m · n) · p

A monoid is called commutative if for all m,n ∈ M , mn = nm. (We will follow the usual
convention of omitting the multiplication operator · whenever possible and convenient.) Often
commutative monoids will be represented in additive notation, using the symbols 0 and + rather
than 1 and ·.

Given two monoids (M, ·M , 1M) and (N, ·N , 1N), we say a function f : M → N is a monoid
morphism whenever f(m ·M n) = f(m) ·N f(n) and f(1M) = 1N .

Given a finite alphabet A, let A∗ denote the set of all words over A, that is, lists of finite sequences
of elements from A. We use the symbol 1 to denote the empty word—that is, the sole word of length
zero, and given words

v = a1 . . . am and w = b1 . . . bn,

let the product v · w represent the concatenation

vw = a1 . . . amb1 . . . bn.

It is easy to see that the unit and associativity laws for monoids hold here, turning the structure
(A∗, ·, 1) into a monoid. Moreover, from a categorical point of view this monoid is the free monoid
over the set A: given a monoid (M, ·M , 1M) and a function f : A → M , there is a unique monoid

morphism f̂ : A∗ → M such that f̂ ◦ ηA = f . Here ηA is a mapping from A to A∗, mapping each
alphabet symbol a ∈ A onto the word a of length 1, which moreover can be seen as the unit of the
star monad.

4

2.1.2 Automata as coalgebras

In this article, an automaton over a finite alphabet A with output in a semiring S, or an S-automaton,
consists of a triple

(Q, o, δ)

where

1. Q is a set of states;

2. o : Q→ S is a function assigning an output value in S to each state; and

3. δ : Q → QA assigns a mapping from alphabet symbols to states to each state. We call δ the
transition function of the automaton.

We call an automaton (Q, o, δ) finite whenever Q is finite, and often simply refer to such an automa-
ton as Q, when no confusion about the interpretation of the o and δ operations is likely to arise.
Compared to the classical presentation, the main difference is the absence of an initial state, but we
lose—at least, not as far as this paper is concerned—nothing in doing so, as we can always assume
a state from the automaton as ‘initial’ if so desired. On the other hand, by omitting initial states,
as we will see soon, we gain the advantage of the existence of a unique automaton morphism from
any given automaton into a final automaton, which turns out to be a highly useful property.

Throughout this article, we will usually write qa instead of δ(q)(a), and call qa the a-derivative of
q. We can extend the transition function δ to a transition function δ∗ over words w ∈ A∗ inductively
by setting

δ∗(q)(1) = q and δ∗(q)(aw) = δ∗(δ(q)(a))(w). (1)

Since δ∗(q)(a) = δ∗(δ(q)(a))(1) = δ(q)(a) for all q ∈ Q and a ∈ A, the functions δ and δ∗ are
compatible, and (1) can be reformulated in terms of word derivatives by the equations

q1 = q and qaw = (qa)w

which hold for all q ∈ Q, a ∈ A, and w ∈ A∗. The second of these equations can be generalized
using a simple lemma:

Lemma 1. For all v, w ∈ A∗, qvw = (qv)w.

Proof. Induction on the length of v. If v = 1, then q1w = qw = (q1)w. If v = au for some a ∈ A and
u ∈ A∗, use the inductive hypothesis that quw = (qu)w holds. Now observe

qvw = q(au)w = qa(uw) = (qa)uw = ((qa)u)w = (qau)w = (qv)w

and the proof is complete.

A morphism between two automata Q and R is a mapping h : Q → R such that for all q ∈ Q
and a ∈ A, we have o(q) = o(h(q)) and h(qa) = h(q)a.

Lemma 2. For any morphism h : Q→ R, any q ∈ Q and any w ∈ A∗, h(qw) = h(q)w.

Proof. Induction on the length of w. Base case: h(q1) = h(q) = h(q)1. Inductive case: assume
h(qv) = h(q)v for all q ∈ Q, then also h(qav) = h((qa)v) = h(qa)v = h(q)av.

As an important example, consider the automaton (S〈〈A〉〉, o, δ), where S〈〈A〉〉 is defined as the
function space

{f | f : A∗ → S}

5

from A∗ to S. For now, S can be any set, but once we start adding more structure to our automata,
we will assume S to be a semiring. We let the Greek letters σ and τ denote elements from S〈〈A〉〉,
and, following classical notation we write

(σ,w)

for σ(w). We define the behaviour of S〈〈A〉〉, for any σ ∈ S〈〈A〉〉, a ∈ A and w ∈ A∗, by

o(σ) = (σ, 1) and (σa, w) = (σ, aw).

Observe that this definition completely describes the functions o and δ, so that we have defined,
completely and unambiguously, the automaton structure of S〈〈A〉〉. We again can easily generalize
the equality (σa, w) = (σ, aw) inductively:

Lemma 3. For all v, w ∈ A∗, we have (σv, w) = (σ, vw), and hence o(σw) = (σw, 1) = (σ,w).

Proof. Induction on the length of v. If v = 1, then (σv, w) = (σ,w) = (σ, vw). If v = au for some
a ∈ A and u ∈ A∗, use the inductive hypothesis that for all τ ∈ S〈〈A〉〉, o(τu, w) = (τu, w) holds, and
observe (σv, w) = ((σa)u, w) = (σa, uw) = (σ, auw) = (σ, vw).

The following proposition establishes the fact that S〈〈A〉〉 is a final automaton or, in more general
terminology, a final coalgebra (for the functor S × (−)A):

Proposition 4. For any S-automaton Q over an alphabet A, there exists a unique morphism from
Q to the automaton S〈〈A〉〉.

Proof. Consider the mapping J K : Q→ S〈〈A〉〉 defined by

(JqK, w) = o(qw).

To see that this mapping is a morphism, we have to show JqaK = JqKa for all q ∈ Q and a ∈ A.
But this is the case, since for any w ∈ A∗, we have

(JqaK, w) = o((qa)w) = o(qaw) = (JqK, aw) = (JqKa, w).

For unicity, assume that h is a morphism from Q to S〈〈A〉〉. But this gives

(h(q), w) = o(h(q)w) = o(h(qw)) = o(qw) = o(JqKw) = (JqK, w)

for arbitrary q ∈ Q and w ∈ A∗, so we must have h = J K.

We will next introduce bisimulations, which can be seen as a relational generalization of mor-
phisms. Bisimulations are, in the coalgebraic framework, an important technique to establish be-
havioural equivalence between different automata. Given automata (P, oP , δP) and (Q, oQ, δQ), we
say a relation R ⊆ P ×Q is a bisimulation if and only if, whenever (p, q) ∈ R, we have

1. oP (p) = oQ(q), and

2. for all a ∈ A, (pa, qa) ∈ R.

Proposition 5. If R ⊆ P ×Q is a bisimulation, and (p, q) ∈ R, then JpK = JqK.

Proof. We can define an automaton structure on R by defining, for (p, q) ∈ R, o((p, q)) = o(p)(=
o(q)), and (p, q)a = (pa, qa). Now observe that the projection functions π1 : R→ P and π2 : R→ Q
are morphisms as o(π1(p, q)) = o(p) = o((p, q)), and π1((p, q)a) = π1(pa, qa) = pa = (π1(p, q))a, and
similarly for π2.

We now obtain morphisms J K ◦ π1 and J K ◦ π2 from R into the final coalgebra, but by
Proposition 4, it follows that these morphisms must be identical, and hence, given (p, q) ∈ R,

JpK = Jπ1(p, q)K = Jπ2(p, q)K = JqK

completing the proof.

6

2.2 Semirings and beyond

2.2.1 Semirings

A semiring (S, ·,+, 1, 0) consists of a set S, such that (S, ·, 1) is a monoid, and (S,+, 0) is a commuta-
tive monoid, where addition distributes over multiplication, that is, for all r, s, t ∈ S, r(s+t) = rs+rt
and (r+ s)t = rt+ st, and 0 is a multiplicative annihilator, that is, for all r ∈ S, 0r = 0 = r0. Given
semirings S and T , a function f : S → T is called a semiring morphism whenever it is a monoid
morphism with respect to both the additive and multiplicative monoid underlying the semiring.

We call a semiring (S, ·,+, 1, 0) commutative whenever the multiplicative monoid (S, ·, 1) is com-
mutative, and idempotent whenever for all s ∈ S, the equality s+ s = s holds.

Two semirings that will be of importance in this article, both commutative, are the natural
numbers (N, ·,+, 1, 0) with the familiar addition and multiplication, and the Boolean algebra B =
{0, 1} of two elements (B, ·,+, 1, 0) with + and · representing the functions max and min, respectively.
These two semirings N and B are furthermore initial objects in the category of semirings and
the category of idempotent semirings, respectively: given any semiring (respectively, idempotent
semiring) S, there exists a unique semiring morphism from N (respectively, B) to S.

2.2.2 Modules

The next step will be the move from semirings to modules which can be regarded as semiring-valued
spaces in the same way as vector spaces can be regarded as field-valued spaces for fields F .

Given a semiring S, a left S-module1 or a left module over S, consists of a commutative monoid
(M,+, 0) and an operation · : S ×M →M , such that for all r, s ∈ S and m,n ∈M

r(m+ n) = rm+ rn

(r + s)m = rm+ sm

(rs)m = r(sm)

1m = m.

Analogous to this definition, a right S-module consists of a commutative monoid (M,+, 0) and
an operation · : M × S →M , such that for all r, s ∈ S and m,n ∈M

(m+ n)r = mr + nr

m(r + s) = mr +ms

m(rs) = (mr)s

m1 = m.

When S is a commutative semiring, the notions of left and right S-modules are equivalent, and
are simply called S-modules.

Given two S-modules M and N , we call a function f : M → N an S-module morphism if and
only if f is linear, i.e. if f(0M) = 0N , f(m1 + m2) = f(m1) + f(m2) for all m1,m2 ∈ M , and if
f(sm) = sf(m) for all s ∈ S and m ∈M .

As an importance instance of an S-module, given a set X, which can be regarded as a set of
variables, and a semiring S, consider the set of finite linear combinations

SXω = {f : X → S | {x ∈ X |f(x) 6= 0} is finite}

of elements of X, with coefficients in S. We will, for the sake of consistency, write (f, x) for f(x) for
some f ∈ SXω and x ∈ X. Defining zero and sum by

(0, x) = 0S

1We will not use the term semimodule. When needed, we can always distinguish between modules over a ring and
modules over a semiring.

7

and
(s+ t, x) = (s, x) + (t, x),

and scalar multiplication by
(rs, x) = r · (s, x)

it is clear that this structure is a S-module: moreover, it is the free S-module over X, which plays
an important role in the theory of rational power series. Also note that S itself also can be regarded

as an S-module, isomorphic to S
{1}
ω .

We can represent elements of SXω using (formal) sums, writing elements s ∈ SXω as∑
x∈X

x(s, x).

It is easy to see that this summation operation is compatible with the addition operator + defined
on the module SXω .

We can extend functions f : X → Y to functions Sfω : SXω → SYω by defining, for arbitrary
s ∈ SXω

Sfω(s) = Sfω

(∑
x∈X

x(s, x)

)
=
∑
x∈X

f(x)(s, x) =
∑
y∈Y

y

 ∑
x∈X:f(x)=y

(s, x)

 .

Note that we can only be certain that the last sum is properly defined because we know there can
only be finitely many x ∈ X such that (s, x) 6= 0. This last step, however, can easily be understood
when we regard it as a simple regrouping of the term: the key idea is to transform finite S-linear
combinations of elements of X into finite S-linear combinations of elements to Y by simply applying
f to the occurrences of elements of X in the linear sum, and then regrouping the resulting expression
as a summation over elements of y. It is easy to see that the equalities S1X

ω = 1SX
ω

and Sg◦fω = Sgω◦Sfω
hold, which is equivalent to the categorical fact that the operation S−ω can be seen as a (covariant!)
functor.2

Given a S-module M , we moreover always have a unique morphism αM : SMω → M , satisfying,
for all m ∈ M , αM ◦ ηM (m) = m (here ηM : M → SMω is the function mapping each m ∈ M to
λn(if n = m then 1 else 0)), αM (0SM

ω
) = 0M , αM (n1 + n2) = αM (n1) + αM (n2), and αM (sn) =

sαM (n). This morphism αM , together with these concrete conditions can be seen as an instance
of the more general and abstract categorical notion of an algebra for a monad T . Another way
to understand this morphism, is to see it as a witness of a fact that, for any S-module M , linear
combinations of elements of M (that is, elements of SMω) can again be seen as elements of M .

As an important example, let us consider the case where S is the Boolean semiring B. Here SXω
is equivalent to Pω(X), the set of finite subsets of X; and, given a f : X → Y , the function Sfω will
correspond to P(f), defined by Pω(f)(Z) = {f(z) | z ∈ Z} for finite Z ⊆ X.

2.2.3 Formal power series

In a similar manner, we can assign a B-module structure to the set P(A∗) of languages over an
alphabet A. However, P(A∗) can also be assigned a semiring structure: given languages L,M ∈
P(A∗), by defining the multiplication as LM := {vw | v ∈ L,w ∈ M}. In this section, we will
introduce the notion of a formal power series over a set of noncommuting variables, and see that
there is a much more general class of structures satisfying this property of being a semiring as well
as a semimodule (in the literature often called a S-algebra).

Formal power series, over commuting variables, were originally introduced as a generalization
of classical power series, abstracting away from the traditional interpretation as Taylor series of a
function. Their noncommuting variants turn out to be of major importance in the theory of formal

2This in contrast with the ordinary exponentiation functor SX , which is contravariant.

8

languages. For a more comprehensive treatment of formal power series over noncommuting variables,
see e.g. [BR11], or, for a coalgebraic view, [Rut03].

In Section 2.1.2, we already introduced the notation S〈〈A〉〉 for the function space from A∗ to S.
From now on, we will assume S to be a semiring, and call elements of S〈〈A〉〉 formal power series
with coefficients in S and (noncommuting) variables A, and use this semiring structure of S to define
an embedding

i : S → S〈〈A〉〉
and operations

+ : S〈〈A〉〉 × S〈〈A〉〉 → S〈〈A〉〉
and

· : S〈〈A〉〉 × S〈〈A〉〉 → S〈〈A〉〉
by setting, for all w ∈ A∗, s ∈ S, and σ, τ ∈ S〈〈A〉〉:

(i(s), w) = (if w = 1 then s else 0),

(σ + τ, w) = (σ,w) + (τ, w), and

(στ, w) =
∑
uv=w

(σ, u)(τ, v).

It is now easy to see that the structure

(S〈〈A〉〉, ·,+, i(1S), i(0S))

is indeed a semiring. Combining this semiring structure on S〈〈A〉〉 with the automaton structure
from Section 2.1.2, we now obtain the following result:

Proposition 6. For all σ, τ ∈ S〈〈A〉〉, we have

o(στ) = o(σ)o(τ)

and for all σ, τ ∈ S〈〈A〉〉 and a ∈ A,

(στ)a = σaτ + o(σ)τa.

Proof. First we have
o(στ) = (στ, 1) = (σ, 1)(τ, 1) = o(σ)o(τ)

and then, for any w ∈ A∗

(στa, w) = (στ, aw)

=
∑

u′v′=aw

(σ, u′)(τ, v′)

=
∑
uv=w

(σ, au)(τ, v) + (σ, 1)(τ, aw)

=
∑
uv=w

(σa, u)(τ, v) + (σ, 1)(τa, w)

= (σaτ, w) + o(σ)(τa, w)

= (σaτ + o(σ)τa, w).

Note that, in the last step, we have tacitly identified o(σ) with its value under the embedding iS .

Given a formal power series σ, we say its support is the set of words w ∈ A∗ such that (σ,w) 6= 0.
We call a formal power series σ polynomial whenever its support is finite, or in other words, there
are only finitely many words w ∈ A∗ such that (σ,w) 6= 0. The set of all polynomial power series
with coefficients in S and variables in A is denoted by S〈A〉. It is easy to see that S〈A〉 is closed
under the operations · and +, or, in other words, if σ and τ have finite support, then so do σ · τ and
σ + τ . As a result, S〈A〉 has a semiring structure in addition to its S-module structure.

9

2.2.4 Streams

A special instance of formal power series arises when we restrict ourselves to a single alphabet symbol
(which we will, by convention, denote with the symbol X). The set of power series with output in a
semiring S, is then equivalent to the set SN of functions from N to S, or as we will commonly call
them, streams over S, identifying (σ,Xn) with (σ, n) under this new representation.

Furthermore, in this case where we have just a single alphabet symbol X, we simply write σ′

and δ(σ) instead of σX and δ(σ)(a). We also use the familiar notation of writing σ(n) for the nth
derivative of σ, that is, σXn . We can summarize the relationship between our notation for the specific
case of streams, and the notation for the more general case of formal power series, in the following
diagram:

Formal power series Streams
(in noncommuting variables)

Alphabet A {X}
Solution space S〈〈A〉〉 SN = S〈〈{X}〉〉
Derivative of x xa (a ∈ A) x′

Example 7. Consider the automaton

x ↓ 0 y ↓ 1 z ↓ 2

over a single alphabet symbol (X, not shown in the drawing of the automaton), and with outputs
in N. This automaton corresponds to the system of behavioural differential equations

o(x) = 0 x′ = y
o(y) = 1 y′ = z
o(z) = 2 z′ = x

and it is easily seen that the final homomorphism maps x onto the stream

JxK = 0, 1, 2, 0, 1, 2, 0, 1, 2, . . .

For a comprehensive treatment of streams and the coinductive stream calculus, we refer to [Rut03]
and [Rut05].

3 Rational systems

In this section, we will present and recall some results about weighted automata, which will be
needed in the remainder of this article. The class of languages and power series characterized by
these automata is called rational, and, whenever the underlying semiring S is a field, this notion of
rationality coincides with the classical notion. For a more comprehensive background on rational
systems, power series, and weighted automata, see for example [BR11] or [Sak09] for a classical
account, or [Rut08] or [BBB+12] for a coalgebraic approach.

Fixing a finite alphabet A, a weighted automaton with weights in a semiring S consists of a triple
(X, o, δ), where

1. X is a finite set, to be regarded as a set of variables or nonterminals;

2. o : X → S is, as in the case of automata, an output function

10

3. δ : X → (SXω)A is the transition function, describing each of the possible derivatives of the set
X as a S-weighted linear combination of elements of X.

Closely related to weighted automata are linear automata: we call an S-automaton (Q, o, δ)
linear whenever

1. Q is an S-module; and

2. o : Q→ S and δ : Q→ QA are S-module morphisms.

Using the method of determinization ([RS59], [SBBR10]), we can transform each weighted au-

tomaton (X, o, δ) into a linear automaton (SXω , ô, δ̂). To ensure compatibility between o and δ

on one side, and ô and δ̂ on the other side, we must have ô(η(x)) = o(x) for all x ∈ X, and

δ̂(η(x))(a) = δ(x)(a) for all x ∈ X and a ∈ A. Moreover, ô and δ̂ have to be linear mappings as well.
Because SXω is the free S-module over X, however, we know that there must be a unique mapping
satisfying these properties: given any σ ∈ SXω , we have

ô(σ) = ô

(∑
x∈X

(σ, x)x

)
=
∑
x∈X

(σ, x)o(x)

and for all σ ∈ SXω and a ∈ A, we have

σa =

(∑
x∈X

(σ, x)x

)
a

=
∑
x∈X

(σ, x)xa.

This construction, which can be seen as an instance of a more general categorical framework
presented in [SBBR10], can be summarized in the following diagram, together with the final homo-
morphism from the linear automaton SXω into the final automaton:

X ⊂

η
- SXω

J K
- S〈〈A〉〉

S × (SXω)A

(o, δ)

?
-

�
(ô
, δ̂

)

S × S〈〈A〉〉A
?

We will call a formal power series σ rational whenever there is a weighted automaton X, and an
x ∈ X, such that Jη(x)K = σ.

Because ô and δ̂ are compatible with o and δ, we will from now on simply use the symbols o and
δ to refer to both functions.

Example 8. Consider the following system over the semiring N, with a set X = {x, y} of two
variables, and a single alphabet symbol X:

o(x) = 1 x′ = y
o(y) = 1 y′ = x+ y

This system corresponds to the weighted automaton3

x ↓ 1 y ↓ 1

1

1

1

3The 1s labelling the arrows here are the weights of the transitions, rather than alphabet symbols.

11

and we now obtain
JηX(x)K = 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . ,

or in other words, x is mapped by the final homomorphism to the stream of Fibonacci numbers,
easily establishing that this sequence is a N-rational stream.

3.1 Bisimulations up to linear combinations

In the case of linear automata, we can establish equality under the final homomorphism using
the notion of a bisimulation up to linear combinations. The general idea here is that, given two
linear automata X and Y , whenever two elements (s, t) are related by a bisimulation up to linear
combinations R ⊆ X × Y , their outputs are identical, and moreover, the derivatives sa = ta are
linear combinations of projections of related pairs again. The idea of bisimulations up to linear
combinations is closely related to the more abstract, categorically defined, notion of coalgebraic
bisimulation up-to: for more background on this topic, we refer to [RBR13].

In order to make this notion precise, we will first need to define the relation ΣR, which can, in
a way, be regarded as a linear extension of R. We can formally specify ΣR as

ΣR := {(αX ◦ Sπ1
ω , αY ◦ Sπ2

ω)(r) | r ∈ SRω };

SRω here is simply the set of S-linear combinations of elements of R; however, because X and Y
themselves have a S-module structure, we can canonically transform elements of SRω into elements
of X × Y : this is done by the function

(αX ◦ Sπ1
ω , αY ◦ Sπ2

ω).

Here mappings αX : SXω → X and αY : SYω → Y are as defined in Section 2.2.2; and Sπ1
ω and Sπ2

ω

are the liftings of the projection morphisms π1 and π2 over the functor S−ω , going from SRω to SXω
and SYω , respectively. As a result, ΣR is again a subset of X × Y .

Given linear automata X and Y , we will now call a relation R ⊆ X × Y a bisimulation up to
linear combinations whenever the following conditions are satisfied:

1. for all (x, y) ∈ R, o(x) ∈ o(y), and

2. for all (x, y) ∈ R and a ∈ A, xa ΣR ya.

We will next show that a relation R is a bisimulation up to linear combinations whenever ΣR is
a bisimulation. In order to show this, hovever, we first to prove a few auxiliary results.

Lemma 9. Given any (p, q) ∈ X × Y , we have (p, q) ∈ ΣR iff there exists an index set I, and three
mappings assigning elements i ∈ I to coefficients si ∈ S and elements pi ∈ X and qi ∈ Y , such that

p =
∑
i∈I

sipi and q =
∑
i∈I

siqi,

and for each i ∈ I, (pi, qi) ∈ R.

Proof. Assume (p, q) ∈ ΣR. Then, by the definition of ΣR, there has to be a r ∈ SRω , such that

p = αX ◦ Sπ1
ω (r) and q = αY ◦ Sπ2

ω (r).

However, because of the definition of S−ω , it is clear that there must be some index set I and mappings
assigning elements i ∈ I to coefficients si ∈ S and elements ri ∈ R, such that

r =
∑
i∈I

siri.

12

Writing each ri as (pi, qi), we now obtain

p = αX ◦ Sπ1
ω

(∑
i∈I

si(pi, qi)

)
= αX

(∑
i∈I

sipi

)
=
∑
i∈I

sipi

and similarly for q. The vanishing of the α here can be understood as representing a move from
elements of SXω , represented as formal sums, to the corresponding real sums in X. For the other
direction, we can simply define

r =
∑
i∈I

si(pi, qi),

observe that r ∈ SRω , and verify that p = αX ◦ Sπ1
ω (r) and q = αY ◦ Sπ2

ω (r).

From this lemma we directly obtain the result R ⊆ ΣR:

Corollary 10. For all R ⊆ X × Y , R ⊆ ΣR.

Proof. Given a (p, q) ∈ R, consider the singleton index set I = {1}, together with the mappings
s1 = 1, p1 = p, and q1 = q, and apply Lemma 9 to obtain (p, q) ∈ ΣR.

We now are equipped with the prerequisites needed to establish the desired equivalence:

Proposition 11. A relation R ⊆ X × Y is a bisimulation up to linear combinations if and only if
ΣR is a bisimulation.

Proof. First assume that ΣR is a bisimulation. If (p, q) ∈ R, then (p, q) ∈ ΣR, and hence we obtain
both o(p) = o(q) and pa ΣRqa directly.

For the other direction, assume that R ⊆ X × Y is a bisimulation up to linear combinations.
Now, take any (p, q) ∈ ΣR. By Lemma 9, we have an index set I and mappings assigning si, pi and
qi to each i ∈ I, such that

p =
∑
i∈I

sipi and q =
∑
i∈I

siqi.

and for each i ∈ I, (pi, qi) ∈ R. We now have

o(p) = o

(∑
i∈I

sipi

)
=
∑
i∈I

sio(pi) =
∑
i∈I

sio(qi) = o

(∑
i∈I

siqi

)
= o(q)

and

pa =

(∑
i∈I

sipi

)
a

=
∑
i∈I

si(pi)a ΣR
∑
i∈I

si(qi)a =

(∑
i∈I

siqi

)
a

= qa,

and the proof is complete.

We will conclude this section with an elementary but important result: just like in the case of
ordinary bisimulation, elements related by a bisimulation up to linear combinations have the same
semantics in the final automaton.

Proposition 12. If R ⊆ X × Y is a bisimulation up to linear combinations, and (p, q) ∈ R, then
JpK = JqK.

Proof. Use the fact that R ⊆ ΣR, the fact that ΣR is a bisimulation, and Proposition 5.

13

4 Context-free systems

In this section, we will present a format for systems of behavioural differential equations, which turns
out to characterize precisely the context-free languages when B is chosen as underlying semiring.
This format is an adaptation and extension of the formats presented in [WBR11] and [BRW12].
As we will show later in this article, the formal power series characterizable in this way correspond
exactly to various notions of algebraic power series.

Fixing an alphabet A, a polynomial, or context-free, system of behavioural differential equations
over a semiring S consists of a triple (X, o, δ), where

1. X is a finite set, to be regarded as a set of variables or nonterminals;

2. o : X → S is, as in the case of automata, an output function; and

3. δ : X → S〈X〉A is the transition function, describing each of the possible derivatives of the set
X as a polynomial.

We can, also, regard these systems of equations as coalgebras of the type

X
(o,δ)→ S × S〈X〉A.

In the introduction, we already saw an example of a context-free system of equations. In order
to be able to give meaning to these systems of behavioural differential equations, we first require
a method of transforming such a system into an automaton4 (or, equivalently, a coalgebra for the
functor S × −A). We will do this using a method related to, but more complicated than, the
determinization method presented in Section 3.

To start, we extend (o, δ) into a mapping

(ō, δ̄) : X∗ → S × S〈X〉A

specifying output values and derivatives of words over X, by means of the inductive definition

ō(1) = 1 1a = 0
ō(xw) = o(x)ō(w) (xw)a = xaw + o(x)wa

for all x ∈ X, w ∈ X∗, and a ∈ A.
We can see this inductive definition as an instance of a product rule, relating to Brzozowski

derivatives in a similar manner as the familiar (Leibniz) product rule relates to ordinary function
derivatives. We can now prove that product rule can easily be extended from products of an alphabet
symbol and a word, to products of arbitrary words:

Proposition 13. For all v, w ∈ X∗, the equations

ō(vw) = ō(v)ō(w) and (vw)a = vaw + ō(v)wa

hold in any system defined as above.

Proof. Induction on the length of v.
If v = 1, then

ō(vw) = ō(1w) = ō(w) = ō(1)ō(w)

and
(vw)a = (1w)a = wa = 0w + 1wa = vaw + ō(v)wa.

4In most cases, an infinite automaton

14

If v = xu for x ∈ X and u ∈ X∗, use the inductive hypothesis that

ō(uw) = ō(u)ō(w) and (uw)a = uaw + ō(u)wa

and now observe

ō(vw) = ō(xuw) = o(x)ō(uw) = o(x)ō(u)ō(w) = ō(xu)ō(w) = ō(v)ō(w)

and

(vw)a = (xuw)a

= xa(uw) + o(x)(uw)a

= xauw + o(x)(uaw + ō(u)wa)

= xauw + o(x)uaw + o(x)ō(u)wa

= (xu)aw + ō(xu)wa

= vaw + ō(v)wa,

completing the proof.

Now, because S〈X〉 ' SX∗ω (or, in other words: because polynomials over X are the same thing
as finite linear combinations of words over X), the inductive extension presented above simply gives
a nondeterministic system

(ō, δ̄) : X∗ → (SX
∗

ω)A.

As a result, we can at this stage simply apply the determinization method from Section 3, obtaining
a deterministic automaton (ô, δ̂). This automaton again satisfies (a more general version of) the
product rule, this time defined on polynomials:

Proposition 14. For any polynomials s, t ∈ S〈X〉 and any a ∈ A, the equations

ô(st) = ô(s)ô(t) and (st)a = sat+ ô(s)ta

hold in any system (S〈X〉, ô, δ̂) as defined above.

Proof. First note that we have

s =
∑
w∈A∗

(s, w)w and t =
∑
w∈A∗

(t, w)w.

Now observe

ô(st) = ô

(∑
v∈X∗

(s, v)v
∑
w∈X∗

(t, w)w

)

= ô

 ∑
v,w∈X∗

(s, v)(t, w)vw

=

∑
v,w∈X∗

(s, v)(t, w)o(vw)

=
∑

v,w∈X∗
(s, v)(t, w)o(v)o(w)

=
∑
v∈X∗

(s, v)o(v)
∑
w∈X∗

(t, w)o(w)

= ô(s)ô(t)

15

and

(st)a =

(∑
v∈X∗

(s, v)v
∑
w∈X∗

(t, w)w

)
a

=
∑

v,w∈X∗
(s, v)(t, w)(vw)a

=
∑

v,w∈X∗
(s, v)(t, w)(vaw + o(v)wa)

=
∑

v,w∈X∗
(s, v)(t, w)vaw +

∑
w∈X∗

(s, v)(t, w)o(v)wa

=
∑
v∈X∗

(s, v)va
∑
w∈X∗

(t, w)w +
∑
v∈X∗

(s, v)o(s)
∑
w∈X∗

(t, w)wa

=
∑
v∈X∗

(sa, v)v
∑
w∈X∗

(t, w)w +
∑
v∈X∗

(s, v)o(s)
∑
w∈X∗

(ta, w)w

= sat+ ô(s)ta,

and the proof is complete.

Now we can combine any system of equations of the form (X, o, δ) : X → S×S〈X〉A, its extension

(X, ô, δ̂), and the mapping J K into the final coalgebra S〈〈A〉〉, in the following diagram:

X ⊂

η
- S〈X〉

J K
- S〈〈A〉〉

S × S〈X〉A

(o, δ)

?
-

�
(ô
, δ̂

)

S × S〈〈A〉〉A
?

We will henceforth, given a context-free system of behavioural differential equations, call the com-
position of η (which is the unit of the monad S〈−〉) and the final homomorphism J−K the solution
to this system.

Moreover, this final homomorphism preserves products:

Proposition 15. For any s, t ∈ S〈X〉, we have JsKJtK = JstK.

Proof. Consider the relation
R = {(st, JsKJtK) | s, t ∈ S〈X〉}.

R is a bisimulation up to linear combinations between S〈X〉 and S〈〈A〉〉, because

o(st) = o(s)o(t) = o(JsK)o(JtK) = o(JsKJtK)

and if (st, JsKJtK) ∈ R, we get

(st)a = sat+ o(s)ta

ΣR JsaKJtK + Jo(s)KJtaK
= JsKaJtK + o(JsK)JtKa
= (JsKJtK)a,

and hence JstK = JJsKJtKK = JsKJtK.

16

We will call a formal power series σ over a semiring S and an alphabet A context-free whenever
there is a context-free system of behavioural differential equations (X, o, δ), and an x ∈ X, such that
JηX(x)K = σ.

An equivalent characterization of context-free power series is the following:

Lemma 16. A formal power series σ is context-free if and only if there is a context-free system of
behavioural differential equations, and a polynomial s ∈ S〈X〉, such that JsK = σ.

Proof. If σ is context-free and (X, o, δ) is a system of behavioural differential equations with x ∈ X
such that JηX(x)K = σ, then the polynomial ηX(x) satisfies the above condition.

Conversely, assume that JsK = σ for some polynomial s. Now construct a new context-free system
over the set X̄ = {x̄ |x ∈ X} ∪ {s̄}, and consider the mapping f : X → X̄ defined by f(x) = x̄ for
all x ∈ X, which extends to a mapping S〈f〉 : S〈X〉 → S〈X̄〉, and define, for all x̄ such that x ∈ X,
o(x̄) = o(x), and for all a ∈ A, x̄a = f(xa), and furthermore o(s̄) = o(s) and s̄a = f(sa). It is now
easy to see that the relation

R = {(f(t), JtK) | t ∈ S〈X〉} ∪ {(s̄, σ)}

is a bisimulation between S〈X̄〉 and S〈〈A〉〉. Hence, JηX(s̄)K = σ, so σ is context-free.

Example 17. Let us return now to the system from the introduction, which was given by the
following system of behavioural differential equations:

o(x) = 1 xa = xy xb = 0
o(y) = 0 ya = 0 yb = 1

We will now make the earlier claim, that x can be interpreted as the language

{anbn |n ∈ N},

precise. In order to do so, consider the following relation

R = {(xyk, {anbn+k n ∈ N}) | k ∈ N} ∪ {(yk, {bk}) | k ∈ N}

between B〈X〉 (or, equivalently, Pω(X)) and B〈〈A〉〉 (or, equivalently, P(A)). To see that R is a
bisimulation, take an arbitrary (r1, r2) ∈ R:

• If (r1, r2) is of the form (xyk, {anbn+k |n ∈ N}), then either k = 0, giving

o(r1) = o(xyk) = o(x) = 1 = o({anbn |n ∈ N}) = o(r2),

or k > 0, giving
o(r1) = o(xyk) = 0 = o({anbn+k |n ∈ N}) = o(r2).

Furthermore,

(r1)a = (xyk)a = xyk+1 R {anbn+k+1 |n ∈ N} = {anbn+k |n ∈ N}a = (r2)a,

and
(r1)b = (xyk)b = yk−1 R {bk−1} = {anbn+k |n ∈ N}b = (r2)b,

completing the case.

17

• If (r1, r2) is of the form (yk, {bk}), then

o(r1) = if k = 0 then 1 else 0 = o(r2),

(r1)a = 0 = (r2)1,

and
(r1)b = (yk)b = yk−1 R {bk−1} = {bk}b,

completing this case, too.

From the fact that R is a bisimulation, it now follows directly that JxK = {anbn |n ∈ N}, as
previously claimed.

Example 18. As an example of a context-free power series that is not a language (over the semiring
of the natural numbers and over a singleton alphabet), taken from [Rut02], consider the stream
defined by the following equation:

o(x) = 1 x′ = x2

Its solution is the stream of Catalan numbers

1, 1, 2, 5, 14, 42, 132, 429, 1430, . . . 5

The nth element of this stream counts the number of well-bracketed words consisting of n pairs of
opening and closing brackets. In Section 5.2, we will show how to derive the above equation from a
context-free grammar representing pairs of brackets.

Example 19. Another example of a context-free stream, using the finite field F2 (characterized
by 1 + 1 = 0) as underlying semiring, is defined by the following system of equations (where now
X = {w, x, y, z}):

o(w) = 0 w′ = x
o(x) = 1 x′ = x2 + zy2

o(y) = 0 y′ = y2 + zx2

o(z) = 0 z′ = 1

One can show that w is mapped by the final homomorphism onto the stream

0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, . . . 6

which is the so-called Thue-Morse sequence. This stream can also be characterized as the morphic
sequence generated by the morphism with p(0) = 01 and p(1) = 10. In Section 7, we will see a way
to derive this sequence directly from a 2-automaton generating this sequence.

We will finish this section with some basic, but important closure properties of classes of context-
free power series.

Proposition 20. If σ and τ are context-free, then so are σ + τ and στ .

Proof. If σ and τ are context-free, then there must be systems of behavioural differential equations
(X, oX , δX) and (Y, oY , δY) and elements p ∈ X and q ∈ Y such that JpK = σ and JqK = τ . Now
consider the system (X + Y, oX+Y , δX+Y), where X + Y is the disjoint union of the two earlier
systems. For x ∈ X, we now set oX+Y (x) = oX(x) and δX+Y (x) = δX(x), and similarly for Y .

It is now immediately clear that the relations {(x, x) |x ∈ X} and {(y, y) | y ∈ Y } are bisimu-
lations between X and X + Y , and Y and X + Y respectively. Hence JpK = σ and JqK = τ also
hold with respect to the new system. However, we now directly obtain Jp + qK = σ + τ because of
linearity, and JpqK = στ because of Proposition 15, so σ+ τ and στ must be context-free as well.

5This sequence appears in the The On-Line Encyclopedia of Integer Sequences as http://oeis.org/A000108
6http://oeis.org/A010060

18

4.1 Systems of equations and the Greibach normal form

We will now establish a connection between the context-free power series we just defined in terms of
behavioural differential equations, and the presentation, common in the theory of weighted automata,
of algebraic power series over a semiring S as solutions to certain classes of systems of equations.
In the current context, a system of equations over an alphabet A will be a pair (X, p), where X is
a finite set of nonterminals, and

p : X → S〈A+X〉
is a mapping assigning a polynomial over the disjoint union A + X to each x ∈ X. This definition
corresponds exactly to S-algebraic systems as presented in e.g. [PS09] and originally defined in
[Fli74]. Note that we can also regard such systems as weighted grammars: the mapping p, in this
case, can be seen as the set of (weighted) production rules of the grammar.

A system of equations is called proper iff, for all x ∈ X, (p(x), 1) = 0, and for all x, y ∈ X,
(p(x), y) = 0. If we would regard such systems as weighted grammars, the notion of being proper
corresponds to the absence of ε-productions and unit productions in the grammar. Furthermore,
such a system is said to be in Greibach normal form if its support is contained in the set AX∗.

Our definition of a solution to such systems is, again, equivalent to the classical situation, but
presented in a more categorical fashion: to be precise, a solution to a system of equations is a
mapping

J K : X → S〈〈A〉〉,
such that the diagram

X
J K

- S〈〈A〉〉

S〈A+X〉

p

?

S〈[ηA, J K]〉
- S〈S〈〈A〉〉〉

µA

6

commutes. In this diagram, the arrow labelled S〈[ηA, J K]〉 maps polynomials over the coproduct
A + X into polynomials over S〈〈A〉〉 using the copair operation [,], applying the injection ηA to
elements of A, and the mapping J K to elements of X. These polynomials over S〈〈A〉〉, in turn, are
also elements of S〈〈S〈〈A〉〉〉〉, and now applying the multiplication µA for the monad S〈〈−〉〉 yields
elements of S〈〈A〉〉. Alternately, we can see the composition µA ◦ S〈[ηA, J K]〉 as a lifting of the
mapping J K from elements of X to polynomials over X +A with coefficients in S.

We call such a solution strong iff, for all x ∈ X, we have

(JxK, 1) = 0,

and call a formal power series σ ∈ S〈〈A〉〉 constructively S-algebraic iff there exists a proper system
of equations (X, p), a scalar s ∈ S, a nonterminal x ∈ X, and a strong solution J K, such that

σ = s+ JxK.

It should be noted that, in the case where the underlying semiring is the Boolean semiring B,
such systems of equations are equivalent to context-free grammars. Furthermore, we note that,
without the additional condition of properness, these systems of equations do not necessarily have
solutions: for example, the (non-proper) system consisting of the single equation x = x+ 1, over the
semiring N does not have any solutions.

We recall the following results from [PS09] without proving them:

Proposition 21. Every proper S-weighted system of equations has exactly one strong solution [PS09,
Theorem 3.2].

19

Other than the strong solution, proper systems also may have other solutions. For example, the
system x = x2 has (over an arbitrary semiring) solutions x = 0 and x = 1; but only the first of
these solutions is strong. This can be contrasted with context-free systems of behavioural differential
equations, which are guaranteed to always have a unique solution.

Proposition 22. Any component of a strong solution to a proper S-weighted system of equations
also occurs as a component of a strong solution to such a system in Greibach normal form [PS09,
Theorem 3.15].

The last proposition now enables us to establish the equivalence between context-free and con-
structively S-algebraic power series:

Theorem 23. A formal power series over a semiring S is context-free iff it is constructively S-
algebraic.

Proof. First assume σ ∈ S〈〈A〉〉 is constructively S-algebraic. Then, there exists a system of equations
in Greibach normal form (X, p), a x ∈ X and a s ∈ S such that σ = s+JxK. Now construct a system
of behavioural differential equations (X, o, δ) by setting

o(x) = 0 for all x ∈ X

and
(xa, w) = (p(x), aw) for all x ∈ X, a ∈ A, and w ∈ X∗.

We can now verify that σ = s+JxK again holds with respect to the system of behavioural differential
equations. The other direction goes similarly, assuming that we start from a system with o(x) = 0
for all x ∈ X. The crucial insight here is that there is a one-to-one correspondence between systems
of behavioural differential equations where o(x) = 0 for all x ∈ X, and proper systems of equations
in Greibach normal form.

Hence, we can, from now on, regard context-free systems of behavioural differential equations as
a defining format for constructively algebraic power series. Compared to the traditional systems of
equations, these behavioural differential equations provide the advantage of a more elegant descrip-
tion: no additional conditions are needed to guarantee the existence of unique solutions. Also, they
enable us to use bisimulation techniques to reason about context-free languages and context-free
systems.

5 Coinductive counting and combinatorics

We will now turn to some applications of the behavioural differential equations, and the proof
technique of bisimulation, to a number of combinatorial counting problems. It turns out that a
number of familiar sequences, including e.g. the Catalan and Schroeder numbers, can easily be
described and understood using systems of behavioural differential equations, characterizing these
sequences as context-free streams.

The results in this section can be related to [Rut02], in which a number of counting problems are
presented using (both finite and infinite) weighted automata. Compared to the work in that article,
we present a more systematic account, giving a uniform technique of obtaining systems of behavioural
differential equations directly from a description of the combinatorial structure of a sequence. For
example, we can start from the characterization of the Catalan numbers as the number of matching
pairs of parentheses of a certain length, and from this characterization directly obtain a system of
behavioural differential equations having the Catalan numbers as a solution. Because context-free
systems of behavioural differential equations can be regarded as infinite weighted automata, we
can regard this method as a more systematic approach, extending the more ad hoc approach from
[Rut02].

20

In order to establish these results, however, we first need to introduce some terminology and
notation allowing us to talk about grammars, and derivations of words from such a grammar.

5.1 Grammars and derivations

For now, we will restrict ourselves to the case where the S is the Boolean semiring B. In this case, our
context-free series will simply be context-free languages, and the systems of equations correspond
to context-free grammars (rather than the weighted grammars we would obtain in the more general
case). Moreover, systems of equations in Greibach normal form are in direct correspondence to
systems of behavioural differential equations.

We will use the familiar syntax of grammar rules

x→ u

to denote (p(x), u) = 1. In the case of grammars in Greibach normal form, we have x → u if and
only if either

1. u = 1 and o(x) = 1; or

2. u = av for some a ∈ A and v ∈ X∗, and (ua, v) = 1

with respect to the system of behavioural differential equations corresponding to the grammar.
We can now define single-step derivations by writing

vxw ⇒ vuw

whenever x→ u, for arbitrary v, w ∈ (X +A)∗, and arbitrary derivations by writing

v ⇒∗ w

whenever there is a natural number n, together with a function f : {n ∈ N |n ≤ n} → (X + A)∗

such that for all m ∈ N with m < n, f(m)⇒ f(m+ 1), and moreover f(0) = v and f(n) = w.
Given v, w ∈ (X + A)∗, we let derivs(v, w) denote the set of all distinct leftmost derivations

v ⇒∗ w, that is, the set of all such pairs (n, f) witnessing v ⇒∗ w.

5.2 Counting problems

In this section, we will establish that certain power series and streams, representing the degrees of
ambiguity of derivations of context-free grammars in Greibach normal form, are again context-free.
This will, again, be done using the technique of bisimulation up to linear combinations. The first
proposition will show that, given a context-free grammar in Greibach normal form, presented as a
context-free system of differential equations (X, o, δ) over the Boolean semiring B, the power series∑

w∈A∗
|derivs(v, w)|

is context-free (over N) for all words v ∈ X∗. The results in this section were originally proven by
Chomsky and Schützenberger in [CS63]; we will here provide coinductive proofs of these classical
results.

In order to show this, we first transform (X, o, δ) into another system, which is almost identical
to the original system, except that the underlying semiring now is N. The underlying set of variables
of this new system will be a set of notational variants

X̄ = {x̄ |x ∈ X}

21

of the original system. Again, we have a function f : X → X̄, sending each variable to its notational
variant, which can be lifted over the star monad yielding f∗ : X∗ → X̄∗; as well as a function
e : B→ N defined by e(0) = 0 and e(1) = 1. We now define a function g : B〈X〉 → N〈X̄〉 by

(g(s), f∗(w)) = e(s, w),

which is a proper definition simply because f (and hence, f∗ too) is a bijection.
First note we have, for v ∈ X∗, a ∈ A, and z ∈ A∗,

|derivs(v, 1)| = o(v)

and
|derivs(v, az)| =

∑
u∈X∗

e(va, u)|derivs(u, z)|.

Proposition 24. The relation

R =

{(
v̄,
∑
w∈A∗

|derivs(v, w)|w

)∣∣∣∣∣ v ∈ X∗
}

is a bisimulation up to linear combinations between N〈X̄〉 and N〈〈A〉〉.

Proof. We have

o(v̄) = o(v) = |derivs(v, 1)| = o

(∑
w∈A∗

|derivs(v, w)|w

)
and, if

(
v̄,
∑
w∈A∗ |derivs(v, w)|w

)
∈ R, then

v̄a =
∑
u∈X∗

(v̄a, ū)ū

=
∑
u∈X∗

(va, u)ū

ΣR
∑
u∈X∗

(va, u)
∑
w∈A∗

|derivs(u,w)|w

=
∑
z∈A∗

∑
u∈X∗

(va, u)|derivs(u, z)|z

=
∑
z∈A∗

|derivs(v, az)|z

=
∑
b∈A

∑
z∈A∗

|derivs(v, bz)|(bz)a + |derivs(v, 1)|1a

=
∑
w∈A∗

|derivs(v, w)|wa

=

(∑
w∈A∗

|derivs(v, w)|w

)
a

.

We can now also, given a system of behavioural differential equations (X, o, δ) over an alphabet
A and some v ∈ X∗, create a context-free stream σ, such that for every number n ∈ N, σ(n) is equal
to ∑

w∈A∗,|w|=n

= |derivs(v, w)|.

22

In order to do this, we will construct a new system (X̄, o, δ) over the set

X̄ = {x̄ |x ∈ X};

however, first, we define a morphism f : X → X̄ simply by f(x) = x̄. This morphism can be lifted

over the functor S〈−〉, giving a morphism f̂ : S〈X〉 → S〈X̄〉, and enabling us to specify the new
system with the equations

o(x̄) = o(x) and x̄′ =
∑
a∈A

f̂(xa)

from which the equality (x̄′, ū) =
∑
a∈A(xa, u) easily follows.

The following proposition establishes that this new system indeed has the intended behaviour:

Proposition 25. The relation

R =

{(
v̄,
∑
w∈A∗

|derivs(v, w)|X|w|
)∣∣∣∣∣ v ∈ X∗

}

is a bisimulation up to linear combinations between N〈X̄〉 (as just defined) and NN.

Proof. We have

o(v̄) = o(v) = |derivs(v, 1)| = o

(∑
w∈A∗

|derivs(v, w)|X|w|
)

and, if (
v̄,
∑
w∈A∗

|derivs(v, w)|X|w|
)
∈ R,

then also

v̄′ =
∑
u∈X∗

(v̄′, ū)ū

=
∑
u∈X∗

∑
a∈A

(va, u)ū

ΣR
∑
u∈X∗

∑
a∈A

(va, u)
∑
w∈A∗

|derivs(u,w)|X|w|

=
∑
a∈A

∑
z∈A∗

∑
u∈X∗

(va, u)|derivs(u, z)|X|w|

=
∑
a∈A

∑
z∈A∗

|derivs(v, az)|X|z|

=
∑
w∈A∗

|derivs(v, w)|X|w|
′

=

(∑
w∈A∗

|derivs(v, w)|X|w|
)′
.

This construction now enables us to derive specifications of some well-known number sequences
as context-free streams.

23

Example 26. As a first example, consider the Catalan numbers. It is well-known that the nth
Catalan number corresponds to the number of ways to combine n pairs of matching brackets. An
unambiguous CFG in (weak) Greibach normal form representing matching pairs of brackets is

x→ axbx | 1

which corresponds to the system of equations

o(x) = 1 xa = xyx xb = 0
o(y) = 0 ya = 0 yb = 1.

Using the transformation on which Proposition 25 was based, we now obtain another system of
equations

o(x̄) = 1 x̄′ = x̄ȳx̄
o(ȳ) = 0 ȳ′ = 1.

yielding the stream σ such that for all n ∈ N, σ(2n) is equal to the nth Catalan number, and
σ(2n+ 1) = 0.

Now, because multiplication of streams over N is commutative, observe that

x̄′′ = (x̄ȳx̄)′ = (ȳx̄2)′ = ȳ′x̄2 + o(ȳ)(x̄2)′ = ȳ′x̄2 = x̄2,

giving us a new system, over a single variable z, defined by

o(z) = 1 z′ = z2.

Because it clearly holds that JzK(n) = Jx̄K(2n), it follows immediately that the final homomor-
phism J−K maps z onto the stream of Catalan numbers: thus we have established that the Catalan
numbers are a context-free stream.

Example 27. Another, closely related, example arises from the following problem: given a n × n
grid, how many different ways are there to go from (0, 0) to (n, n) by making steps of the types (0, 1),
(1, 0) and (1, 1) that stay below the diagonal? The sequence mapping each n ∈ N to the number of
such paths from (0, 0) to (n, n) is called the sequence of (large) Schroeder numbers, and starts with

1, 2, 6, 22, 90, 394, 1806, 8558, 41586, 206098, . . . 7

It is easy to see that the nth Schroeder number corresponds to the number of derivations of
words of length 2n given by the following system of behavioural differential equations:

o(x) = 1 xa = xyx xb = 0 xc = zx
o(y) = 0 ya = 0 yb = 1 yc = 0
o(z) = 0 za = 0 zb = 0 zc = 1.

Here a represents a step of the type (0, 1), b represents a step of the type (1, 0), and cc (cs can only
occur in pairs in the language JxK) represents steps of the type (1, 1).

Using the transformation from Proposition 25, we now obtain a new system of equations

o(x̄) = 1 x̄′ = x̄ȳx̄+ z̄x̄
o(ȳ) = 0 ȳ′ = 1
o(z̄) = 0 z̄′ = 1

and again, by commutativity of multiplication, we now get

x̄′′ = (x̄ȳx̄+ z̄x̄)′ = (ȳx̄2)′ + (z̄x̄)′ = ȳ′x̄2 + o(ȳ)(x̄2)′ + z̄′x̄+ o(z̄)x̄′ = x̄2 + x̄

yielding a new system over a single variable u:

o(u) = 1 u′ = u2 + u

which is mapped by J−K onto the Schroeder numbers.

7http://oeis.org/A006318

24

6 The zip-, even- and odd-operations

We will now turn to another case, where bisimulation turns out to be a useful proof technique. In par-
ticular, we will consider the zip operation on streams, where zip(σ, τ) is the stream that alternately
takes an element from σ and an element from τ , and easily see that it preserves context-freeness, or
algebraicity. In [NR10], this result was established for cases where the underlying semiring is a field;
the main result of this section generalizes the earlier result to arbitrary semirings. Finally, we will
generalize the result to a more general zipk operation, representing a stream alternatingly taking
elements from k streams σ0, . . . , σk−1, and see that this operation, too, preserves context-freeness.

Given two streams σ, τ ∈ SN over a semiring S, we formally define the new stream zip(σ, τ) by
setting

zip(σ, τ)(2n) = σ(n) and zip(σ, τ)(2n+ 1) = τ(n)

for all n ∈ N. Intuitively, we can see zip(σ, τ) as a stream that alternately takes an element from σ
and an element from τ .

Equivalently, we can also define zip coinductively with the following system of behavioural
differential equations:

o(zip(σ, τ)) = o(σ) and (zip(σ, τ))′ = zip(τ, σ′)

We will, in the remainder of this section, make use of the properties

∑
i∈I

si · zip(0, σi) = zip

(
0,
∑
i∈I

siσi

)

and
zip(σ, τ) = zip(σ, 0) + zip(0, τ)

without proof.
In order to prove that, whenever σ and τ are context-free, the same goes for zip(σ, τ), we first

prove that zip(σ, 0) and zip(0, τ) are context-free:

Proposition 28. If σ ∈ SN is context-free, then so are zip(σ, 0) and zip(0, σ).

Proof. If σ is context-free, there must exist a system of polynomial behavioural differential equations
(X, o, δ) and a x ∈ X, such that JxK = σ.

We now will construct a new system of polynomial differential equations, over the set

X̄ = {x̄ |x ∈ X} ∪ {X}

where X is a new variable, representing the stream

0, 1, 0, 0, 0, . . .

Now consider the morphism f : X → X̄, defined by f(x) = x̄ for all x ∈ X, which easily extends to

a morphism on words f̂ : S〈X〉 → S〈X̄〉.
The new system (X̄, ô, δ̂) is now defined by

ô(x̄) = o(x), ô(X) = 0, x̄′ = X · f(x′), and X′ = 1.

Now consider the relation R ⊆ S〈X̄〉 × SN, defined by

R = {(f(v), zip(JvK, 0)) | v ∈ X∗} ∪ {(X · f(v), zip(0, JvK)) | v ∈ X∗}.

25

In order to show that R is a bisimulation up to linear combinations, we will first establish an
auxiliary result, namely that, for all v ∈ X∗,

f(v)′ = Xf(v′).

We prove this by induction on the length of v. If v = 1, then

f(v)′ = f(1)′ = 1′ = 0 = X · 0 = Xf(0) = Xf(1′)

and if v = xw for some x ∈ X and w ∈ X∗, using the inductive hypothesis that f(w)′ = Xf(w′), we
obtain

f(xw)′ = (x̄f(w))′

= x̄′f(w) + o(x̄)f(w)′

= x̄′f(w) + o(x)f(w)′

= x̄′f(w) + o(x)Xf(w′)

= Xf(x′)f(w) + o(x)Xf(w′)

= X(f(x′w) + o(x)f(w′))

= Xf(x′w + o(x)w′)

= Xf((xw)′).

Note that we have, here, established true equality in the polynomial semiring, rather than some
weaker notion of equivalence.

Another auxiliary result that we need, is that for all v ∈ X∗, we have o(f(v)) = o(v). We omit
the proof, which is again by induction on the length of v.

We can now show that R is, indeed, a bisimulation up to linear combinations. If (t, σ) ∈ R, then
either:

1. t = f(v) and σ = zip(JvK, 0) for some v ∈ X∗. We then get

o(t) = o(f(v)) = o(v) = o(JvK) = o(zip(JvK, 0))

and

f(v)′ = Xf(v′)

= Xf

(∑
w∈X∗

(v′, w)w

)
=

∑
w∈X∗

(v′, w)Xf(w)

ΣR
∑
w∈X∗

(v′, w)zip(0, JwK)

= zip

(
0,
∑
w∈X∗

(v′, w)JwK

)
= zip(0, Jv′K)
= zip(JvK, 0)′

2. t = X · f(v) and σ = zip(0, JvK, 0) for some v ∈ X∗. We then get

o(t) = o(X) · o(f(v)) = 0 · o(f(v)) = 0 = o(zip(0, JvK))

and
t′ = X′ · f(v) + o(X)f(v)′ = f(v) ΣR zip(JvK, 0) = zip(0, JvK)′.

26

So R is, indeed, a bisimulation up to linear combinations, and it follows that zip(σ, 0) and zip(0, σ)
are context-free.

The desired result can now be obtained directly:

Theorem 29. If σ and τ are context-free, then so is zip(σ, τ).

Proof. By Proposition 28, we obtain that zip(σ, 0) and zip(0, τ) are context-free. Now use

zip(σ, τ) = zip(σ, 0) + zip(0, τ)

and the fact that context-freeness is preserved under finite linear combinations.

Going in the other direction, given a stream σ, we can define streams even(σ) and odd(σ)
consisting of the even and odd elements of σ, respectively, as follows:

(even(σ), n) = (σ, 2n) and (odd(σ), n) = (σ, 2n+ 1)

We can relate zip, even, and odd by the equation

σ = zip(even(σ),odd(σ))

which holds for all streams σ.
So far, it remains an open question whether the even and odd operators, too, preserve context-

freeness. The natural approach here would be to transform the given system into a new system, by
setting the derivative of the nonterminals in the new system equal to the second derivatives in the
old system. For example, we could try to transform the system

o(x) = 1 and x′ = x2

yielding the Catalan numbers, into the new system

o(x̄) = 1 and x̄′ = x̄3 + x̄.

However, the latter system yields the stream

Jx̄K = 1, 2, 10, 66, 498, 4066, 34970, . . . 8

rather than the even-indexed Catalan numbers, and the suggested construction does not work. This
mismatch can be contrasted with the case of Example 18, where the process of taking the second
derivative does work, because of the occurrence of a variable which can be seen as doing nothing
but playing the role of a delay of one step, being defined by o(y) = 0 and y′ = 1.

6.1 Generalizing to zipk and unzipi,k

We can generalize the operation zip to the operation zipn, defined for all n ≤ 2 and streams
σ1, . . . , σn as follows:

o(zipn(σ1, . . . , σn)) = o(σ1)

zipn(σ1, . . . , σn)′ = zipn(σ2, . . . , σn, σ1)

Similarly, we can generalize the even and odd operations to the operation unzipi,k, defined for
all i, k ∈ N with i < k by

unzipi,k(σ)(n) = σ(kn+ i)

8http://oeis.org/A027307

27

yielding even = unzip0,2 and odd = unzip1,2.
The zipn and unzipi,n functions are again related by the equation

σ = zipk(unzip1,k(σ), . . . ,unzipk,k(σ)).

The following theorem can now be proved in a similar way as Theorem 29:

Theorem 30. Given streams σ1, . . . , σn, n-zip(σ1, . . . , σn) is context-free if all σi are context-free.

7 Fields and automatic sequences

In this section, we will be concerned with streams over fields, and relate the earlier notions of
constructive algebraicity and context-freeness to the classical notion of objects that are algebraic
over a field. In particular, we will be interested in finite fields, and their relation to so-called
automatic sequences. The main result from this section is that p-automatic sequences can precisely
be characterized by context-free systems of behavioural equations, obtainable via a straightforward
and direct construction from the presentation as a p-automaton. We can see this result as an
instance of a more general result due to Michel Fliess from [Fli74], establishing the equivalence
between classical algebraicity and constructive algebraicity, which we prove in a coalgebraic and
much more direct manner than the traditional proof.

7.1 Preliminaries

First we recall that a ring is a semiring S where, for every element s ∈ S, there is an element −s ∈ S
such that s + −s = 0 = −s + s. A field F is a commutative ring such that for every f ∈ F with
f 6= 0, there is an element f−1 such that f · f−1 = 1 = f−1 · f . For a comprehensive treatment of
these notions, we refer to any textbook on algebra, such as [LB99]. Examples of fields include the
familiar structures Q, R, and C of rational, real and complex numbers; an additional example of a
ring that is not a field is the structure Z of integers.

For every field (F,+, ·), there is a unique semiring homomorphism h from the semiring (N,+, ·) to
F , as a direct result of the fact that N is the initial semiring. If there are elements n ∈ N with n 6= 0
such that h(n) = 0F , we say F has characteristic p if p is the smallest number with this condition;
if there are no such elements, we say that F has characteristic 0. Whenever F has characteristic
p 6= 0, p is a prime number.

We say a field F is perfect when F has either characteristic 0, or when F has characteristic p
and, for every f ∈ F , there is a g ∈ F such that f = gp. (Here we inductively define g0 = 1 and
gn+1 = g · gn.)

Of special importance in the theory of automatic sequences are finite fields: for each prime
number p and each natural k > 0, there is exactly one finite field of size pk, denoted by Fpk ; the
characteristic of such a field is equal to p.

We will now recall the usual notion of algebraicity over a field, which applies, in our framework,
only to streams over fields: an F -stream σ is called F -algebraic if and only if there exist polynomial
F -streams p1, . . . , pn, with at least one pi not equal to zero, such that

∑
i≤n piσ

i = 0.

7.2 Automatic sequences

Automatic sequences, of which a comprehensive treatment is given in [AS03], can be characterized as
streams that can be generated by a class of automata called q-automata. Both the input alphabet
and the output of these automata consists of a set of digits {0, . . . , q}. Whenever a stream σ is
q-automatic for some q ∈ N, there exists a q-automaton such that the nth element of the stream can
be obtained by using the base q representation of the number n as input; the output thus obtained—
again a natural number smaller than q—is then the value of σ(n). We will, in this article, restrict

28

ourselves to the case where q is a prime power, i.e. q = pk for some prime number p and positive
natural number k.

Formally, given a q ∈ N, such that there is a prime number p and a natural number k > 0 with
q = pn, a q-automaton is an automaton with output in the field Fq, and input alphabet

Aq := {n̄ |n < q}.

We let the input alphabet consist of notational variants, in order to be able to distinguish between
the symbol 1̄ and the unit element 1, which plays both the role of empty word and the role of
multiplicative unit element of the underlying field.

We regard the inputs as natural numbers given in a base q representation, and define a class of
functions [−]q : A∗q → N mapping words of digits to the corresponding natural number, by setting:

[1]q = 0 Beware! This is 1, i.e. the empty word, not 1̄.

[̄i · w]q = q · [w] + i.

Note that, in this presentation, the least significant digit occurs first, and hence, we have e.g.

[0̄0̄1̄]2 = 4.

We call a stream σ ∈ FN
q q-automatic, whenever there exists a finite q-automaton (X, o, δ) over

the alphabet Aq, together with a state x ∈ X, such that for all w ∈ A∗q

σ([w]q) = o(xw).

Note that the existence of such a σ is not guaranteed for an arbitrary q-automaton (X, o, δ) and
each x ∈ X: we call a state x ∈ X for which such a σ exists zero-consistent, and say that x generates
σ. It is, however, easy to see that, whenever x is zero-consistent, then so is xw for all w ∈ A∗q .

Example 31. As an example of a 2-automatic sequence, consider the 2-automaton:

x ↓ 0 y ↓ 1

0̄

1̄

1̄

0̄

It is well-known from the literature (see e.g. [AS03]) that x generates the Thue-Morse sequence
tm, which we already encountered in Example 19.

Example 32. For a second example of a 2-automaton, consider

x0 ↓ 1 x1 ↓ 1 x2 ↓ 0 x3 ↓ 0

0̄

1̄

1̄

0̄

0̄

1̄

0̄, 1̄

In this automaton, x0 generates the so-called Baum-Sweet sequence bs (again, see [AS03]), of
which the nth element is equal to 1 if and only if the binary representation of n contains no block
of consecutive 0s of odd length, and which starts with

1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, . . .

29

7.3 Automatic sequences are context-free

We will start by showing that all 2-automatic sequences are context-free over the field F2, and after
this, we will generalize this to arbitrary q-automatic sequences. First note that, for all streams
σ ∈ FN

2 , the equality
zip(σ, τ) = σ2 + Xτ2 (2)

holds.

Proposition 33. Given a finite automaton (X, o, δ) over A2 and a consistent x ∈ X, we have

str(x0̄) = even(str(x))

and
str(x1̄) = odd(str(x)).

Proof. This follows from the equations

str(x0̄)([w]) = o((x0̄)w)

= o(x0̄·w)

= str(x)([0̄ · w])

= str(x)(2 · [w])

= even(str(x))([w])

and

str(x1̄)([w]) = o((x1̄)w)

= o(x1̄·w)

= str(x)([1̄ · w])

= str(x)(2 · [w] + 1)

= odd(str(x))([w])

respectively.

Proposition 34. All 2-automatic sequences are context-free over the field F2.

Proof. Observe that, as a result of the equality zip(even(σ),odd(σ)) = σ and Proposition 37 we
have

str(x) = zip(str(x0̄), str(x1̄)),

and from there we get

str(x)′ = zip(str(x0̄), str(x1̄))′

= zip(str(x1̄), str(x0̄)′)

= o(x1̄) + X · zip(str(x0̄)′, str(x1̄)′)

= o(x1̄) + X · (str(x0̄)′)2 + X2 · (str(x1̄)′)2. (3)

Now consider the following context-free system of behavioural differential equations, over the set
X̄ = {x̄ |x ∈ X} ∪ {X}. Whenever x0̄ = y and x1̄ = z, we set:

o(x̄) = o(z) and x̄′ = ȳ2 + Xz̄2

and furthermore we set
o(X) = 0 and X′ = 1.

30

We know that this system must have a unique solution. But from (3), it follows that this solution
is given by

Jx̄K = str(x)′,

for all x ∈ X. So str(x)′ is context-free for any x ∈ X, and it now follows directly that str(x) is,
too, completing the proof.

Example 35. Returning to the automaton from Example 31, the construction from Proposition 34
now yields the system of behavioural differential equations

o(x̄) = o(y) = 1 x̄′ = x̄2 + Xȳ2

o(ȳ) = o(x) = 0 ȳ′ = ȳ2 + Xx̄2

o(X) = 0 X′ = 1

with Jx̄K = tm′. Adding another variable z to this system with o(z) = 0 and z′ = x, we obtain
a new system with JzK = tm. Observe that this system is isomorphic to the system presented in
Example 19: we have hereby showed that this system indeed generates the Thue Morse-sequence.

Example 36. Likewise, the automaton from Example 32 now yields the system:

o(x̄0) = 1 x̄′0 = x̄2
0 + Xx̄2

1

o(x̄1) = 1 x̄′1 = x̄2
2 + Xx̄2

1

o(x̄2) = 0 x̄′2 = x̄2
1 + Xx̄2

3

o(x̄3) = 0 x̄′3 = x̄2
3 + Xx̄2

3

o(X) = 0 X′ = 1,

with Jx̄0K = bs.

Generalizing from the previous result to q-automatic sequences for prime powers q, we have to
make a move from the operations zip, even, odd to the operations zipq and the family of operations
unzipi,q for i ∈ N with i < q.

In the case of streams over Fq, we can generalize (2) to

zipq(σ0, . . . σq−1) =
∑
i∈N<q

Xiσi
q.

Proposition 37. Given a finite q-automaton (X, o, δ) and a consistent x ∈ X, we have

str(xī) = unzipi,q(str(x)).

for all i with 0 ≤ i ≤ q.

Proof. This follows from the equation

str(xī)([w]) = o((xī)w)

= o(xī·w)

= str(x)([̄i · w])

= str(x)(k · [w] + i)

= unzipi(str(x))([w]).

We can now generalize Proposition 34 to the following result:

Proposition 38. For any prime power q, all q-automatic sequences are context-free over the field
Fq.

31

Proof. Observe that, as a result of the equality σ = zipq(unzip1,q(σ), . . . ,unzipq,q(σ)) and Propo-
sition 37 we have

str(x) = zipq(str(x1̄), . . . , str(xq̄)),

and from there we get

str(x)′ = zipq(str(x0̄), . . . , str(xq−1))′

= zipq(str(x1̄), . . . str(xq−1), str(x0̄)′)

=
∑

1≤i<q−1

Xi−1o(xī) + Xq · zipq(str(x0̄)′, . . . , str(xq−1)′)

=
∑

1≤i<q−1

Xi−1o(xī) + Xq

∑
i<q

Xi(str(xī)
′)q

= o(x1̄) + X

 ∑
2≤i<q−1

Xi−2o(xī) +
∑
i<q

Xq+i−1(str(xī)
′)q

 (4)

We again construct a context-free system of behavioural differential equations, over the set
X̄ = {x̄ |x ∈ X} ∪ {X}, as follows: whenever xī = y[i] for all i < q, we set:

o(x̄) = o(y[1]) and x̄′ =
∑

2≤i<q−1

Xi−2o(y[i]) +
∑
i<q

Xq+i−1(y[i])
q

and furthermore we set
o(X) = 0 and X′ = 1.

Again, we know that this system must have a unique solution, and it follows from (4) that this
solution is given by

Jx̄K = str(x)′,

for all x ∈ X. Again, it follows that str(x)′ and str(x) are context-free for all x ∈ X.

7.4 Generalizing to arbitrary fields

The next proposition shows that under very mild conditions, we can easily show that F -algebraic
streams are context-free. We, however, remark that the proof of this theorem is neither coinductive,
nor offering a lot of insight. For the definition and discussion of the inverse operator on streams, see
e.g. [Rut03] or [Rut05].

Proposition 39. Given any field F , let σ be an F -algebraic stream that is a solution to the
equation

∑
i,j≤m,n fijX

jσi = 0 (recall that a polynomial p is of the form
∑
i≤n fiX

i). Whenever∑
i≤m fi0(

∑
k<i o(σ)kσi−k−1) 6= 0, then σ is context-free (and hence also constructively F -algebraic).

Proof. Note that ∑
i,j≤m,n

fijσ
iXj =

∑
i≤m

fi0σ
i +

∑
i≤m,1≤j≤n

fijσ
iXj = 0

where all fij ∈ F . Taking derivatives, we now obtain

σ′
∑
i≤m

fi0

(∑
k<i

o(σ)kσi−k−1

)
+

∑
i≤m,1≤j≤n

fijσ
iXj−1 = 0

32

and hence

σ′
∑
i≤m

fi0

(∑
k<i

o(σ)kσi−k−1

)
= −

∑
i≤m,1≤j≤n

fijσ
iXj−1

When
∑
i≤m fi0(

∑
k<i o(σ)kσi−k−1 6=)0, we can rewrite this as

σ′ = −
∑
i≤m,1≤j≤n fijσ

iXj−1∑
i≤m fi0(

∑
k<i o(σ)kσi−k−1)

from which we can easily eliminate the fraction by introducing a new variable τ representing∑
i≤m

fi0

(∑
k<i

o(σ)kσi−k−1

)−1

.

Leaving out some further intermediate steps, we obtain the following system of behavioural
differential equations in two variables, with o(σ) given:

σ′ = −

 ∑
i≤m,1≤j≤n

fijσ
iXj−1

 · τ
o(τ) =

∑
i≤m

fi0 · (i− 1) · o(σ)i

−1

τ ′ = −o(τ) · σ′ ·

∑
i≤m

fi0

 ∑
k≤i−1

o(σ)k

 ∑
j≤i−k−2

o(σ)jσi−j−k−2

 · τ

Finally, there is the following, general result by Fliess [Fli74], stating that the notions of algebraic
and constructively algebraic (and hence context-free) coincide for perfect fields:

Proposition 40. Let F be a perfect field. Then a stream σ over F is F -algebraic if and only if it
is constructively F -algebraic.

This result is not very well-known: its proof [Fli74, Proposition 7] relies on first using Fursten-
berg’s theorem to transform algebraic streams into diagonals of rational power series in two commut-
ing variables, which in turn can be transformed into a systems of equations using the construction
given by Fliess. Combining this with the results from Section 4.1, we obtain the result that streams σ
over perfect fields F are context-free if and only if they are F -algebraic. In other words, context-free
systems of behavioural differential equations characterize precisely the algebraic streams or power
series (in a single variable).

8 Conclusions

In this article, we have provided a generalized coalgebraic account of the notion of algebraicity or
context-freeness, through polynomial or context-free systems of behavioural differential equations.
Here every derivative is given as a polynomial over the set of nonterminals, with coefficients in the
underlying semiring.

This new contribution extends earlier work on coalgebraic presentations of finite deterministic
and weighted automata, and can be linked up with these earlier account in the following hierarchy,
showing the types of derivatives:

33

Derivative given as Type of system Automaton/Grammar Associated class of series
Single elements X → S ×XA Deterministic Finitary

Linear combinations X → S × (SXω)A Nondeterministic/weighted Rational
Polynomials X → S × S〈X〉A CFG in GNF Context-free

The main contributions of this article include the following results:

• A correspondence between this notion of context-freeness and (constructive) algebraicity, which
can in turn be linked up with classical algebraicity thanks to a result from [Fli74].

• A proof that context-freeness of streams is preserved by the zip operation: a result which, as
far as the authors are aware, has not been proven before at this level of generality.

• A direct construction yielding systems of behavioural differential equations from q-automata
for prime powers q.

• A coalgebraic rephrasing of a classical result due to Chomsky and Schützenberger, which can
be used to construct systems of behavioural differential equations, and thus describe a large
number of sequences as context-free streams.

It remains interesting to see how much further we can carry this process of finding coalgebraic
proofs of language-theoretic theorems. A possible new direction is to see what can be done by
varying the coinductively defined operators: for example, by adding the Hadamard product as a
primitive, it is known that we will reach a class of power series beyond the algebraic/context-free
class described in this paper. A further direction would be to try to give coalgebraic characterizations
of the higher levels in the Chomsky hierarchy, namely the context-sensitive and recursively enumer-
able languages: it remains interesting to see whether we can describe these, too, using systems of
behavioural differential equations.

References

[AS03] Jean-Paul Allouche and Jeffrey O. Shallit. Automatic Sequences – Theory, Applications,
Generalizations. Cambridge University Press, 2003.

[BBB+12] Filippo Bonchi, Marcello M. Bonsangue, Michele Boreale, Jan J. M. M. Rutten, and
Alexandra Silva. A coalgebraic perspective on linear weighted automata. Information
and Computation, 211:77–105, 2012.

[BR11] Jean Berstel and Christophe Reutenauer. Noncommutative Rational Series with Appli-
cations. Cambridge University Press, 2011.

[BRW12] Marcello M. Bonsangue, Jan J. M. M. Rutten, and Joost Winter. Defining context-
free power series coalgebraically. In Dirk Pattinson and Lutz Schröder, editors, CMCS,
volume 7399 of Lecture Notes in Computer Science, pages 20–39. Springer, 2012.

[Brz64] Janusz A. Brzozowski. Derivatives of regular expressions. Journal of the ACM, 11:481–
494, 1964.

[CS63] Noam Chomsky and Marcel-Paul Schützenberger. Computer Programming and For-
mal Systems, chapter The Algebraic Theory of Context-Free Languages, pages 118–161.
North-Holland, 1963.

[Fli74] Michel Fliess. Sur divers produits de sries formelles. Bulletin de la S.M.F., 102:181–191,
1974.

34

[LB99] Saunders Mac Lane and Garrett B. Birkhoff. Algebra. AMS Chelsea Pub., 1999.

[NR10] Milad Niqui and Jan J. M. M. Rutten. Sampling, splitting and merging in coinductive
stream calculus. In Claude Bolduc, Jules Desharnais, and Béchir Ktari, editors, Math-
ematics of Program Construction, volume 6120 of Lecture Notes in Computer Science,
pages 310–330. Springer, 2010.

[PS09] Ion Petre and Arto Salomaa. Handbook of Weighted Automata, chapter Algebraic systems
and pushdown automata, pages 257–289. Springer, 2009.

[RBR13] Jurriaan Rot, Marcello Bonsangue, and Jan Rutten. Coalgebraic bisimulation-up-to. to
appear in SOFSEM ’13, 2013.

[RS59] Michael O. Rabin and Dana Scott. Finite automata and their decision problems. IBM
J. Res. Dev., 3(2):114–125, April 1959.

[Rut98] Jan J. M. M. Rutten. Automata and coinduction (an exercise in coalgebra). In Davide
Sangiorgi and Robert de Simone, editors, CONCUR, volume 1466 of Lecture Notes in
Computer Science, pages 194–218. Springer, 1998.

[Rut00] Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer
Science, 249(1):3–80, 2000.

[Rut02] Jan J. M. M. Rutten. Coinductive counting: bisimulation in enumerative combinatorics.
Electr. Notes Theor. Comput. Sci., 65(1):286–304, 2002.

[Rut03] Jan J. M. M. Rutten. Behavioural differential equations: a coinductive calculus of
streams, automata, and power series. Theoretical Computer Science, 308(1-3):1–53, 2003.

[Rut05] Jan J. M. M. Rutten. A coinductive calculus of streams. Mathematical Structures in
Computer Science, 15(1):93–147, 2005.

[Rut08] Jan J. M. M. Rutten. Rational streams coalgebraically. Logical Methods in Computer
Science, 4(3), 2008.

[Sak09] Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.

[SBBR10] Alexandra Silva, Filippo Bonchi, Marcello M. Bonsangue, and Jan J. M. M. Rutten.
Generalizing the powerset construction, coalgebraically. In Kamal Lodaya and Meena
Mahajan, editors, FSTTCS, volume 8 of LIPIcs, pages 272–283. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2010.

[WBR11] Joost Winter, Marcello M. Bonsangue, and Jan J. M. M. Rutten. Context-free languages,
coalgebraically. In Andrea Corradini, Bartek Klin, and Corina Ĉırstea, editors, CALCO,
volume 6859 of Lecture Notes in Computer Science, pages 359–376. Springer, 2011.

35

