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ABSTRACT

The fortran program rkc is intended for the time integration of parabolic partial di�erential equations

discretized by the method of lines. It is based on a family of Runge-Kutta-Chebyshev formulas with a stability

bound that is quadratic in the number of stages. Remarkable properties of the family make it possible for the

program to select at each step the most e�cient stable formula as well as the most e�cient step size. Moreover,

they make it possible to evaluate the explicit formulas in just a few vectors of storage. These characteristics

of the program make it especially attractive for problems in several spatial variables. rkc is compared to the

bdf solver vodpk on two test problems in three spatial variables.
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1. Introduction

rkc is a variable step size, variable formula code that uses explicit Runge-Kutta formulas to solve

e�ciently a class of large systems of mildly sti� ordinary di�erential equations (odes). The systems

arising when a parabolic partial di�erential equation (pde) is approximated by semi-discretization

exemplify the problems for which rkc is intended. To be more speci�c, let the initial value problem

for the odes have the form

dU(t)

dt
= F (t; U(t)); 0 < t � T; U(0) = U0; (1.1)

so that the Jacobian matrix is F 0(t; U) = @F (t; U)=@U . rkc is intended for problems with Jacobians

that are close to normal and that have all their eigenvalues near the negative real axis. These properties

are certainly true when F 0(t; U) is symmetric and non-positive de�nite, which is frequently the case

when discretizing elliptic operators.

rkc exploits some remarkable properties of a family of explicit Runge-Kutta formulas of the Cheby-

shev type proposed by van der Houwen and Sommeijer [13]. There is a member of s stages for all

s � 2, and there are analytical expressions for its coe�cients. All the formulas have stability regions
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that include narrow strips about the negative real axis. The length of the strip, the stability boundary

�(s), is approximated well by 0:653s2. This makes it possible for rkc to solve problems that are mildly

sti� with explicit formulas. A very important property is that because of a recursion for Chebyshev

polynomials, it is possible to evaluate a formula with just a few vectors of working storage, no matter

the number of stages. Most remarkable is that for practical purposes the local errors of all members of

the family are the same. This means that the code can estimate �rst the most e�cient step size and

then use an estimate of the spectral radius of the Jacobian to determine the most e�cient formula for

which this step size is stable. Another important property of the family is that it is easy to obtain a

continuous extension of excellent quality that is \free". This is especially valuable for a Runge-Kutta

formula that might involve a great many stages.

rkc has very modest storage requirements because it uses explicit formulas that can be evaluated

by recursion. It requires at most 7 vectors of storage. This makes it attractive for the solution

of pdes in several space variables by semi-discretization. Another advantage of explicit formulas is

that vectorization and/or parallelization presents no particular di�culties. The code is, for example,

suitable for problems with solutions that are travelling waves because small steps are needed to resolve

fronts accurately. Generally reaction-di�usion systems

@u

@t
= r � (Kru) + f(u; x; t); u = u(x; t); x 2 <d;

where f is a modestly sti� reaction term can be solved e�ciently with rkc. When f gives rise to

severe sti�ness, rkc is not recommended. In such cases it can still be useful as part of an operator

splitting scheme that treats the reaction part at grid points with a standard code for sti� problems.

Likewise, in combination with operator splitting rkc can be useful for systems of transport problems

of advection-di�usion-reaction type

@u

@t
+r � (a u) = r � (Kru) + f(u; x; t); u = u(x; t); x 2 <d:

Problems of this kind play an important role in the modeling of pollution of the atmosphere, ground

water, and surface water, and are the subject of much current research.

Section 2 presents the family of formulas implemented in rkc. The following section discusses

the properties of the family that are crucial to the success of the solver and how they are exploited

in software. Among the issues discussed are the estimation and control of error, estimation of the

spectral radius and control of stability, and a continuous extension. Section 4 presents results for two

pdes in three spatial variables taken from [12]. The last section explains how to obtain a copy of rkc

and its auxiliary programs along with examples showing how to use them. The source codes are listed

in appendices.

2. RKC's formulas

Historically the principal goal when constructing Runge-Kutta formulas was to achieve the highest

order possible with a given number of stages s. Stabilized methods are di�erent in that the principal

goal is to construct formulas with regions of absolute stability that are as large as possible in a sense

that depends on the intended application. The formulas of rkc are intended for problems like those

arising when parabolic pdes are approximated by semi-discretization. Correspondingly, the goal is to

construct formulas that are stable on a strip containing a long segment of the negative real axis. The

wider the strip, the greater the applicability of the method, but the most important characteristic

of the formula is the length of the segment, the stability boundary �(s). For the odes of semi-

discretization, a low order formula is appropriate because only a modest accuracy is expected of the

approximation to the pde. When the pde involves more than one spatial variable, the size of the

system of odes grows rapidly as the mesh spacing is decreased. The relatively crude meshes that are

used for this reason lead to relatively large discretization errors in space, hence limits the accuracy

that would be meaningful in the time integration and so favors low order methods. It turns out that



3. Software issues 3

the higher order methods require more stages to achieve the same stability, another factor favoring

low order formulas. For these reasons all the formulas of rkc are of order two.

The formulas of rkc are given in [17]. To avoid confusion, we point out that they are slightly

di�erent from the formulas of [13]. A comprehensive linear stability and convergence analysis of the

formulas is found in [20]. The formulas are also studied in the review article [21] along with a number

of related methods.

Let Un denote the approximation to U(t) at t = tn and let � = tn+1 � tn be the step size in the

current step from tn to tn+1. The formulas of rkc have the form

Y0 = Un;

Y1 = Y0 + ~�1�F0; (2.1)

Yj = (1� �j � �j)Y0 + �jYj�1 + �jYj�2 + ~�j�Fj�1 + ~j�F0; j = 2; : : : ; s;

Un+1 = Ys:

All the coe�cients are available in analytical form for arbitrary s � 2. They are de�ned as follows.

Let Tj be the Chebyshev polynomial of the �rst kind of degree j. Then

� = 2=13; w0 = 1 + �=s2; w1 =
T 0

s(w0)

T 00

s (w0)
; bj =

T 00

j (w0)

(T 0

j(w0))2
(2 � j � s); b0 = b2; b1 = b2

and

~�1 = b1w1; �j =
2bjw0

bj�1

; �j =
�bj
bj�2

; ~�j =
2bjw1

bj�1

; ~j = �(1� bj�1Tj�1(w0))~�j (2 � j � s):

In (2.1) the stage Fj = F (tn + cj�; Yj). The cj are

cj =
T 0

s(w0)

T 00

s (w0)

T 00

j (w0)

T 0

j(w0)
� j2 � 1

s2 � 1
(2 � j � s� 1); c1 =

c2

T 0

2(w0)
� c2

4
; cs = 1:

The approximations show that the arguments tn + cj� all lie within the span of the step to tn + � .

3. Software issues

rkc is the result of both software and algorithmic development of Sommeijer's code [18]. Broadly

speaking, the implementation is like that of any modern code based on an explicit Runge-Kutta

formula. In this section we describe briey aspects of the code that are unusual or even unique. Any

modern general-purpose code for initial value problems will estimate the local error at each step and

adjust the step size both to control this error and to solve the problem e�ciently. Popular Adams,

bdf, and extrapolation codes also select the formula dynamically. The main di�culty in selecting the

most e�cient formula is in estimating the step size that could be used with a formula other than the

one used to take the step. The family of formulas implemented in rkc has the remarkable property

that for practical purposes, all the formulas have the same accuracy. The stability boundary of the

formulas increases quadratically with the number of stages. By computing an estimate of the spectral

radius, the code is able to determine the most e�cient formula that is stable with a step size predicted

to yield the desired accuracy. An important property of the family is that it is possible to evaluate a

formula using just a few vectors of working storage, no matter how large the number of stages. Still

another important property is that it is easy to obtain a continuous extension of excellent quality.

Error control For a smooth F in (1.1), a Taylor series expansion of the local solution at t = tn
results in

Un+1 = U + � _U + 1=2 �2 �U + C31;s �
3 FjF

j
kF

k + C32;s �
3 FjkF

jF k +O(�4); s � 2:
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Naturally the coe�cients C31;s and C32;s depend on the formula, i.e., on the number of stages s.

However, it is found that both tend rapidly to a constant value as s increases. Indeed, they are both

close to 1=10 for all s � 2. This says that the leading term of the local error expansion is approximately

proportional to the third derivative of the solution. As a consequence, the global error is approximately

independent of s. The convergence results of [20] make this precise for linear problems. Extensive

testing with both linear and nonlinear problems has con�rmed that for practical purposes, the local

error is independent of the number of stages for s � 2.

Let Le(tn+1) be the approximation to the leading term of the local error expansion resulting from

replacing the true s-dependent constants by their limiting values:

Le(tn+1) = 1=15 �3 d3 U(tn)=dt
3:

The simple form of this expression for the error makes it easy to obtain an asymptotically correct

estimate:

Estn+1 = 1=15 [12(Un � Un+1) + 6�(F (Un) + F (Un+1))]:

At each step the estimated local error is controlled so that accuracy tolerances speci�ed by the user

are met. There is a scalar relative error tolerance rtol. The user must ask for some relative accuracy,

but not too much for the precision available. Because the formulas are of order two, the code is not

appropriate for stringent tolerances. The absolute error tolerances can be supplied in the form of a

scalar atol that is applied to all the solution components or as a vector that is applied to corresponding

components. A scalar absolute error tolerance is convenient and saves a useful amount of storage, but

is appropriate only when all the solution components are on the same scale. These tolerances are used

in the weighted RMS norm

kEstn+1k = kw�1 Estn+1k2; w =
p
m diag (Tol1; : : : ; T olm);

where

Tolk = atolk + rtol jUn+1;kj;
m is the dimension of the ode system and Un+1;k the k�th component of Un+1. Hence the step is

accepted if kEstn+1k � 1 and otherwise rejected and redone. The error is controlled by an error per

step criterion, so if all is going well, the arguments of [16] show that reducing the tolerances by a

factor of 0.1 will reduce the error in the numerical solution by a factor of roughly 0.2.

Compared to other Runge-Kutta methods, a failed step in rkc can be expensive in absolute terms

because of a large number of stages. Besides this obvious expense, in a common way of using rkc a

rejected step causes the spectral radius to be recomputed. A standard device for reducing the number

of rejected steps is to use a fraction of the step size predicted to be optimal; a relatively small fraction

is used in rkc. Watts [22] uses information gathered at the preceding step to re�ne the conventional

prediction of the optimal step size. Later Gustafsson et al. [6] derived nearly the same algorithm from

the completely di�erent viewpoint of control theory. Versions of the algorithm are seen in rksuite [1]

and radau5 [8]. These very successful codes have demonstrated the value of the re�ned prediction for

reducing the number of step failures, so rkc also implements a version of the algorithm. Speci�cally,

the prediction for the new step size after a successful step is given by

�new = min (10;max(0:1; fac)) �;

with the fraction fac de�ned by

fac = 0:8

� kEstnk1=(p+1)

kEstn+1k1=(p+1)

�n

�n�1

�
1

kEstn+1k1=(p+1)
:

The conventional prediction is obtained by deleting the parenthesized term. It is used after a step

rejection.
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Initial step size For the convenience of the user, rkc determines automatically an initial step size.

In modern algorithms for this purpose, the main di�culty [5] is �nding a step size that is on scale.

Once this is done, a tentative step size can be re�ned by means of trial steps. The situation in rkc

is special in two ways. A tentative step size �0 that is on scale is furnished by the reciprocal of the

spectral radius that is computed for stability control. Further, the very simple form of the local error

allows the error that would be made in a step of size � to be estimated with a di�erence quotient [19]

at a cost of a single function evaluation:

�0 = 1=�(F 0(t0; U0)); Est = �0(F (t0 + �0; U0 + �0F (t0; U0))� F (t0; U0)):

The initial step size �start is taken to be one tenth of the largest step size predicted to satisfy the error

test:

�start = 0:1
�0

kEstk1=2 :

Absolute stability At each step rkc �rst selects the \optimal" step size for controlling the local

error and then selects a formula for which this step size is absolutely stable. Roughly speaking, the

absolute stability regions of the formulas used are strips containing a segment of the negative real

axis, c.f. [21], and the length of the segment �(s) is approximated well by 0:653s2. Assuming that

the eigenvalues of local Jacobians lie in such a strip, the spectral radius of the Jacobian is all that is

needed to �nd the smallest number of stages that yields stability for the step size � :

��(F 0(t; U)) � 0:653s2: (3.1)

Problems with constant Jacobians are su�ciently common that users are asked to identify them;

rkc computes the spectral radius only once in such cases.

Sometimes it is easy enough to determine analytically a reasonably close upper bound on the spectral

radius, using, e.g., Ger�sgorin's circle theorem, so rkc allows for this possibility. Generally it is not

expensive to evaluate such a bound, so the code invokes it at each successful step.

Commonly rkc estimates the spectral radius automatically using a nonlinear power method. This is

convenient for the user, but it does cost another vector of working storage and some computation. The

basic idea of the power method is simple, but there are a good many ways the method can degenerate,

so considerable care is needed in its implementation. Our implementation takes advantage of the

experience reported in [10, 14, 19, 15], and here we describe only points that di�er from previous

work. An important di�erence is that it is assumed that the eigenvalues are close to the negative real

axis. A Rayleigh quotient is then much more likely to reect the magnitudes of the largest eigenvalues

than in the general case of eigenvalues that might have substantial imaginary part. It is an upper

bound on the spectral radius that is needed rather than the spectral radius itself, so the estimate is

increased some and it is then used conservatively in selecting the number of stages.

It is important to hold down the cost of computing the spectral radius. The slope of the solution at

the beginning of a step (which is always available) is likely to be rich in the directions corresponding

to dominant eigenvalues [14], so it is used to start the power method at the �rst step. We have found

it very advantageous to retain the computed eigenvector from one estimation of the spectral radius for

use as the starting guess for the next. With such a good guess it is typical that only a few iterations

are needed. Still, the Jacobian should change slowly, so it should not be necessary to estimate the

spectral radius at every step. The spectral radius is estimated on a step failure because this may

indicate a change in the character of the problem. Otherwise, it is estimated every 25 successful steps

since the last estimate. Of course, unnecessary estimates are avoided when there are repeated step

failures.

Storage The form (2.1) for the formulas of rkc results from the three term recursion relation for

Chebyshev polynomials. It could be rewritten in the standard form of an explicit Runge-Kutta formula
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of s stages, but (2.1) is much better for computation. One reason will be taken up shortly, but the

most important reason is that it is obvious this form of the formula can be evaluated using just a few

vectors of working storage, no matter how large the number of stages. The precise amount of storage

required by rkc depends on how the code is used, but it never uses more than �ve vectors of storage

for the computation itself. This makes it possible for rkc to solve the very large systems of odes

arising from semi-discretization of pdes in several spatial variables.

Internal stability For conventional explicit Runge-Kutta methods, the accumulation of roundo� in

the course of a step is unimportant, but that is not the case for methods with a large number of stages.

Indeed, in the application of stabilized methods to parabolic pdes, there can be a serious accumulation

of rounding error, so serious that the number of stages must be limited [19, 20, 21]. The form (2.1)

minimizes this internal instability, but there is still potential for a growth of roundo� at a modest rate

proportional to s2. For the problems that are the object of rkc and a reasonable working precision,

such a growth presents no di�culties. However, for robustness the number of stages is limited in

rkc to prevent an unacceptable growth of roundo� in the course of a step. According to [20], a safe

assumption about this growth is that it is bounded by a relative perturbation of 10 s2 uround, where

uround is the unit roundo�. The design of rkc emphasizes relative error, so it is required that this

perturbation be no greater than rtol. Should the code �nd that it needs to use a larger s for stability

with the desired step size, the number of stages is limited and the absolute stability condition (3.1) is

satis�ed by reducing the step size.

Continuous extension Early codes based on explicit Runge-Kutta methods provide answers at spe-

ci�c points by shortening the step size. This is ine�cient, especially when the method has many stages

like those of rkc, so modern codes make use of a continuous extension to obtain cheaply answers any-

where in the span of a step. Cubic Hermite interpolation to the value and slope at the two ends of a

step proves very satisfactory in the circumstances. It is easy to implement and provides a globally C1

piecewise-polynomial solution. The interpolant is \free" because the slopes are computed for other

purposes. It is shown in [4] that to leading order, the error of this interpolant is independent of the

problem. Further, the error increases smoothly from the beginning of the step to a maximum at the

end of the step. The error at the end of the step is the local error controlled by the code. Accordingly,

to leading order the C1 piecewise-polynomial solution is uniformly as accurate as the values at the

mesh points. rkc is organized so that it can return after each step with the step size taken and all

the information required for interpolation stored in a work array. The interpolant is evaluated at a

point within the span of the step by calling an auxiliary subroutine rkcint with the point and the

work array as arguments.

4. Numerical examples

In this section we present numerical results for two examples considered by Moore and Dillon [12].

Both are parabolic pdes in three space dimensions. Moore and Dillon use high order �nite elements for

the spatial discretization and integrate the odes with daspk. daspk is a variant of dassl that uses

Krylov methods to make practical the evaluation of the implicit bdfs for \large" systems of odes and

daes [2]. Because our main purpose here is to illustrate the use of rkc, we have discretized the pdes

with central di�erences on a uniform grid. Although the techniques of [12] are very di�erent, solving

the same examples provides some perspective about the use of explicit methods for such problems. We

include results computed with vodpk, a bdf code similar to daspk. It is a modi�cation of vode [3]

and is available from netlib: send vodpk.f from ode. It uses a preconditioned Krylov method gmres

for the solution of the linear systems with matrix A = I � h F 0, where F 0 is the Jacobian. Since

iterative methods such as gmres require only matrix-vector products, A itself need not be stored,

reducing greatly the memory needed in the solution of three-dimensional pdes. vodpk asks the user

to specify the preconditioner P . For simplicity, in our experiments we used diagonal preconditioning,

i.e. P = I � h diag (F 0). With this choice, the convergence behavior of gmres is reasonable and
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the storage requirement of 19 vectors is acceptable. In contrast, rkc requires only 5 vectors for the

�rst example and 6 for the second. Default values were used for all the parameters of vodpk All

computations were performed in double precision (� 16 digits) on a sgi workstation with a 180 mhz

mips r5000 processor.

Example 1 The �rst example is the linear heat conduction problem

ut = �u+ f(x; y; z; t); 0 < x; y; z < 1; t > 0;

where f , u(x; y; z; 0), and Dirichlet boundary conditions are speci�ed so that the solution is u(x; y; z; t) =

tanh(5(x+ 2y + 1:5z � 0:5� t)). The problem is solved for 0 � t � 0:7. A uniform grid with spacing

h = 0:025 is used, corresponding to 393 = 59319 equations.

An analytical bound for the spectral radius of the Jacobian can be found easily by applying

Ger�sgorin's circle theorem to the discrete Laplacian. Because three-point central di�erences are used,

all rows of the matrix corresponding to an interior grid point have the form h�2(: : : 1 : : : 1 : : : 1 �
6 1 : : : 1 : : : 1 : : : ), where \: : : " represents zero entries. For these rows the circle theorem yields a

bound of 12=h2. Rows corresponding to a boundary point have more zero entries because of the

Dirichlet boundary conditions. Thus 12=h2 is an upper bound for the spectral radius and it turns out

that the true radius is only marginally smaller. For h = 0:025, � � 19200, so this problem is rather

sti� for rkc.

Results reported here were computed with scalar tolerances rtol = atol = tol. For a range of tol,

Table 1 presents the following quantities: the integration error at the end of the integration measured

in the maximum norm, the total number of steps with the number of rejected ones parenthesized,

the total number of F -evaluations, the average number of F -evaluations per step (both accepted

and rejected), and the cpu time on the workstation in seconds. The error displayed in the table is

the di�erence between the numerical solution and a reference solution of the odes computed with a

stringent tolerance. It would have been easier to compare the numerical solution to the analytical

solution of the pde, but this would be misleading because it mixes the error of the spatial discretization

of the pdes with the error made in the time integration of the odes. For the same tolerances rtol =

atol = tol, Table 2 presents results for vodpk.

We see that both rkc and vodpk successfully solve the problem for all the tolerances, but rkc is

better at delivering an accuracy comparable to the tolerance. The behavior of vodpk is particularly

unsatisfactory when tol is reduced from 10�5 to 10�6. The e�ciency of the solvers is compared in

Figure 1 where the cpu time is plotted against the accuracy achieved. rkc is seen to compete well

over the whole range of tolerances.

Table 1: Results for rkc for Example 1.

tol error # steps # F -evals average # cpu

10�1 :89 10�2 6 (1) 402 67.0 186

10�2 :17 10�2 15 (4) 729 48.6 338

10�3 :37 10�3 27 (2) 786 29.1 366

10�4 :39 10�4 57 (0) 1087 19.1 507

10�5 :43 10�5 129 (1) 1682 13.0 787

10�6 :65 10�6 262 (0) 2445 9.3 1149

Example 2 This example is a combustion problem described by the pdes

ct = �c�Dce��=T ; LTt = �T + �Dce��=T ; 0 < x; y; z < 1; t > 0;
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Table 2: Results for vodpk for Example 1.

tol error # steps # F -evals cpu

10�1 :99 7 (0) 46 35

10�2 :83 10�1 16 (0) 160 122

10�3 :10 10�1 34 (0) 237 185

10�4 :12 10�2 70 (0) 474 371

10�5 :13 10�4 112 (3) 984 770

10�6 :19 10�4 168 (1) 1151 913
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Figure 1: A log-log plot of cpu time versus error for Example 1 (left) and Example 2 (right) for rkc

and vodpk.

along with the initial condition c(x; y; z; 0) = T (x; y; z; 0) = 1, homogeneous Neumann boundary

conditions for x = y = z = 0 and the Dirichlet conditions c(x; y; z; t) = T (x; y; z; t) = 1 for x =

y = z = 1. The parameters of the problem are L = 0:9; � = 1; � = 20 and D = Re�=�� with

R = 5. The dependent variables c and T are the concentration and temperature of a chemical that is

undergoing a one-step reaction. The temperature distribution develops a so-called \hot spot" at the

origin. Ignition occurs at a �nite time and T increases sharply to about 1 + �. A reaction front is

formed that propagates towards the boundary planes x = y = z = 1 where it develops a boundary

layer and �nally ends in a steady state. Following [12] we solve the problem for 0 � t � 0:3. By the

end of this period the boundary layers have developed and the solution is approaching steady state.

A uniform grid with spacing h was used and the Neumann boundary conditions were discretized by

means of central di�erences with �ctious points outside the region at a distance of h=2. The grid

spacing h = 1=(N + 0:5) where N is the number of grid points in each of the three spatial variables.

In the computations reported here N = 40, leading to a total of 2 � 403 = 128000 equations.

rkc is a natural candidate for the numerical integration of this ame propagation problem. For

one thing, the travelling reaction front limits the step size of any integration scheme, be it implicit or

explicit. For another, the problem becomes locally unstable in the course of the integration [21], so

rather small steps are required to obtain an accurate solution in the transient phase, especially during

ignition. Only during the start and near steady state is it possible to increase the step size to the

point that an implicit method is competitive.

Tables 3 and 4 present results in the same way as for the �rst example. An extra column in

Table 3 shows the number of F -evals needed by rkc for the estimation of the spectral radius. We

see that the overhead for this automatic estimation is negligible. Both solvers integrate this di�cult

problem successfully with only a few step rejections. Neither code obtains accuracies comparable to

the tolerance, though again rkc is notably better. With vodpk there is a striking change in accuracy
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when reducing tol from 10�6 to 10�7. The low accuracy achieved by both codes is to be expected

from the local instability of the problem. Figure 1 shows that rkc competes well with vodpk for this

problem, too. rkc adapts the formula, i.e., the number of stages s, to the problem and it may use s

that are quite large compared to what is seen in general-purpose codes based on explicit Runge-Kutta

formulas. The variation of s when solving this problem is displayed in Figure 2.

Table 3: Results for rkc for Example 2.

tol error # steps # F -evals average # # F -evals � CPU

10�4 .54 51 (1) 525 10.3 21 420

10�5 .18 124 (0) 781 6.3 27 630

10�6 :39 10�1 270 (0) 1270 4.7 39 1030

10�7 :87 10�2 581 (0) 2147 3.7 65 1758

Table 4: Results for vodpk for Example 2.

tol error # steps # F -evals CPU

10�4 .87 33 (2) 285 412

10�5 .76 91 (8) 659 957

10�6 .12 201 (9) 1141 1702

10�7 :12 10�2 286 (10) 1548 2376
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Figure 2: The number of stages s used by rkc when solving Example 2 with tol = 10�6 plotted

against step number (left) and against time (right).

5. Remarks

Other interesting stabilized explicit methods have been developed by Lebedev and co-workers, see,

e.g. [9, 11] and [8, 21]. There are formulas of order up to four [11]. Although they are also based on

Chebyshev polynomials and so possess optimal stability for real negative eigenvalues, the three-term

recursion is not exploited. A code dumka based on these formulas is still in an experimental stage,

but numerical results are promising, see Figure 10.14 in [8]).

Source code for rkc and some examples can be obtained by anonymous ftp from the address

ftp://ftp.cwi.nl/pub/bsom/rkc. rkc can also be downloaded from netlib@ornl.gov (send rkc.f from

ode). It replaces the program of [18].
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1. Source of RKC

subroutine rkc(neqn,f,y,t,tend,rtol,atol,info,work,idid)

c--------------------------------------------------------------------------

c

c ABSTRACT: RKC integrates initial value problems for systems of first

c order ordinary differential equations. It is based on a family of

c explicit Runge-Kutta-Chebyshev formulas of order two. The stability

c of members of the family increases quadratically in the number of

c stages m. An estimate of the spectral radius is used at each step to

c select the smallest m resulting in a stable integration. RKC is

c appropriate for the solution to modest accuracy of mildly stiff problems

c with eigenvalues of Jacobians that are close to the negative real axis.

c For such problems it has the advantages of explicit one-step methods and

c very low storage. If it should turn out that RKC is using m far beyond

c 100, the problem is not mildly stiff and alternative methods should be

c considered. Answers can be obtained cheaply anywhere in the interval

c of integration by means of a continuous extension evaluated in the

c subroutine RKCINT.

c

c The initial value problems arising from semi-discretization of

c diffusion-dominated parabolic partial differential equations and of

c reaction-diffusion equations, especially in two and three spatial

c variables, exemplify the problems for which RKC was designed. Two

c example programs, exa and exb, are provided that show how to use RKC.

c

c---------------------------------------------------------------------------

c USAGE: RKC integrates a system of NEQN first order ordinary differential

c equations specified by a subroutine F from T to TEND. The initial values

c at T are input in Y(*). On all returns from RKC, Y(*) is an approximate

c solution at T. In the computation of Y(*), the local error has been

c controlled at each step to satisfy a relative error tolerance RTOL and

c absolute error tolerances ATOL(*). The array INFO(*) specifies the way

c the problem is to be solved. WORK(*) is a work array. IDID reports

c success or the reason the computation has been terminated.

c

c FIRST CALL TO RKC

c

c You must provide storage in your calling program for the arrays in the

c call list -- Y(NEQN), INFO(4), WORK(8+5*NEQN). If INFO(2) = 0, you can

c reduce the storage for the work array to WORK(8+4*NEQN). ATOL may be

c a scalar or an array. If it is an array, you must provide storage for

c ATOL(NEQN). You must declare F in an external statement, supply the

c subroutine F and the function SPCRAD, and initialize the following

c quantities:

c

c NEQN: The number of differential equations. Integer.

c

c T: The initial point of the integration. Double precision.

c Must be a variable.

c
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c TEND: The end of the interval of integration. Double precision.

c TEND may be less than T.

c

c Y(*): The initial value of the solution. Double precision array

c of length NEQN.

c

c F: The name of a subroutine for evaluating the differential

c equation. It must have the form

c

c subroutine f(neqn,t,y,dy)

c integer neqn

c double precision t,y(neqn),dy(neqn)

c dy(1) = ...

c ...

c dy(neqn) = ...

c return

c end

c

c RTOL,

C ATOL(*): At each step of the integration the local error is controlled

c so that its RMS norm is no larger than tolerances RTOL, ATOL(*).

c RTOL is a double precision scalar. ATOL(*) is either a double

c precision scalar or a double precision array of length NEQN.

c RKC is designed for the solution of problems to modest accuracy.

c Because it is based on a method of order 2, it is relatively

c expensive to achieve high accuracy.

c

c RTOL is a relative error tolerance. You must ask for some

c relative accuracy, but you cannot ask for too much for the

c precision available. Accordingly, it is required that

c 0.1 >= RTOL >= 10*uround. (See below for the machine and

c precision dependent quantity uround.)

c

c ATOL is an absolute error tolerance that can be either a

c scalar or an array. When it is an array, the tolerances are

c applied to corresponding components of the solution and when

c it is a scalar, it is applied to all components. A scalar

c tolerance is reasonable only when all solution components are

c scaled to be of comparable size. A scalar tolerance saves a

c useful amount of storage and is convenient. Use INFO(*) to

c tell RKC whether ATOL is a scalar or an array.

c

c The absolute error tolerances ATOL(*) must satisfy ATOL(i) >= 0

c for i = 1,...,NEQN. ATOL(j)= 0 specifies a pure relative error

c test on component j of the solution, so it is an error if this

c component vanishes in the course of the integration.

c

c If all is going well, reducing the tolerances by a factor of

c 0.1 will reduce the error in the computed solution by a factor

c of roughly 0.2.

c
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c INFO(*) Integer array of length 4 that specifies how the problem

c is to be solved.

c

c INFO(1): RKC integrates the initial value problem from T to TEND.

c This is done by computing approximate solutions at points

c chosen automatically throughout [T, TEND]. Ordinarily RKC

c returns at each step with an approximate solution. These

c approximations show how y behaves throughout the interval.

c The subroutine RKCINT can be used to obtain answers anywhere

c in the span of a step very inexpensively. This makes it

c possible to obtain answers at specific points in [T, TEND]

c and to obtain many answers very cheaply when attempting to

c locating where some function of the solution has a zero

c (event location). Sometimes you will be interested only in

c a solution at TEND, so you can suppress the returns at each

c step along the way if you wish.

c

c INFO(1) = 0 Return after each step on the way to TEND with a

c solution Y(*) at the output value of T.

c

c = 1 Compute a solution Y(*) at TEND only.

c

c INFO(2): RKC needs an estimate of the spectral radius of the Jacobian.

c You must provide a function that must be called SPCRAD and

c have the form

c

c double precision function spcrad(neqn,t,y)

c integer neqn

c double precision t,y(neqn)

c

c spcrad = < expression depending on info(2) >

c

c return

c end

c

c You can provide a dummy function and let RKC compute the

c estimate. Sometimes it is convenient for you to compute in

c SPCRAD a reasonably close upper bound on the spectral radius,

c using, e.g., Gershgorin's theorem. This may be faster and/or

c more reliable than having RKC compute one.

c

c INFO(2) = 0 RKC is to compute the estimate internally.

c Assign any value to SPCRAD.

c

c = 1 SPCRAD returns an upper bound on the spectral

c radius of the Jacobian of f at (t,y).

c

c INFO(3): If you know that the Jacobian is constant, you should say so.

c

c INFO(3) = 0 The Jacobian may not be constant.

c
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c = 1 The Jacobian is constant.

c

c INFO(4): You must tell RKC whether ATOL is a scalar or an array.

c

c INFO(4) = 0 ATOL is a double precision scalar.

c

c = 1 ATOL is a double precision array of length NEQN.

c

c WORK(*): Work array. Double precision array of length at least

c 8 + 4*NEQN if INFO(2) = 0 and otherwise, 8 + 5*NEQN.

c

c IDID: Set IDID = 0 to initialize the integration.

c

c

c

c RETURNS FROM RKC

c

c T: The integration has advanced to T.

c

c Y(*): The solution at T.

c

c IDID: The value of IDID reports what happened.

c

c SUCCESS

c

c IDID = 1 T = TEND, so the integration is complete.

c

c = 2 Took a step to the output value of T. To continue on

c towards TEND, just call RKC again. WARNING: Do not

c alter any argument between calls.

c

c The last step, HLAST, is returned as WORK(1). RKCINT

c can be used to approximate the solution anywhere in

c [T-HLAST, T] very inexpensively using data in WORK(*).

c

c The work can be monitored by inspecting data in RKCDID.

c

c FAILURE

c

c = 3 Improper error control: For some j, ATOL(j) = 0

c and Y(j) = 0.

c

c = 4 Unable to achieve the desired accuracy with the

c precision available. A severe lack of smoothness in

c the solution y(t) or the function f(t,y) is likely.

c

c = 5 Invalid input parameters: NEQN <= 0, RTOL > 0.1,

c RTOL < 10*UROUND, or ATOL(i) < 0 for some i.

c

c = 6 The method used by RKC to estimate the spectral

c radius of the Jacobian failed to converge.
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c

c RKCDID is a labelled common block that communicates statistics

c about the integration process:

c common /rkcdid/ nfe,nsteps,naccpt,nrejct,nfesig,maxm

c

c The integer counters are:

c

c NFE number of evaluations of F used

c to integrate the initial value problem

c NSTEPS number of integration steps

c NACCPT number of accepted steps

c NREJCT number of rejected steps

c NFESIG number of evaluations of F used

c to estimate the spectral radius

c MAXM maximum number of stages used

c

c This data can be used to monitor the work and terminate a run

c that proves to be unacceptably expensive. Also, if MAXM should

c be far beyond 100, the problem is too expensive for RKC and

c alternative methods should be considered.

c

c--------------------------------------------------------------------------

c

c CAUTION: MACHINE/PRECISION ISSUES

c

c UROUND (the machine precision) is the smallest number such that

c 1 + UROUND > 1, where 1 is a floating point number in the working

c precision. UROUND is set in a parameter statement in RKC. Its

c value depends on both the precision and the machine used, so it

c must be set appropriately. UROUND is the only constant in RKC

c that depends on the precision.

c

c This version of RKC is written in double precision. It can be changed

c to single precision by replacing DOUBLE PRECISION in the declarations

c by REAL and changing the type of the floating point constants set in

c PARAMETER statements from double precision to real.

c

c--------------------------------------------------------------------------

c

c Authors: B.P. Sommeijer and J.G. Verwer

c Centre for Mathematics and Computer Science (CWI)

c Kruislaan 413

c 1098 SJ Amsterdam

c The Netherlands

c e-mail: bsom@cwi.nl

c

c L.F. Shampine

c Mathematics Department

c Southern Methodist University

c Dallas, Texas 75275-0156

c USA
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c e-mail: lshampin@mail.smu.edu

c

c Details of the methods used and the performance of RKC can be

c can be found in

c

c B.P. Sommeijer, L.F. Shampine and J.G. Verwer

c RKC: an Explicit Solver for Parabolic PDEs.

c Report MAS-R9715, CWI, Amsterdam, 1997

c

c------------------------------------------------------------------

integer neqn,info(*),idid

double precision y(neqn),t,tend,rtol,atol(*),work(*)

c

c*********************************************************************

c uround is set here for IEEE double precision arithmetic.

double precision uround

parameter (uround=2.22d-16)

c*********************************************************************

c

double precision zero,rmax,rmin

parameter (zero=0d0,rmax=0.1d0,rmin=10d0*uround)

integer i,ptr1,ptr2,ptr3,ptr4

logical array,valid

save

integer nfe,nsteps,naccpt,nrejct,nfesig,maxm

common /rkcdid/ nfe,nsteps,naccpt,nrejct,nfesig,maxm

external f

c

if(idid .eq. 0) then

c----------------------

c Test the input data.

c----------------------

array = info(4) .eq. 1

valid = neqn .gt. 0

if((rtol .gt. rmax) .or. (rtol .lt. rmin)) valid = .false.

if(atol(1) .lt. zero) valid = .false.

if(array) then

do 10 i = 2, neqn

if(atol(i) .lt. zero) valid = .false.

10 continue

endif

if(.not. valid) then

idid = 5

return

endif

c-----------------------------------

c Initialize counters and pointers.

c-----------------------------------

nfe = 0

nsteps = 0

naccpt = 0
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nrejct = 0

nfesig = 0

maxm = 0

c-----------------------------------------------------------

c work(*) contains information needed for interpolation,

c continuation after a return, and working storage. Items

c relevant here are:

c

c The last step taken, hlast, is work(1).

c The current t is work(2).

c The number of equations, neqn, is work(3).

c The unit roundoff, uround, is work(4).

c The square root of uround, sqrtu, is work(5).

c The maximum step size, hmax, is work(6).

c The base address for the solution is ptr1 = nint(work(7)).

c The solution at t starts at ptr1.

c The derivative of the solution at t starts at ptr2.

c The solution at t-hlast starts at ptr3.

c The derivative of the solution at t-hlast starts at ptr4.

c The estimated dominant eigenvector starts at ptr4 + neqn.

c------------------------------------------------------------

work(2) = t

work(3) = neqn

work(4) = uround

work(5) = sqrt(uround)

ptr1 = 8

work(7) = ptr1

ptr2 = ptr1 + neqn

ptr3 = ptr2 + neqn

ptr4 = ptr3 + neqn

elseif(idid .ne. 2) then

write(*,*) ' RKC was called with an illegal value of IDID.'

stop

endif

c

call rkclow(neqn,t,tend,y,f,info,rtol,atol,work,

& work(ptr1),work(ptr2),work(ptr3),work(ptr4),idid)

return

end

subroutine rkclow(neqn,t,tend,y,f,info,rtol,atol,work,

& yn,fn,vtemp1,vtemp2,idid)

c----------------------------------------------------------------------

c RKC is an interface to RKCLOW where the actual solution takes place.

c----------------------------------------------------------------------

integer neqn,info(*),idid

double precision t,tend,y(*),rtol,atol(*),work(*),

& yn(*),fn(*),vtemp1(*),vtemp2(*)

external f

c

double precision one,onep1,onep54,p1,p4,p8,
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& ten,zero,one3rd,two3rd

parameter (one=1d0,onep1=1.1d0,onep54=1.54d0,

& p1=0.1d0,p4=0.4d0,p8=0.8d0,ten=10d0,

& zero=0d0,one3rd=1d0/3d0,two3rd=2d0/3d0)

integer i,m,mmax,nstsig

double precision absh,est,err,errold,fac,h,hmax,hmin,hold,

& spcrad,sprad,tdir,temp1,temp2,

& uround,wt,ylast,yplast,at

logical array,last,newspc,jacatt

save

integer nfe,nsteps,naccpt,nrejct,nfesig,maxm

common /rkcdid/ nfe,nsteps,naccpt,nrejct,nfesig,maxm

c

c---------------------------------

c Initialize on the first call.

c---------------------------------

if(idid .eq. 0) then

array = info(4) .eq. 1

uround = work(4)

mmax = nint(sqrt(rtol/(10d0*uround)))

mmax = max(mmax,2)

newspc = .true.

jacatt = .false.

nstsig = 0

do 10 i = 1, neqn

yn(i) = y(i)

10 continue

call f(neqn,t,yn,fn)

nfe = nfe + 1

tdir = sign(one,tend - t)

hmax = abs(tend - t)

work(6) = hmax

hmin = ten*uround*max(abs(t),hmax)

endif

c------------------------------------

c Start of loop for taking one step.

c------------------------------------

20 continue

c----------------------------------------------

c Estimate the spectral radius of the Jacobian

c when newspc = .true.. A convergence failure

c in rkcrho is reported by idid = 6.

c----------------------------------------------

if(newspc) then

if(info(2) .eq. 1) then

sprad = spcrad(neqn,t,yn)

else

call rkcrho(neqn,t,f,yn,fn,vtemp1,vtemp2,work,sprad,idid)

if(idid .eq. 6) return

endif

jacatt = .true.
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endif

c-------------------------------

c Compute an initial step size.

c-------------------------------

if(nsteps .eq. 0) then

absh = hmax

if(sprad*absh .gt. one) absh = one/sprad

absh = max(absh,hmin)

do 30 i = 1,neqn

vtemp1(i) = yn(i) + absh*fn(i)

30 continue

call f(neqn,t+absh,vtemp1,vtemp2)

nfe = nfe + 1

est = zero

at = atol(1)

do 40 i = 1,neqn

if(array) at = atol(i)

wt = at + rtol*abs(yn(i))

if(wt .eq. zero) then

idid = 3

return

endif

est = est + ((vtemp2(i) - fn(i))/wt)**2

40 continue

est = absh*sqrt(est/neqn)

if(p1*absh .lt. hmax*sqrt(est)) then

absh = max(p1*absh/sqrt(est), hmin)

else

absh = hmax

endif

endif

c------------------------------------------------------------

c Adjust the step size and determine the number of stages m.

c------------------------------------------------------------

last = .false.

if(onep1*absh .ge. abs(tend - t)) then

absh = abs(tend - t)

last = .true.

endif

m = 1 + int(sqrt(onep54*absh*sprad + one))

c----------------------------------------------------------

c Limit m to mmax to control the growth of roundoff error.

c----------------------------------------------------------

if(m .gt. mmax) then

m = mmax

absh = (m**2 - 1)/(onep54*sprad)

last = .false.

endif

maxm = max(m,maxm)

c--------------------------------------------

c A tentative solution at t+h is returned in
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c y and its slope is evaluated in vtemp1(*).

c--------------------------------------------

h = tdir*absh

hmin = ten*uround*max(abs(t),abs(t + h))

call step(neqn,f,t,yn,fn,h,m,y,vtemp1,vtemp2)

call f(neqn,t+h,y,vtemp1)

nfe = nfe + m

nsteps = nsteps + 1

c-------------------------------------------------------------

c Estimate the local error and compute its weighted RMS norm.

c-------------------------------------------------------------

err = zero

at = atol(1)

do 50 i = 1, neqn

if(array) at = atol(i)

wt = at + rtol*max(abs(y(i)),abs(yn(i)))

if(wt .eq. zero) then

idid = 3

return

endif

est = p8*(yn(i) - y(i)) + p4*h*(fn(i) + vtemp1(i))

err = err + (est/wt)**2

50 continue

err = sqrt(err/neqn)

c

if(err .gt. one) then

c-------------------

c Step is rejected.

c-------------------

nrejct = nrejct + 1

absh = p8*absh/(err**one3rd)

if(absh .lt. hmin) then

idid = 4

return

else

newspc = .not. jacatt

goto 20

endif

endif

c-------------------

c Step is accepted.

c-------------------

naccpt = naccpt + 1

t = t + h

jacatt = info(3) .eq. 1

nstsig = mod(nstsig+1,25)

newspc = .false.

if((info(2) .eq. 1) .or. (nstsig .eq. 0)) newspc = .not. jacatt

c------------------------------------------------------

c Update the data for interpolation stored in work(*).

c------------------------------------------------------
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work(1) = h

work(2) = t

do 60 i = 1, neqn

ylast = yn(i)

yplast = fn(i)

yn(i) = y(i)

fn(i) = vtemp1(i)

vtemp1(i) = ylast

vtemp2(i) = yplast

60 continue

fac = ten

if(naccpt .eq. 1) then

temp2 = err**one3rd

if(p8 .lt. fac*temp2) fac = p8/temp2

else

temp1 = p8*absh*errold**one3rd

temp2 = abs(hold)*err**two3rd

if(temp1 .lt. fac*temp2) fac = temp1/temp2

endif

absh = max(p1,fac)*absh

absh = max(hmin,min(hmax,absh))

errold = err

hold = h

h = tdir*absh

if(last) then

idid = 1

return

elseif(info(1) .eq. 0) then

idid = 2

return

else

goto 20

endif

end

subroutine step(neqn,f,t,yn,fn,h,m,y,yjm1,yjm2)

c--------------------------------------------------

c Take a step of size H from T to T+H to get Y(*).

c--------------------------------------------------

integer neqn,m

double precision t,yn(neqn),fn(neqn),h,

& y(neqn),yjm1(neqn),yjm2(neqn)

external f

c

double precision one,two,four,c13,zero

parameter (one=1d0,two=2d0,four=4d0,c13=13d0,zero=0d0)

integer i,j

double precision ajm1,arg,bj,bjm1,bjm2,dzj,dzjm1,dzjm2,

& d2zj,d2zjm1,d2zjm2,mu,mus,nu,

& temp1,temp2,thj,thjm1,thjm2,w0,w1,

& zj,zjm1,zjm2
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c

w0 = one + two/(c13*m**2)

temp1 = w0**2 - one

temp2 = sqrt(temp1)

arg = m*log(w0 + temp2)

w1 = sinh(arg)*temp1 / (cosh(arg)*m*temp2 - w0*sinh(arg))

bjm1 = one/(two*w0)**2

bjm2 = bjm1

c---------------------------

c Evaluate the first stage.

c---------------------------

do 10 i = 1, neqn

yjm2(i) = yn(i)

10 continue

mus = w1*bjm1

do 20 i = 1, neqn

yjm1(i) = yn(i) + h*mus*fn(i)

20 continue

thjm2 = zero

thjm1 = mus

zjm1 = w0

zjm2 = one

dzjm1 = one

dzjm2 = zero

d2zjm1 = zero

d2zjm2 = zero

c------------------------------

c Evaluate stages j = 2,...,m.

c------------------------------

do 50 j = 2, m

zj = two*w0*zjm1 - zjm2

dzj = two*w0*dzjm1 - dzjm2 + two*zjm1

d2zj = two*w0*d2zjm1 - d2zjm2 + four*dzjm1

bj = d2zj/dzj**2

ajm1 = one - zjm1*bjm1

mu = two*w0*bj/bjm1

nu = - bj/bjm2

mus = mu*w1/w0

c---------------------------------------------

c Use the y array for temporary storage here.

c---------------------------------------------

call f(neqn,t + h*thjm1,yjm1,y)

do 30 i = 1, neqn

y(i) = mu*yjm1(i) + nu*yjm2(i) + (one - mu - nu)*yn(i) +

& h*mus*(y(i) - ajm1*fn(i))

30 continue

thj = mu*thjm1 + nu*thjm2 + mus*(one - ajm1)

c------------------------------------

c Shift the data for the next stage.

c------------------------------------

if(j .lt. m) then
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do 40 i = 1, neqn

yjm2(i) = yjm1(i)

yjm1(i) = y(i)

40 continue

thjm2 = thjm1

thjm1 = thj

bjm2 = bjm1

bjm1 = bj

zjm2 = zjm1

zjm1 = zj

dzjm2 = dzjm1

dzjm1 = dzj

d2zjm2 = d2zjm1

d2zjm1 = d2zj

endif

50 continue

return

end

subroutine rkcint(work,arg,yarg)

c-------------------------------------------------------------------------

c RKCINT is used to compute approximate solutions at specific t and to

c compute cheaply the large number of approximations that may be needed

c for plotting or locating when events occur.

c

c After a step to T, RKC provides HLAST, the step just taken, in WORK(1).

c In other entries of WORK(*) it provides the data needed to interpolate

c anywhere in [T-HLAST, T]. YARG(*), the approximate solution at t = ARG

c computed by interpolation in RKCINT has the same order of accuracy as

c the Y(*) computed directly by RKC.

c

c INPUT:

c

c WORK(*) Double precision array returned by RKC.

c

c ARG The point at which a solution is desired. Double precision.

c

c OUTPUT:

c

c YARG(*) The approximate solution at t = ARG. Double precision

c array of length neqn.

c--------------------------------------------------------------------------

double precision work(*),arg,yarg(*)

c

double precision one,two,three

parameter (one=1d0,two=2d0,three=3d0)

integer i,neqn,ptr1,ptr2,ptr3,ptr4

double precision a1,a2,b1,b2,s,hlast,t,tlast

c

c---------------------------------------------------------------------

c The data needed for interpolation are stored in work(*) as follows:
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c

c The last step taken, hlast, is work(1).

c The current t is work(2).

c The number of equations, neqn, is work(3).

c The base address for the solution is ptr1 = nint(work(7))

c The solution at t starts at ptr1.

c The derivative of the solution at t starts at ptr2.

c The solution at t-hlast starts at ptr3.

c The derivative of the solution at t-hlast starts at ptr4.

c---------------------------------------------------------------------

hlast = work(1)

t = work(2)

tlast = t - hlast

neqn = nint(work(3))

ptr1 = nint(work(7))

ptr2 = ptr1 + neqn

ptr3 = ptr2 + neqn

ptr4 = ptr3 + neqn

c

s = (arg - tlast)/hlast

a1 = (one + two*s)*(s - one)**2

a2 = (three - two*s)*s**2

b1 = hlast*s*(s - one)**2

b2 = hlast*(s - one)*s**2

c

do 10 i = 1, neqn

yarg(i) = a1*work(ptr3+i-1) + a2*work(ptr1+i-1) +

& b1*work(ptr4+i-1) + b2*work(ptr2+i-1)

10 continue

return

end

subroutine rkcrho(neqn,t,f,yn,fn,v,fv,work,sprad,idid)

c---------------------------------------------------------------

c RKCRHO attempts to compute a close upper bound, SPRAD, on

c the spectral radius of the Jacobian matrix using a nonlinear

c power method. A convergence failure is reported by IDID = 6.

c---------------------------------------------------------------

integer neqn,idid

double precision t,yn(neqn),fn(neqn),v(neqn),fv(neqn),work(*),

& sprad

external f

c

integer itmax

parameter (itmax=50)

double precision zero,one,onep2,p01

parameter (zero=0d0,one=1d0,onep2=1.2d0,p01=0.01d0)

integer i,iter,index,ptr5

double precision uround,sqrtu,ynrm,sigma,sigmal,

& dynrm,dfnrm,vnrm,small

integer nfe,nsteps,naccpt,nrejct,nfesig,maxm
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common /rkcdid/ nfe,nsteps,naccpt,nrejct,nfesig,maxm

c

uround = work(4)

sqrtu = work(5)

c------------------------------------------------------------

c hmax = work(6). sprad smaller than small = 1/hmax are not

c interesting because they do not constrain the step size.

c------------------------------------------------------------

small = one/work(6)

c---------------------------------------------------------

c The initial slope is used as guess when nsteps = 0 and

c thereafter the last computed eigenvector. Some care

c is needed to deal with special cases. Approximations to

c the eigenvector are normalized so that their Euclidean

c norm has the constant value dynrm.

c---------------------------------------------------------

ptr5 = nint(work(7)) + 4*neqn

if(nsteps .eq. 0) then

do 10 i = 1,neqn

v(i) = fn(i)

10 continue

else

do 20 i = 1,neqn

v(i) = work(ptr5+i-1)

20 continue

endif

ynrm = zero

vnrm = zero

do 30 i = 1,neqn

ynrm = ynrm + yn(i)**2

vnrm = vnrm + v(i)**2

30 continue

ynrm = sqrt(ynrm)

vnrm = sqrt(vnrm)

if(ynrm .ne. zero .and. vnrm .ne. zero) then

dynrm = ynrm*sqrtu

do 40 i = 1,neqn

v(i) = yn(i) + v(i)*(dynrm/vnrm)

40 continue

elseif(ynrm .ne. zero) then

dynrm = ynrm*sqrtu

do 50 i = 1, neqn

v(i) = yn(i) + yn(i)*sqrtu

50 continue

elseif(vnrm .ne. zero) then

dynrm = uround

do 60 i = 1,neqn

v(i) = v(i)*(dynrm/vnrm)

60 continue

else

dynrm = uround
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do 70 i = 1,neqn

v(i) = dynrm

70 continue

endif

c--------------------------------------------

c Now iterate with a nonlinear power method.

c--------------------------------------------

sigma = zero

do 110 iter = 1, itmax

call f(neqn,t,v,fv)

nfesig = nfesig + 1

dfnrm = zero

do 80 i = 1, neqn

dfnrm = dfnrm + (fv(i) - fn(i))**2

80 continue

dfnrm = sqrt(dfnrm)

sigmal = sigma

sigma = dfnrm/dynrm

c----------------------------------------------------------

c sprad is a little bigger than the estimate sigma of the

c spectral radius, so is more likely to be an upper bound.

c----------------------------------------------------------

sprad = onep2*sigma

if(iter .ge. 2 .and.

& abs(sigma - sigmal) .le. max(sigma,small)*p01) then

do 90 i = 1,neqn

work(ptr5+i-1) = v(i) - yn(i)

90 continue

return

endif

c--------------------------------------

c The next v(*) is the change in f

c scaled so that norm(v - yn) = dynrm.

c--------------------------------------

if(dfnrm .ne. zero) then

do 100 i = 1,neqn

v(i) = yn(i) + (fv(i) - fn(i))*(dynrm/dfnrm)

100 continue

else

c-------------------------------------------------------

c The new v(*) degenerated to yn(*)--"randomly" perturb

c current approximation to the eigenvector by changing

c the sign of one component.

c-------------------------------------------------------

index = 1 + mod(iter,neqn)

v(index) = yn(index) - (v(index) - yn(index))

endif

110 continue

c-------------------------------------------

c Set flag to report a convergence failure.

c-------------------------------------------
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idid = 6

return

end
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2. Example A

c Example A

c

c This example shows how to use RKC. It solves a system of ODEs that

c arise from semi-discretization of the reaction-diffusion equation

c

c U = U + (1 - U)*U**2 for t >= 0, 0 <= x <= 10

c t xx

c

c Dirichlet boundary conditions specify U(0,t) and U(10,t) for all t >= 0

c and the initial values U(x,0) are specified. These values are taken from

c an analytical solution that is evaluated in sol(x,t) so that the numerical

c solution can be compared to a known solution.

c

c A semi-discretization of the PDE is obtained by choosing a set of points

c {x_i} in [0, 10] and approximating U(x_i,t) by a function y_i(t). Here

c neqn+2 equally spaced points x_i are used for neqn = 99. When the second

c partial derivative of U with respect to x is approximated by central

c differences, a system of neqn ODEs is obtained for the y_i(t). The

c initial values y_i(0) are given by U(x_i,0) = sol(x_i,0).

c

c A common way to present the computed results is to plot approximations

c to U(x,tout) on [0, 10] for a selection of times tout. This example

c shows how to compute approximations to the y_i(t) at these specific times.

c They are written to an output file for plotting; the most convenient way

c to do this will depend on the system and the plotting package used.

c

c Because an analytical solution U(x,t) is available, the maximum error

c of the approximation to U(x,tend) is computed and displayed. Here

c tend = 15. It should be appreciated that this error has two parts,

c one the error made by RKC in the time integration and the other from

c the spacial discretization. Some statistics about the integration are

c also displayed.

c

integer neqn,nout

parameter (neqn=99,nout=4)

integer info(4),idid

double precision t,tend,rtol,atol

double precision y(neqn),work(8+5*neqn)

integer i,next

double precision dx,delta,sol,tout(nout),yout(neqn),

& truey,error

integer nfe,nsteps,naccpt,nrejct,nfesig,maxm

common /rkcdid/ nfe,nsteps,naccpt,nrejct,nfesig,maxm

external f

c------------------------------------------------------------

c Specify the interval of integration in time. The initial

c values of the solution at mesh points are provided by the

c analytical solution sol(x,t).

c------------------------------------------------------------
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t = 0d0

tend = 15d0

dx = 10d0/(neqn+1)

do 10 i = 1, neqn

y(i) = sol(i*dx,t)

10 continue

c----------------------------------------------------------------------

c Initialize the output: Define the times at which solutions are to

c be reported for plotting and output the number of these times. A

c solution is computed on a mesh of equally spaced points in [0, 10].

c Output the number of points in the mesh and then the mesh itself.

c Because tout(1) = t, output the initial values for the neqn solution

c components along with the values given at 0 and 10.

c----------------------------------------------------------------------

delta = (tend - t)/(nout-1)

do 20 i = 1,nout

tout(i) = t + (i-1)*delta

20 continue

open(10,file='exaout')

write(10,'(i10)') nout,neqn+2

do 30 i = 0,neqn+1

write(10,'(e10.4)') i*dx

30 continue

next = 1

write(10,'(e10.4)') sol(0d0,tout(next))

write(10,'(e10.4)') y

write(10,'(e10.4)') sol(10d0,tout(next))

next = next + 1

c--------------------------------------------------

c To compute results at specific times, the code

c must return after each step. Common choices for

c info(*) have value 0.

c info(1) = 0 -- return after each step.

c info(2) = 0 -- RKC computes the spectral radius.

c info(3) = 0 -- the Jacobian may not be constant.

c info(4) = 0 -- ATOL is a scalar.

c--------------------------------------------------

info(1) = 0

info(2) = 0

info(3) = 0

info(4) = 0

c-------------------------

c Specify the tolerances.

c-------------------------

rtol = 1d-4

atol = rtol

c-----------------------------

c Initialize the integration.

c-----------------------------

idid = 0

c---------------------
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c Take a single step:

c---------------------

40 continue

call rkc(neqn,f,y,t,tend,rtol,atol,info,work,idid)

c-------------------------------------------------------------

c Was the step successful? If not, quit with an explanation.

c-------------------------------------------------------------

if(idid .gt. 2) then

write(*,*) ' Failed at t = ',t,' with idid = ',idid

stop

endif

c--------------------------------------------------------------

c To get output at specific points, step towards TEND with RKC

c until the integration passes the next output point. Compute

c a result at the point using RKCINT. There might be several

c output points in the span of a single step by RKC.

c--------------------------------------------------------------

50 continue

if(t .ge. tout(next)) then

call rkcint(work,tout(next),yout)

write(10,'(e10.4)') sol(0d0,tout(next))

write(10,'(e10.4)') yout

write(10,'(e10.4)') sol(10d0,tout(next))

next = next + 1

if(next .le. nout) goto 50

endif

c--------------------------------------

c Monitor the cost of the integration.

c--------------------------------------

if(nsteps .ge. 5000) then

write(*,*) ' Quit because of too much work.'

endif

c-------------------------------------

c If not done yet, take another step.

c-------------------------------------

if(idid .eq. 2) goto 40

c------------------------------------------------------

c Done. Compute the error and report some statistics.

c------------------------------------------------------

error = 0d0

do 60 i = 1, neqn

truey = sol(i*dx,t)

error = max(error,abs(y(i) - truey))

60 continue

write(*,'(/a,d8.1,a,f6.1,a,d8.2)') ' With rtol = atol =',rtol,

& ', the maximum error at tend =',tend,' was',error

write(*,'(a,i5,a)') ' The integration cost',nfe,

& ' function evaluations.'

write(*,'(a,i4,a,i3,a)') ' There were',nsteps,' steps (',

& nrejct,' rejected).'

write(*,'(a,i4)') ' The maximum number of stages used was',maxm
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end

double precision function sol(x,t)

c------------------------------------------------------------

c An analytical solution to the reaction-diffusion equation.

c------------------------------------------------------------

double precision x,t

double precision v,z

v = sqrt(0.5d0)

z = x - v*t

sol = 1d0/(1d0 + exp(v*z))

return

end

subroutine f(neqn,t,y,dy)

c---------------------------------------------------------------

c Semi-discretization of reaction-diffusion equation by central

c differences. The analytical solution sol(x,t) is used for

c Dirichlet boundary conditions at x = 0 and x = 10.

c---------------------------------------------------------------

integer neqn

double precision t,y(neqn),dy(neqn)

integer i

double precision dx,dxsq,sol

c

dx = 10d0/(neqn+1)

dxsq = dx**2

dy(1) = (sol(0d0,t)- 2d0*y(1) + y(2))/dxsq +

& (1d0 - y(1))*y(1)**2

do 10 i = 2,neqn-1

dy(i) = (y(i-1) - 2d0*y(i) + y(i+1))/dxsq +

& (1d0 - y(i))*y(i)**2

10 continue

dy(neqn) = (y(neqn-1)- 2d0*y(neqn) + sol(10d0,t))/dxsq +

& (1d0 - y(neqn))*y(neqn)**2

return

end

double precision function spcrad(neqn,t,y)

c--------------------------

c This is a dummy routine.

c--------------------------

integer neqn

double precision t,y(neqn)

spcrad = 0d0

return

end
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3. Example B

c Example B

c

c This is a simplification of Example 1 of B.P. Sommeijer, L.F. Shampine,

c and J.G. Verwer, RKC: an Explicit Solver for Parabolic PDEs that shows

c the use of RKC on a substantial problem. Semi-discretization of the

c heat equation in three space variables results in 19**3 = 6859 equations.

c The inhomogeneous term and the boundary conditions have been specified so

c that there is an analytical solution evaluated in sol(x,y,z,t). The

c maximum error of the numerical solution at TEND is measured by comparison

c to a reference solution computed to high accuracy, so the error reported

c is the error of the time integration, not the difference between the

c solutions of the ODEs and the PDE. Some statistics about the integration

c are also displayed.

c

c WARNING: This program expects the file exb.ref containing the reference

c solution to be present in the same directory.

c

integer ndim

parameter (ndim=19*19*19)

integer info(4),idid

double precision t,tend,rtol,atol

double precision y(ndim), work(8+4*ndim)

integer neqn,i

double precision yref(ndim),error

integer nfe,nsteps,naccpt,nrejct,nfesig,maxm

common /rkcdid/ nfe,nsteps,naccpt,nrejct,nfesig,maxm

integer nx,ny,nz

common /grid/ nx,ny,nz

external f

c

t = 0d0

tend = 0.7d0

c-----------------------------------------

c Define the mesh and the number of ODEs.

c Define the initial values.

c-----------------------------------------

nx = 19

ny = 19

nz = 19

neqn = nx*ny*nz

call exact(neqn,t,y)

c--------------------------------------

c Load the reference solution at TEND.

c--------------------------------------

open(10,file='exb.ref')

read(10,*) yref

c---------------------------------------------------------------

c info(1) = 1 -- compute a solution at TEND only.

c info(2) = 1 -- SPCRAD returns a bound on the spectral radius.
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c info(3) = 1 -- the Jacobian is constant.

c info(4) = 0 -- ATOL is a scalar.

c---------------------------------------------------------------

info(1) = 1

info(2) = 1

info(3) = 1

info(4) = 0

c

rtol = 1d-2

atol = rtol

c

idid = 0

call rkc(neqn,f,y,t,tend,rtol,atol,info,work,idid)

c---------------------------------

c Was the integration successful?

c---------------------------------

if(idid .ne. 1) then

write(*,*) ' Failed at t = ',t,' with idid = ',idid

stop

endif

c

error = 0d0

do 10 i = 1,neqn

error = max(error,abs(y(i) - yref(i)))

10 continue

write(*,'(/a,d8.1,a,f6.1,a,d8.2)') ' With rtol = atol =',rtol,

& ', the maximum error at tend =',tend,' was',error

write(*,'(a,i5,a)') ' The integration cost',nfe,

& ' function evaluations.'

write(*,'(a,i4,a,i3,a)') ' There were',nsteps,' steps (',

& nrejct,' rejected).'

write(*,'(a,i4/)') ' The maximum number of stages used was',

& maxm

end

subroutine exact(neqn,t,y)

integer neqn

double precision t,y(neqn)

integer i,j,k,l

double precision dx,dy,dz,sol

integer nx,ny,nz

common /grid/ nx,ny,nz

c

dx = 1d0/(nx+1)

dy = 1d0/(ny+1)

dz = 1d0/(nz+1)

do 30 i = 1,nx

do 20 j = 1,ny

do 10 k = 1,nz

l = i + (j-1)*nx + (k-1)*nx*ny

y(l) = sol(i*dx,j*dy,k*dz,t)
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10 continue

20 continue

30 continue

return

end

double precision function sol(x,y,z,t)

double precision x,y,z,t

double precision arg

arg = 5d0*(x + 2d0*y + 1.5d0*z - 0.5d0 - t)

sol = tanh(arg)

return

end

double precision function spcrad(neqn,t,y)

integer neqn

double precision t,y(neqn)

integer nx,ny,nz

common /grid/ nx,ny,nz

spcrad = 4d0*((nx+1)**2 + (ny+1)**2 + (nz+1)**2)

return

end

subroutine f(neqn,t,y,dydt)

integer neqn

double precision t,y(neqn),dydt(neqn)

integer i,j,k,l

double precision u(0:20,0:20,0:20),dx,dy,dz,dxsq,dysq,dzsq,

& arg,sh,ch,sol

integer nx,ny,nz

common /grid/ nx,ny,nz

c

dx = 1d0/(nx+1)

dy = 1d0/(ny+1)

dz = 1d0/(nz+1)

dxsq = dx*dx

dysq = dy*dy

dzsq = dz*dz

do 30 i = 1,nx

do 20 j = 1,ny

do 10 k = 1,nz

u(i,j,k) = y(i + (j-1)*nx + (k-1)*nx*ny)

10 continue

20 continue

30 continue

c

do 50 i = 1,nx

do 40 j = 1,ny

u(i,j,0) = sol(i*dx,j*dy,0d0,t)

u(i,j,nz+1) = sol(i*dx,j*dy,1d0,t)

40 continue
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50 continue

c

do 70 i = 1,nx

do 60 k = 1,nz

u(i,0,k) = sol(i*dx,0d0,k*dz,t)

u(i,ny+1,k) = sol(i*dx,1d0,k*dz,t)

60 continue

70 continue

c

do 90 j = 1,ny

do 80 k = 1,nz

u(0,j,k) = sol(0d0,j*dy,k*dz,t)

u(nx+1,j,k) = sol(1d0,j*dy,k*dz,t)

80 continue

90 continue

c

do 120 i = 1,nx

do 110 j = 1,ny

do 100 k = 1,nz

arg = 5d0*(i*dx + 2d0*j*dy + 1.5d0*k*dz - 0.5d0 - t)

sh = sinh(arg)

ch = cosh(arg)

l = i + (j-1)*nx + (k-1)*nx*ny

dydt(l) = (u(i-1,j,k) - 2d0*u(i,j,k) + u(i+1,j,k))/dxsq +

& (u(i,j-1,k) - 2d0*u(i,j,k) + u(i,j+1,k))/dysq +

& (u(i,j,k-1) - 2d0*u(i,j,k) + u(i,j,k+1))/dzsq +

& (-5d0*ch + 362.5d0*sh)/(ch**3)

100 continue

110 continue

120 continue

c

return

end


