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l INTRODUCTION 

1.1 General 
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B.P. Sommeijer 
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The authors of this contribution belong to the research group Discretization 
of Evolution Problems of CWI's Numerical Mathematics Department. This 
research group focuses on fundamental and applied research into numerical 
methods for evolutionary differential equations. Both ordinary and partial dif­
ferential equations are treated. In recent years much attention is devoted to 
large-scale applications and high performance computing. In this connection, 
an important research subject concerns Transport Problems in Environmental 
Applications which are constituted by systems of time-dependent partial differ­
ential equations of the advection-diffusion-reaction type. Numerical research 
for this type of problems is important for the simulation and prediction of the 
chemistry and transport of hazardous pollutants in the atmosphere, groundwa­
ter and shallow water. Because the systems are usually three-dimensional in 
space and usually contain many components, one for each chemical or biological 
constituent in the model, they are extremely CPU and memory intensive and 
in fact belong to the computationally most expensive models in environmental 
research and fluid dynamics. Consequently, high performance computing on 
powerful vector and parallel computers is an important field of research for 
these applications. 

Moreover, when new methods and techniques designed for high-performance 
use on such computers are developed, also their fundamental numerical proper­
ties need to be investigated, notably their stability, consistency and convergence 
properties. The present contribution provides an example of such a theoretical 
investigation. This paper deals with a linear stability analysis of a method 
recently designed in our group for the numerical integration of transport prob­
lems in shallow water on vector and parallel computers. To appreciate the 

1 This research was supported by Cray Researeh Inc. under grant CRG 94.04 via the 
Stichting Nationale Computerfaciliteiten (National Computing Facilities Foundation, NCF). 
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complete paper the reader should have a numerical background. Fortunately, 
the linear stability analysis for difference schemes of the type considered here is 
based on the well-known Fourier method as proposed by J. Von Neumann (see 
[8], which is one of the earliest papers where the Fourier method is applied to 
finite-difference equations). This means that an important part of the paper, 
viz. Section 3, should be accessible, and hopefully is of some interest, for many 
readers without any numerical packground. 

Section 3 is almost self-contained. Here we study the problem of determining 
the location of the zeros of a polynomial relative to the unit circle in the complex 
plane. This problem is of long standing (see Schur [11]) and of great practical 
relevance in applied mathematics (see Miller [6]). In our case we have to deal 
with a quadratic polynomial whose coefficients are complex-valued functions of 
a real variable, a phase angle. These functions are determined by the difference 
scheme and contain so-called advection and diffusion parameters. The question 
is what conditions should be imposed on these coefficient functions, and hence 
on their defining parameters, such that the two zeros lie on the unit disc for all 
phase angles. The resulting conditions determine the critical stepsize for the 
linear time step stability of the difference scheme. The analysis to solve this 
stability question shows interesting aspects and surprising results. 

1. 2 Research contents 

In [12] and [13] an odd-even-line hopscotch (OELH) method is developed and 
implemented for the efficient numerical solution of three-space dimensional 
advection-diffusion problems modeling the transport of pollutants and sus­
pended material in shallow water. A special feature of this OELH method 
is that it is explicit for the horizontal transport and implicit for the vertical 
transport. The implicitness in the vertical direction is necessary to avoid a too 
strir1gent stability restriction on the time step. This implicitness gives rise to 
the solution of a large set of tridiagonal systems, one for every grid point in 
the horizontal plane. The solution of this large set of tridiagonal systems can 
be vectorized and parallelized over the horizontal grid, which results in a very 
good performance [13]. In the comparison with other techniques discussed in 
[12, 13], the method has been shown superior. 

In neither of the aforementioned two papers a comprehensive stability anal­
ysis is given. The purpose of the present paper is to fill up this gap. For 
the general, constant coefficient, linear advection-diffusion model problem we 
will derive sufficient and necessary conditions for von Neurmirm stability in the 
strict sense. Strict means that th.e stability property we investigate reqllires the 
absolute value of amplification factors less t]}p.n or eqµq,l to one. The stability 
analysis is based on an eqllivalence with an associated scheme which is com­
posed of the leap-frog, the Du Fort-Frankel, and the Crank-Nicholson scheme. 
The actual Fourier analysis is carried out for this associated scheme and ap­
pears to be rather intricate. For example, the resulting expressions for critical 
stepsizes reveal that the presence of horizontal diffusion generally leads to a 
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smaller value, in spite of the fact that we have unconditional stability for pure 
diffusion problems. 

2 THE OELH METHOD FORMULATED FOR THE MODEL PROBLEM 

We consider the 3D, constant coefficient, scalar advection-diffusion model prob­
lem 

(1) 

Let 
d 
-U· ·k = LhU ·k 
dt '1 'J 

(2) 

be the semi-discrete approximation, resulting from the use of 2nd-order central 

differences at the uniformly spaced gridpoints 

(xi,yj,Zk) = (ih1,jh2,kh3). 

The basic formula [l, 2, 3, 4] defining the OELH method studied in [12, 13] 
then reads 

(3) 

where i.= (i,j, k), r = tn+l - tn, and the hopscotch parameter Bf is defined 
by -

en= { 1 
!. 0 

for odd values of n + i + j, 
for even values of n + i + j. ( 4) 

Notice that the subscript k is not involved in this definition, i.e., all gridpoints 

on a vertical gridline have the same B-value. If we consider only the odd points 

(in the space-time grid), then the forward Euler rule results, 

un+l = un + TLhu:'', 
1 1 l 

(5) 

and at the even points, for the same n, we have the backward Euler rule 

Un+1 = un + rL [;n+1 
l !. h ~ . (6) 

Consequently, by first applying the explicit forward Euler method at all odd 

points, and subsequently the implicit backward Euler method at all even points, 

we have carried out one step with (2.3). The merit of the method lies in the 

fact that the implicit step is only implicit for the vertical direction. This follows 

from the 3-point coupling in the horizontal directions and from the definition 

of the Bi. If we remove the third dimension, then we recover the odd-even­

hopscotch scheme (OEH) which is scalarly implicit. Note that the OEH scheme 

for the 3D problem results if we replace ( n + i + j) in Bi' by ( n + i + j + k). 
The stability of the OEH scheme applied to (2.1) has be<-;-n studied in [14]. 

The von Neumann stability approach cannot be carried out for (2.3) as it 

stands. Following [3, 14], we therefore derive an equivalent formula which 
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does admit Fourier analysis. First introduce, for m = 1, 2, 3, the advection 
parameter Cm and the diffusion parameter C/m 1 

and the difference operators Hm and b!, 

8~Ui = Ui+ijk - 2Uijk + Ui-ljki etc. 

We then may express rLhUi as 

3 

TLhUi. = L (-1cmHm + C7mb!) ui.. 
m=l 

(7) 

(8) 

(9) 

(10) 

Next introduce, in addition to (2.3), the OELH formula for the next time step 

(11) 

Using (2.3), (2.4) and (2.11), for the odd points we then can write, considering 
time levels n and n + 2, 

un+2 = un + T L,, (un + un+2) 1 1 " !. ! . (12) 

Likewise, for the even points we find 

(13) 

Next we elaborate the odd-point formula (2.12). Using (2.13) to eliminate 
variables at even points, an elementary calculation with (2.10) shows that (2.12) 
can be written as 

(1 +a) U['+ 2 = (1 - Ci) U{' + (4C71µ1+4CT2µ2) U['+i -

(c1H1 + c2H2) U["+1 + (-~c3H3 + a3b5) (uf + u;+2), (14) 

where µm is the averaging operator 

(15) 

and 

(16) 

It is important to note that in (2.14) only variables at odd numbered points 
appear. This means that the solution defined by (2.3), can first be computed 
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by means of (2.14) at the complete set of odd points, and thereafter at the 

complete set of even points by means of (cf. (2.13)) 

(17) 

Hence for the stability analysis we may proceed with the odd-point scheme 

(2.14), because the sets of even and odd points are decoupled. 

We see that this odd-point scheme is composed of the leap-frog scheme for 

the horizontal advection part, 

u;+z = UI' - (c1H1 + c2H2) u;+1, (18) 

of the Du Fort-Frankel scheme for the horizontal diffusion part, 

(1 +a) ur+2 = (1- a) u; + (4a1µ1 + 4a2µ2) u;+1 , (19) 

and of the Crank-Nicholson scheme, with stepsize 2r, for the vertical advection 

and diffusion part, 

(20) 

Consequently, in view of the unconditional stability of the Crank-Nicholson 

and Du Fort-Frankel scheme, at first sight one might expect that the critical 

stepsize for stability equals that of the leap-frog scheme (2.18). In the next 

section we will prove that this is indeed true if there is no horizontal diffusion. 

However, if horizontal diffusion terms are present, then the situation turns out 

to be more complicated. We will show that in this case the critical stepsize is 

generally smaller. 

3 STRICT VON NEUMANN STABILITY 

Substitution of the Fourier mode 

(21) 

into scheme (2.14) leads to the characteristic polynomial 

(22) 

with coefficients 

ao -1 +a - 2a:~ (cos B::i - 1) + I c3 sin 83, 

2 

ai = L -4am cos Bm + 2! Cm sin Bm, (23) 
m=l 

a2 1 + a - 2a3 (cos 83 - I) + I c3 sin ()3, 

where 8,,, = w,,Jim denotes the phase angle. The specific stability property we 

will investigate is von Neumann stability in the strict sense: 
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DEFINITION 1 Method (2.14) is called von Neumann stable if the zeroes 6, 6 
of the characteristic polynomial (3.2) satisfy 

161, 161:S1 for all IBml :S 7r, m = 1,2,3. (24) 

Hence strict means that the stability property we investigate requires the ab­
solute value of amplification factors less than or equal to one. In literature, 
this is also called 'practical' or 'modified' von Neumann stability [9, 7, 5]. Note 
that the original von Neumann condition is weaker as it requires l~I :S 1+0( T) 
[9]. As is well known, for advection-diffusion problems this weaker condition 
can lead to unacceptably large errors [7]. Strict stability is also more natural 
here, since Fourier modes of the true solution cannot grow in time either. 

For the von Neumann analysis we will use results from [6]. We therefore 
introduce the polynomial 

(25) 

and the so-called first reduced polynomial 

(26) 

where 

a2a1 - a1ao = -8 t O"m cos em +I (sc3 sin 83 t am cos ()m ) + 
m=l m=l 

and 
(28) 

Note that in the pure advection case the first reduced polynomial vanishes, 
because then O"m = 0 form= 1, 2, 3. 

In the remainder of this section we will prove and discuss two stability the­
orems. Theorem 1 deals with the case where horizontal diffusion is absent 
(t1 = 0, t2 = 0 and E3 ?: 0). In Theorem 2 we consider the remaining 
cases where diffusion exists in at least one of the two horizontal directions 
( E1 ?: 0, <"2 ?: 0, E3 ?: 0 and E1 + .:2 > 0). In both theorems all velocities Cm may 
take on arbitrary values, including zero. 

THEOREM 1 Suppose <"1 = 0, t2 = 0 and <:3 ~ 0. Then we have von Neumann 
stability if and only if 

(29) 

PROOF. We distinguish the two cases t 3 = 0 and i:3 > 0. First suppose t 3 = 0. 
Then the first reduced polynomial Ji ;::: 0, so that according to case (ii) of Th. 
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6.1 from [6], t,here holds 161, 161 ~ 1, if and only if the root fo of the derivative 

polynomial f satisfies !fol ~ 1. Since fo = -ai/2a2 we find 

( t Cmsin8m )
2 

le 12 -'-m-=_l~~~-'--
<,Q = 2 . 2 ' 

1 + C3S!Il ()s 
(30) 

which immediately proves the theorem for the case E3 = 0. Next suppose 

E3 > 0. Two subcases then must be distinguished, viz. phase angle 83 = 0 and 

83 ::/: 0. If 83 = 0, then again Ji = 0 and the proof goes the same as above. If 

83 ::/: 0, then Ji does not vanish so that now case (i) of Th. 6.1 from [6] applies. 

That is, 161, 161 5 1, if and only if 

(a) lf*(O)I > IJ(O)I and 

(b) The root fo of Ji satisfies !fol 5 1. 

Condition (a) means la2I > laol or, according to (3.8), 

la2 l2 - lao 12 = a2a2 - aoao = 4 (a+ 2a3 - 2a3 cos 83) > o. (31) 

We immediately conclude that condition (a) is unconditionally true because 

the diffusion parameter a3 is positive and a = 0. Generally, condition (b) is 

true if and only if 

l-2j;amCOS8m +I(2c3sin83j;O"mCOS8m) + 

I ( ( 0 + 203 - 203 003 83) i;,""' ain B,. ) I ~ 0 + 203 - 203 003 83. (32) 

Because a 1 = a 2 = 0 and a 3 > 0, this inequality simply means that 

2 

I L Cm sin8ml ~ 1, 
m=l 

which immediately proves the theorem also for the case E3 > 0. D 

In the situation of Theorem 1 the Du Fort-l:<rankel scheme is absent in (2.14), 

so that only the leap-frog scheme and the Crank-Nicholson scheme as combined 

in (2.14) play a role. Theorem 1 nicely shows this. We see that the critical 

stepsize for von Neumann stability is determined by the familiar CFL condition 

of the leap-frog scheme (2.18), 

(33) 
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This is an optimal result in the sense that the vertical velocity q3 and the 
vertical mesh width h3 are absent in the stability condition, which is due to the 
unconditional stability of the Crank-Nicholson scheme. Especially hs should 
be absent, since in shallow water transport problems h3 is significantly smaller 
than h1 and h2 . This, in fact, was the motivation for developing the odd-even­
line hopschotch method [12, 13]. Also note that in the case of pure advection 
(Em= O,m = 1,2,3) the characteristic polynomial f is conservative (161 = 
161 = 1) as long as (3.13) holds (Th. 6.4, [6]). If we impose strict inequality, 
then f is simple conservative (conservative and ~1-=/=- 6, see [6], Cor. 6.5). This 
means that in the case of pure advection the OELH scheme does not damp 
Fourier modes, which is a natural property because the true Fourier modes are 
not damped either. If c3 > 0, then one of the amplification factors must lie 
in the open unit disc as long as (3.13) holds, since h does not vanish. If we 
impose strict inequality in (3.13), then both factors lie in the open unit disc 
which means damping of Fourier modes similar as for the true solution. 

Before we present Theorem 2, we first give a result due to [5] and repeat its 
proof here for reasons of self-containedness. 

LEMMA 1 Consider the finite, real-valued series 

Suppose O:rn ~ 0 for all rn = 1, ... , M. Then we have S :::; 1 for all Bm, if and 
only if 

PROOF. Denote 

Then S can be expressed as 

s = 1- P(a - c:tr)e. 

Thus, we have S :::; 1 for all B, if and only if the matrix (3 = a - c i!1' is 
non-negative definite. In particulari its diagonal elements O'.m - c;n must be 
non-negative, so that O:m = 0 implies Cm = 0 and the m-th dimension can be 
dropped. Hence in the remainder of the proof we may assume all am > 0. If 
we then define 

-1/2 d" ( -1/2 -1/2) ')'=a: = iaga1 ,. .. ,aM , 

we have (3 = a 112 (IM - ')'ct1''Y)a112 and the matrix 

(3' =JM - J'Ccfl' 'Y =JM - ('YC)('YC)T =JM - Jd'r, 
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where l = '"'fC, must also be non-negative. This, in turn, means non-negativity 
of 

fI' 13' z = fI' z - (d-+r z) 2 

for all z. We can deduce that this is true if and only if 

Jrisi. 

Sufficiency follows immediately from the Cauchy-Schwarz inequality 

( d--r z) 2 s ( d7 d) ( fI' Z; 

and necessity by selecting Zm = cdm form= 1, ... , M, where c is an arbitrary 

constant. Since a"r l = L c;;i1 am, the proof is complete. D 

This lemma is used to prove necessity of inequality (3.14) in Theorem 2. 

Note that in certain cases the sum in (3.14) is infinite (division by O"m = 0), 

implying that the interval for von Neumann stability is empty. This situation 

is discussed in more detail later on. We wish to emphasize that the proof of 

this theorem is inspired by the proof of the stability theorem in [5], which also 

uses the result of Lemma 1. 

THEOREM 2 Suppose E1, E2 , t:3 ;::: 0 and t: 1 +t:2 > 0. Then we have von Neumann 

stability if and only if 

(34) 

PROOF. Because u > 0, the first reduced polynomial Ji does not vanish so 

that case (i) of Th. 6.1 from [6] applies, similar as in the second part of the 

proof of Theorem 1 above. Hence, 161, 161 S 1, if and only if inequalities 

(3.11) and (3.12) are true. We immediately conclude that inequality (3.11) 

is unconditionally true, because u > O and u3 ;::: O. So our task is to check 

inequality (3.12). Denote 

u* IJ" + 20"3 - 20"3COS83, 

u~, 2um/u*, m = 1, 2, 

c~ = ci, c~ = c2, c3 = C3 L u:n cos Bm· 
m=l,2 

Inequality (3.12) is equivalent to IJ.L! SL where 

2 3 

µ=!!_- ~u*(l-cos8m)- ~ Ic;,,sinBm· 
O"* L..., m L..., 

m=l m=l 

Introduce the new diffusion parameter u3 by writing 

!!_ = 1- u;(l - cos83), 
u* 
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which implies the same expression as for ai and a2, 

(37) 

Note that for zero phase angle lh the definition of a3 through (3.16) is mean­
ingless. However, from the limiting case 

a*= a+ a3 8~ + 0(8~), 83 -+ 0 

it follows, by substitution of (3.17) into (3.16), that expression (3.17) is also 
valid for 83 = 0. Hence, for all phase angles we can write 

3 3 

µ = 1- L a;n(l- cos8m) - L Ic:r, sin8m, (38) 

m=l ni=I 

so that inequality (3.12) is true if and only if 

( 3 )2 ( 3 )2 
1µ1 2 = · 1- L a~,(1-cos8m) · + L c;nsin8m :S l. 

1n=l 1n=l 

(39) 

Our task is now to prove that (3.14) is necessary and sufficient for (3.19). 
We will first establish necessity of (3.14). Consider the limiting case: 8rn -+ 0 
with Wml ::::; 8 form= 1, 2, 3. For 83 -+ 0 we have 

* 2am 2) * 0(82) am=-+0(83 for m=l,2,3 and c3 =c3+ , 
a 

so that in the limiting case lµl 2 satisfies 

(40) 

Set am = 2arn/a. Because a > 0, we have am ;:: 0 for m = 1, 2, 3 and appli­
cation of Lemma 1 immediately reveals the necessity of (3.14). In particular, 
if a O:m = 0, then the corresponding Crn must be zero too, which means that 
the dimension is dropped. Hence, in the sufficiency part of the proof we will 
assume that all O:rn are positive and observe that for a lower dimension the 
proof of sufficiency goes entirely similar. 

To prove sufficiency of (3.14) we proceed as follows. Write 

3 2 

"'"" * . () "'"" Cm r;:::- . 8 !:;:1 cmsm m = f;;:l ~ yO:m sm m + 

~ fo3 (t
1 

a;,, cos Bm ) sin 8:3. ( 41) 
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The Cauchy-Schwarz inequality then yields 

(t c~,, sin8m) 
2 

< (t c;, ) 
m=l m=lam 

(t,amsin2 Bm +a, (f,a~=Bm) 3 sin3 83). (42) 

Set Ym = cosBm and invoke (3.14). Using 0'. 1 + a 2 = 1, we then can write 

(t, '~sin Bm )' ,; I - a,y1 - a2yl + a3 (a;y, + a;y, )2 (! - yl). ( 43) 

Further, using a* =a+ 2a3 (1 - y3 ), we have 

2 

( 1 - rti a;,, (1 - cos 8m)) = a: 2 (2a1 Yi + 2a2 y2 ) 2 , ( 44) 

so that there remains to prove 

lµl 2 5 1 + : 2 (2a1Y1 + 2a2Y2)2 + a3 
(J 

(ary1 + a~y2) 2 (1- y3) 2 - a1Yr - a2y~ 5 1 (45) 

for all Ym E [-1, 1}, m = 1, 2, 3. Define if= (yi, Y2)T and Y = a3(l -y~). Then 

the second inequality can be rewritten as 

(46) 

where A is a symmetric two-by-two matrix with the entries 

Au= 4(Y ~ 1) ar - 2a1' A12 = 4(Y ~ 1) CTJCT2, 
a* a a* 

A22 = 4(Y ~ 1) a~_ 20-2. 
a* a 

(47) 

Note that the entries do depend on y3 , but not on fl Hence, it is sufficient 

that A is non-positive definite for all y3 E [-1, l]. Because A12 > 0, A is 

non-positive definite if 

An + A12 5 0 and A22 + A12 5 0. 

A trivial calculation shows that this is indeed the case for all y3 E [-1, 1], which 

completes the proof of the theorem. D 

Any case covered by Theorem 2 involves the Du Fort-Frankel scheme in 

(2.14) since a> 0. We emphasize that this gives rise to curious and unexpected 
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stability results. Substitution of O"m, Cm in (3.14) shows that the critical stepsize 
for von Neumann stability in all cases covered by Theorem 2 is determined by 

( 
3 2 ) 

T2 . L q';,, L c~ . :::; l. 
Em .. hz 

rn=l l=l 

( 48) 

First, we see that the vertical meshwidth h3 is absent, which is advantageous 
as we explained in the discussion of Theorem l. Second, for zero velocities 
(the pure diffusion case) we have unconditional stability, which is in complete 
agreement with the unconditional st1,1bility of the Du Fort-Frankel scheme (2.19) 
and the Crank-Nicholson scheme (2.20). However, ifa velocity is not zero, then 
the corresponding diffusion parameter plays a role. Surprisingly, the critical 
stepsize determined by (3.28) is generally smaller than the one determined by 
the CFL condition (3.13) and in fact can be zero. 

To see this, let us first suppose that c1 , c2, E3 are positive. Application of the 
Cauchy-Schwarz inequality to the CFL condition (3.13) then leads to (3.28) as 
follows, 

(t r~qzl ) 
2 

= .(t r:zl~ )· 2 
< 

L=l z l=l z ..[Ei 
2 22 2 3 22 2 

" T qz "°' !}__ " T qm "'\:"""' !}__ < l. 
~ ~ ~~ ~ Em ~~ -
l=l l=l l rn=l l=l l 

( 49) 

Generally {3.28) appears to be more restrictive, implying a smaller critical 
stepsize. We consider this curious pecause it means, for example, that adding 
artificial diffusion to the advection problem can have a destabilizing effect for 
the time integration, rather than working out stabilizing. A similar curious 
situation has been observed earlier in [10, 14]. Also note that if the three 
diffusion parameters are equal, then they cancel out in (3.28) so that the critical 
stepsize then even is independent of the diffusion, but yet smaller than in the 
case of the CFL condition. Of course, the difference between the two conditions 
is minor if 

(50) 

The observation that for cases covered by Theorem 2 the critical stepsize can 
even be zero, follows directly from inspection of (3.28). For example, if we take 
qi, g2, q3 -:/= Q, fi, E2 fixed and c3 __, 0, then T --> 0 when s&tiiofying the stability 
i.µe@ality. By also taking into account T4eorern 1, we thus can forrnulate: 

f'HEPRE¥ q Fqr von Neumann stability it is necessary that either both c1 and 
\'.2 are zero or positive and if they are both positive, then it is required to have 
E3 > 0 too. 

620 



4 THE Du FORT-FRANKEL DEFICIENCY 

We will further explain this curious stability result by relating it with the 
well-known Du Fort-Frankel deficiency, which describes the situation that for 
parabolic problems this method is only conditionally convergent, in spite of its 
unconditional stability (see [9], Sect.7.5). 

The necessity of (3.14) or (3.28) has been established from the asymptotic 
relation (3.20) where all three phase angles {)m __, 0. This suggests to compute 
for this limiting case the maximum of the absolute value of the two amplification 
factors 6, 6 directly from the polynomial (3.2). Denote ~max = max(i61, 161). 
An elementary calculation then yields 

3 ( 3 ) 2 
~max = 1 - r~l <7m0'!, + ~<7 r~l Cm{)m + 0(03 ). (51) 

Indeed, use of Lemma 1 shows again the necessity of (3.14). However, expres­
sion ( 4.1) also reveals a link with the aforementioned convergence deficiency. 
To see this, consider the modified equation for scheme (2.14) (cf. [9), Sect. 
7.5), 

Ut + q1Ux + q2Uy + q3Uz = €1Uxx + €2Uyy + €3Uzz - 40-TUtt• (52) 

This modified equation shows the convergence deficiency through the additional 
term - ~<7TUtt· To establish the link between our stability deficiency and the 
convergence deficiency, it now suffices to substitute a Fourier mode into ( 4.2) 
and to compute the associated continuous amplification factor for vanishing 
phase angles, similar as we did in the derivation of (4.1). We then find that 
the continuous amplification factor just equals (4.1), up to 0(03 ). Further, it 
then follows that the term which causes the instability, that is, 

(53) 

originates from the deficiency term -~arUtt, although this term itself is inde­
pendent of the velocities Cm. This means that also the modified equation is 
unstable if (3.14) is violated, in the sense that it admits growing Fourier modes 
in the low frequence range. This obviously implies that this then also must 
happen for scheme (2.14) when subjected to the von Neumann stability test. 

Noteworthy is that if we bound the phase angles from below, say ()m ~ Bo > 0, 
that then an interval 0 < r :::; r0 exists for which the amplification factors 6, 6 
are strictly less than one. This follows from expression (3.18), since its real part 
is independent of T and can be made < 1 by taking ()0 sufficiently small, while 
the imaginary part can be made sufficiently small by taking ro small enough. 
Hence, if we consider a fixed grid, then we can always achieve stability, but of 
course To becomes smaller if the grid is refined. 

621 



5 PRACTICAL CONSIDERATIONS 

Strict von Neumann stability is known to have great practical relevance. There 
is no doubt that the von Neumann method is the best single technique (cf. [5]) 
for finding necessary conditions for stability if we are in a non-model situa­
tion, which in practice of course always happens. In this connection a natural 
question is, how bad actually is the stability deficiency for the OELH scheme. 
In other words, should we in practice consider the CFL condition (3.13) as a 
'practical restriction', or should we take the more stringent condition (3.28) 
really serious. 

Let 'Tcfl and 1"(3 .28) denote the critical stepsizes. Because the necessity of 
condition (3.14) shows up in the limiting case Bm ___, 0, the maximum emax as 
derived in (4.1) will be only marginally larger than one if 1"( 3.28 ) < r ::; Tcfl· 

However, there is a possibility that other critical combinations of phase angles 
exist, away from zero, which also lead to (3.14). Therefore we have computed 
approximate values of {max (the maximum taken over all discrete B-values) as a 
function of r for several choices of €m, qm, hm· We indeed observed other critical 
B-combinations away from zero. Yet, in all tests {max appeared to become only 
marginally larger than one in the stepsize range r(3.28 i < r ::; Tcfl, similar as 
in the limiting case which led to (3.14). 

Figure 1 shows a plot of {max ( r) which is characteristic for the tests consid­
ered. We see that the overshoot due to violating (3.28) is practically insignif­
icant. In the interval 1"(3.28) < 'T ::; 'Tcfl the overshoot of emax ( 'T) is ::; 0.001. 
However, as expected, we also see that r > Tcfl will quickly result in severe 
instability. The fact that the CFL condition should be satisfied in general, thus 
also in all cases covered by Theorem 2, can be understood by computing (3.18) 
for special choices of the Bm. For example, for Bm = ~' m = 1, 2, 3, we get 

3 3 

µ = 1- 'Ea:,. - L Ic:ri = -J(c1 + c2), (54) 
m=l m=l 

which trivially yields the CFL condition (3.13) for positive ci,c2 (cf. (3.19)). 

We conclude that the more stringent condition (3.28) is only a theoretical 
curiosity. For the actual practice it will be of little importance since the in­
stability that will occur by violation is so small that it will not be observed in 
actual computation, of course as long as the CFL condition (3.13) is satisfied. 
This condition is highly relevant for the actual practice and should always be 
obeyed. On the other hand, violation of (3.28) will only be noticable after an 
unrealistically large number of time steps. To illustrate this in actual integra­
tion, we applied the OELH integrator to the model equation (2.1), discretized 
on a uniform 40x40x10 grid, using periodic boundary conditions. The parame­
ters in this experiment were set to the same values as in Figure 1 and the grid 
sizes to (h1, h2, h3) = (500, 500, 10). These values yield 

'Tcfl = 100.0, 1"(3.28) = 37.7. 
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FIGURE l. Plots of €max(T) for the parameters (€1, E2, E3) = (1.0, 0.5, 0.01), 
(qi, q2, qs) = (3, 2, 1). The grid sizes are (h1, h2, h3 ) = (200, 200, 1). This yields 
1"(3.28) :::::; 15.l and Tcfl = 40.0. The left plot covers the r-interval 0 ::; r ::; 50, 
the middle plot 0 :::; r :::; Tcfl and the right plot Tcfl S: T ::; 50. The middle and 
the right plot show a finer scale in the vertical. 
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Obviously, u = 1 is an exact solution for the test model. To study the long­
term stability behaviour of the OELH method, we slightly perturbed the initial 
condition to ·u(x,y,z) = l.O+bg(x,y,z), with g a smooth function with max­
imum modulus equal to 1.0 and b = 10-5 . Table 1 contains the values of the 
experimental amplification factors 

b- 1maxi IVi - ll (55) 

for various values of r and N. Here ur denotes the numerical solution at 
grid point i after N steps of length r. The results are self evident. Violation 
of the CFL condition is disastrous, whereas violation of (3.28) leads to error 
growth, but only destroys the solution after an unrealistically large number of 
time steps. 

T = 37 T = 100 T = 100.l 

N= 104 0.724 3.68 10185 

N= 105 0.497 870 
N = 5.105 0.362 1020 

Table 1: Experimental amplification factors (5.2). 

Finally, it is also of interest to recall the convergence deficiency, from which 
the OELH scheme also suffers. Presumably, this convergence deficiency is also 
of little relevance for the shallow water transport application. In this appli­
cation the regular temporal and spatial truncation errors are expected to be 
larger than the error induced by the parasitic:, non-physical term ~O'T'Utt· For 
example, in the experiments reported in [12, 13] this error plays no role. Ex­
periments where this error is shown, though, can be found in [14]. 
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