
Factorization of a 512-Bit RSA Modulus*

Stefania Cavallar3 , Bruce Dodson8 , Arjen K. Lenstra1 , Walter Lioen3 ,

Peter L. Montgomery10 , Brian Murphy2 , Herman te Riele3 , Karen Aardal13 ,

Jeff Gilchrist4, Gerard Guillerm11 , Paul Leyland9 , Joel Marchand5 ,

Frarn;ois Morain6 , Alec Muffett12 , Chris and Craig Putnam14, and
Paul Zimmermann 7

1 Citibank, 1 North Gate Road, Mendham, NJ 07945-3104, USA
arjen.lenstraOciticorp.com

2 Computer Sciences Laboratory, ANU, Canberra ACT 0200, Australia
murphyOcslab.anu.edu.au

3 CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
{cavallar,walter,herman}Ocwi.nl

4 Entrust Technologies Ltd., 750 Heron Road, Suite E08, Ottawa, ON,
KlV 1A7, Canada

Jeff.GilchristOentrust.com
5 Laboratoire Gage, Ecole Polytechnique/CNRS, Palaiseau, France

Joel.MarchandCmedicis.polytechnique.fr
6 Laboratoire d'lnformatique, Ecole Polytechnique, Palaiseau, France

morainClix.polytechnique.fr
7 Inria Lorraine and Loria, Nancy, France

Paul.ZimmermannOloria.fr
8 Lehigh University, Bethlehem, PA, USA

badOOLehigh.edu
9 Microsoft Research Ltd, Cambridge, UK

pleylandOmicrosoft.com
10 780 Las Colindas Road, San Rafael, CA 94903-2346 USA

Microsoft Research and CWI
pmontgomCcwi .nl

11 SITX (Centre of IT resources), Ecole Polytechnique, Palaiseau, France
Gerard.GuillermOpolytechnique.fr

12 Sun Microsystems, Riverside Way, Watchmoor Park, Camberley, UK
alec.muffettOuk.sun.com

13 Dept. of Computer Science, Utrecht University,
P.O. Box 80089, 3508 TB Utrecht, The Netherlands

aardalOcs.uu.nl
14 59 Rangers Dr., Hudson, NH 03051, USA

craig.putnamOswift.mv.com

* Breakdown of individual contributions to this project:
Management: Te Riele; polynomial selection algorithm: Montgomery, Murphy; poly­
nomial selection computations: Dodson, Lenstra, Montgomery, Murphy; sieving
codes: Lenstra, Montgomery; sieving: Aardal, Cavallar, Dodson, Gilchrist, Guillerm,
Lenstra, Leyland, Lioen, Marchand, Montgomery, Morain, Muffett, Putnam, Zim­
mermann; filtering: Cavallar, Montgomery; linear algebra: Leyland, Montgomery;
square root: Montgomery; data collection, analysis of data and running the NFS
code at CW! and SARA: Cavallar, Lioen, Montgomery; technical support: Lioen.
This is a slightly abridged version of the paper which was originally submitted to
Eurocrypt 2000: http://www.cwi.nlrherman/RSA155/EuCr2000orig.ps.

B. Preneel (Ed.): EUROCRYPT 2000, LNCS 1807, pp. 1-18, 2000.
© Springer· Verlag Berlin Heidelberg 2000

2 Stefania Cavallar et al.

Abstract. This paper reports on the factorization of the 512-bit num­
ber RSA-155 by the Number Field Sieve factoring method (NFS) and
discusses the implications for RSA.

1 Introduction

On August 22, 1999, we completed the factorization of the 512-bit 155-digit

number RSA-155 by NFS. The number RSA-155 was taken from the RSA

Challenge list [34] as a representative 512-bit RSA modulus. Our result is a new

record for factoring general integers. Because 512-bit RSA keys are frequently
used for the protection of electronic commerce-at least outside the USA-this
factorization represents a breakthrough in research on RSA-based systems.

The previous record, factoring the 140-digit number RSA-140 (8], was estab­

lished on February 2, 1999, also with the help of NFS, by a subset of the team
which factored RSA-155. The amount of computing time spent on RSA-155 was

about 8400 MIPS years1 , roughly four times that needed for RSA-140; this is

about half of what could be expected from a straightforward extrapolation of the
computing time spent on factoring RSA-140 and about a quarter of what would

be expected from a straightforward extrapolation of the computing time spent
on RSA-130 [11]. The speed-up is due to a new polynomial selection method

for NFS of Murphy and Montgomery which was applied for the first time to
RSA-140 and now, with improvements, to RSA-155.

Section 2 discusses the implications of this project for the practical use of

RSA-based cryptosystems. Section 3 has the details of our computations which
resulted in the factorization of RSA-155.

2 Implications for the Practice of RSA

RSA is widely used today [17]. The best size for an RSA key depends on the

security needs of the user and on how long his/her information needs to be
protected.

The amount of CPU time spent to factor RSA-155 was about 8400 MIPS

years, which is about four times that used for the factorization of RSA-140. On

the basis of the heuristic complexity formula [7] for factoring large N by NFS:

exp ((1.923 + o(l)) (log N) 113 (log log N) 213) , (1)

1 One MIPS year is the equivalent of a computation during one full year at a sustained
speed of one Million Instructions Per Second.

Factorization of a 512-Bit RSA Modulus 3

one would expect an increase in the computing time by a factor of about seven.2

This speed-up has been made possible by algorithmic improvements, mainly in
the polynomial generation step [26,29,30], and to a lesser extent in the filter step
of NFS [9].

The complete project to factor RSA-155 took seven calendar months. The
polynomial generation step took about one month on several fast workstations.
The most time-consuming step, the sieving, was done on about 300 fast PCs
and workstations spread over twelve "sites" in six countries. This step took 3.7
calendar months, in which, summed over all these 300 computers, a total of
35.7 years of CPU-time was consumed. Filtering the relations and building and
reducing the matrix corresponding to these relations took one calendar month
and was carried out on an SGI Origin 2000 computer. The block Lanczos step
to find dependencies in this matrix took about ten calendar days on one CPU
of a Cray C916 supercomputer. The final square root step took about two days
calendar time on an SGI Origin 2000 computer.

Based on our experience with factoring large numbers we estimate that within
three years the algorithmic and computer technology which we used to factor
RSA-155 will be widespread, at least in the scientific world, so that by then
512-bit RSA keys will certainly not be safe any more. This makes these keys
useless for authentication or for the protection of data required to be secure for
a period longer than a few days.

512-bit RSA keys protect 95% of today's E-commerce on the Internet [35]­
at least outside the USA-and are used in SSL (Secure Socket Layer) handshake
protocols. Underlying this undesirable situation are the old export restrictions
imposed by the USA government on products and applications using "strong"
cryptography like RSA. However, on January 12, 2000, the U.S. Department
of Commerce Bureau of Export Administration (BXA) issued new encryption
export regulations which allow U.S. companies to use larger than 512-bit keys in
RSA-based products [38]. As a result, one may replace 512-bit keys by 768-bit
or even 1024-bit keys thus creating much more favorable conditions for secure
Internet communication.

In order to attempt an extrapolation, we give a table of factoring records
starting with the landmark factorization in 1970 by Morrison and Brillhart of
F7 = 2128 + 1 with help of the then new Continued Fraction (CF) method. This
table includes the complete list of factored RSA-numbers, although RSA-100
and RSA-110 were not absolute records at the time they were factored. Notice
that RSA-150 is still open. Some details on recent factoring records are given in
Appendix A to this paper.

2 By "computing time" we mean the sieve time, which dominates the total amount of
CPU time for NFS. However, there is a trade-off between polynomial search time and
sieve time which indicates that a non-trivial part of the total amount of computing
time should be spent to the polynomial search time in order to minimize the sieve
time. See Subsection Polynomial Search Time vs. Sieving Time in Section 3.1. When
we use (1) for predicting CPU times, we neglect the o(l)-term, which, in fact, is
proportional to 1/ log(N). All logarithms have base e.

4 Stefania Cavallar et al.

Table 1. Factoring records since 1970

#decimals date algorithm effort reference
or year {MIPS years)

F1 = 221 + 1 [27,28] 39 Sep 13, 1970 CF
50 1983 CF [6, pp. xliv-xlv]

55-71 1983-1984 QS [12, Table I on p. 189]
45-81 1986 QS [36, p. 336]
78-90 1987-1988 QS [37]
87-92 1988 QS [32, Table 3 on p. 274]
93-102 1989 QS [21]
107-116 1990 QS 275 for C116 [22]

RSA-100 Apr 1991 QS 7 [34]
RSA-110 Apr 1992 QS 75 [14]

RSA-120 Jun 1993 QS 835 [13]
RSA-129 Apr 1994 QS 5000 [2]
RSA-130 Apr 1996 NFS 1000 (11]
RSA-140 Feb 1999 NFS 2000 [8]
RSA-155 Aug 1999 NFS 8400 this paper

Based on this table and on the factoring algorithms which we currently know,
we anticipate that within ten years from now 768-bit (232-digit) RSA keys will
become unsafe.

Let D be the number of decimal digits in the largest "general" number fac­
tored by a given date. From the complexity formula for NFS (1), assuming
Moore's law (computing power doubles every 18 months), Brent [5] expects D 113

to be roughly a linear function of the calendar year Y. From the data in Table 1
he derives the linear formula

Y = 13.24D1/ 3 + 1928.6.

According to this formula, a general 768-bit number (D=231) will be factored
by the year 2010, and a general 1024-bit number (D=309) by the year 2018.

Directions for selecting cryptographic key sizes now and in the coming years
are given in [23].

The vulnerability of a 512-bit RSA modulus was predicted long ago. A 1991
report [3, p. 81] recommends:

For the most applications a modulus size of 1024 bit for RSA should
achieve a sufficient level of security for "tactical" secrets for the next ten
years. This is for long-term secrecy purposes, for short-term authenticity
purposes 512 bit might suffice in this century.

3 Factoring RSA-155

We assume that the reader is familiar with NFS [19], but for convenience we
briefly describe the method here. Let N be the number we wish to factor, known

Factorization of a 512-Bit RSA Modulus 5

to be composite. There are four main steps in NFS: polynomial selection, sieving,
linear algebra, and square root.

The polynomial selection step selects two irreducible polynomials Ji (x) and
h(x) with a common root m mod N. The polynomials have as many smooth
values as practically possible over a given factor base.

The sieve step (which is by far the most time-consuming step of NFS), finds
pairs (a, b) with gcd(a, b) = 1 such that both

bdeg(fi) Ji (a/ b) and bdeg(h) h (a/b)

are smooth over given factor bases, i.e., factor completely over the factor bases.
Such a pair (a, b) is called a relation. The purpose of this step is to collect so
many relations that several subsets S of them can be found with the property
that a product taken over S yields an expression of the form

X 2 ::: Y2 (mod N). (2)

For approximately half of these subsets, computing gcd(X - Y, N) yields a non­
trivial factor of N (if N has exactly two distinct factors).

The linear algebra step first filters the relations found during sieving, with
the purpose of eliminating duplicate relations and relations containing a prime
or prime ideal which does not occur elsewhere. In addition, certain relations are
merged with the purpose of eliminating primes and prime ideals which occur
exactly k times in k different relations, for k = 2, ... , 8. These merges result in
so-called relation-sets, defined in Section 3.3, which form the columns of a very
large sparse matrix over :F2 . With help of an iterative block Lanczos algorithm
a few dependencies are found in this matrix: this is the most time- and space­
consuming part of the linear algebra step.

The square root step computes the square root of an algebraic number of the
form

IT (a - ba),
(a,b)ES

where a is a root of one of the polynomials Ji (x), h (x), and where for RSA-155
the numbers a, b and the cardinality of the set Scan all be expected to be many
millions. All a - bo:'s have smooth norms. With the mapping a >-+ m mod N,
this leads to a congruence of the form (2).

In the next four subsections, we describe these four steps, as carried out for
the factorization of RSA-155.

3.1 Polynomial Selection

This section has three parts. The first two parts are aimed at recalling the
main details of the polynomial selection procedure, and describing the particular
polynomials used for the RSA-155 factorization.

Relatively speaking, our selection for RSA-155 is approximately 1.7 times
better than our selection for RSA-140. We made better use of our procedure

6 Stefania Cavallar et al.

for RSA-155 than we did for RSA-140, in short by searching longer. This poses
a new question for NFS factorizations-what is the optimal trade-off between
increased polynomial search time and the corresponding saving in sieve time?
The third part of this section gives preliminary consideration to this question as
it applies to RSA-155.

The Procedure. Our polynomial selection procedure is outlined in [8]. Here
we merely restate the details. Recall that we generate two polynomials Ji and
/2, using a base-m method. The degree d of Ji is fixed in advance (for RSA-155
we take d = 5). Given a potential a5 , we choose an integer m ~ (N/ad)ifd. The
polynomial

(3)

descends from the base-m representation of N, initially adjusted so that la; I ~
m/2 for 0 ~ i ~ d - 1.

Sieving occurs over the homogeneous polynomials Fi (x, y) = yd Ji (x / y) and
F2 (x, y) = x - my. The aim for polynomial selection is to choose Ii and m such
that the values Fi(a, b) and F2(a, b) are simultaneously smooth at many coprime
integer pairs (a, b) in the sieving region. That is, we seek Fi, F2 with good yield.
Since F2 is linear, we concentrate on the choice of Fi.

There are two factors which influence the yield of Fi, size and root properties,
so we seek Fi with a good combination of size and root properties. By size we
refer to the magnitude of the values taken by Fi. By root properties we refer to
the extent to which the distribution of the roots of Fi modulo small pn, for p
prime and n ~ 1, affects the likelihood of Fi values being smooth. In short, if
Fi has many roots modulo small pn, the values taken by Fi "behave" as if they
are much smaller than they actually are. That is, on average, the likelihood of
Fi-values being smooth is increased.

Our search is a two stage process. In the first stage we generate a large sam­
ple of good polynomials (polynomials with good combinations of size and root
properties). In the second stage we identify without sieving, the best polynomi­
als in the sample. We concentrate on skewed polynomials, that is, polynomials
fi(x) = asx5 + ... + ao whose first few coefficients (a5 ,a4 and a3) are small
compared to m, and whose last few coefficients (a 2 , ai and a 0) may be large
compared tom. Usually lasl < la4I < · · · < laol. To compensate for the last few
coefficients being large, we sieve over a skewed region, i.e., a region that is much
longer in x than in y. We take the region to be a rectangle whose width-to-height
ratio is s.

The first stage of the process, generating a sample of polynomials with good
yield, has the following main steps (d = 5):

- Guess leading coefficient ad, usually with several small prime divisors (for
projective roots).

- Determine initial m from admd ~ N. If the approximation (N -admd)/md-i
to ad-i is not close to an integer, try another ad. Otherwise use (3) to
determine a starting Ji .

Factorization of a 512-Bit RSA Modulus 7

- Try to replace the initial fi by a smaller one. This numerical optimization
step replaces f 1 (x) by

Ji (x + k) + (ex + d) * (x + k - m)

and m by m - k, sieving over a region with skewness s. It adjusts four real
parameters c, d, k, s, rounding the optimal values (excepts) to integers.

- Make adjustments to Ji which cause it to have exceptionally good root
properties, without destroying the qualities inherited from above. The main
adjustment is to consider integer pairs ji,j0 (with ii and j 0 small compared
to a2 and ai respectively) for which the polynomial

fi(x) + (iix - io) · (x - m)

has exceptionally good root properties modulo many small pn. Such pairs
i1, io are identified using a sieve-like procedure. For each promising (ii, io)
pair, we revise the translation k and skewness s by repeating the numerical
optimization on these values alone.

In the second stage of the process we rate, without sieving, the yields of
the polynomial pairs F1 , F2 produced from the first stage. We use a parameter
which quantifies the effect of the root properties of each polynomial. We factor
this parameter into estimates of smoothness probabilities for F1 and F2 across
a region of skewness s.

At the conclusion of these two stages we perform short sieving experiments
on the top-ranked candidates.

Results. Four of us spent about 100 MIPS years on finding good polynomials
for RSA-155. The following pair, found by Dodson, was used to factor RSA-155:

119377138320 x5

-80168937284997582x4y
-66269 85223 41185 7 4445 x 3 y2

+118168 48430 079521880356852 x 2 y3
+7459661580071786443919743056x y4

-40 67984 35423 62159 3619137084 05064 y5

F2(x, y) = x - 3912 30797 21168 000771313449081 y

with s R:J 10800.
For the purpose of comparison, we give statistics for the above pair similar

to those we gave for the RSA-140 polynomials in [8). Denote by ama"' the largest
la;! for i = 0, ... , d. The un-skewed analogue, F1(104x, y/104), of Fi has amax ~
1.1·1023, compared to the typical case for RSA-155 of ama"' R:J 2.4 · 1025 . The
un-skewed analogue of F2 has ama"' RJ 3.8 · 1026 . Hence, F1 values have shrunk
by approximately a factor of 215, whilst F2 values have grown by a factor of
approximately 16. F1 has real roots x/y near -11976, -2225, 1584, 12012 and
672167.

8 Stefania Cavallar et al.

With respect to the root properties of Fi we have as = 24 ·32 ·5·ll 2· 19·41·l759.
Also, Fi (x, y) has 20 roots x/y modulo the six primes from 3 to 17 and an
additional 33 roots modulo the 18 primes from 19 to 97. As a result of its root
properties, Fi-values have smoothness probabilities similar to those of random
integers which are smaller by a factor of about 800.

Polynomial Search Time vs. Sieving Time. The yield of our two RSA-155
polynomials is approximately 13.5 times that of a skewed pair of average yield
for RSA-155 (about half of which comes from root properties and the other half
from size). The corresponding figure for the RSA-140 pair is approximately 8
(about a factor of four of which was due to root properties and the remaining
factor of 2 to size). From this we deduce that, relatively speaking, our RSA-155
selection is approximately 1.7 times "better" than our RSA-140 selection.

Note that this is consistent with the observed differences in sieve time. As
noted above, straightforward extrapolation of the NFS asymptotic run-time es­
timate (1) suggests that sieving for RSA-155 should have taken approximately 7
times as long as RSA-140. The actual figure is approximately 4. The difference
can be approximately reconciled by the fact that the RSA-155 polynomial pair
is, relatively, about 1.7 times "better" than the RSA-140 pair.

Another relevant comparison is to the RSA-130 factorization. RSA-130 of
course was factorized without our improved polynomial selection methods. The
polynomial pair used for RSA-130 has a yield approximately 3.2 times that of
a random (un-skewed) selection or RSA-130. Extrapolation of the asymptotic
NFS run-time estimate suggests that RSA-140 should have taken about 4 times
as long as RSA-130, whereas the accepted difference is a factor of about 2.
The difference is close to being reconciled by the RSA-140 polynomial selection
being approximately 2.5 times better than the RSA-130 selection. Finally, to
characterize the overall improvement accounted for by our techniques, we note
that the RSA-155 selection is approximately 4.2 times better (relatively) than
the RSA-130 selection.

Since the root properties of the non-linear polynomials for RSA-140 and
RSA-155 are similar, most of the difference between them comes about because
the RSA-155 selection is relatively "smaller" than the RSA-140 selection. This
in turns comes about because we conducted a longer search for RSA-155 than
we did for the RSA-140 search, so it was more likely that we would find good
size and good root properties coinciding in the same polynomials. In fact, we
spent approximately 100 MIPS years on the RSA-155 search, compared to 60
MIPS years for RSA-140.

Continuing to search for polynomials is worthwhile only as long as the saving
in sieve time exceeds the extra cost of the polynomial search. We have analyzed
the "goodness" distribution of all polynomials generated during the RSA-155
search. Modulo some crude approximations, the results appear in Table 2. The
table shows the expected benefit obtained from "' times the polynomial search
effort we actually invested (100 MY), for some useful 1c The second column gives
the change in search time corresponding to the K-altered search effort. The third

Factorization of a 512-Bit RSA Modulus 9

column gives the expected change in sieve time, calculated from the change in
yield according to our "goodness" distribution. Hence, whilst the absolute benefit

Table 2. Effect of varying the polynomial search time on the sieve time

0.2
0.5
1
2
5

10

change in search
time (in MY)

-80
-50

0
+100
+400
+900

change in sieve
time (in MY)

+260
+uo

0
-110
-260
-380

may not have been great, it would probably have been worthwhile investing up
to about twice the effort than we did for the RSA-155 polynomial search. We
conclude that, in the absence of further improvements, it is worthwhile using our
method to find polynomials whose yields are approximately 10-15 times better
than a random selection.

3.2 Sieving

Two sieving methods were used simultaneously: lattice sieving and line sieving.
This is probably more efficient than using a single sieve, despite the large per­
centage of duplicates found (about 14%, see Section 3.3): both sievers deteriorate
as the special q, resp. y (see below) increase, so we exploited the most fertile
parts of both. In addition, using two sievers offers more flexibility in terms of
memory: lattice sieving is possible on smaller machines; the line siever needs
more memory, but discovers each relation only once.

The lattice siever fixes a prime q, called the special q, which divides F1(xo, Yo)
for some known nonzero pair (xo, y0), and finds (x, y) pairs for which both
Fi(x, y)/q and F2(x, y) are smooth. This is carried out for many special q's.
Lattice sieving was introduced by Pollard [31] and the code we used is the
implementation written by Arjen Lenstra and described in [18,11], with some
additions to handle skewed sieving regions efficiently.

The line siever fixes a value of y (from y = 1, 2, ... up to some bound) and
finds values of x in a given interval for which both Fi(x, y) and F2(x, y) are
smooth. The line siever code was written by Peter Montgomery, with help from
Arjen Lenstra, Russell Ruby, Marije Elkenbracht-Huizing and Stefania Cavallar.

For the lattice sieving, both the rational and the algebraic factor base bounds
were chosen to be 224 = 16 777 216. The number of primes was about one million
in each factor base. Two large primes were allowed on each side in addition to the
special q input. The reason that we used these factor base bounds is that we used
the lattice sieving implementation from [18] which does not allow larger factor
base bounds. That implementation was written for the factorization of RSA-
130 and was never intended to be used for larger numbers such as RSA-140, let

10 Stefania Cavallar et al.

alone RSA-155. We expect that a rewrite of the lattice siever that would allow
larger factor base bounds would give a much better lattice sieving performance
for RSA-155.

Most of the line sieving was carried out with two large primes on both the
rational and the algebraic side. The rational factor base consisted of 2 661 384
primes < 44 OOO OOO and the algebraic factor base consisted of 6 304 167 prime
ideals ofnorm < 110 OOO 000 (including the seven primes which divide the leading
coefficient of F1 (x, y)). Some line sieving allowed three large primes instead of two
on the algebraic side. In that case the rational factor base consisted of 539 777
primes < 8 OOO OOO and the algebraic factor base of 1 566 598 prime ideals of norm
< 25 OOO OOO (including the seven primes which divide the leading coefficient of
F1(x, y)).

For both sievers the large prime bound 1 OOO OOO OOO was used both for the
rational and for the algebraic primes.

The lattice siever was run for most special q's in the interval [224 , 3.08 x 108].

Each special q has at least one root r such that Ji (r) := 0 mod q. For example,
the equation fi(x) := 0 mod q has five roots for q = 83, namely x = 8, 21, 43,
54, 82, but no roots for q = 31. The total number of special q-root pairs (q, r)
in the interval [224 , 3.08 x 108] equals about 15. 7M. Lattice sieving ranged over
a rectangle of 8192 by 5000 points per special q-root pair. Taking into account
that we did not sieve over points (x, y) where both x and y are even, this gives a
total of 4.8 x 1014 sieving points. With lattice sieving a total of 94.8M relations
were generated at the expense of 26.6 years of CPU time. Averaged over all
the CPUs on which the lattice siever was run, this gives an average of 8.8 CPU
seconds per relation.

For the line sieving with two large primes on both sides, sieving ranged over
the regions3 :

Ix! :S 1176 OOO OOO, 1 :S y :S 25 OOO,

lxl :S 1680000000, 25001:Sy:S110000,

lxl :S 1680 OOO OOO, 120 001 :S y :S 159 OOO,

and for the line sieving with three large primes instead of two on the algebraic
side, the sieving range was:

Ix! :S 1680 OOO 000, 110 001 :S y :S 120 OOO.

Not counting the points where both x and y are even, this gives a total of
3.82 x 1014 points sieved by the line siever. With line sieving a total of 36.0M
relations were generated at the expense of 9.1 years of CPU time. Averaged over
all the CPUs on which the line siever was run, it needed 8.0 CPU seconds to
generate one relation.

Sieving was done at twelve different locations where a total of 130.8M rela­
tions were generated, 94.SM by lattice sieving and 36.0M by line sieving. Each

3 The somewhat weird choice of the line sieving intervals was made because more
contributors chose line sieving than originally estimated.

Factorization of a 512-Bit RSA Modulus 11

incoming file was checked at the central site for duplicates: this reduced the to­
tal number of useful incoming relations to 124.7M. Of these, 88.8M (71 %) were
found by the lattice siever and 35.9M (29%) by the line siever. The breakdown of
the 124.7M relations (in%) among the twelve different sites4 is given in Table 3.

Table 3. Breakdown of sieving contributions

% number of
CPU days

sieved
20.1 3057
17.5 2092
14.6 1819
13.6 2222
13.0 1801
6.4 576
5.0 737
4.5 252
4.0 366

0.65 62
0.56 47

La(ttice)
Li(ne)

La
La, Li
La, Li
La, Li
La, Li
La, Li
La
Li
La
La
La

Contributor

Alec Muffett
Paul Leyland
Peter L. Montgomery, Stefania Cavallar
Bruce Dodson
Fran~ois Mora.in and Gerard Guillerm
Joel Marchand
Arjen K. Lenstra
Paul Zimmermann
Jeff Gilchrist
Karen Aardal
Chris and Craig Putnam

Calendar time for the sieving was 3. 7 months. Sieving was done on about
160 SGI and Sun workstations (175-400 MHz), on eight RlOOOO processors
(250 MHz), on about 120 Pentium II PCs (300-450 MHz), and on four Digi­
tal/Compaq boxes (500 MHz). The total amount of CPU-time spent on sieving
was 35.7 CPU years.

We estimate the equivalent number of MIPS years as follows. For each con­
tributor, Table 4 gives the number of million relations generated (rounded to two
decimals), the number of CPU days d. sieved for this and the estimated average
speed s., in million instructions per seconds (MIPS), of the processors on which
these relations were generated. In the last column we give the corresponding
number of MIPS years d.s./365. For the time counting on PCs, we notice that
on PCs one usually get real times which may be higher than the CPU times.

Summarizing gives a total of 8360 MIPS years (6570 for lattice and 1790
for line sieving). For comparison, RSA-140 took about 2000 MIPS years and
RSA-130 about 1000 MIPS years.

A measure of the "quality" of the sieving may be the average number of points
sieved to generate one relation. Table 5 gives this quantity for RSA-140 and for
RSA-155, for the lattice siever and for the line siever. This illustrates that the
sieving polynomials were better for RSA-155 than for RSA-140, especially for
the line sieving. In addition, the increase of the linear factor base bound from
500M for RSA-140 to lOOOM for RSA-155 accounts for some of the change in
yield. For RSA-155, the factor bases were much bigger for line sieving than for

4 Lenstra sieved at two sites, viz., Citibank and Univ. of Sydney.

12 Stefania Cavallar et al.

Table 4. # MIPS years spent on lattice (La) and line (Li) sieving

Contributor #relations #CPU days average speed #MIPS years
sieved of processors

in MIPS
Muffett, La 27.46M 3057 285 2387
Leyland, La 19.27M 1395 300 1146
Leyland, Li 4.52M 697 300 573
CWI, La 1.60M 167 175 80
CWI, Li, 2LP 15.64M 1160 210 667
CWI, Li, 3LP 1.00M 492 50 67
Dodson, La 10.28M 1631 175 782
Dodson, Li 7.00M 591 175 283
Morain, La 15.83M 1735 210 998
Morain, Li 1.09M 66 210 38
Marchand, La 7.20M 522 210 300
Marchand, Li 1.llM 54 210 31
Lenstra, La 6.48M 737 210 424
Zimmermann, Li 5.64M 252 195 135
Gilchrist, La 5.14M 366 350 361
Aardal, La 0.81M 62 300 51
Putnam, La 0.76M 47 300 39

lattice sieving. This explains the increase of efficiency of the line siever compared
with the lattice siever from RSA-140 to RSA-155.

Table 5. Average number of points sieved per relation

RSA-140
RSA-155

lattice siever
1.5 x 106

5.1 x 106

3.3 Filtering and Finding Dependencies

line siever
3.0 x 10 7

1.1 x 107

The filtering of the data and the building of the matrix were carried out at CWI
and took one calendar month.

Filtering. Here we describe the filter strategy which we used for RSA-155. An
essential difference with the filter strategy used for RSA-140 is that we applied
k-way merges (defined below) with 2 ~ k ~ 8 for RSA-155, but only 2- and
3-way merges for RSA-140.

First, we give two definitions. A relation-set is one relation, or a collection of
two or more relations generated by a merge. A k-way merge (k ~ 2) is the action
of combining k relation-sets with a common prime ideal into k - 1 relation-sets,
with the purpose of eliminating that common prime ideal. This is done such that

Factorization of a 512-Bit RSA Modulus 13

the weight increase is minimal by means of a minimum spanning tree algorithm
[9].

Among the 124.7M relations collected from the twelve different sites, 21.3M
duplicates were found generated by lattice sieving, as well as 17.9M duplicates
caused by the simultaneous use of the lattice and the line siever.

During the first filter round, only prime ideals with norm > lOM were con­
sidered. In a later stage of the filtering, this lOM-bound was reduced to 7M,
in order to improve the possibilities for merging relations. We added 0.2M free
relations for prime ideals of norm> lOM (cf. [16, Section 4, pp. 234-235]). From
the resulting 85.7M relations, 32.5M singletons were deleted, i.e., those relations
with a prime ideal of norm > lOM which does not occur in any other undeleted
relation.

We were left with 53.2M relations containing 42.6M different prime ideals of
norm > lOM. If we assume that each prime and each prime ideal with norm
< !OM occurs at least once, then we needed to reserve at least (2 - 1 ~0)11'(107)
excess relations for the primes and the prime ideals of norm smaller than lOM,
where 1r(x) is the number of primes below x. The factor 2 comes from the two
polynomials and the correction factor 1/120 takes account of the presence of free
relations, where 120 is the order of the Galois group of the algebraic polynomial.
With 11'(107) = 664 579 the required excess is about l.3M relations, whereas we
had 53.2M - 42.6M = 10.6M excess relations at our disposal.

In the next merging step 33.0M relations were removed which would have
formed the heaviest relation-sets when performing 2-way merges, reducing the
excess from 10.6M to about 2M relations. So we were still allowed to discard
about 2.0M - I.3M= 0.7M relations. The remaining 20.lM non-free relations5

having 18.2M prime ideals of norm > !OM were used as input for the merge step
which eliminated prime ideals occurring in up to eight different relation-sets.
During this step we looked at prime ideals of norm> 7M. Here, our approach
differs from what we did for RSA-140, where only primes occurring twice or
thrice were eliminated. Applying the new filter strategy to RSA-140 would have
resulted in a 30% smaller (3.3M instead of 4.7M columns) but only 20% heavier
matrix than the one actually used for the factorization of RSA-140 and would
have saved 27% on the block Lanczos run time. The k (k ~ 8) relations were
combined into the lightest possible k - 1 relation-sets and the corresponding
prime ideal (row in the matrix) was "balanced" (i.e., all entries of the row were
made 0). The overall effect was a reduction of the matrix size by one row and one
column while increasing the matrix weight when k > 2, as described below. We
did not perform all possible merges. We limited the program to only do merges
which caused a weight increase of at most 7 original relations. The merges were
done in ascending order of weight increase.

Since each k-way merge causes an increase of the matrix weight of about
(k - 2) times the weight of the lightest relation-set, these merges were not al­
ways executed for higher values of k. For example, 7- and 8-way merges were not

5 The O. lM free relations are not counted in these 20. lM relations because the free
relations are generated during each filter run.

14 Stefania Cavallar et al.

executed if all the relation-sets were already-combined relations. We decided to
discard relation-sets which contained more than 9 relations and to stop merging
(and discarding) after 670K relations were discarded. At this point we should
have slightly more columns than rows and did not want to lose any more columns.
The maximum discard threshold was reached during the lOth pass through the
18.6M prime ideals of norm > 7M, when we allowed the maximum weight in­
crease to be about 6 relations. This means that no merges with weight increase
of 7 relations were executed. The filter program stopped with 6. 7M relation sets.

For more details and experiments with RSA-155 and other numbers, see [9].

Finding Dependencies. From the matrix left after the filter step we omitted
the small primes < 40, thus reducing the weight by 15%. The resulting matrix
had 6 699191 rows, 6 711336 columns, and weight 417132 631 (62.27 non-zeros
per row). With the help of Peter Montgomery's Cray implementation of the
block Lanczos algorithm (cf. (25]) it took 224 CPU hours and 2 Gbytes of central
memory on the Cray C916 at the SARA Amsterdam Academic Computer Center
to find 64 dependencies among the rows of this matrix. Calendar time for this
job was 9.5 days.

In order to extract from these 64 dependencies some dependencies for the ma­
trix including the primes < 40, quadratic character checks were used as described
in [1], [7, §8, §12.7], and [15, last paragraph of Section 3.8 on pp. 30-31]. This
yielded a dense 100 x 64 homogeneous system which was solved by Gaussian
elimination. That system turned out to have 14 independent solutions, which
represent linear combinations of the original 64 dependencies.

3.4 The Square Root Step

On August 20, 1999, four different square root (cf. [24]) jobs were started in par­
allel on four different 300 MHz processors of an SGI Origin 2000, each handling
one dependency. One job found the factorization after 39.4 CPU-hours, the other
three jobs found the trivial factorization after 38.3, 41.9, and 61.6 CPU-hours
(different CPU times are due to the use of different parameters in the four jobs).

We found that the 155-digit number

RSA-155 =
109417386415705274218097073220403576120037329454492059909138421314763499842889\

34784717997257891267332497625752899781833797076537244027146743531593354333897

can be written as the product of two 78-digit primes:

p=
102639592829741105772054196573991675900716567808038066803341933521790711307779

and

Factorization of a 512-Bit RSA Modulus 15

q=
106603488380168454820927220360012878679207958575989291522270608237193062808643.

Primality of the factors was proved with the help of two different primality
proving codes [4, 10]. The factorizations of p ± 1 and q ± 1 are given by

p - 1 = 2. 607·

·305999· 276297036357806107796483997979900139708537040550885894355659143575473

p + 1 = 22 . 3. 5.

·5253077241827·325649100849833342436871870477394634879398067295372095291531269

q - 1 = 2. 241·

·430028152261281581326171· 514312985943800777534375166399250129284222855975011

q + 1 = 22 . 3. 130637011·

·237126941204057· 10200242155298917871797· 28114641748343531603533667478173

Acknowledgements. Acknowledgements are due to the Dutch National Com­
puting Facilities Foundation (NCF) for the use of the Cray C916 supercomputer
at SARA, and to (in alphabetical order)

The Australian National University (Canberra),
Centre Charles Hermite (Nancy, France),

Citibank (Parsippany, NJ, USA),
CWI (Amsterdam, The Netherlands),

Ecole Polytechnique/CNRS {Palaiseau, France),
Entrust Technologies Ltd. (Ottawa, Canada),

Lehigh University (Bethlehem, PA, USA),
The Magma Group of John Cannon at the University of Sydney,
The Medicis Center at Ecole Polytechnique (Palaiseau, France),

Microsoft Research (Cambridge, UK),
The Putnams (Hudson, NH, USA),

Sun Microsystems Professional Services (Camberley, UK), and
Utrecht University (The Netherlands),

for the use of their computing resources.

References

1. L.M. Adleman. Factoring numbers using singular integers. In Proc. 23rd Annual
ACM Symp. on Theory of Computing (STOC), pages 64-71, ACM, New York,
1991.

2. D. Atkins, M. Graff, A.K. Lenstra, and P.C. Leyland. THE MAGIC WORDS ARE
SQUEAMISH OSSIFRAGE. In J. Pieprzyk and R. Safavi-Naini, editors, Advances
in Cryptology - Asiacrypt '94, volume 917 of Lecture Notes in Computer Science,
pages 265-277, Springer-Verlag, Berlin, 1995.

16 Stefania Cavallar et al.

3. Th. Beth, M. Frisch, and G.J. Simmons, editors. Public-Key C?ryptography: St~te of
the Art and Future Directions, volume 578 of Lecture Notes m Computer Science.
Springer-Verlag, Berlin, 1992. Report on workshop at Oberwolfach, Germany, July,

4. ~et Bosma and Marc-Paul van der Hulst. Primality proving with cyclotomy. PhD
thesis, University of Amsterdam, December 1990.. . .

5. Richard P. Brent. Some parallel algorithms for mteger factonsat1on. Proc. Eu.­
ropar '99 (Toulouse, Sept. 1999}, volume 1685 of Lecture Notes in Computer Sci­
ence, pages 1-22, Springer-Verlag, Berlin, 1999.

6. J. Brillhart, D.H. Lehmer, J.L. Selfridge, B. Tuckerman, and S.S. Wagstaff, Jr.
Factorizations of bn ± 1, b :: 2, 3, 5, 6, 7, 10, 11, 12 up to high powers, volume. 22
of Contemporary Mathematics. American Mathematical Society, second edition,
1988.

7. J.P. Buhler, H.W. Lenstra, Jr., and Carl Pomerance. Factoring integers with the
number field sieve. Pages 50-94 in [19].

8. S. Cavallar, B. Dodson, A. Lenstra, P. Leyland, W. Lioen, P. L. Montgomery, B.
Murphy, H. te Riele, and P. Zimmermann. Factorization of RSA-140 usin~ the
number field sieve. In Lam Kwok Yan, Eiji Okamoto, and Xing Chaoping, editors,
Advances in Cryptology - Asiacrypt '99 (Singapore, November 14-18 }, volume 1716
of Lecture Notes in Computer Science, pages 195-207, Springer-Verlag, Berlin,
1999.

9. S. Cavallar. Strategies for filtering in the Number Field Sieve. Preprint, to appear in
the Proceedings of ANTS-IV (Algorithmic Number Theory Symposium IV, Leiden,
The Netherlands, July 2-7, 2000), Lecture Notes in Computer Science, Springer­
Verlag, Berlin, 2000.

10. H. Cohen and A.K. Lenstra. Implementation of a new primality test. Mathematics
of Computation, 48:103-121, 1987.

11. James Cowie, Bruce Dodson, R.-Marije Elkenbracht-Huizing, Arjen K. Lenstra,
Peter L. Montgomery, and Jorg Zayer. A world wide number field sieve factoring
record: on to 512 bits. In Kwangjo Kim and Tsutomu Matsumoto, editors, Ad­
vances in Cryptology - Asiacrypt '96, volume 1163 of Lecture Notes in Computer
Science, pages 382-394, Springer-Verlag, Berlin, 1996.

12. J.A. Davis, D.B. Holdridge, and G.J. Simmons. Status report on factoring (at the
Sandia National Laboratories). In T. Beth, N. Cot, and I. Ingemarsson, editors,
Advances in Cryptology, Eurocrypt '84, volume 209 of Lecture Notes in Computer
Science, pages 183-215, Springer-Verlag, Berlin, 1985 ..

13. T. Denny, B. Dodson, A.K. Lenstra, and M.S. Manasse, On the factorization of
RSA-120. In D.R. Stinson, editor, Advances in Cryptology - Crypto '93, volume
773 of Lecture Notes in Computer Science, pages 166-174, Springer-Verlag, Berlin,
1994.

14. B. Dixon and A.K. Lenstra. Factoring using SIMD Sieves. In Tor Helleseth, editor,
Advances in Cryptology, Eurocrypt '93, volume 765 of Lecture Notes in Computer
Science, pages 28-39, Springer-Verlag, Berlin, 1994.

15. Marije Elkenbracht-Huizing. Factoring integers with the number field sieve. PhD
thesis, Leiden University, May 1997.

16. R.-M. Elkenbracht-Huizing. An implementation of the number field sieve. Experi­
mental Mathematics, 5:231-253, 1996.

17. Frequently Asked Questions about today's Cryptography 4.0. Question 3.1.9, see
http://vvv.rsa.com/rsalabs/faq/html/3-1-9.html.

18. R. Golliver, A.K. Lenstra, and K.S. McCurley. Lattice sieving and trial division. In
Leonard M. Adleman and Ming-Deb Huang, editors, Algorithmic Number Theory,
{A!"TS-I, Ithaca, NY, U~A, May 1994), volume 877 of Lecture Notes in Computer
Science, pages 18-27, Spnnger-Verlag, Berlin, 1994.

19. A:K. Lenstra and H.W. Lenstra, Jr., editors. The Development of the Number Field
Sieve, volume 1554 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1993.

Factorization of a 512-Bit RSA Modulus 17

20. A.K. Lenstra, H.W. Lenstra, Jr., M.S. Manasse, and J.M. Pollard. The factoriza­
tion of the Ninth Fermat number. Mathematics of Computation, 61(203):319-349,
July 1993.

21. A.K. Lenstra and M.S. Manasse. Factoring by Electronic Mail. In J.-J. Quisquater
and J. Vandewalle, editors, Advances in Cryptology - Eurocrypt '89, volume 434 of
Lecture Notes in Computer Science, pages 355-371, Springer-Verlag, Berlin, 1990.

22. A.K. Lenstra and M.S. Manasse. Factoring with two large primes. In LB. Damgard,
editor, Advances in Cryptology - Eurocrypt '90, volume 473 of Lecture Notes in
Computer Science, pages 72-82, Springer-Verlag, Berlin, 1991.

23. Arjen K. Lenstra and Eric R. Verheul. Selecting Cryptographic Key Sizes. In
H. Imai and Y. Zheng, editors, Public Key Cryptography, volume 1751 of Lecture
Notes in Computer Science, pages 446-465, Springer-Verlag, Berlin, 2000.

24. Peter L. Montgomery. Square roots of products of algebraic numbers. In Wal­
ter Gautschl, editor, Mathematics of Computation 1943-1993: a Half-Century of
Computational Mathematics, pages 567-571. Proceedings of Symposia in Applied
Mathematics, American Mathematical Society, 1994.

25. Peter L. Montgomery. A block Lanczos algorithm for finding dependencies over
GF(2). In Louis C. Guillou and Jean-Jacques Quisquater, editors, Advances in
Cryptology - Eurocrypt '95, volume 921 of Lecture Notes in Computer Science,
pages 106-120, Springer-Verlag, Berlin, 1995.

26. Peter L. Montgomery and Brian Murphy. Improved Polynomial Selection for the
Number Field Sieve. Extended Abstract for the Conference on the Mathemat­
ics of Public-Key Cryptography, June 13-17, 1999, The Fields Institute, Toronto,
Ontario, Canada.

27. Michael A. Morrison and John Brillhart. The factorization of F1. Bull. Amer.
Math. Soc., 77(2):264, 1971.

28. Michael A. Morrison and John Brillhart. A method of factoring and the factoriza­
tion of F1. Mathematics of Computation, 29:183-205, January 1975.

29. B. Murphy. Modelling the Yield of Number Field Sieve Polynomials. J. Buhler,
editor, Algorithmic Number Theory, (Third International Symposium, ANTS-III,
Portland, Oregon, USA, June 1998}, volume 1423 of Lecture Notes in Computer
Science, pages 137-151, Springer-Verlag, Berlin, 1998.

30. Brian Antony Murphy. Polynomial Selection for the Number Field Sieve Integer
Factorisation Algorithm. PhD thesis, The Australian National University, July
1999.

31. J.M. Pollard. The lattice sieve. Pages 43-49 in (19].
32. Herman te Riele, Walter Lioen, and Dik Winter. Factoring with the quadratic

sieve on large vector computers. J. Comp. Appl. Math., 27:267-278, 1989.
33. R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures

and public-key cryptosystems. Comm. ACM, 21:120-126, 1978.
34. RSA Challenge Administrator. In order to obtain information about the RSA Fac­

toring Challenge, send electronic mail to challenge-infoOrsa. com. The status of
the factored numbers on the RSA Challenge List can be obtained by sending elec­
tronic mail to challenge-honor-rollsOm.ajordomo.rsasecurity.com. Also visit
http://wwv.rsa.com/rsalabs/html/factoring.html.

35. A. Shamir. Factoring large numbers with the TWINKLE device. In C.K. Koc and
C. Paar, editors, Cryptographic Hardware and Embedded Systems (CHES}, volume
1717 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1999.

36. Robert D. Silverman. The multiple polynomial quadratic sieve. Mathematics of
Computation, 48:329-339, 1987.

37. Robert D. Silverman. Private communication.
38. URL: http: //vw. bxa.doc .gov/Encryption/Default .htm.

18 Stefania Cavallar et al.

A Details of Recent Absolute and SNFS Factoring
Records

Table 6. Absolute factoring records

cligits 129 130 140 155
method QS GNFS GNFS GNFS

code Gardner RSA-130 RSA-140 RSA-155
factor date Apr 2, Apr 10, Feb 2, Aug 22,

1994 1996 1999 1999
size of p, q 64, 65 65, 65 70, 70 78, 78
sieve time 5000 1000 2000 8400

(in MIPS years)
total sieve time ? ? 8.9 35.7
(in CPU years)
calendar time "-'270 120 30 110

for sieving (in days)
matrix size 0.6M 3.5M 4.7M 6.7M
row weight 47 40 32 62

Cray CPU hours n.a. 67 100 224
group Internet Internet CABAL CABAL

Table 7. Special Number Field Sieve factoring records

cligits 148[20] 167 180 186 211
code 2,512+ 3,349- 12,167+ NEC 10,211-

factor date Jun 15, Feb 4, Sep 3, Sep 15, April 8,
1990 1997 1997 1998 1999

size of p, q 49, 99 80, 87 75, 105 71, 73 93, 118
total sieve time 340° ? 1.5 5.1 10.9
(in CPU years)
calendar time 83 ? 10 42 64

for sieving (in days)
matrix size 72K ? 1.9M 2.5M 4.8M
row weight dense ? 29 27 49

Cray CPU hours 3b ? 16 25 121
group Internet NFSNET CWI CWI CABAL

a MIPS years
b carried out on a Connection Machine

