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Abstract
A method for large-eddy simulation is presented that does not use an explicit subgrid-scale diffusion
term. Subgrid-scale effects are modelled implicitly through an appropriate monotone discretization
method for the advective terms. Special attention is given to the accuracy of the implicit subgrid-
scale diffusion term. Computational results are shown for the dispersion of a passive scalar in an
artificial turbulent velocity field. Comparisons are made with standard large-eddy simulation re-
sults. From the viewpoint of accuracy and computational costs the results are satisfactory.
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1 Imntroduction

The principles of large-eddy simulation (LES) are summarized in section 1.1 for the dispersion of a
passive scalar in a turbulent velocity field. Based on that summary, in section 1.2 the principles of the
present alternative LES approach are given. The alternative approach was first presented in Boris et
al. (1992). There it was named monotone integrated large-eddy simulation (MILES). In section 2 we
consider in more detail the specific LES and MILES schemes to be considered in this paper. First, in
section 2.1, we present advection and diffusion schemes to be applied in LES. Second, in section 2.2
we derive a discretization method for advection that implicitly includes a subgrid-scale diffusion term.
Next a test problem is defined (section 3.1) and computational results are presented (section 3.2). The
paper ends with concluding remarks and suggestions for further research (section 4).

1.1 The LES approach

The conservation equation with constant Fickian diffusion constant D, for a passive species ¢(x,t) which
is transported by a velocity field v(x,t), is given by

%—i-V-(cv)—-—DVzc:O. (1.1)

If the velocity field is turbulent, it covers a range of length scales which extends from the physical
domain’s length scale L, down to the Kolmogorov microscale 7, which is given by

n= (V;)% (1.2)



where v is the kinematic viscosity, and € the ensemble-mean dissipation rate of kinetic energy. (Bars
denote ensemble-mean values.) The ratio L/7 is proportional to Re%, Re being the Reynolds number.
If Re is not too large, present-day computational means enable direct numerical simulation (DNS) of
all length scales. However, for high-Reynolds-number flows, it is still practically impossible to solve the
entire range of length scales from 7 to L. Filtering (1.1) with a low-pass spatial filter (cf. e.g. Deardorff
1970) is one way to overcome this problem:

%+v (9) + V- (cv — é¥) — DV?¢ = 0. (1.3)
In here terms with hat are spatially filtered terms. The large-scale scalar field ¢ can be solved with an
acceptable resolution, because the subgrid scales of the scalar field are filtered out. The low-pass spatial
filter that we will use is characterized by a length scale I; and a corresponding cut-off wave number
Ke = 27 / { I

The third term in (1.3), which represents the effect of subgrid-scales upon the large-scale field, has
to be modelled. The modelling of this subgrid-scale (SGS) term is the basis of large-eddy simulation
(LES). Many of the SGS models used in LES are based upon the so-called gradient-diffusion hypothesis
(cf. e.g. Ciofalo 1993). Using this hypothesis the SGS term in (1.3) is modelled by

—_

v — ¢v = —D,; Ve, (1.4)
where D, is the so-called SGS eddy diffusivity. Substituting (1.4) into (1.3) gives

0é an ~
Ec+v (&%) — V- [(D; + D)Vé] = 0. (1.5)
An expression for the SGS eddy diffusivity D; will be derived from inertial-subrange theory (cf. e.g.
Tennekes & Lumley 1980).

For high-Reynolds-number flows, which are driven at large scales, a so-called inertial-convective
subrange exists for wave nurnbers of magnitude

1
f LKk KL (1.6)

max(ﬂ; 7’0) ’

e (2! o

Within the inertial-convective subrange the three-dimensional spectra of kinetic energy and scalar vari-
ance, integrated over all wave numbers of magnitude «, are

Here, the microscale 7, is defined by

(5]
wiw

E(m):cvn—2 and (1.8a)
Eu(x) = ___n_ (1.8b)

respectively, where the dissipation rates of kinetic energy € and scalar variance €. are
e=vVv: (Vv)T and- (1.9a)

€. = 2DVec-Ve. (1.9b)

(The operator : in (1.9a) is the contraction operator defined by A : B = A;;Byg;, where A and B are
matrices.) Measurements can be used to determine the constants « and 3 in (1.8), e.g. Andreas (1987)
indicates that o« ~ 1.6 and B ~ 0.67. The one-dimensional spectra EID(E) and EID(k) are similar to
the three-dimensional spectra, but the coefficients o and § become o; = a and B; = —ﬂ (cf. Hinze,
1975). In the next paragraph (1.8b) will be used to derive an expression for the SGS eddy diffusivity
D;.



The evolution equation for ¢* (obtained by multiplying (1.5) with 2¢ and assuming a solenoidal
velocity field),

22
0 Y (9)+V (D + D)VE— 2D + Di)Vé - Ve, (1.10)
ot ———— ~ N — _
RT uT DI

reveals the term which represents the dissipation of resolved variance (DI). The other terms in the right-
hand side of (1.10) are the resolved and unresolved turbulent transport terms (RT and UT, respectively).
If the cut-off wave number k. is located within the inertial-convective subrange, i.e. «. satisfies (1.6),
the ensemble-mean dissipation rate of resolved variance DI is equal to the ensemble-mean dissipation
rate of total variance ¢;. This implies that

7= —2(D + Dy)evVee, (1.11)

if there is no contribution of the ensemble-mean UT term to €., which is true for isotropic SGS turbulence.
Using

[ee]
cVie = ——/ &*E.(x)dk, (1.12)
0
we can rewrite (1.11) as

&=2D+ D,)/ncnzf}':(n)dn. (1.13)
0

In (1.13) the ensemble-mean spectrum of scalar variance is given by (1.8b), because we assumed that the
cut-off wave number &, is located within the inertial-convective subrange. We then obtain the following
expression for Dy (using k. = 27/lf):

D+ D, = (%) (%)33%. (1.14)

The ensemble-mean dissipation rate of kinetic energy € and the filter length-scale ¢, which appear in
(1.14), will be specified in the next paragraph. Notice that the upper limit of integration in (1.13) can
no longer be equal to k. for [; — 0 because of the constant diffusion coefficient D. The relations (1.7)
and (1.14) demonstrate that for D; = 0 the upper limit of integration becomes:

3
2\* 1
Ky=|— —. : 1.15
¢ (3ﬂ) Me ( )
In section 3 we will prescribe an artificial turbulent velocity field with a constant ensemble-mean

dissipation rate of kinetic energy € = 1. This is of course not possible in real flows. However, using the
same arguments as above, an estimate for € is readily obtained from

@]

§2 = % v+ (v¥)"] - [vo+ (vo)"]. (1.17)

where

In LES the filter length-scale [ which appears in (1.14) is often taken linearly proportional to a char-
acteristic grid size h, in the standard notations from LES literature (cf. Mason 1994):

I = g—;h = Cyh. (1.18)

Using (1.14), (1.18), 8~ % and € = 1, (1.5) becomes (assuming k. < k)

%ﬁ+v.(ee)_v. {(%)_w] = 0. (1.19)



For large values of C the filtered variables v and ¢ are sufficiently smooth with respect to the resolution
of the numerical scheme, and errors are mainly due to the SGS model. On the other hand, for small
values of Cy numerical errors dominate. In general one wants to tune C such that as many scales as
possible are explicitly solved, without the solution getting obscured by numerical errors. Since the SGS
model behaves O(hg‘), the value of C, is generally chosen quite small. A typical value of C3 used in
LES is (cf. Mason 1994)

Cs 0.16

-2 = 1.2
Cx C; ~ 0.08 (1:20)
Finally an estimate of the SGS variance ¢2 — & can be obtained from:
2 _ a2 S _ a2
-8 o wp+D)Ve-VE- — S (1.21)
6t Ke™ 3 — Ky 3

where, by definition, the production of SGS variance is equal to the dissipation of resolved variance DI,
and the dissipation of SGS variance é, is estimated from

Ky ~ 5 > ~
A:fn:ﬂfch'r sde 2@

c ~

(1.22)

- —2 —
KeT 3 — Ky~ 3 Ke™ 3 — Ky

This completes the presentation of a standard SGS model used in LES.

1.2 The MILES approach

One drawback of LES is that, after a straightforward discretization of (1.19), certain physical properties
of (1.1) are still not guaranteed. Important properties of (1.1) are given by the conservation and entropy
conditions. Integrating (1.1) over the physical domain Q, with boundary 62, the conservation condition
can be written as

/ % dQ = / (—ev + DVe) -ndA, (1.23)
Q 119

and the entropy condition as

2
o dQ :/ (= v+ DVcP) -ndA—p(p— 1)/ DcP~2 (ﬁ> dV, VpeNAp>2 (124
Q 6t 50 Q 63)
The conservation condition (1.23) implies that, apart from contributions of fluxes at the boundary of
the domain, ¢ is conserved. According to the entropy condition (1.24), all the higher moments can
only decrease in time if ¢ € R* (again, in the absence of fluxes at the boundary). Other properties
that follow from the entropy condition are the total variance diminishing (TVD) property and the
positivity property (¢ > 0 VYt > to if ¢ > 0 at tg). (Note: the total variance diminishing property differs
from the total variation diminishing property, which states that [, | Vc | dQ can only decrease in
time.) These properties can be important, depending upon the particular problem. For example if ¢
is the concentration of a chemically reactive species, a violation of the positivity property can lead to
instabilities.

All the spatial discretization methods that will be presented in section 2 satisfy the conservation
condition. Some of the spatial discretization methods use a so-called limiter function (cf. Sweby 1984 and
Spekreijse 1987) to also satisfy a monotonicity condition. Spekreijse’s (1987) definition of monotonicity,
which differs from the usual definition of monotonicity, states that (local) minima in space can only
increase in time and that (local) maxima can only decrease in time. This is a physical property of (1.1),
which is closely related to the entropy condition. Moreover, spatial discretizations which are monotone
in Spekreijse’s sense prevent the occurrence of non-physical wiggles and negative concentrations. If the
semi-discrete conservation equation for ¢ is written as

de; ;i x
—= = Aiik(cirnir = k) + Bijk(ciovie - Cijk)
+  Cij(cijrk — cijk) + Dij(cij-1,k — Cijk)

+  Eijk(cijrtr — ciji)+ Fijr(ijk—1—Cijk), (1.25)



then Spekreijse’s monotonicity condition is
0<Aijk .. Fije<M Vi jk where M € (0,00). (1.26)

(Notice that we use the indices 4,j and k as the discrete equivalent of the coordinates z,y and z.)
Spekreijse (1987) derived a class of limiter functions which can be used to construct spatial discretizations
that satisfy (1.26). Unfortunately his analysis cannot be applied to (1.1) in a straightforward manner.
However, in the appendix we will prove that a subset of Spekreijse’s class of limiter functions can still
be used to guarantee monotonicity.

Boris et al. (1992) noticed that when using monotonicity devices, such as limiter functions, a SGS
model is no longer essential. Monotone advection schemes add an implicit diffusion term, which acts
as a spatial filter. LES without a SGS model was named monotone integrated large-eddy simulation
(MILES). So in MILES schemes monotonicity devices have a double role. In our opinion this is also
the challenge of MILES schemes. The MILES approach does not avoid the difficulty of resolving the
influences of SGS turbulence; this difficulty has only been postponed. Whereas in the LES approach
the SGS modelling of turbulence is done in the continuous equations, in the MILES approach it is done
in the discrete equations. In this paper we follow the MILES approach. The present work differs from
the MILES approach of Boris et al. (1992) in that the physical modelling of the implicit diffusion is
treated with more accuracy.

2 Discretization methods

2.1 LES discretizations

For the LES approach we consider the one-dimensional advection-diffusion equation, dropping for ease
of notation the hats on the symbols:

Oc Oc d%¢
5t tigy ~ P+ D5

For reasons of transparency u and (D + D;) are assumed to be constant. Further u is assumed to be
positive. Then a cell-centred finite-volume discretization of (2.1) yields the semi-discrete equation

Oc Jc Oc
[ Sde+uliyy —y) = (04 D) ((5—)+ - (—6—)) =0, (22)

where the half-integer indices ¢ — § and ¢ 4 3 refer to the cell faces 8Q;_1 and Q1 between the (full-

=0. (2.1)

integer indexed) cell centres Q;_1, ; and €, Q;41, respectively (figure 1). In the next two sections we

59{-10 SQf'+1/z
<l
—= } = } >

Qi-l Qi Qi+1
Figure 1: Cell-centred finite volume ; with nearest neighbours.

proceed by presenting four different methods for the evaluation of the advective fluxes and one standard
evaluation method for the diffusive fluxes.



2.1.1 Advection

A standard scheme for evaluating the cell-face states is the central second-order accurate scheme:
1
Ciyr = '2‘(Ci + Cit1)- (2.3)
It can be shown that this scheme conserves the total variance. However, it is not monotone (in the sense

of Spekreijse, 1987). Schemes which are monotone (see section 1.2 and the appendix) are the standard
first-order upwind scheme:

CH_% = ¢, (24)
(similarly ¢;_1 = c;_1), the not standard, though well-tested, limited x = %-scheme from Koren (1993):
1
Ciyr =¢i+ §¢(7‘i+§) (i —ci-1), (2-52)
_ Cit1 —Ci
’I"-+_;_ = -—C,' it , (25]1))
. . (1 2
#(r) = max (0, min (21', min (5 + 3" 2))) , (2.5¢)
and the new limited Kk = —1-scheme:
1
Cipl =Ci+ §¢(r,-+%) (i —ci-1), (2.6a)
Cit+1 — €4 .
1= .6b
ri+'5 ¢ — ci—l’ (2 6 )
é(r) = min(2|r[,1). (2.6¢)
In figures 2(a) and 2(b) we depict the limiter functions (2.5¢) and (2.6c). Limiter (2.5¢) is specifically
tailored towards the for accuracy reasons favourable k = }-scheme. Over the r-range [%,-g it renders

the k = %-scheme, which latter is known for its good accuracy properties in the class of k-schemes (cf.
Van Leer 1985). For all 7 except r € (—3, %), limiter (2.6c) is identical to the x = —1-scheme (the
second-order accurate, fully one-sided upwind scheme, also see Van Leer 1985). Limiter (2.6c) has a
maximum computational simplicity.

9L 1 1 9 | | 1 I 1 1 _
= B =
g |1 e
0 ] ]
3 2

Figure 2: x-limiters. (a) k = -limiter (2.5¢) and () £ = —1-limiter (2.6c).

Advection schemes (2.5) and (2.6) cannot be applied straightforward up to and including boundaries
with non-periodic conditions imposed on it. In the present paper we only consider a test case with
periodic boundary conditions, for which a straightforward application s possible.



2.1.2 Diffusion

For the diffusive flux evaluation, the gradient (2), +1 (and similarly the gradient (88),_.) is evaluated
2 -3

in the standard, second-order accurate central-difference manner

Oc _ Ci+1 — C;
(&), -2 @

2.2 MILES discretizations

For our present MILES approach we consider the one-dimensional advection equation

Oc Oc

E'}'Ué}' = 0, (28)

where u is again assumed to be positive and constant. Cell-centred finite-volume discretization (just as
in the LES approach) leads next to the semi-discrete equation

/ ?—cdm +u(c; 1 —c;_1)=0. (2.9)
Q ot 2 2

Guided by the specific O(h3)-diffusion in (1.19), we derive a monotone, advective discretization with
this specific diffusion built in.

2.2.1 Monotonicity

The interpolation for the cell-face state ¢; 1 is written as

1
Ciyp =¢it ‘2'¢(7'.'+§»U, h)(ci —ci-1), (2.10)

where ¢(r, u, h) is the limiter function, with r; L again the upwind ratio of consecutive solution gradients:

Cit+1 —C4
g1 = —— (2.11)
2 ¢ —Cima

Anticipating to the accurate modelling of (1.19), here we take ¢ also dependent on u and h. Still
conventionally, ¢ = 0 and ¢ = 1 lead to the standard first-order accurate and second-order accurate
upwind scheme, respectively. For 0 < ¢ < 1, the resulting scheme is a blend of both standard upwind
schemes.

With (2.10), (2.9) becomes

/ —g;dz +u [(ci —ci—1)+ %¢(ri+%, u, h)(c; — ¢i—1) — %d:(r-_%, u, h)(ci—1 — C,'_z)] =0, (2.12)
Q;

which, with r;_1 = (¢ — ¢i—1)/(¢i—1 — ci—2), can be further rewritten as

%‘ﬁ(ri—%: u, h)

T;_1
=3

/ %dm +u [1 + qu(rH_;, u, h) — ] (ei —ci—1) = 0. (2.13)
Q, Ot 2 3

The monotonicity requirement for the limiter function ¢ which appears in (2.13) is (see section 1.2 and
the appendix)

é(r,u, h)

0< ¢(r,u,h) <M AN -M< "

<2 where M € (0,00). (2.14)



2.2.2 Subgrid-scale diffusion

In this section, we proceed by imposing to the limiter function the O(h%)—diﬁ'usion requirement. The
analysis makes use of truncated Taylor-series expansions, which are valid around r = 1 only (the region
of smooth solutions). Expanding ¢(r, u, k) around r = 1 yields

%L wh) L o ((r-1y).

é(r,u, k) = ¢(L,u,h) +(r - 1) or (2.15)
With definition (2.11), it is found after Taylor-series expansion
W+ O _ 5
oy —1=—0e2 TP\ ) 9s3 O(h? )
r"*‘i ha: + O(hz) 8.1; + ( ) (2 16a)
and similarly
2 % o) h3 8¢
roy-1= e O 5 o) (2.16)
h5s + O(h?) e
Substitution of (2.16a) and (2.16b) into (2.15) yields
2% d¢(1,u, k)
$(rigy,u,h) = ¢(1,u, k) + h%’}#—— + O(h?), (2.17a)
B(ri_y,u,h) = 6(1, ,h)+hf’T’W+0(h2). (2.17h)

oz

Substituting (2.17a) and (2.17b) into (2.12) and expanding the differences ¢; — ¢;—1 and ¢;_1 — ¢;—2 in
there, then leads to the modified differential equation

%Jru [g; h( — 6(1, 4, h) - ?f%;‘ii)) - 2] = O(h?). (2.18)

.‘L‘

This equation allows us to impose the O(h§)—diﬂ'usion requirement. As the specific target equation
we consider the one-dimensional version of (1.19) with the velocity constant (to be consistent with the
present analysis) and Cz = 2. The target equation then becomes

dc dc 0%c
B?-i-u%— (-;) 62:2 =0. (2.19)

Equating (2.18) and (2.19), it follows that the limiter must satisfy as the accuracy requirement

h3

mT3u

é(1,u,h)=1-2 (2.20)

(Note that u- and h-dependence has appeared now.) To still assure the proper diffusion in case g:—% % =
O(h~?),p > %, we also require that
0é(1,u,h)
6 Sk Bat Bt Y
or

A limiter function which satisfies the monotonicity requirement (2.14), as well as the accuracy require-

ments (2.20) and (2.21), is
1
+1—2h4 )) (2.22)
T3U

(2.21)

¢(r,u, h) = min (2]1’] mm(



To avoid negative values of ¢ in case of very small values of u (note that ¢(1,u,h) < 0 for u < %h%),
for practical purposes we propose the following slightly extended version of (2.22):

1

¢(r,u, h) = min (2|r|,min (l,max (0, 8 hj (r=1)2+1-2 hf ))) . (2.23)
T3U 3

T3U

In figure 3(a), we depict this limiter for u = 1 and the mesh-size sequence h = 5;11—0,2' =0,1,2,3 4.
A simpler, computationally more efficient form of (2.23), which is comparable to (2.6c¢) is

h3
é(r,u, h) = min <2|r|, min <1,max (0, 1-2— ))) . (2.24)
T3y

In figure 3(d), limiter (2.24) is depicted for » = 1 and the mesh-size sequence h = 5;11—0,2' =0,1,2,3,4.
In case of variable u (u = u(z, 1)), for (¢(r,u, h))oq,,, Wwe take ¢(riy1,u;y1, k). In the next section we
2

will apply limiter (2.24).

Figure 3: MILES limiters, for u = 1 and h = 55,1 = 0,1,2,3,4. () MILES limiter (2.23) and (b)
MILES limiter (2.24).

3 Numerical experiments

3.1 Problem definition

In this section we will apply the spatial discretizations from section 2 to equation (1.19). For the time
discretization we will use a second-order accurate Runge-Kutta method. The time step is chosen such
that time discretization errors can be neglected compared to spatial discretization errors.

Consider on the domain 0 < z,y, 2 < 1 the scalar ¢ with periodic boundary conditions

c(0,y,2,t) = c¢(1,9,2,1), (3.1a)
e(z,0,2,t) = c(z, 1, 2, 1), (3.1b)
c(z,v,0,t) = c(z,9,1,1), (3.1¢)
and initial datum
¢(x,0) = cos(2wz) cos(2my) cos(2mz) + 1. (3.2)

For a given filter length scale lf, (1.19) can then be used to compute the large-scale concentration field
for t > 0 if a filtered turbulent velocity field ¥(x,t) is specified.



Here ¥(x,t) is obtained from a kinematic simulation. (A kinematic simulation uses statistical velocity
distributions, that are known from for example DNS, to create artificial turbulent velocity fields.) Since
periodic boundary conditions are used, the velocity field can be written as:

od oo
v(x,t) = Z / U(Kg, Ky, Kz,w) €08 [KzZ + KyY + K2 + Wit + ¢(Kz, Ky, Kz, w)]dw. (3.3)

Kz,Ky,K; =27 4m...

Following Fung et al. (1992) we model the time dependency in the simplest possible way by assuming
a single frequency mode for each wave-number mode. Then (3.3) can be rewritten as:
(oo}

v(x,t) = Z U(kg, Ky, K2) COS [k + KyY + K2 + W(Kz, Ky, K:)t + $(Kz, Ky, £2)] . (3.4)

Kz ,Ky,K;=2m,47...

We prescribe a constant ensemble-mean dissipation rate of kinetic energy, € = 1, and an inertial subrange
for wave numbers of magnitude 27 < k < 2567. The rms-velocity Uy is then equal to

2567 (18) 2567 .
Up = 2/ E(k)dr "= 2/ ak~3dk = 1.16. (3.5)
2 2

7I' m

The amplitudes U in (3.4) are obtained by assigning the total energy of wave numbers with magnitude
max(2,2n — 1)7 < k < min(256, 2n + 1)7, where n = 1...128,

min(256,2n+1)7 s
E" = / ak”3dk, (3.6)

max(2,2n-1)r

to a single wave number (k}, ky, k7) which is chosen from a uniform distribution of the discrete wave
numbers with magnitude max(2,2n — 1) < & < min(256,2n + 1)7. To ensure that the staggered

discrete velocity field is solenoidal we take
———k" x u, (3.7

where u is a vector which is chosen from an isotropic distribution with magnitude 1, and k™ is defined
by
sin(1hoK3)
k® = | sin(3hy}) |, (3.8)
sin(1h,x7)
where hg, hy and h, are the (equi-distant) grid spacings in z-, y- and z-direction respectively. For each

n

wave number (x7,&j,£7) a phase ¢” is chosen from a uniform probability distribution [0,27), and a

frequency w™ is chosen from a Gaussian probability distribution (Fung et al. (1992))
1 e 1(w/arUo)?

P(w) = (27r)% akUy

(3.9)

where a is a constant and x the wave number magnitude. Taking a = %, the shape of P(w) is confirmed
by DNS of homogeneous turbulence (cf. Fung et al. 1992, p. 295). Using data from wind tunnel
measurements, Chase (1970) found a = 1. Fung et al. (1992) argued that this difference is probably
due to the low Reynolds number of the DNS simulation. Here we will use a = 1. Finally we obtain the
filtered velocity field from

min[128,(hC2)™]
v(x,t) = Z U™ cos [K,;‘z+n;‘y+fc?z+w"t+¢")] , (3.10)
n=1
where we take the characteristic grid size h equal to (h; hy hz)%.
The Kolmogorov microscale of the velocity field is approximately equal to n =~ 0.52L /256 = 6.510~*
for @« = 1.6 (cf. Tennekes & Lumley 1980, p. 272), which corresponds to a kinematic viscosity v =~

5.6107% and a Reynolds number UyL/v = 2.110*. We also take x, = 256, which according to (1.15)
yields D = 1.3310~%. The Schmidt number Sc = v/D is then equal to 0.42.

10



3.2 Results

In this section we will present results obtained with different resolutions ( 16 x 17 x 17, 32 x 33 x 33,
64 x 65 x 65, and 128 x 129 x 129-grids were used) and different values of Cy (C2 = 0,2 and 4).

The top panel of figure 4 gives an impression of how the scalar field changes in time. The initial
field has values ranging from 0 (black) to 2 (white). As time evolves, regions with low and high values
are mixed through diffusion. This mixing is strongly augmented by the velocity field, which generates
small scales with high local gradients.

The plots (a), (b) and (c) in the lower panel of figure 4 were obtained after one characteristic time
unit L/Up ~ 0.86. Plots (a) and (b) show the effect of the explicit subgrid-scale (SGS) diffusion term
V - [D;Vé] (see section 1.1) for the standard second-order central scheme (2.3). It is clear that this SGS
term removes the smallest scales. Plot (c) in the lower panel shows that the monotone limited £k = —1
scheme (2.6), without explicit SGS diffusion term, also removes the smallest scales. Compared to the
second-order central scheme, the limited Kk = —1 scheme introduces the following additional implicit
diffusion term in the z-direction (similar terms are added in the y- and z-direction),

art Ci4l — Ci art i — Ci-1
DEgy - Dy (3.11)

In (3.11) the artificial diffusivity Df:_'l (and similarly D™ ) is given by,
2 2

+ -
1 ¢(r,'+L) 1 ¢(r,'+1)
art _ .+ _ 2 - —u_ — 2
fy T gtghe (1 = Rl S (312
3 3

where ¢(r) is defined by (2.6¢) and u;yu;b
explicit SGS diffusion term, and the impzlicit diffusion term are depicted in figure 5. Although the two
terms are not identical (the implicit diffusion term appears to act on smaller scales), there is a close
correspondence. These results confirm the findings of Boris ef al. (1992) that a SGS model is not
essential for monotone schemes. Here we will give a short explanation of the behaviour of the limited
k = —1 scheme. For small ¢, the scalar field is still smooth. As a consequence in most regions the
upwind ratio of consecutive scalar gradients r, and the limiter function ¢(r) are approximately equal to
one, which according to (3.12) implies D®* & 0. Hence there is initially almost no dissipation of scalar
variance. However, for increasing ¢ smaller scales appear, and r deviates strongly from one in more and
more grid points. According to (2.6c), D% becomes positive for most (but not all) of these grid points.
The positive D" dissipates small-scale variance, thus bringing r and ¢(r) again closer to one. So the
limited kK = —1 scheme tries to balance the production of small-scale variance (which is determined
mainly by the resolved large-scale field) with a dissipation term which is similar to the explicit SGS
diffusion term that we derived in section 1.1.

The volume-integrated variance should decrease in time because we use periodic boundary conditions
(3.1), for which there is no contribution of the boundary of the domain in (1.24). Since it can be shown
that the second-order central scheme conserves resolved variance, and the added SGS diffusion term only
dissipates resolved variance, we expect that the TVD property is not violated if the second-order central
scheme is used. This is confirmed by figure 6, which shows the volume-integrated variance as a function
of time for the second-order central scheme with SGS model. Notice how for increasing resolution more
and more of the variance is resolved. Although with the finest resolution it is still not possible to
resolve all scales (the turbulent diffusivity D; is 2.5 times larger than D for this resolution), most of the
scales are resolved. In figures 8 through 13 we will use this fine resolution result as a reference. The
second-order central scheme is not monotone, and as a consequence positivity is not guaranteed. In fact
negative values were found for the runs with a resolution of 64x65x65 and 128x129x129 cells. Figure
7 shows the global minimum of ¢ as a function of time for the run with a resolution of 128 x 129 x129
cells. Notice that (significant) negative values do not appear immediately, since for small ¢ the scalar
field is smooth, and hence numerical errors are small.

The effect of the constant Co, which appears in the expression for the SGS eddy diffusivity Dy, is
shown in figure 8 for a resolution of 32 x 33 x 33 cells and the second-order central scheme. If no SGS
model is used, i.e. Cy = 0, the resolved variance is much too large. This demonstrates the need for a

rt . and r7, are defined in the appendix. Both the
it i+3
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a) R G S (b) i (C)

Figure 4: The scalar field at = = 0.5 for a resolution of 128 x 129 x 129 cells. Top panel: (a) At
t=0, (b) ¢t =0.18 and (c) t = 0.36 for the 2nd-order central scheme with subgrid-scale model (C; = 2).
Lower panel: The 2nd-order central scheme () without subgrid-scale model, (b) with subgrid-scale
model (Cy = 2) and (c) the limited & = —1 scheme without subgrid-scale model at ¢ = 0.86.

Figure 5: (a) Explicit (2nd-order central with subgrid-scale model / Cy = 2) and (b) implicit (limited
k = —1 scheme without subgrid-scale model) diffusion term. Both for a resolution of 128 x 129 x 129
cells and at t = 0.86. Note that this plot shows only part of the domain.
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Figure 6: Volume-integrated resolved variance as a function of time for the second-order central scheme
(2.3) with subgrid-scale model (using the typical value C, = 2). Results are shown for four different

resolutions.
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Figure 7: Minimum of ¢ as a function of time for (a) the second-order central scheme (2.3) with subgrid-

scale model (Cz = 2) and (b) the limited K = —1 scheme (2.6) without subgrid-scale model (Cz = 0)
(resolution: 128 x 129 x 129 cells).
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Figure 8: Volume-integrated resolved variance, and SGS variance, as a function of time for the second-
order central scheme (2.3) and a resolution of 32 x 33 x 33 cells. Results are shown for different C3. For

C3 = 2 the fine resolution result (128 x 129 x 129) is also shown.
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Figure 9: Volume-integrated resolved variance as a function of time and a resolution of 32 x 33 x 33
cells. Results are shown for the first-order upwind scheme (2.4), the limited x = § scheme (2.5) and
the limited £ = —1 scheme (2.6), all without subgrid-scale model (Cz = 0). Again the fine resolution

result, shown in the previous figures, is included.
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Figure 10: As in figure 9, but now with subgrid-scale model (C; = 2).
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Figure 11: Volume-integrated resolved variance as a function of time for a resolution of 32 x 33 x 33
cells. Results are shown for (a) the 2nd-order central scheme (2.3) with subgrid-scale model, (b) the
limited kK = —1 scheme (2.6¢) without and (¢) with subgrid-scale model and (d) the new MILES scheme
(2.10) with limiter (2.24). Again the fine resolution result, shown in the previous figures, is included.
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Figure 12: Averaged (in y, z-direction at ¢ = 0.86) 1-D spectra of scalar variance for Co = 0 (no
subgrid-scale model) and a resolution of 64 x 65 x 65 cells.
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Figure 13: Averaged (in y, z-direction at ¢ = 0.86) 1-D spectra of scalar variance for C; = 2 and a
resolution of 64 x 65 x 65 cells.
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Figure 14: Convergence of E!P (at y,z = 0.5, t = 0.86) with increasing resolution for three different

wave numbers. For the second-order central scheme (2.3) without (&) and with (b) subgrid-scale model

(Ca = 2).
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Figure 15: Polar plot of the convergence of phase ¢. (at y,z = 0.5, t = 0.86) with increasing resolution
for three different wave numbers. The coordinate in radial direction is used for 71,- For the second-order
central scheme (2.3) without (e) and with (b) subgrid-scale model (Cz = 2).
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Figure 16: Convergence of E!P (at y,z = 0.5, t = 0.86) with increasing resolution for three different
wave numbers. (a) For the limited kK = —1-scheme (2.6) without subgrid-scale model and (b) for the

new MILES scheme (2.10) with limiter (2.24).

(a) (a)

Figure 17: Polar plot of the convergence of phase ¢, (at y, 2z = 0.5, t = 0.86) with increasing resolution
for three different wave numbers. The coordinate in radial direction is used for %. (&) For the limited
k = —1-scheme (2.6) without subgrid-scale model and (b) for the new MILES scheme (2.10) with limiter

(2.24).
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SGS model if the standard second-order central scheme is used. The runs with a SGS model (C; = 2 and
C2 = 4) both yield smaller resolved variances than the fine resolution result, indicating that, especially
for Cy = 4, a substantial part of the variance is SGS variance. Although the SGS model improves the
large-scale solution, the estimate of the SGS variance (1.21) is not very accurate (see figure 8). Relation
(1.21) gives too little variance for large t. As we will discuss later, this deficiency is mainly because the
spatial filter introduced in section 1.1 is not a Fourier cut-off filter (which is assumed in (1.21)).

Figure 9 again shows the volume-integrated variance as a function of time, but now for three different
monotone schemes, and no SGS model. Unlike the second-order central scheme, none of the monotone
schemes yields too much variance. As mentioned before, this is due to the fact that the monotone
schemes add an implicit diffusion term. The results obtained with the first-order upwind scheme (2.4) are
extremely diffusive. This behaviour can be explained from (3.11) and (3.12), which yield D™ = 1 |u| h
for the first-order upwind scheme. So the first-order upwind scheme always adds an O(h) artificial
diffusivity compared to the second-order central scheme. Thus an important advantage of the limited
k-schemes (2.5) and (2.6), compared to the first-order upwind scheme, is that these schemes only add
an implicit diffusion term when necessary. This is especially evident for small ¢, where the limited x-
schemes detect that the scalar field is smooth and introduce no artificial diffusivity. The performance of
the limited x-schemes is comparable with that of the second-order central scheme with SGS model. The
former are even slightly less dissipative. However, a more important advantage of the limited x-schemes
is there monotone behaviour, which ensures positivity (see figure 7).

A disadvantage of the limited k-schemes without SGS model is the inability to obtain an estimate
of SGS quantities. Therefore, we will now consider the limited k-schemes with SGS model. The results,
depicted in figure 10, are much more dissipative. This indicates that, although the explicit SGS diffusion
term removes the smallest scales, the limited k-schemes still add a substantial implicit diffusion term to
satisfy the monotonicity requirement. As a remedy we have developed in section 2.2 advection schemes
which directly combine the monotonicity device and the physical SGS term. Figure (11) shows results
obtained with the new MILES scheme (2.10) with limiter (2.24), and some of the aforementioned
schemes. The new MILES scheme performs reasonably well; unlike the limited x-schemes with SGS
model, it is not much more dissipative than the second-order central scheme. This suggests that almost
all the dissipation of variance can be attributed to the physical O(hg') diffusion.

To obtain information on the different scales of the scalar field, we have plotted in figures 12 and
13 averaged one-dimensional power spectra for respectively C2 = 0 and Cy = 2. The —-g——slope in these
figures is the theoretical slope in the inertial-convective subrange, given by (1.8b). The dissipation rate
of variance that appears in this equation has been estimated from the decrease in volume-integrated
variance found for the fine 128 x 129 x 129 resolution runs. Since the Reynolds number of the flow field
is rather low, it is questionable whether the —3-slope can be expected to extend over a large range of
wave numbers. Nevertheless most of the results are reasonably close to the —-g—-slope for 27 < k. < 167.
Figure 12 shows that the first-order upwind scheme without SGS model is too dissipative for all wave
numbers. The second-order central scheme without SGS model is not dissipative enough for all wave
numbers, especially at the smaller scales where there is a build-up of variance. The limited x-schemes
give much better results, in agreement with previous results. Notice that these schemes especially damp
wave numbers larger than 167, which is a wanted property because these wave numbers cannot be solved
accurately. From figure 13 it is clear that also the second-order central scheme with SGS model damps
variance at large wave numbers. Comparing the 64 x 65 x 65-grid results with the fine resolution result,
reveals that not only the smallest scales are filtered. A substantial part of the SGS variance is located
at large scales. This explains why (1.21), which integrates the variance spectrum between k. and &y,
underestimates the SGS variance. The limited k-schemes with SGS model, show a larger dissipation at
all wave numbers than the limited x-schemes without SGS model. Only for k; = 2, the variance is
more or less the same as for the second-order central scheme with, and the limited x-schemes without
SGS model. The new MILES scheme performs much better, showing a good correspondence with these
results for k; < 127.

A more detailed comparison between the standard second-order central scheme (with and without
SGS model), the limited kK = —1 scheme without SGS model and the new MILES scheme is presented
in figures 14 through 17. These figures show the convergence, for increasing resolution, of the one-
dimensional variance, and phase spectrum, at y,z = 0.5 and ¢ = 0.86 for three different wave numbers
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scheme CPU time (s) | Mflops
second-order central 0.25 416
first-order upwind 0.34 412
limited &k = % 1.25 407
limited &k = —1 1.02 401
new MILES scheme 1.16 409

Table 1: Required CPU time per time step on a Cray C90 for the different spatial discretizations
(resolution: 128 x 129 x 129 cells).

(27,87 and 167). The second-order central scheme without SGS model has a poor performance. E.g.
for a resolution of 64 x 65 x 65 cells, the phase for k; = 87 is still very inaccurate, despite the fact that
the resolution should be sufficient to resolve this wave number. Furthermore the energy at this wave
number is too large. The other three schemes give better results, although they are quite dissipative.
E.g. for k; = 27 there is still an increase in energy at the finest resolution, despite the fact that this
resolution should be more than sufficient (which is confirmed by the close correspondence of the phase
for the three different schemes). The second-order central scheme with SGS model and the new MILES
scheme have a somewhat better convergence behaviour for the phase ¢..

Table 1 shows the required CPU time (per time step) on a Cray C98 for the different spatial dis-
cretizations and a resolution of 128x129x129 cells. The numerical schemes which guarantee monotonicity
are approximately four to five times as expensive as the standard second-order central scheme (except
for the extremely diffusive first-order upwind scheme). This factor will be somewhat smaller on scalar
machines (= 3). Notice that the new MILES scheme does not require significantly more CPU time than
the existing limited k-schemes. More than 50% of the CPU time (4.83 CPU seconds per time step at
684 Million FLoating-point OPerations per Second) was required for the kinematic simulation.

4 Conclusions

The standard large-eddy simulation (LES) approach, in which the continuous equations are first filtered,
and then solved using straightforward discretizations, does not guarantee that certain physical properties
of the exact solution are satisfied. Monotone spatial discretizations were used in this paper to guarantee
the (physical) monotonicity property (in the sense of Spekreijse, 1987) for the conservation equation of
a passive scalar. In accordance with the findings of Boris et al. (1992), we found that the (monotone)
limited k-schemes already give good results without a subgrid-scale (SGS) term (which enters the
conservation equation of the scalar after filtering). The monotone schemes add an implicit diffusion
term, which filters scales for which the resolution is too low. For the second-order central scheme,
which does not add an implicit diffusion term, an explicit SGS diffusion term is necessary to obtain an
accurately resolved scalar field.

Although the limited k—schemes give good results without a SGS model, it is still necessary to
introduce a SGS model if an accurate LES is wished for; only if a SGS model is used, an estimate of SGS
quantities can be obtained. We found that simply combining the limited k-schemes and the explicit SGS
diffusion term gives results which are more dissipative than those obtained with the second-order central
scheme with SGS diffusion term. This indicates that, although the explicit SGS diffusion term filters
the smallest scales, the monotone schemes still add an implicit diffusion term to guarantee monotonicity.
An alternative monotone scheme, which introduces the SGS model in the discrete equations, gives a
better performance. This new MILES scheme, which is monotone and uses an implicit SGS diffusion
term, is almost as dissipative as the standard second-order central scheme with explicit SGS diffusion
term.

A further step would be to analyze in more detail the ratio of the (explicit or implicit) SGS term
and the term which is added to guarantee monotonicity. In an ideal situation, the former would be
much larger than the latter, since the subgrid-scale model should effectively filter in such a way that
numerical errors are small. Situations in which this condition is violated are interesting, because they
suggest that either the SGS model fails, or the monotone scheme imposes monotonicity conditions which
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are too strict.
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Appendix

Spekreijse (1987) derived a class of spatial discretizations which guarantee monotonicity for the following
nonlinear scalar conservation law

dc 0f(c)  Og(c) , Oh(c) _
%t o tay tar =0 (4.1)

In here he splitted the flux function f(c) (and similarly g(c), h(c)) such that

fle)= () + £ (o), (4.2a).
df*(c) df~(c)
—_— > —=<0. 4.2b
de ~— 7’ de -~ (4:2b)
The semi-discrete conservation equation for ¢ can then be written as (using the finite-volume technique)
- e oo + ot ot
dojp _ Ty TFiys g " Gk + Flys =Ty G4 ~ Gy st +
dt ¢ .. —C . Sei ! +to—ct . sct *
i—3,] i+35.J 4 i—35,J i+3.J b
- - - - + 4+ 4 o+
9ii-3 " 943 G- " C%g+d o, -3 T id Ga-3 T Givd o 4
- - — be; + — T T éc, (4.3)
€. . —C .., bc; J T A éc! J
1)—3 1,J+3 ] 1,j—5 1,it+3 J
where éc;, sct, éc; and cSc;-r are
0] = ciy1,j — Cij (4.4a)
66?_ = Ci—1,5 —Cij (44b)
56_7'_ = Cij4+1 —Cijj (4.4C)
6(:;' = Ci,j—1 — Ci,j, (4'.4d)

(For reasons of clarity. we consider the two-dimensional case and use h, = hy = 1, with h; and hy
the grid distances in z- and y-direction respectively.) Following (1.25) and (1.26), monotonicity is
guaranteed if

c.,1,—C ¢ c
0< 1.‘*‘%:] t—3,] <M A 0< ’+%l-7 1_%’1 <M A
Citl,j = Cij TGy T G-l T
it~ Cii-d ey~ Fi-s
0< 2 <M A 0<—"2—=—2<M where M € (0,00), (4.5)
Cij+1 — Ci,j Ci,j —Cij-1
since (4.2) implies
- - +
.= .. A AR
1= 3] i+3.J 8—35.J i+3.J
c. ,.—C, .SO A cf‘h,.—c'.*'l.>0 A
i-3d i+ i=5.J it3,J
- - + ot
9i-4 " 9nivy o, Ti-3 TSivi (4.6)
c.. 1 —C, - et —ct . T )
GLi-%  hitd -3 hits
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Here, as well as in Spekreijse (1987), the following class of cell-face interpolations is considered for c_, +1

+ ot - +
and ¢} 1 (and similarly for ci_%,j,ci_%’j,ci’j_*_%, ity o1 G ,J__)
Ciprj = CitLit g ¢ ( ) (Cit1,i — Cit2,5) (4.7a)
+ ..
c,~+%] ¢ij+ 5 ¢ ( ) (cij —ci-1,§)» (4.7b)
where ¢ is the so-called limiter function and 7 , and ri 1 are upwind ratios of consecutive solution
. 2 2
gradients:
- Ci,j = Citl,j
Ty = Y i o1 (4.8a)
T Citlj T Cit2,j
Cint s — Ci s
pt = AL T T (4.8b)
Hrocig—cion

N

Substituting the cell-face interpolations (4.7) into (4.5) yields the following monotonicity requirements

for the limiter function:

a<P(r)<M A M<¢i)<2+a where M € (0,00) A @ € [-2,0]. (4.9)

For the conservation equation (1.1) the flux functions in (4.1) are also a function of the velocity field:
f(u,c) = uc (4.102)
g(v,¢) = ve. (4.10b)

We take the following decomposition for f(u,c) (and similarly for g(v, ¢)) at the cell-face i + %,
s =iyt u;"+_%ci++%, where u;, = = min(0,u;11), 1= = max(0, u;41), (4.11)

which is consistent with (4.2). We continue by substituting the cell-face interpolations (4.7) and the
flux function decomposition (4.11) into the semi-discrete equation for ¢ (4.3), and assume a solenoidal
velocity field, to obtain

M: - .(1+_1_L..__.¢(L—+.%l 6ci_+u:'_%,j(1+l[:i,j—¢_(1?__..%__)_) 6cf

dt i+3.d 27 2,y 2 2rt L :
- +
- 1 ¢ (ri+*) -t 1 ¢ (ri—%) +
_vi,]._*_% 1+ ‘2‘Li,j - -QT]__!_‘:__ (5CJ- + vi‘j_% 1+ —2-L-,J~ — —5;3—*_-;1— 6c]- . (4.12)
2 2

In here L; j is given by

Fybets (7 %)‘”?—%,j‘sci—‘ﬁ(' )+ u+*5c+¢(f%)“”Ej—%éc?‘ﬁ(’f—%)

Lij= - (4.13)
i, u:‘_%’]_éc?'— i+1.i b +v 1(56;'— ,J+%6CJ'
Now monotonicity requires that
1
0<1+ —L,-,J- - %(—T—Z <M where M € (0,00). (4.14)

If ¢(r) can be negative, then (4.13) shows that L;; € (—00,+00), in which case (4.14) cannot be
satisfied. However, if V7 ¢(r) > 0, then L;; > 0 at local minima and maxima. A sufficient condition
for monotonicity is therefore

0<g¢(r) <M A —MS@S? where M € (0,00). (4.15)

Hence, our monotonicity condition is the Spekreijse condition (4.9) with a = 0.
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