
QStream: A Suite of Streams

Joost Winter1,2?

1 Centrum Wiskunde & Informatica (CWI)
2 LIACS – Leiden University

Abstract. We present a simple tool in Haskell, QStream3, implementing
the technique of coinductive counting by making use of Haskell’s built-
in coinduction capabilities. We furthermore provide a number of useful
tools for stream exploration, including a number of pretty print functions
and integration with the Online Encyclopedia of Integer Sequences.

1 Introduction

It has been observed before, for example in [McI01] and [Hin11], that Haskell’s
built-in coinduction capabilities allow for easy and simple specifications of streams
making use of variants of the coinductive stream calculus presented in e.g. [Rut05].

Borrowing some terminology from [McI01], the present paper can perhaps be
considered as presenting another variation on this theme. Compared to [McI01],
in which expressions for generating functions are given a coinductive semantics
directly, our main focus lies on the connection with weighted automata, and
systems of behavioural differential equations, using which rational and algebraic
(or context-free) streams (or formal power series) can be chacaterized. We have
opted for using a set of operators which is minimal but still expressive enough
to be able to classify the complete classes of rational and algebraic streams.

Often, the specifications obtained this way turn out to be surprisingly elegant,
although with a different flavour from the more familiar generating function
expressions. For example, given a fixed integer k, the generating function for
the stream of powers of k is 1/(1 − kX), whereas the corresponding system of
behavioural differential equations consists of the equations o(x) = 1 and x′ = kx.

We have built a simple package, QStream, providing the necessary definitions
required for such coinductive reasoning, as well as a usable and simple interface
for stream exploration, including a number of pretty-printing functions for sys-
tems of streams, as well as an interface to the Online Encyclopedia of Integer
Sequences4.

Introductions to generating functions can be found, for example, in [Wil06]
and [GKP94]. The idea of using coinductive techniques and weighted automata
to describe combinatorial problems can be traced back to [Rut02]. For back-
ground material on the theory of rational and algebraic streams, we refer to
[Rut08] and [BRW12], respectively.

? Supported by the NWO project CoRE.
3 The letter Q is intended to highlight the connection to automata theory.
4 http://oeis.org

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CWI's Institutional Repository

https://core.ac.uk/display/301659033?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

The QStream package has been developed and tested using version 7.4.1 of
The Glorious Glasgow Haskell Compilation System5, and can be downloaded
from http://homepages.cwi.nl/∼winter/qstream.

Related work: Existing tools aimed at stream calculus tend to fall into two
distinct categories. The first category consists of tools, generally more ‘heavy-
weight’ and with an emphasis on proving equality of streams: this group of tools
includes CIRC [LGCR09] and Streambox6.

The second category – in which computation of streams, rather than proving
equality is the main aim – consists of more ‘lightweight’ implementations in
Haskell. Earlier implementations in this category include those by McIlroy7 and
Hinze8, which both have been a source of inspiration for QStream. Compared to
these existing implementations, the present implementation attempts to provide
a closer link with the underlying framework of systems of behavioural differential
equations, as well as adding some useful interactivity by providing integration
with the Online Encyclopedia of Integer Sequences.

Acknowledgements: The author would like to thank Marcello Bonsangue
and Jan Rutten for their comments and constructive criticism, as well as to the
anonymous reviewers for their comments and suggestions.

2 A Suite of Streams

Elementary coinductive definitions: Haskell’s built-in capabilities allow for
easy coinductive specifications of streams. As a very elementary example, con-
sider the specification x = 1:2:3:x. With this specification, it is directly possible
to obtain initial segments of the stream thus defined as follows:

Prelude> take 10 x

[1,2,3,1,2,3,1,2,3,1]

Eventually periodic streams can, in general, be specified using specifications
of this type. Although elementary, some important streams can already be de-
fined now, such as the stream 0, 0, 0, . . . defined by zero = 0:zero, and the
stream 1, 1, 1, . . ., defined by ones = 1:ones.

In order to be able to produce more interesting classes of streams than the
eventually periodic streams, we coinductively define a few basic operations on
streams. Moreover, following McIlroy’s example, we let streams be a Num type,
enabling us to reap the fruits of type coercion, use the standard operators + and
*, and furthermore directly inherit functions such as sum, ^, etc. We also include
a separate scalar product operator *!, which brings extra conceptual clarity as
well as a tremendous performance boost.

The behavioural differential equations for sum, scalar product, and convolu-
tion product can be now represented directly in Haskell:

5 http://www.haskell.org/ghc
6 http://infinity.few.vu.nl/streambox/
7 http://www.cs.dartmouth.edu/∼doug/powser.html
8 http://hackage.haskell.org/packages/archive/hinze-streams

3

s + t = o s + o t : d s + d t -- Or: (+) = zipWith (+)

k *! t = k * o t : k *! d t -- Or: (*!) k = map ((*) k)

s * t = o s * o t : d s * t + o s *! d t

Here o and d, standing for output and derivative respectively, are simply
defined as synonyms for head and tail.

Rational and algebraic streams: As a first example of a rational stream,
consider the definition:

fibs = 0 : 1 : fibs + d fibs

This definition corresponds to the following system of behavioural differential
equations

o(x) = 0 o(y) = 1 x′ = y y′ = x + y

and yields the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, . . .
Making use of the existing oeis package on Hackage, our module QStream.IO

provides a function info, which takes a stream of integers as argument, looks
up an initial part of this stream in the Online Encyclopedia of Integer Sequences
(http://oeis.org), and then displays its description and identifier.

*QStream> info fibs

Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) =

1. (A000045)

For two more rational streams, consider:

dups = 1 : 2 *! dups

hypercube = 1 : 2 *! (hypercube + dups)

Here dups consists of the powers of 2: (1,2,4,8,. . .). The nth element of
hypercube, on the other hand, is equal to the number of edges in a n-dimensional
hypercube.

A celebrated example of an algebraic stream is the specification

cats = 1 : cats ^ 2

corresponding to the system of behavioural differential equations

o(x) = 1 x′ = x2

and yielding the stream of Catalan numbers 1, 1, 2, 5, 14, 42, 132, 429, 1430, . . .

Systems of streams: It is also possible to define complete systems of streams
at once. As an example, the following stream systems yield, respectively, diagonal
rows from Pascal’s triangle, and the Stirling numbers of the 2nd kind:

pascal n = 1 : sum [pascal i | i <- [1..n]] -- A007318

stirling2 n = 1 : sum [i *! stirling2 i | i <- [1..n]] -- A008277

4

These Haskell specifications are in direct correspondence to the systems of
behavioural differential equations

o(pn) = 1 p′n =

n∑
i=1

pi (n ∈ N) giving: [[pn]](k) =

(
n + k

k

)
o(sn) = 1 s′n =

n∑
i=1

isi (n ∈ N) giving: [[sn]](k) =
1

k!

k∑
j=0

(−1)k−j
(
k

j

)
jn+k

which can easily be derived from the familiar recurrence relations for these se-
quences.

For these types of stream systems, again a few helper functions are provided:
rangeinfo gives the description and OEIS numbers of a stream system for a
provided range of values:

*QStream> rangeinfo stirling2 [2..4]

2: 2^n - 1. (Sometimes called Mersenne numbers, although that

name is usually reserved for A001348.) (A000225)

3: Stirling numbers of second kind S(n,3). (A000392)

4: Stirling numbers of the second kind, S(n,4). (A000453)

Another pair of helper functions, maketable and oeistable, generates a
table providing an initial part of a function from natural numbers to streams,
with oeistable presenting the OEIS ids in addition:

*QStream> oeistable pascal 12 5

1: 1 1 1 1 1 1 1 1 1 1 1 1 (A000012)

2: 1 2 3 4 5 6 7 8 9 10 11 12 (A000027)

3: 1 3 6 10 15 21 28 36 45 55 66 78 (A000217)

4: 1 4 10 20 35 56 84 120 165 220 286 364 (A000292)

5: 1 5 15 35 70 126 210 330 495 715 1001 1365 (A000332)

Sometimes, systems of behavioural differential equations, and the correspond-
ing specifications in Haskell, are much simpler in form than the sometimes more
familiar explicit formulas for these sequences. For example, the number of m-ary
search trees on n keys is equal to the nth element of the stream searchtrees

m, specified by:

searchtrees m = take (m - 1) ones ++ searchtrees m ^ m

This equation can easily be derived from the generating function specification

A(X) =

m−2∑
j=0

Xj + Xm−1Am(X),

found in e.g. [FD97], where a corresponding explicit formula (omitted here due
to space constraints) is also provided.

5

Building a catalog of streams: In [Plo92], generating functions for 1031
different integer sequences have been identified using gfun, a Maple package.
With QStream, we have so far found behavioural differential equations for over
100 of the generating functions presented there [Plo92]: this small catalog can
be found in the module QStream.Plouffe.

3 Conclusions and Future Work

So far, QStream has been, at least for its author, a useful tool in exploration of
classes of streams and systems of behavioural differential equations. The under-
lying theoretical framework links up beautifully with Haskell, and typical Haskell
features such as lazy evaluation. Even merely experimenting around a bit with
coinductive specifications often yields interesting sequences; as well as elegant
specifications for these sequences.

However, when parameterized systems such as pascal are involved, com-
putation of streams turns out to be awkwardly slow. Possible tactics to address
this issue include memoization, and direct modelling of weighted automata using
linear combinations of weighted states. As a first step in the second direction,
the module QStream.Fast hard-codes weighted automata for a relatively wide
class of streams (including the pascal and stirling2 stream systems). This
approach, albeit ad hoc, already yields a huge speed up, resulting in much more
reasonable computation times. Further work here should include a more modular
approach, in which data types representing weighted automata are introduced.

Looking up streams on OEIS can be a rather slow process: somehow, espe-
cially looking up basic sequences (such as ones or the natural numbers) often
is inexplicably slow. Although this issue is mostly out of our control, to remedy
this, we might think for example of building a local database of OEIS entries.

As a final remark, we note that there should be a number of easy general-
izations of this work: for example by moving from integers to rationals, or from
streams to formal power series over noncommuting variables (or, equivalently,
weighted languages). However, in neither of these cases would we be able to
make any good use of the OEIS, which focuses on integer sequences.

References

[BRW12] Marcello M. Bonsangue, Jan J. M. M. Rutten, and Joost Winter. Defining
context-free power series coalgebraically. LNCS 7399, 20–39. Springer, 2012.

[FD97] James Allen Fill and Robert P. Dobrow. The number of m-ary search trees
on n keys. Combinatorics, Probability & Computing, 6(4):435–453, 1997.

[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathe-
matics: A Foundation for Computer Science. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2nd edition, 1994.

[Hin11] Ralf Hinze. Concrete stream calculus—an extended study. JFP, 20(5-6):463–
535, 2011.

[McI01] M. Douglas McIlroy. The music of streams. Inf. Process. Lett., 77(2-4):189–
195, 2001.

6

[LGCR09] Dorel Lucanu, Eugen-Ioan Goriac, Georgiana Caltais and Grigore Rosu.
CIRC: A Behavioral Verification Tool Based on Circular Coinduction LNCS
5728, 433–442. Springer, 2009.

[Plo92] Simon Plouffe. Approximations de séries génératrices et quelques conjectures.
Master’s thesis, Université du Québec à Montréal, 1992.

[Rut02] Jan J. M. M. Rutten. Coinductive counting: bisimulation in enumerative
combinatorics. Electr. Notes Theor. Comput. Sci., 65(1):286–304, 2002.

[Rut05] Jan J. M. M. Rutten. A coinductive calculus of streams. Mathematical
Structures in Computer Science, 15(1):93–147, 2005.

[Rut08] Jan J. M. M. Rutten. Rational streams coalgebraically. Logical Methods in
Computer Science, 4(3), 2008.

[Wil06] Herbert S. Wilf. Generatingfunctionology. A. K. Peters, Ltd., Natick, MA,
USA, 2006.

