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ABSTRACT
A flow in three-dimensions is universal if the periodic orbits contains all knots and links.
Universal flows were shown to exist by Ghrist, and can be constructed by means of templates.
Likewise, a planar diffeomorphism is universal if it has a suspension flow which is a universal
flow. In this paper we prove the existence of a homoclinic trellis type for which any
representative diffeomorphism is universal. This trellis type is remarkable in that it has zero
entropy, and only two homoclinic intersection points.
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Abstract

A flow in three-dimensions is universal if the periodic orbits contains all knots and links.
Universal flows were shown to exist by Ghrist, and can be constructed by means of tem-
plates. Likewise, a planar diffeomorphism is universal if it has a suspension flow which is a
universal flow. In this paper we prove the existence of a homoclinic trellis type for which
any representative diffeomorphism is universal. This trellis type is remarkable in that it has
zero entropy, and only two homoclinic intersection points.
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1 Introduction

A flow φ in the three-sphere S3 is said to be universal if for any link, there is a finite set of
periodic orbits of φ realising the link type. The existence of universal flows was proved by
Ghrist [Ghr97] using concepts of template theory [BW83]. Universality indicates that the orbit
structure of the flow is extremely complicated; what is remarkable is that simple templates can
generate universal flows.

Given a homeomorphism f of the two-disc D2, we can construct a suspension flow on the solid
torus D2×S1, and embed the solid torus in S3 in an unknotted way. We say f is universal if the
embedding of some suspension flow is universal; note that there is an ambiguity in constructing
the suspension flow determined by the twisting of the boundary. In [Kin00] it was shown that
the that the Smale horseshoe map is not universal, but its third iterate is. We are interested in
finding weaker conditions under which we can show a homeomorphism is universal.

It is well known that if p is a saddle fixed point, and the unstable manifold W U(p) intersects
the stable manifold W S(p) transversely, then the dynamics is chaotic. The Smale horseshoe
example shows that the existence of a single transverse homoclinic orbit does not necessarily
imply universality. In this paper we show that two homoclinic orbits on different branches, as
depicted in Figure 9, is sufficient to imply universality. More precisely, we prove the following
theorem.

Main Theorem. Let f be a diffeomorphism with a periodic saddle point p with positive eigen-
values. Suppose that both branches of W U (p) intersect one of the branches of W S(p). Then f
is universal.
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What is particularly remarkable about this result is that the conditions on the diffeomor-
phism do not give a strictly positive lower bound for the topological entropy. In other words,
even relatively low dynamical complexity can result in high complexity of the periodic orbit
structure. This phenomenon is possible since the knots and links can live in high iterates of the
diffeomorphism.

The techniques of this paper can also be used to show that the existence of a single periodic
or homoclinic orbit of the correct braid type implies universality.

The main techniques used in this paper are those of template theory and trellis theory [Col04].
A trellis is a finite piece of homoclinic or heteroclinic tangle, and provides a way of specifying
the “braid type” of a homoclinic orbit. We relate trellises and templates via surface-embedded
graph maps, which carry combinatorial information about the dynamics.

2 Preliminaries

In this section, we define the main objects of study, namely templates, trellises and surface-
embedded graph maps. Templates and trellises are have been much studied in the dynamical
systems literature, and we only give a brief discussion to introduce the fundamental concepts,
referring the reader to the literature for more information. Embedded graph maps enable one to
relate templates and trellises, and are related to the thick tree maps of [FM93] and the foliated
surfaces of [BH95]. Since the concept is slightly different, we give a full definition.

2.1 Isotopies and suspensions

Let D be the disc, I the unit interval [0, 1], and S1 the circle R/Z. By glueing the ends of
the cylinder D × I by the relation (x, 0) ∼ (x, 1), we obtain the solid torus D × S 1. We fix,
once and for all, an unknotted, untwisted embedding of D×S1 in S3, which fixes an immersion
D × I −→ D × S1 ↪→ S3 from the cylinder into S3.

Let f : D −→ D a homeomorphism, and φ an isotopy from id to f , and P a finite collection
of periodic orbits of f . Then P of f gives rise to a braid B(P, φ) lying in D × I given by
B(P, φ) =

⋃
t∈I ft(P )× {t}. By taking the immersion of D × I into S3, the braid B(P, φ) gives

rise to a knot or link L(P, φ) in S3. We call this link the natural suspension of P under φ.
The link type so obtained depends not only on P , but also on the isotopy chosen. However,

if Φs,t is a continuously varying family of homeomorphisms such that Φs,0 = id and Φs,1 = f
for all s, then the braids specified by the isotopies Φs are themselves isotopic. Further, if H is
full-twist on D × I, then B(P, φ′) is isotopic to Hn(B(P, φ)) for some n depending only on the
isotopies φ and φ′.

We say that f induces all link types or is universal if there exists an isotopy φ from id to f
such that every link is obtained from φ by the natural suspension. Note that in this definition,
we first fix the isotopy and then look for all links.

We are interested in finding conditions under which a homeomorphism induces all link types.

2.2 Templates

Birman and Williams [BW83] introduced templates (also known as knot holders) to study link
types of closed orbits of dynamically complex 3-dimensional flows. Recent results on template
theory can be found in the monograph [GHS97].

Definition 2.1. A template or knot holder is a compact branched 2-manifold with boundary
and with smooth expansive semiflow built from a finite number of branchline charts, as depicted
in Fig. 1.
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A branchline chart with a single exit strip is a joining chart, and a branchline chart with a
single entry strip is a splitting chart.

Figure 1: Local geometry of a branchline chart with two entry sheets joining and three exit
sheets splitting off.

A subset W ′ of a template W is a subtemplate of W if W ′ with semiflow induced from W is
itself a template.

The template theorem of Birman and Williams [BW83] shows us that if a 3-dimensional flow
has a non-trivial hyperbolic chain recurrent set, then the set of links of closed orbits of the flow
in this hyperbolic set is captured by a template.

One particularly useful way of constructing a template is via a braided template or braid
holder. A braid holder is a subset of D× I given by branchline charts in D× (0, 1), and a fixed
set of intervals in D×{0} and D×{1}, such that the semiflow is monotone from top to bottom.
Just as the periodic orbits of the template semiflow define knots and links, the periodic orbits
of the local semiflow on a braid holder define braids. On immersing D × I into S 3 we obtain a
link.

We say that a template W embedded in S3 is universal if for each link L in S3, there exists
a finite union of periodic orbits PL of the semiflow on W with the same link type as L.

κκ
′

κ
′′

Figure 2: Pieces of the periodic orbits κ′, κ and κ′′ of Theorem 2.2.

Given unknotted periodic orbit κ on a template T ⊂ S3, the twist, τ(κ), is defined to be the
twist number of the normal bundle to T along κ. The following result of Ghrist and Kin [GK04]
gives sufficient conditions for universality.

Theorem 2.2. Let T be a template in S3. Suppose that there exist three disjoint periodic orbits
κ, κ′, and κ′′ on T such that

1. They are separable unlinked unknots.

2. τ(κ) = 0, τ(κ′) > 0, and τ(κ′′) < 0.
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3. These three unknots intersect some branchline of T as in Figure 2 with the specified adja-
cencies and strip crossings.

Then T is universal

2.3 Trellis theory

Let f be a diffeomorphism of a surface M , and P a finite invariant set of hyperbolic saddle
points of f . A pair T = (T U , T S) is a trellis for f if

1. TU is a subset of WU (P ) and T S is a subset of W S(P ).
2. TU and T S are both a disjoint union of finitely many embedded compact intervals with

non-empty interiors,
3. f(TU) ⊃ TU and f(T S) ⊂ T S .

The set TU ∩ T S of intersection points is denoted T V , and the set of periodic points of T V is
denoted T P .

Trellises T0 and T1 are equivalent if they are homeomorphic. If f0 and f1 are diffeomor-
phisms with trellises T0 and T1, then the pairs (T0; f0) and (T1; f1) are equivalent if there is a
homeomorphism h with h(T0) = T1 such that f0 is isotopic to h−1 ◦ f1 ◦ h relative to T0. The
equivalence classes [T ; f ] are trellis types.

p q0 q1

q2

T U

T S

q3

v

R0

R1

Figure 3: A trellis type for the orientation-preserving Hénon map.

Example 2.3. A trellis type for the orientation-preserving Hénon map is shown in Figure 3.
The points q0, q1, q2 and q3 lie on the same homoclinic orbit. The orbit of v is indicated with
white dots. It can be shown [Col04] that chaotic dynamics must be present in the regions R0

and R1.

A trellis type provides a way of representing homoclinic orbits. The braid type of a homoclinic
orbit H of a diffeomorphism f is the conjugacy class of the isotopy class of f relative to H,
denoted [H; f ]. If H is a homoclinic orbit of f containing an intersection point of some trellis
T , then the braid type [H; f ] is determined by [T ; f ].

Given a trellis T for a diffeomorphism f of the disc D, we can cut along the unstable set T U

to obtain a topological pair CT = (CUD, CUT S). Since f(TU) ⊃ TU , the map f induces a map
Cf on CUD such that Cf(CUT S) ⊂ CUT S .

The graph representative of a trellis type [T ; f ] is a map g of a topological pair (G,W ) where

• G is a one-dimensional CW-complex embedded as a deformation retract of (D \ T U , T S \
TU ), the complement of T U .
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• W is the set of intersections of G with T S, and contains exactly one point in each segment
of T S .

• g is a map of (G,W ) which is a deformation-retract of f on (M \ T U , T S \ T V ).

• g maps the control edge z crossing segment S to the control edge g(z) crossing f(S).

• g is efficient, which means it is locally injective except at control edges, and has no invariant
forests which do not contain a control edge.

The essential graph representative is obtained from the graph representative by restrict-
ing to

⋂∞
n=0 gn(G). The topological graph representative is obtained from the essential graph

representative by collapsing all control edges to points.
Graph representatives are useful since they give an easily described combinatorial description

of the dynamics. Recall that the itinerary of an orbit (xi) is the sequence ki such that xi ∈ Rki
,

where the Rk are regions in D. Also recall that period-n points in some topological pair (X,Y )
are relative Nielsen equivalent if they can be joined by curves αi : (I, J) −→ (X,Y ) such that
α−1
i (Y ) = J for all i, and f ◦ αi ∼ αi+1 mod n relative to endpoints.

One of the main results of trellis theory is the following theorem (see [Col04, Theorem 10]).

Theorem 2.4. Let g be the graph representative of a trellis type [T ; f ]. Then for every period-n
point of g, there is a period-n point of f which is relative Nielsen equivalent.

In particular, any essential Nielsen class of g can be continued through the deformation-
retract to an essential Nielsen class of f .

We can also analyse how the periodic orbit structure changes as the trellis changes. We say
an isotopy (ft;Tt) is a pruning isotopy if intersections are destroyed, but never created, as t
increases. The following result [Col04, Theorem 1] shows that the dynamics forced by a trellis
type becomes simpler in an isotopy removing intersections.

Theorem 2.5. Suppose (ft;Tt) is a pruning isotopy. Then any essential Nielsen class for [T1; f1]
can be continued to an essential Nielsen class of [T0; f0].

We are interested in whether a trellis forces all knots and links in the suspension.

Definition 2.6. A trellis type [T ; f ] is universal if every diffeomorphism f̃ ∈ [f ]T is universal.

2.4 Surface-embedded graph maps

The graph representative provides the basic topological structure which allows us to relate a
trellis to a template. To use the graph representative to obtain templates and braids, we need
to consider the embedding of the graph more carefully.

In this paper, by a graph, we mean a one-dimensional CW complex G embedded in a surface.
Given a graph G, we can construct a singularly foliated neighbourhood Ĝ by taking stable leaves
transverse to each edge. At each valence-n vertex, we have an n-prong singularity in the foliation.
(See [BH95] for a description of singular foliations.) Let r : Ĝ −→ G be the retract preserving
the stable leaves, ρ be a homotopy from id to r such that each ρt preserves stable leaves and ρt
is injective for t < 1.

Definition 2.7. Let G be a graph, and Ĝ ⊂ D a neighbourhood of G with a singular foliation
FS transverse to G. Let r : Ĝ −→ G be the retract which preserves the stable leaves. Then an
embedded graph map is an embedding g : G 7→ Ĝ such that r ◦ g is a graph map.
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(b)(a) v2

v3v0

v1

Figure 4: (a) An embedded graph G, and (b) the image of G under an embedded graph map g.
The vertices are mapped v0 7→ v0 and vi 7→ vi−1 for i = 1, 2, 3.

By a slight abuse of terminology, we will and say that g is an embedded graph map from G
to itself, and make the actual embedding clear from a diagram, if necessary. An example of an
embedded graph map is shown in Figure 4.

Not all graph maps can be embedded, but the graph representative of a trellis type (defined
in Section 2.3) has a natural embedding given by the deformation-retract of the surface onto the
graph.

Remark 2.8. Our embedded graph maps are similar to the thick tree maps of [FM93]. The
results of this paper could be formulated in terms of thick trees, but this introduces complications
since a map of a thick tree has finitely many extra periodic points which are not present in the
original graph map.

Given an embedded graph map g : G −→ Ĝ, an isotopy γ from id to g, and a deformation
retract ρ of Ĝ onto G, define a homotopy ρ · γ from id to r ◦ g by

(ρ · γ)t(x) =

{
γ2t(x) if t ≤ 1/2;

ρ2t−1(γ1(x)) if t ≥ 1/2.
(1)

We can use the immersion of D × I into S3 to define a singular braid holder B(ρ · γ) by

B(ρ · γ) =
⋃

t∈[0,1]

(ρ · γ)t(G) × {t}.

Every periodic orbit P of r ◦ g gives rise to a braid on B(ρ · γ) biven by

B(P, ρ · γ) =
⋃

t∈[0,1]

(ρ · γ)t(P )× {t}.

The singularities in the braid holder arise from the vertices of G. We can construct a singular
template from the singular braid holder by taking the natural suspension.

The definition of universality can be extended to embeddable graph maps.

Definition 2.9. An embedded graph map g is universal if there is an isotopy γ from id to g
such that the immersion of the braid holder B(ρ · γ) into S3 is a template containing all knots
and links.

3 Universal graph maps and trellises

In this section, we give a proof of the Main Theorem. We first consider a family of embedded
graph maps, the binary star graph maps, and show that each is universal. We then give some
results on braids forced by trellises which extend the results on Nielsen equivalence quoted in
Section 2.3. Finally, we prove the main theorem by constructing a trellis type which can be
pruned to give another trellis type whose topological graph representative is a binary star graph
map.

6



Figure 5: The braid holder given by the embedded graph map of Figure 4.

3.1 Universal graph maps

We now define the binary star graph maps, and show that these maps are universal. These maps
will later be used to prove the existence of a universal template.

Definition 3.1. The (m,n) binary star graph has a vertex vL of valence m and incident edges
ā0, ā0, . . . , ām−1, a vertex vR of valence n, with incident edges c̄0, c̄1, . . . , c̄n−1, and a vertex vP
of valence 2 with incident edges a0 and c0.

A binary star graph map g is an embedded graph map on Gm,n such that

a0 7→ a0ā1a1, ai 7→ ai+1 for 0 < i < m− 1, c0 7→ c0c̄1c1, ci 7→ ci+1 for 0 < i < n− 1,

and for which g(am−1) ∩ g(cn−1) is an interval b containing vP in its interior.

A binary star graph map on G5,4 is shown in Figure 6.

vP

a4a3

a2

a0 c0

a1

vL
vR c2

c3

c1

Figure 6: Binary star graph map on the (5, 4) binary star.

Theorem 3.2. Let Gm,n be the (m,n)-binary star, and g be an embedded binary star graph
map. Then g is universal.

Proof. Let b be the intersection of g(am−1) and g(cn−1). Then there exists k such that gk(b)
convers a0 and c0. Then not only does gk+m(b) cover b, but there exist intervals b−1, . . . b−k−m+1

with b−i ⊂ a0 for i ≤ k and b−k−i ⊂ ai for 0 < i < m− 1 such that g(b) ⊃ b−1, g(b−i) = b−i−1

for i < k + m, and g(b−k−m+1) = b. Similarly, there exist intervals b1, . . . bk+n−1 with bi ⊂ c0

for i ≤ k and bk+i ⊂ ai for 0 < i < n − 1, such that g(b) ⊃ b1, g(bi) = bi+1 for i < k + n,
and g(bk+n−1) = b. Additionally, we can ensure that b−k and bk map into a1 and c1 in an
orientation-preserving way. By decreasing the intervals bi, we can ensure that g(b0) covers only
b−1, b0 and b1. The intervals bi are shown in Figure 7.
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b
−3 b0

b4

b1b
−1

b
−5

b
−2

b
−4

b3

b2

Figure 7: Universal subgraph in the (5, 4) binary star.

We now take an unknotted isotopy γ from id to g (by which we mean the suspension of the
vertices vL, vP and vR are unlinked under ρ · γ). Under this isotopy, the restriction of r ◦ g to⋃k+n−1
i=−k−m+1 bi gives rise to a braid holder B(ρ ·γ) of the form shown in Figure 8, from which we

can obtain a template T (ρ · γ).

b0 b2 b3 b4b1b
−1b

−2b
−4b

−5 b
−3

Figure 8: A braid holder for a binary star graph map.

We now show this template is universal. Let κ be the orbit on T (ρ ·γ) which passes through
b0 (and so is the natural suspension of the fixed-point vP of g). Let κ′ be the orbit passing
successively through b0, b−1, . . . , b−k−m+1 and returning to b0. Let κ′′ be the orbit passing
successively through b0, b1, . . . , bn+n−1 and returning to b0. Then κ, κ′ and κ′′ are unlinked
unknots, with twists 0, +1 and −1, respectively. The braid holder shown in Figure 8 contains
a subset of the form depicted in Figure 2. Hence by Theorem 2.2, the template T (ρ · γ) is
universal.

3.2 Trellises and braids

In Section 2.3, we stated results on the relative Nielsen classes and itineraries of periodic orbits
occuring for a given trellis type (Theorems 2.4, 2.5). However, in this paper we are interested in
the braids occuring in the suspension for a given isotopy to the identity. Fortunately, the results
on relative Nielsen classes can be readily extended to results on braids.

We first say what it means for a braid to be forced by a trellis T .

Definition 3.3. Let [T ; f ] be a trellis type, and φ an isotopy from id to f . We say a braid
B is forced by T0 in the isotopy class of φ if whenever Φs,t is a parameterised family of home-
omorphisms such that Φs,0 = id and Φs,1 has trellis T for all s, and Φ0,t = φt, then the map
f ′ = Φ1,1 has a periodic orbit P ′ with braid B ′ under the isotopy φ′ given by φ′tΦ1,t such that
B′ is isotopic to B.

The following theorem shows that the braids on the braid holder of the graph representative
are forced by the trellis.
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Theorem 3.4. Let f be diffeomorphism with trellis T , let g be the embedded graph representative
of [T ; f ], and γ an homotopy of id to g such that γt is injective for all t. Then there exists an
isotopy φ from id to f such that for any braid B on the braid holder B(ρ · γ) there exists a
collection of periodic orbits P of f such that B(P, φ) has the same knot type in the natural
suspension as B.

Proof. The homotopy γ can be extended to an isotopy of the whole space CUD in such a way
that G is an attractor for γ1. The deformation-retract ρ from Ĝ to G can be extended to a
deformation-retract from CUD to G such that ρt(CUT S) ⊂ CUT S for all t and ρt is injective for
t < 1. Hence the homotopy ρ · γ extends to a homotopy δ on CU (T S) in such a way that δt is
injective for t < 1 and δt maps CUT S into itself for t ≥ 1/2.

Since CUf is homotopic to δ1 via a deformation-retract of (CUD, CUT S) onto G. we can
construct an isotopy ν from f to γ1 such that νt in jective for t < 1, and νt = δt for t ≥ 1/2,
and νt maps CUT S into CUT S .

We can therefore find a family of maps Φ such that Φs,0 = id, Φs,1 = νs, Φ1,t = δt and Φ is
injective for (s, t) 6= (1, 1). We take the isotopy φ to be given by φt = Φ0,t.

Let B be a braid on B(γ) corresponding to the collection of periodic orbits Q. Then by
Theorem 2.4, Q continues to give a family of periodic orbits Ps for Φσ(s),1, where σ : I −→ I is
a map such that σ(0) = 0 and σ(1) = 1. Further, since the points of Q lie in different relative
Nielsen classes, the periods of the orbits of Ps are the same as those of Q for all s. Since Φs,t is
injective for (s, t) 6= (1, 1) and P1 is periodic for Φ1,1 we have braids Bs given by

Bs =
⋃

t∈I
Φσ(s),t(Ps)× {t}.

Since the braids Bs vary continuously, and each have n strands, the knot type of B0 = B(P0, φ)
is the same as the knot type of B.

We now show that pruning isotopies cannot create new braids in the suspension.

Theorem 3.5. Let [T1; f1] is a trellis type obtained from [T0; f0] by a pruning isotopy. Let φ1

be an isotopy from id to f1 Then there exists an isotopy φ from id to f0 such that for any braid
B1 forced by T1, there exists a braid B0 forced by T0 with the same link type.

Proof. Let ft be a pruning isotopy from f0 to f1. We construct Φs,t with Φs,0 = id, Φ1,t = (φ1)t
and Φs,1 = ft by the isotopy extension theorem. Let (φ0)t = Φ0,t. The result follows by
continuing the braid B1 using Φ as in the proof of Theorem 3.4.

3.3 Universal trellises

In this section, we consider trellis types on the disc which force all knots and links in the
suspension flow.

For the rest of this section, let [T ; f ] be the trellis type shown in Figure 9. The trellis type
[T ; f ] is the homoclinic trellis type such that both unstable branches of the fixed point have a
single intersection with a stable branch. The main result of this section is that [T ; f ] is universal.
Since no planar trellis type with only two intersections can be universal, this is the simplest
possible universal trellis type. Further, since this trellis type occurs as a subtrellis whenever
both branches of TU intersect a single branch of T S , the universality of [T ; f ] immediately
yields our main theorem.

Remark 3.6. The trellis type [T ; f ] is realised by the third power of the Smale horseshoe
map. The fixed point p has code 011 for f , and the homoclinic orbits of qL and qR have codes
011001011 and 011111011, respectively.
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p

qR

qL

T UL T UR

RL RR

eL

eR

Figure 9: The universal trellis type [T ; f ].

We use the following notation for [T ; f ]. We let T U = TU [eL, eR] and T S = T S[p, qR], so eL
and eR are the endpoints of the unstable branch. We assume there are transverse intersections p,
qL and qR such that TU (eL, eR)∩T S[p, qR] = {p, qL, qR}. Further, we assume that the orientation
of the intersection of T U with T S is positive at p, and is negative at qL, qR. We let HL and HR

be the orbits of qL and qR, respectively. We let RL be the disc bounded by T U [p, qL]∪T S [qL, p]
and RR the disc bounded by T U [p, qR] ∪ T S [qR, p]. Note that the although the orbits HL and
HR are essentially symmetric under reflection, the trellis itself is not.

In order to show that a trellis type is universal, we use the following notion of topological
universality.

Definition 3.7. A trellis type [T ; f ] is topologically universal if there exists an isotopy φ from
id to f such that the set of braids forced by T under φ gives rise to all knots and links under
the immersion of D × I into S3.

Clearly, topological universality is stronger than universality. Topological universality is
useful since we can use the graph representative to prove topological universality. A trellis type
with zero entropy cannot be topologically universal, since it forces only finitely many periodic
orbits.

p

qR

qL

q̃R

Figure 10: Extending T U to obtain a bigon with vertices qR and q̃R.

Now consider the set W U(p). Since there is an intersection of W U with T S at f(qR) with neg-
ative orientation, there must be an intersection of W U(qR, f(qR)) with T S(qL, qR) with positive
orientation. We let q̃R be the closest such intersection to qR along WU , and extend TU to obtain
the trellis shown in Figure 10. We let RB be the bigon bounded by W U [qR, q̃R] ∪ T S[qR, q̃R].

We now consider the construction of extra homoclinic orbits. Let x be a point of a transverse
homoclinic orbit in W U [qR, q̃R]. Then the segment of W S through x contained in RB has
endpoints x and x̃; without loss of generality, we can take x̃ ∈W U (x, q̃R).
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Lemma 3.8. Let W S [x, x̃] be a segment in the region bounded by T U [qR, q̃R]∪T S[qR, q̃R], where
x, x̃ are transverse homoclinic points and x ∈ T U [qR, x̃).

1. There exists m such that f−m(W S(x, x̃)) intersects T U [qL, eL] at a point z. The arc
W S(f1−m(r), z) does not intersect T U [qL, qR], and the points {p, f−m(x), qL, z} form the
vertices of a rectangle in RR.

2. If an intersection of f−m(W S(x, x̃)) with TU (qL, eL) exists for some m, then an inter-
section of f−m

′

(W S(x, x̃)) with TU(qL, eL) satisfying the conditions in (1) exists for all
m′ ≥ m.

3. If T S[y, ỹ] is a segment such that y ∈ T U (qR, x) and ỹ ∈ TU (q̃R, x̃), then f−m(W S(y, ỹ))
intersects TU (qL, z) at a point w such that {p, f−m(y), qL, w} are the vertices of a rectangle
in RR.

qL

qR

x

f−1(x)

f−2(x)

z

p f−3(x)f−4(x)

x

p

qR

f−1(z) z

w

p

qR

eLqL

yx

p

x qR

w

y

(a) (b)

(c) (d)

Figure 11: Constructing new homoclinic orbits.

Proof.

1. Let S = W S(x, x̃). By the Lambda-lemma, f−n(S) converges to W S as n → ∞ in the
C1-topology. Hence, there exists m such that f−m(S) transversely intersects T U (qL, eL)
at a point z, and by taking sufficiently large m, we can choose z so that W S(f−m(x), z)
does not intersect T U .

2. Let S be the segment T S [f−m(x), z]. Since f−(m+1)(x) ∈ TU(p, f−m(x)), f−1(z) ∈
TU (p, qL), and f is orientation-preserving, the arc f−1(S) crosses WU(qL, x). Since f−1(S)
cannot cross TU [p, f−m(x), there must exist w ∈W U (qL, x)∩f−1(S) such that W S(f−(m+1)(x), w)
does not intersect T U .
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3. Since x, x̃ ∈WU(y, ỹ), the arc W S(f−m(y), f−m(ỹ)) lies ”outside” of W S(f−m(x), f−x(r̃))
and so must intersect T U (qL, z).

The same argument shows that a similar result holds on interchanging the L and R subscripts.
We use the following naming scheme for homoclinic orbits. We let HL∞ be the orbit of qL,

and HR∞ be the orbit of qR. If x is a point of a homoclinic orbit formed from an orbit HR∞,···
by the construction of Lemma 3.8, then we say that x is a point of the orbit HL∞,Rm+1,···. We
use m + 1 for compatibility with the binary star graph labelling used in Section 3.1.

Theorem 3.9. Let T be a trellis for a diffeomorphism f such that T has a fixed point p ∈ T P

such that each branch of T U (p) intersects a branch of T S(p). Then [T ; f ] is universal.

Proof. Let HL be the orbit of qL and HR be the orbit of qR. By Lemma 3.8 there exists mr

such that there is a homoclinic orbit of type HL∞Rmr , and nr such that there is an orbit of
type HR∞LnrRmr . Similarly, there exist ml, nl such that there is a homoclinic orbit of type
HL∞RnlLml . If we let m = max{ml,mr} and n = max{nl, nr}, then by Lemma 3.8 there is
an orbit of type HR∞LnRm and an orbit of type HL∞RnLm . We now take subsets of W U and
W S containing points of these orbits, and prune to obtain a trellis type [Tm,n; fm,n] forced
by HR∞LnRm and HL∞RnLm as shown in Figure 12. We now show that Tm,n is topologically
universal.

p

Figure 12: A topologically universal trellis Tm,n.

The graph representative gm,n of [Tm,n; fm,n] is a binary star graph map and is shown in
Figure 13.

By Theorem 3.2, the suspension of the graph map contains a universal template. This means
that for any knot or link L, there is a braid B in the suspension of the graph map with knot type
L. Since gm,n is the graph representative of [Tm,n; fm,n], this means that any diffeomorphism
in the trellis mapping class has a collection of periodic orbits with braid B in the untwisted
suspension flow by Theorem 3.4. Since [Tm,n; fm,n] is obtained from [f k(TU ), f−k(T S); f ] by
a pruning isotopy, it follows from Theorem 3.5 that f has a periodic orbit of braid B in the
untwisted suspension flow. Hence f is universal.

4 Conclusion

In this paper, we have shown that the existence of a pair of transverse homoclinic orbits to a
hyperbolic saddle point which lie on different branches is sufficient to imply the presence of all
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zL5 zp zR4 zL9 z
′

R4
z
′

L5

zR10

zL6

zR1

zR2

zL8

zR3
zL4

zL3
zR7

zL2

zR6 zL1

zR5

zR8

zL7
zR9

Figure 13: The graph representative }m,n of [Tm,n; fm,n]. The control edges are mapped zLm 7→
zL(m−1) and zRm 7→ zR(m−1).

knots and links in the natural suspension flow.
The paper combines ideas of template theory, embedded graph maps, trellises and homoclinic

orbits, together with a number of constructions to pass from one object to another.
We pass from the homoclinic orbits to a template in a number of steps, first using the Lambda

lemma to construct extra homoclinic orbits, a pruning isotopy to reduce to a known class of
trellises, a deformation retract to collapse to the graph representative of the trellis type, and a
suspension of the graph representative to obtain a template. This template can then shown to
be universal by using results of [GK04].

The trellis type [T ; f ] shown here is particularly simple, as it only has two homoclinic inter-
sections. We conjecture that any universal diffeomorphism contains a pair of homoclinic orbits
with with homoclinic braid type of qL and qR, making [T ; f ] a “universal” universal trellis. and
not some iterate.

Acknowledgement This work was carried out during a three-month stay with the De-
partment of Mathematics at Kyoto University, Japan. The author would like to thank Hiroshi
Kokubu for the invitation to visit, and Eiko Kin for many fruitful discussions which were invalu-
able in the writing of this paper. The author was partially supported by the 21-st century COE
program “Formation of an International Center of Excellence in the Frontier of Mathematics
and Fostering of Researchers in Future Generations”.

References

[BH95] M. Bestvina and M. Handel, Train-tracks for surface homeomorphisms, Topology 34

(1995), no. 1, 109–140.

[Bir74] Joan S. Birman, Braids, links, and mapping class groups, Princeton University Press,
Princeton, N.J., 1974, Annals of Mathematics Studies, No. 82.

[BW83] Joan S. Birman and R. F. Williams, Knotted periodic orbits in dynamical system.
II. Knot holders for fibered knots, Low-dimensional topology (San Francisco, Calif.,
1981), Contemp. Math., vol. 20, Amer. Math. Soc., Providence, RI, 1983, pp. 1–60.

[Col04] Pieter Collins, Dynamics of surface diffeomorphisms relative to homoclinic and hete-
roclinic orbits, Dyn. Syst. 19 (2004), no. 1, 1–39.

13



[FM93] John Franks and Michael Misiurewicz, Cycles for disk homeomorphisms and thick
trees, Nielsen theory and dynamical systems (South Hadley, MA, 1992), Contemp.
Math., vol. 152, Amer. Math. Soc., Providence, RI, 1993, pp. 69–139.

[Ghr97] Robert W. Ghrist, Branched two-manifolds supporting all links, Topology 36 (1997),
no. 2, 423–448.

[GHS97] Robert W. Ghrist, Philip J. Holmes, and Michael C. Sullivan, Knots and links in
three-dimensional flows, Lecture Notes in Mathematics, vol. 1654, Springer-Verlag,
Berlin, 1997.

[GK04] Robert Ghrist and Eiko Kin, Flowlines transverse to knot and link fibrations, Pacific
J. Math. 217 (2004), no. 1, 61–86.

[GvST89] J.-M. Gambaudo, S. van Strien, and C. Tresser, The periodic orbit structure of ori-
entation preserving diffeomorphisms on D2 with topological entropy zero, Ann. Inst.
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