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Abstract 

In the present paper we consider a boundary value problem on the semi axis ( 0, oo) for a singularly perturbed 
parabolic equation with the two pe1turbation parameters i: 1 and c:2 multiplying, respectively, the second and 
first derivatives with respect to the space variable. Depending on the relation between the parameters, the 
differential equation can be either of reaction-diffusion type or of convection-diffusion type. Correspondingly, 
the boundary layer can be either parabolic or regular. For this problem we consider the case when the boundary 
layer can be controlled by continuous suction of the fluid out of the boundary layer (model problems of this 
type appear in the mathematical modelling of heat transfer processes for flow past a flat plate). Enors in the 
approximations generated by standard numerical methods can be unsatisfactorily large for small values of the 
parameter r 1• We construct a monotone finite difference scheme on piecewise uniform meshes which generates 
numerical solutions converging 1:-uniformly with order O(N- 1 In N + N0-1 ), where N0 is the number of nodes 
in the time mesh and N is the number of meshpoints on a unit interval of the scmiaxis in x. Although the 
solution of problem has a singularity only for c1 --> 0, the character of the boundary layer depends essentially 
on the vector-valued parameter 1; = ( 1; 1, 1:2 ). This prevents us from constructing an c-uniformly convergent 
scheme having a transition parameter which is independent of the parameter <:2. 
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1. Introduction 

Numerical analysis of laminar flows of incompressible fluid for large Reynolds and/or Peclet 
numbers often leads to the consideration of boundary value problems for boundary layer equations. 
These quasilinear equations are singularly perturbed, with two perturbation parameters cR and tp 

defined by i;R = Re- 1 and l:p = Pe- 1, where Re and Pe are the Reynolds and Peclet numbers; 
Pe = Re Pr, Pr is the Prandtl number. Parabolic and regular layers are typical for such problems 
[9, 12]. Singularities of the same type occur in problems modelling heat transfer processes for flow 
past surfaces in the case of boundary layers controlled by suction of some of the fluid from the 
boundary layer (see, for example, [12, Chapter 14]). 

The presence of parabolic boundary and/or interior layers in such problems results in large errors 
(for small values of the perturbation parameters r.1, r.2 multiplying the space derivatives involved in 
the equations) if we apply classical methods for finding numerical solutions. Thus, it is necessary 
to develop special numerical methods whose errors do not depend on the value of the vector-valued 
parameter r, = (r.1,r.2 ), i.e. methods which converge r.-uniformly. Possible approaches to construct 
such methods and also some special schemes are given, for example, in [l-3,5,8,10,14] (see also 
references therein). 

In the present paper we consider a boundary value problem on the semiaxis (0, oo) for a singu­
larly perturbed parabolic equation with the two perturbation parameters e1 and 02 multiplying the 
derivatives with respect to the space variable. Model problems of such type appear in the mathemat­
ical modelling of heat transfer processes for flow past a fiat plate with continuous suction of fluid 
out of the boundary layer (see, for example, Section 3 ). Depending on the value of the parameter 
c2 multiplying the first derivative in x, the differential equation can be either of reaction-diffusion 
type (for c2 < s:12 ) or of convection-diffusion type (for c2 }> ci12 ). Correspondingly, the boundary 
layer is either parabolic or regular. Errors of classical numerical methods applied to this problem 
can be unsatisfactorily large for small values of the parameter c1. Standard methods allow us to 
obtain satisfactory numerical approximations to the solution only under the very restrictive con­
dition N- 1 ~1:1 (0i 12 + cD-1 imposed on the number of mesh points, where N is the number of 
nodes in the space mesh on the unit interval (see condition ( 4. 6) in Section 4 ). At the same time, 
the technique for constructing e-uniformly convergent schemes using a fitted operator turns out to 
be inapplicable to such problems due to the presence of parabolic boundary layers in the solution 
(see Remark l in Section 4 ). Here we construct a monotone finite difference scheme (on piecewise 
uniform meshes) for the problem under consideration, which generates numerical solutions con­
verging e-uniformly with order O(N- 1 lnN + N0- 1 ), where N0 is the number of nodes in the time 
mesh. 

Note that special difference schemes for the problem studied in this paper, which generate 
numerical solutions converging e-uniformly (in the maximum norm), are unknown in the 
literature. 
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2. Problem formulation. Aim of the research 

2.1. On the set G, where 

G=GUS, G=D x (O,T], D=(O,oo), (2.1) 

with boundary S = sL U S0, where SL and S0 are the lateral and bottom parts of the boundary S; 
sL = r x (0, T], So= jj x {t = O}, r = jj \D. 

We consider the following boundary value problem for the singularly perturbed parabolic equation 

Lu(x, t) = {Et a(x, t) a~2 + e2b(x, t) c~ - c(x, t) - p(x, t) ;t} u(x, t) 

=f(x,t), (x,t)EG, 

u(x, t) = <l>(x, t ), (x, t) ES. (2.2) 

Here the parameters t:1 and e2, which are the components of the vector-parameter e (or, shortly, of 
the parameter e ), take arbitrary values in the half-interval ( 0, 1] and the segment [O, 1 ], respectively. 
We assume that the coefficients a(x, t ), b(x, t ), c(x, t ), p(x, t) and the right side f (x, t) are sufficiently 
smooth functions on G satisfying the condition 1 

a0 ~ a(x, t) ~ a0, ho ~ h(x, t) ~ h0 , 0 ~ c(x, t) ~ c0, Po ~ p(x, t) ~ p0 , 

lf(x, t)I ~ M, (x, t) E G, ao, ho, po > 0, (2.3a) 

the boundary function <l>(x, t) = <P(x, t; t:) for a fixed value of the parameter e is sufficiently smooth 
on the sets §L and S0 and continuous on S, moreover 

l<P(x, t)I ~ M, (x, t) ES. (2.3b) 

The solution of the boundary value problem is regarded as a function u E C2• 1 ( G) n C( G ), which is 
bounded on G and satisfies the differential equation on G and the boundary condition on S. 

For simplicity, we suppose that on the set sc = f;L n S0 , i.e. at the "corner" points, compatibility 
conditions (see, e.g., [7]) are satisfied which ensure the required smoothness of the solution of the 
problem for each fixed value of the parameter e. 

2.2. We now discuss more precise conditions imposed on the function 4>(x,t). 
When the following conditions hold 

I a~k <P(x, t)I ~ M, (x, t) E So, 

I :::0 4>(x, t)I ~ M, (x, t) E sL, k ~ K, ko ~Ko, (2.4) 

1 Here and below M, M; (or m) denote sufficiently large (small) positive constants which do not depend on e and on the 
discretization parameters. Throughout the paper, the notation Lukl (Mui< i. Gh<Ikl) means that these operators (constants, 
meshes) are introduced in equation (J.k ). 
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where K, K0 > 0 are sufficiently large numbers, a boundary layer appears in a neighbourhood of the 
set §L as the parameter t:1 tends to zero. This layer is parabolic if the condition e2 = O(e:12 ) holds 
and regular if e1 = o(t:i). 

If the derivatives of the function <P(x, t) are e-uniforrnly bounded (for example, (2.4) holds with 
K = 7, K0 = 2), that is the data of the problem are sufficiently smooth, then the solution of the 
problem can be decomposed into a sum of regular and singular components 

u(x, t) = U(x, t) + V(x, t), (x, t) E G. (2.5) 

Let the function <P(x, t) for t = 0 can also be written as a sum of the regular and singular components 

<P(x, t) = <Pu(x, t) + <Pv(x, t ), (x, t) E So. (2.6a) 

Moreover, the singular component <Pv(x,t) has the same singularities as the component V(x,t) for the 
case of boundary value problem (2.2 ), (2.1 ), (2.4) with K ~ 7, K0 ~ 2, then for t > 0 the singular 
component V (x, t) of the solution of problem (2.2 ), (2.1 ) retains the character of the singularity in 
<Pv(x, t) (see, e.g., the estimates of Theorem 3 and Remark 3 ). This decomposition of the solution 
into its regular and singular components allows us, in a number of cases, to construct and to study 
e-uniform numerical methods (see, e.g. [8,14] in the case of regular initial conditions). 

We assume throughout that the function <P(x, t) and its components in (2.6a) satisfy the conditions 

I a~k <l>u(x, t)I ~ M, 

ti 1/2 } or e2 ~ Moe1 

1/2 ' for e2 > Moe1 

(x, t) E So, 

I :::0 <P(x, t)I ~ M, (x, t) E §L, k ~ K, k0 ~ K0, 

where m1 is an arbitrary constant, m2 is a constant from the interval ( 0, m0 ), 

mo =min[a- 1(x,t)h(x,t)], 
G 

and K, Ko are sufficiently large numbers. 

(2.6b) 

2.3. Our goal is to construct a finite difference scheme which is t:-uniformly convergent for the 
singularly perturbed boundary value problem (2.2 ), (2.1 ) with the singularly perturbed initial function 
satisfying condition (2.6 ). 

Note that, for problem (2.2 ), (2.1) corresponding to the heat transfer problem (3.3) in the case 
of flow past a flat plate with suction of the boundary layer [12], we have e1 =er and e2 = e~2 + vo, 
where er= Pe- 1, eR = Re- 1, and v0 ~ 0 is the intensity of the suction. 

3. Motivation of the research 

In this section we consider a boundary value problem for the boundary layer equations in a 
bounded domain, which describes heat transfer in a viscous fluid flowing past a flat plate. Let a 
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semi-infinite flat plate be placed on the semiaxis P={(x,y): x ~ 0, y=O}. The problem is symmetric 
with respect to the plane y = O; we examine the steady flow of an incompressible fluid on both 
sides of P, which is laminar and parallel to the plate. We consider the solution of this problem on 
the bounded set 

G where G={(x,y): xE(d1,d2], yE(O,do)}, d 1 >0. (3.1) 

Let G0 ={(x,y): xE[di,d2], yE(0,d0]}; G0 =G. We write S=G\G, S=US;, j=O, 1,2, where 

So={(x,y): xE[d1,d2], y=O}, S1 ={(x,y): x=d1, yE(O,do]}, 

S2={(x,y):xE(d1,d2], y=do}, So=So; S0 =G\G0 =So. 

On the set G, it is required to find the solution U(x, y) = (u(x, y ), v(x, y)) of the following Prandtl 
problem: 

L 1 U(x,y)={1:R~02~ -u(x,y):>.0 -v(x,y)~0 }u(x,y)=O, (x,y)EG, (3.2a) 
or ux oy 

c a 
L 2U(x, y) = ;;;--- u(x, y) +-;;-- v(x, y) = 0, (x,y) E G0 , 

(JX cy 
(3.2b) 

u(x, y) = cp(x, y ), (x, y) ES, (3.2c) 

v(x, y) = lf;(x, y ), (x, y) E s 0 . (3.2d) 

Here t:R is the viscosity in the case when U (x, y) and x, y are dimensional quantities, and <:R = Re- 1 

when U(x,y) and x, y are dimensionless ones. The parameter f.R takes arbitrary values in (0, I]. 
The solution of problem (3.2), (3.1) exists and is sufficiently smooth if the functions cp(x, y) and 

l{!(x, y) are sufficiently smooth and satisfy appropriate compatibility conditions, respectively, on the 
sets S* = S1 n {So U S2} (i.e. at the comer points adjoining to the side S1 ) and S0* = S1 n s0 [9]. 

In the case of heat transfer between the plate and the fluid (under the assumptions that the 
buoyancy force is zero, and that the viscosity is independent of the temperature), in addition to the 
system of equations (3.2 ), we have the following heat equation with appropriate boundary conditions 
[12] 

{ a2 a a } 
L 3T(x,y)=:: er 0y 2 -u(x,y) 0x-v(x,y) 0y T(x,y) 

= -ER (a~ u(x, y) y ' (x, y) E G, (3.3a) 

T(x, y) = q>r(x, y ), (x, y) ES. (3.3b) 

Here t:r is the heat conduction coefficient if the problem is considered in dimensional variables, and 
i:.r = Pe- 1 in the case of dimensionless variables; Pe is the Peclet number, Pe =Pr Re. 

The solution of this problem in an infinite domain (including also the leading edge of the plate) 
for large Re and/or Pe has singularities of the boundary layer kind in a neighbourhood of the plate 
(for x > 0), and also an additional singularity in a neighbourhood of the leading edge due to the 
incompatibility of the problem data at the leading edge. 
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Since we are primarily interested in finding approximations to the solution of the problem near 
the surface of the plate, we consider the heat transfer problem for flow around the flat plate in a 
bounded subdomain which adjoins the plate and contains the boundary layer, but lies outside some 
neighbourhood of the leading edge. 

In the absence of suction and blowing the typical singularity in the solutions of problem (3.2 ), 
(3.1) and (3.2), (3.3), (3.1) is a parabolic boundary layer. For example, in the case of a self-similar 
solution of the Prandtl problem for flow past an infinite plate (see [ 12]) the function v(x, y) satisfies 
the estimate 

/v(x,y)/ ~ Me~2 , (x,y)EG; 

in which case the thickness of the boundary layer is of order eU2 . Because of this estimate for the 
function v(x, y ), we can use the technique for constructing e-uniformly convergent schemes developed 
in [8,14] for the case of problem (3.2), (3.1) (see, e.g., [3]). 

It might seem that the same technique is also applicable for problem (3.2), (3.3), (3.1) provided 
that Pr ~ 1. However, for the problem of flow past a plate with the boundary layer controllable by 
suction, the function v(x, y) can essentially exceed the quantity eU2 • For example, if the suction has 
intensity vo(x) = const > 0, we obtain the following estimate for the function u(x,y): 

/u(x,y) - U00 [ ~ M exp(-mvoe;' y), (x,y) E G, 
where U00 is the flow velocity at infinity. Then, the thickness of the boundary layer is of order 
v01 BR, which is much less (for v0 ~ e~2 ) than for the passive plate, and in this case the boundary 
layer is regular. 

Similar behaviour of the controllable boundary layers is observed also for problem (3.3 ), (3.1) 
under the condition 

1/2 -1 er ~Vo £R. 

Therefore, it is of urgent interest to construct e-uniforrnly convergent numerical methods for boundary 
layers which can be both parabolic and regular, depending on the parameter v0• 

4. Classical difference schemes 

We first introduce a classical difference scheme for problem (2.2), (2.1) and discuss problems 
arising in the numerical solution for small values of the parameter e. 

On the set G we introduce the mesh 

( 4.1) 

where w and w0 are meshes on the sets i5 and [O, T], respectively; w and w0 are meshes with 
distributions of the nodes subject only to the condition h ~ MN- 1, h1 ~ MN0- 1, where h =maxi hi, 
hi= xi+I - xi, xi, xi+ 1 E w, h1 = max1 h{, h{ = t.i+I - ti, t.i, t.i+I E w0. Here N + 1 and No+ 1 are, 
respectively, the minimal number of nodes on an interval of unit length on the set D and the number 
of nodes in the mesh w0• It is also of interest to consider schemes on the simplest meshes 

G't,, (4.2) 
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here w and w0 are uniform meshes with the step-sizes h = N- 1 and h1 = TN0- 1• Problem (2.2 ), (2. 1) 
is approximated by the implicit difference scheme [I I] 

Az(x, t) = { e1 a(x, t )bx.i + e2b(x, t )ox - c(x, t) - p(x, t )or} z(x, t) 

= f(x, t), (x, t) E Gh, 

z(x, t) = <T>(x, t), (x, t) E Sh. (4.3) 

Here bxz(x, t), o;z(x, t) are the forward and backward first-order difference derivatives, and 
Oxxz(x, t) = 2(h; + hi-l )- 1 {Ox - <5x}z(x, t ), x = x;, is the second-order difference derivative. 

For the difference scheme ( 4.3 ), ( 4. I) the maximum principle is valid [11]. 
Taking into account a priori estimates of the solution of problem (2.2), (2.1) (see Section 6), we 

obtain the following estimate for the solution of scheme ( 4.3 ), ( 4.1 ): 

Ju(x, t) - z(x, t )J 

{ 
[(r.:12 + N-1 )-1 N-1 + N0-1] 

~M 
[e~ei2N-1 + N0-1] 

On the other hand on the uniform mesh ( 4.2) we have the estimate 

ju(x, t) - z(x, t)J 

~M I 0 { 
[(e1/2+N-1)-1N-1 +N-1] 

[(e;2e1 +N-1r1N-1 +No-1] 

(4.4) 

(x, t) E Gi:; (4.5) 

which is unimprovable with respect to the expressions involving the parameters N, No, r.1, f:2. Thus, 
the condition 

N -1 ( . [ 1/2 -2 ]) =o mm t:1 ,f.2 f.1 , (4.6) 

is necessary and sufficient for the convergence of scheme (4.3), (4.2); schemes (4.3), (4.1) and 
(4.3), (4.2) do not converge e-uniformly. These results are stated formally in the following theorem. 

Theorem 1. Let the data of the boundary value problem (2.2 ), (2. I ) satisfy conditions (2.3 ), (2.6 ), 
and also a,b,c,p,fEC'1+a.(G), q>EC10+ix(SL)ncli+ix(S0 ), and let uEc3+ix,2+ix(G), Kc2.6)=li =7, 
K0c2.6)=lo=2, a> 0. Then condition (4.6) is necessary (necessary and sufficient) for the convergence 
of the difference scheme ( 4.3) on mesh ( 4. I ) (on mesh ( 4.2) ). For the mesh solutions estimates 
(4.4) and (4.5) are valid; estimate (4.5) is unimprovable with respect to the values of N, No, e1, 
e2. 

Remark 1. To construct t:-uniformly convergent difference schemes for problem (2.2 ), (2.1 ), we 
could try to use a fitted operator technique (for a description see, e.g., [2,5,8,14)). But when 
F.2 = O(e:12 ) the solution of this problem has a singularity of parabolic layer type, and so, using 
the technique given in [8,13,14], we can show that there are no fitted operator schemes convergent 
e-uniformly in this case. 
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5. Special difference scheme 

In this section we use meshes condensing in a neighbourhood of the boundary layer, in order to 
construct schemes which are 1:-uni form ly convergent. 

On the set G we introduce the mesh 

Ch =w* x o)o, (5.la) 

where wo = w0142» w* = o)*(o-) is a piecewise unif(1rm mesh on D. The step-sizes of the mesh w* 

are constant on the sets [O, a J and [o-, oo) with h( 1 l = 2<JN- 1 and h( 2l = 2( 1 - 0-)N- 1• The value of 
u is defined by 

(5.lb) 

where M 1 = ml(i.61 , M2 = m2(~_6 ). This completes the construction of the mesh Ch. 
Using the majorant function technique from [8, 14], and taking into account the a priori estimates 

of the solution of problem (2.2 ), (2.1) discussed in the next section, we find the following error 
estimate for the solution of scheme ( 4.3 ), ( 5.1) 

fu(x, t) - z(x, t)f 

{ 
[N- 1 min[ln N, e~ 112 ] + N0-

1] 

~M 
[N- 1 min[lnN,e~c:~ 1 ] +N0- 1] 

The following c-unifonn estimate is also valid: 

fu(x,t)-z(x,t)f ~M[N- 1 1nN+N0- 1 ], (x,t)ECh. 

(5.2) 

(5.3) 

The error estimates (5.2) and (5.3) are unimprovable with respect to the expressions involving the 
parameters N, No, e1, e2 and N, N0 , respectively. These results are stated formally in the following 
theorem. 

Theorem 2. Let the hypothesis of Theorem 1 be fulfilled. Then the solution of the difference scheme 
(4.3), (5.1) converges s-uniformly. The mesh solutions satiJjy the error estimates (5.2) and (5.3), 
which are unimprovable with respect to the values of N, N0, s1, s2 and N, N0, respectively. 

Remark 2. Although the solution of problem (2.2 ), (2.1) has a singularity only for e1 -+ 0 (the 
solution of the problem is regular for s1 ;::::: m; see, e.g., estimates (6.8), (6.10) below), the character 
of the boundary layer depends essentially on the vector-parameter s. Such behaviour of the singular 
component of the solution prevents us from constructing an s-uniformly convergent scheme with a 
definition of 0"(5.l l which is independent of the parameter s2 . 
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6. A priori estimates 

In this section we give a pnon estimates used in the above construction; the technique from 
[4,6,7,14] is used to derive the estimates. Using comparison theorems, we find that 

lu(x, t)I ~ M, (x, t) E G. (6.1) 

We assume in what follows that the condition 

lf>(x, t) = <p(x, t ), (x, t) E S, (6.2) 

is satisfied, where q>(x, t) is independent of the parameter t;. 

6.1. First we find estimates of the solution when 

(6.3) 

in this case we use a priori estimates up to the boundary [7]. The boundary value problem (2.2), 
(2.1) in the new variables ~ = r.~ 112x is transformed into the problem 

Lu(~,t)=J(~,t), (~,t)EG, (6.4a) 

u(i;,t)=iP(~,t), (~,t)ES. (6.4b) 

Here iJ( ~. t) = v(x( (), t ), v(x, t) is one of the functions u(x, t ), ... , <p(x, t ); 6° = { ( ~. t ): ~ = ~(x ), (x, t) E 
G0 }, G0 is one of the sets G, S. The differential equation ( 6.4a) on the domain G and the boundary 
condition ( 6.4b) on S are regular with respect to the parameter ei. Using a priori estimates up to 
the boundary, we find that 

J 0~:~~ u(~.t)J ~M, (~,t)EG. 
In the variables x, t this becomes 

I a~:~::o u(x, t)I ~ Me~k/2' (x, t) E G. (6.5) 

[n fact we need a more accurate estimate than (6.5). We represent the solution of problem (2.2), 
(2.1) as a sum of the two functions 

u(x, t) = U(x, t) + V(x, t), (x, t) E G, (6.6) 

where U(x,t) and V(x,t) are the regular and singular components of the solution. The function 
U(x,t) is the restriction to G of the function U*(x,t), (x,t)EG*, where U*(x,t) is the solution of 
the problem 

L*U*(x,t) = f*(x,t), (x, t) E G*, U*(x, t) = <p*(x, t), (x,t) ES*. 

Here S* = S( G* ); the domain G* is the extension of G beyond the set §L, G* contains G together 
with its m-neighbourhood (that is, the set of all points that are at a distance at most m from 
G); the coefficients of the operator L* and the function f*(x, t) are smooth continuations of the 
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corresponding data of problem (2.2); qJ*(x,t) is some smooth function, where cp*(x,t) = <p(x,t), 
(x, t) E S0• The function V(x, t) is the solution of the problem 

LV(x,t)=O, (x,t)EG, V(x,t)=cp(x,t)-U(x,t), (x,t)ES. 

The function U*(x, t), (x, t) E G* can be decomposed into a sum of the functions 
2 

U*(x,t)= I:>rvt(x,t)+vu(x,t), (x,t)EG*. 
i=O 

Here the functions Ut(x, t) are the solutions of the problems 

L*oU* -{ * *( o}U.* /"* ) o(x,t) = -c (x,t)- p x,t) ot o(x,t)=. (x,t' 

u;(x,t) = q>*(x,t), (x,t)ES;; 

(x,t)EG*\s;, 

L U;(x,t)= 1:1a(x,t)::;-:;-t:2h(x,t)-;- U;_ 1(x,t), (x,t)EG*\s;, *() * { * ()2 * 0 } * -
vx- ex 

U;*(x,t)=O, (x,t)ES~, i=l,2. 

(6.7) 

Taking into account estimates for the components in ( 6. 7 ), we find the following estimates for the 
components in representation ( 6.6) 

I a~:~:oko U(x,t)\ ~ M, 

v -k/2 -I I :=1k+ko I 
oxkotko u(x, t) ~ Ms1 exp( -m1 r,1 ), (x, t) E G, k + k0 = K, ko ~ Ko, (6.8) 

where m 1 is any positive constant, K = 3, Ko= 2. 

6.2. We now consider the case 
1/2 

t2;;;: mr.1 

In this case we pass to the variables ~ = r:j 11:2x, -r: = 1:] 1 r:2t. 
We represent the function U*(x,t), (x,t)EG* as a sum of functions 

2 

U*(x, t) = 2= D\ Ut(x, t) + vu(x, t), (x, t) E G*, 
i=O 

where the functions Ut(x, t) are the solutions of the problems 

L*1 U*( ) - { h* ) () * * (I } * "* 0 x, t = <:2 (x, t ~ - c (x, t) - p (x, t) ~ U0 (x, t) = / (x, t ), ox ot · 

u;(."11:, t) = cp* (x, t), (x, t) Es;; 
(12 

L* 1 U;*(x, t) = -a*(x,t) '."\c 2 Vt_, (x,t ), (x, t) E G* \ s;' 
(JX 

Vt(x,t)=O, (x,t)ES;, k= 1,2. 

( 6.9) 

(x,t)EG*\s;, 
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Having estimated the function U*(x, t ), we obtain the estimates for the components in representation 
(6.6) 

I a~:~:~ V(x, t)I ~ Me~ejk exp(-m2e2ej 1x), 

k + ko ~ K, ko ~ Ko, 

(x,t)EG, 

where m2 is an arbitrary constant from the interval (0, m0 ), 

m0 =min[a- 1(x,t)b(x,t)], K=3, Ko=2. 
(; 

(6. 10) 

When deducing the estimates (6.8), (6.10), we supposed that the data of the boundary value problem 
satisfy the condition 

( 6.1 1) 

We remark that the compatibility conditions l7] on the set scare satisfied, which ensures the inclusion 

uEc3+cx,2+~(G) (6.12) 

for each fixed set of values of the vector parameter 1;. These results are stated formally in the 
following theorem. 

Theorem 3. Let the data 4 the boundary z:alue problem (2.2 ), (2.1) satisfy conditions (2.3 ), ( 6.2 ), 
( 6.11 ), and let condition (6.12) be fulfilled for the solution of the problem. Then the solution of the 
problem and its components in representation ( 6.6) satisfy estimate ( 6.1) and also the estimates 
(6.8) and (6.10) in cases (6.3) and (6.9), respectively. 

Remark 3. Assume that the function <P(x, t) has a singularity of the same type as the function 
u(x,t) and that the function <P(x,t) fort= 0 can be written as a sum of functions of form (2.6a). 
Furthermore, suppose that this function and its components in (2.6a) satisfy condition (2.6b ), with 
K = 7, Ko= 2. Then the conclusion of Theorem 3 remains valid for the solution of problem (2.2), 
(2.1 ). 
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