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This paper presents a fast numerical solver for a nonlinear constrained optimization 
problem, arising from 3D concentrated frictional shift and rolling contact problems with 
dry Coulomb friction. The solver combines an active set strategy with a nonlinear conjugate 
gradient method. One novelty is to consider the tractions of each slip element in a polar 
coordinate system, using azimuth angles as variables instead of conventional traction 
variables. The new variables are scaled by the diagonal of the underlying Jacobian. The 
fast Fourier transform (FFT) technique accelerates all matrix–vector products encountered, 
exploiting the matrix’ Toeplitz structure. Numerical tests demonstrate a significant 
reduction of the computational time compared to existing solvers for concentrated contact 
problems.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Physics

The frictional contact problem has attracted interest from many researchers, due to various applications in the industry 
and engineering fields, e.g. rolling contact fatigue (RCF) [10], the fatigue life of machine elements [31], friction and wear 
[7,29,13]. This problem concerns two elastic bodies. When they are pressed together, the forces they obtain from each other 
result in elastic deformation. This yields a contact area where the surfaces of the two bodies coincide, and exert stresses 
on each other. These stresses are composed of normal stress (pressure), and the frictional stress (traction) acting in the 
tangential direction. When and where the frictional stress is small, the two bodies stick to each other. However, local sliding 
occurs where the frictional stress is large enough. The challenge is to find the distribution of the frictional stress, and the 
subdivision of the contact area: which part is an adhesion area and in which part does slip occur.

The model for frictional contact starts with a known contact area and pressure distribution. Then the frictional stress 
should satisfy:

1. In the adhesion area, the magnitude of the tractions does not exceed the traction bound, and there is no slip.
2. In the slip area, the traction bound is reached, and the resulting slip points in the opposite direction of the tractions.
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The traction bound comes from the frictional law that is used. For this one may take Coulomb’s law locally, which states 
that the traction bound equals the product of the normal pressure and a friction coefficient. The magnitude of the tangential 
tractions should be less or equal to the traction bound. On the one hand, this gives rise to inequality constraints. On the 
other hand, when slip occurs, equality should hold, and the directions of the tangential tractions and the resulting slip 
should be opposite. This brings in nonlinearity.

1.2. Solution strategies

The classic solutions to frictional contact problems with partial sliding stem from the work by Cattaneo [4] and Mindlin 
[23]. In the last decades, other solution techniques have been studied, for example Johnson [14] and Kalker [17] contributed 
with fundamental work.

The numerical solution techniques employ variational inequalities [14,17,38]. They are generally divided into two classes. 
One is the class of finite element methods (FEM) [18,38,20,6,2,12], that are widely used, especially in the case of large 
deformations, and nonlinear elastic materials. These methods typically focus on overall behavior. Due to the discretization 
of the contacting bodies, this method can be computationally expensive. The other class is the boundary element methods 
(BEM) [17,1,22,19], that are well-suited for “concentrated contact” and efficient for homogeneous elastic problems. The 
boundary value problem is transformed to a boundary integral equation. The dimensionality of the problem decreases, i.e., 
the 3D contact problem is solved by considering 2D contact regions where only the boundary is discretized. Hence, this 
method reduces the computational time significantly.

When the contacting bodies are of different materials, the tangential tractions and normal displacements interact with 
each other. In this case, the normal and tangential problems cannot be easily separated. A straightforward way to process it 
is to solve a fully coupled formulation [37]. Another popular approach is via the so-called “Panagiotopoulos process” [25,9,
17]. In each iteration, the normal problem is solved first followed by the tangential problem. When contacting bodies are of 
the same material, i.e. a so-called quasi-identity case, these two problems can be decoupled, and one iteration is sufficient 
[17].

1.3. Solution algorithms

Kalker’s variational approach [17], which is a prominent method for the rolling contact problem, employs Green’s func-
tion for the elastic half-space. This is a BEM, where Coulomb’s law is applied. A fine discretization is used inside the contact 
area. Dense matrices need to be solved for elements in the contact area.

As a solution algorithm, the TANG algorithm was proposed in [16]. It applies an active set strategy [24], which leads 
to systems of nonlinear equations that are solved using Newton’s method and Gauss-elimination (GE). This approach has 
O(n3.5) complexity, with n the number of contact elements. Another method is the ConvexGS method [32]. It reduces the 
global problem to a small-sized optimization problem on each element, and solves by a block Gauss–Seidel iteration. This 
method is incorporated into the software CONTACT [35]. However, the Gauss–Seidel process is also relatively slow for fine 
discretizations with a complexity of about O(n2.3) [33].

Different from BEM, FEM is based on a large number of elements covering whole contacting bodies, while much fewer 
elements are placed in the contact area. Sparse matrices are solved, but the size of the matrices is much larger than the 
dense matrices involved in BEM. Algorithms include the penalty approach, the augmented Lagrangian technique, etc. Com-
paring with the BEM methods, we encounter similar approaches for the nonlinear equations, like Newton-based methods 
[38], or a nonlinear Gauss–Seidel method [15] that is similar to ConvexGS.

1.4. A new solution method

The motivation of our work is to develop a fast solver for the 3D frictional contact problem, especially for the so-called 
shift problem, e.g. the Cattaneo shift [4]. It is a transient contact problem, and concerns one object pressed onto another, 
and shifted tangentially. It plays an important role in the study of rolling contact problems, since there can be generally a 
sequence of shift problems. In this paper we consider the tangential problem, with the solutions from the normal problem 
already available. It can be easily incorporated into the Panagiotopoulos process, to deal with more complicated contact.

Our new method contributes to the BEM solvers. We call it “TangCG”, since it searches for the tangential tractions and 
is based on the nonlinear conjugate gradient method. The constraint that the magnitude of tractions on each slip element 
should equal the traction bound, inspires to place the traction vector at a circle in a polar coordinate system, with the 
radius being the traction bound. We use azimuth angles as variables in the slip area, which is a significant difference from 
conventional solvers.

The TangCG algorithm is a so-called bound-constrained conjugate gradient (BCCG) method, which was proposed for linear 
complementarity problems in normal contact [34]. The BCCG method uses an active set strategy, and employs the conjugate 
gradient (CG) method for the governing linear system. Differently, the governing system in frictional contact problems is 
mainly nonlinear, hence, we employ a nonlinear conjugate gradient (NLCG) method [28]. The TangCG algorithm is combined 
with a diagonal scaling preconditioner.
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The most time consuming part of the solution procedure relates to a Boussinesq integral [14,17], which gives the relation 
between tractions and deformation. It results in a dense, symmetric and positive definite coefficient matrix. This matrix is 
block Toeplitz matrix with Toeplitz blocks (BTTB).1 Such structure can be exploited by fast Fourier transform (FFT), which 
has been applied in the field of contact problems, e.g. [30,36,5]. The complexity is reduced by FFT to O(n log n) with n the 
number of unknowns.

1.5. Structure of this paper

Section 2 gives the mathematical formulation of the 3D frictional contact problem and explains existing solvers. The 
TangCG method is illustrated and numerically analyzed in Section 3. Section 4 shows the numerical results of our new 
method, and also compares the efficiency with an existing method. Section 5 concludes.

2. Formulation of the 3D frictional contact problem

This section introduces the physical problem and the mathematical model of frictional contact. For more details, we refer 
to [17]. Subsequently, the discretization and existing methods for the model are given.

2.1. Notations

We specify some notations that will be used. The element index is I or J , which often appears as subscript. Sub- or 
super-scripts x and y indicate x- and y-directions, respectively. Letters in bold represent vectors. The tractions on element 
I are defined by pI = [pIx, pI y], including two traction components in the x- and y-directions. Without the subscript I , e.g. 
u is defined by u = [ux, uy]. Here, ux = [u1x, u2x, . . .] indicates the x-direction deformation of all elements, and a similar 
definition applies on uy .

Vectors s̄I and sI are slip velocity and distance, respectively, on element I . For the use in Section 3, the primary variables
on an adhesion element have two entries for x- and y-directions, but we use only one entry on each slip element, carrying 
the information about angles. They are denoted by subscript a, while subscript s denotes auxiliary variables, that have two 
entries for x- and y-directions on each adhesion and slip element. Superscript k is an iteration index.

2.2. Mathematical model of the frictional contact problem

First of all, we identify the geometry of two elastic bodies in undeformed state. A coordinate system O xyz is used on 
each particle of these two bodies to identify its position x. This coordinate system is assumed to move with the contact 
region, with z pointing normally to the other body and x, y directing tangentially. Deformation occurs when the bodies 
are brought into contact. An elastic field including stress σ , strain ε and displacements u arises in the bodies and on their 
surfaces. The formulation of contact problems particularly focuses on the surface quantities: surface displacements u(i)(x)

of body i (i = 1, 2) at position x, and surface tractions p(i)(x). The deformation at position x is defined by the displacement 
difference, i.e., u(x) = u(1)(x) − u(2)(x). Moreover, we solve for only tractions p(1), since the relation p(1) = −p(2) is valid for 
all particles on the surfaces.

The normal problem can be solved by Hertz theory [11] if the contacting surfaces are smooth and quadratically or by 
a numerical method (e.g. [35]) if the profile is non-Hertzian. The solution pressure is compressive in the contact area, and 
vanishes outside of it.

Tangential tractions result from the overall motion of the two bodies, causing a tendency of the surfaces to slip with re-
spect to each other, called “rigid slip”. In rolling contact it is often characterized via “creepage”, which is the average relative 
velocity between the surfaces, and is given by the difference between the forward rolling velocity and the circumferential 
velocity.

The formulation concerns three aspects, i.e., slip, elastic deformation, and the friction between the two contacting bodies. 
First of all, the relation between slip, rigid slip and deformation is defined by [35]:

s̄ := w̄ + 1

V

Du

Dt
, (1)

where, s̄ is the slip velocity of two opposing particles on the contacting surfaces with respect to each other. It is the 
summation of the relative rigid slip velocity w̄ and the change of deformation Du

Dt scaled by the rolling velocity V .
Concerning the effect of friction, the contact area C is divided into an adhesion area H and a slip area S , according to 

the contact conditions:{
in the adhesion area H(t): ||s̄(x, t)|| = 0, ||p(x, t)|| ≤ g(x, t),

in the slip area S(t): ||s̄(x, t)|| > 0, p(x, t) = −g(x, t) s̄(x,t)
||s̄(x,t)|| .

(2)

1 Toeplitz matrix is a matrix with constant diagonals.
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The norm || · || is the Euclidean norm. These conditions state that the magnitude of the tangential tractions at position x
cannot exceed the corresponding traction bound g in the adhesion area. When the traction bound is reached, local slip 
occurs with its direction opposite to the tractions.

The traction bound g in this model is obtained by applying Coulomb’s frictional law locally

g(x, t) = μpn(x, t), (3)

where μ is a constant friction coefficient, and pn is the normal pressure.
The deformation u in Eq. (1) is obtained by the half-space approach, which is based on four simplifying assumptions 

[17]. Firstly, the contacting bodies are made of homogeneous linear elastic material. Secondly, the contact area is very small 
compared with the contacting bodies and hence, it is flat. The geometry is assumed to be sufficiently smooth, and we ignore 
the effects of inertial force, which is a quasi-static approach.

Based on the classic solutions by Boussinesq and Cerruti (see Johnson [14] or Kalker [17]), the relation between the 
deformation u and traction p is given by:

u(x, t) =
∫

C(t)

A(x,x′)p(x′, t)dx′. (4)

This integral states that at a certain time instance t , the deformation at point x is influenced by the tractions on all points 
x′ ∈ C . Here, the kernel function A(x, x′) gives the influence of a unit traction at x′ on the deformation at x. It can be 
written as:

A(x,x′) = A(x − x′), (5)

which indicates that the influence coefficient depends on the relative positions of two surface points x and x′ . This property 
leads to a specially structured matrix after discretization.

2.3. Discretization

The discretization focuses on a rectangular potential contact area, which contains the true contact area. A rectangular 
mesh is placed on this 2D region, with N = nx × ny elements of size δx × δy. The coordinates of the center of the element 
I are denoted by [xI , yI ].

Tractions p in the surface integral (4) are approximated by element-wise constant functions. The cell-centered discretiza-
tion of the integral (4) yields, for each contacting element I:

uIx =
N∑

J=1

(Axx
I J p J x + Axy

I J p J y), uI y =
N∑

J=1

(A yx
I J p J x + A yy

I J p J y), (6)

where, uIx is the deformation in x-direction of element I . Influence coefficient Axy
I J represents the influence to the 

x-direction deformation on element I , caused by a unit y-direction traction on another element J . It is computed by 
integrating (4) over a single element J , with respect to an observation point at the center of element I (see [17] for the 
detailed formulas).

Writing (6) in matrix form, we obtain:

u = Ap, A ∈R
2n×2n, u,p ∈R

2n, (7)

where, the global coefficient matrix A has 2 × 2 blocks:

A =
(

Axx Axy

A yx A yy

)
, (8)

with each block Axx, Axy, A yx, A yy ∈R
n×n . These blocks are dense, symmetric, positive and definite (SPD). Moreover, due to 

property (5), these blocks are BTTB if the contact area is rectangular.2

To discretize slip Eq. (1), a sequence of time instances is used, with length δt = t − t′ , where t and t′ are the current and 
previous time points, respectively. Applying a backward Euler method for the derivative, we obtain:

s̄I = w̄I + uI − u′
I

δtV
. (9)

Define the traversed distance per time step as δq = V · δt , which is called time step for short. The shift on one element 
sI := δq · s̄I represents the aggregated slip distances over δq. Then, discretized Eq. (9) reads:

sI = wI + (uI − u′
I ), 1 ≤ I ≤ N, (10)

2 Otherwise, they are not BTTB anymore. An approach of applying FFTs in this case is given in [36].
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where rigid shift wI is defined as:

wI = [ξ − φ yI , η + φxI ]. (11)

Here ξ , η are longitudinal and lateral shifts, respectively, and φ is the rotation shift [35]. Since the deformation at a previous 
time u′

I vanishes in a shift problem, Eq. (10) yields:

sI = wI + uI . (12)

After discretization, condition (2) becomes:{
in the adhesion area H: ||sI || = 0, ||pI || ≤ gI ,

in the slip area S: ||sI || > 0, pI = −gI · sI/||sI ||. (13)

In the solution procedure, these two conditions are equivalent to solving the following equations:

• For adhesion element I ∈ H :

sI = 0. (14)

• For slip element I ∈ S:

p2
Ix + p2

I y = gI , (15)

pIxsI y − pI y sIx = 0, (16)

where Eq. (16) is derived from the fact that slip sI and traction pI are in opposite directions, and hence, p⊥
I ⊥sI with 

p⊥
I = [−pI y, pIx]. Eqs. (15) and (16) give rise to nonlinearity.

The frictional contact problem now consists of Eqs. (7), (12) and (13). It was shown that this problem can also be 
considered as a variational inequality [17]:

min
p

1

2
pT Ap + wT p, s.t. ||pI || ≤ gI for I ∈ C . (17)

This is a nonlinear convex optimization problem [3], for which, the corresponding Karush–Kuhn–Tucker (KKT) conditions 
[21] provide both sufficient and necessary conditions for the existence of a unique solution. The KKT conditions also result 
in Eqs. (7), (12), and (13).

2.4. Existing algorithms

There are essentially two existing methods based on the above formulation. One is Kalker’s “TANG” algorithm [16,17]. 
It is an active set method and consists of inner and outer iterations. In each outer iteration it fixes the subdivision of the 
contact area, which determines the corresponding governing systems (14)–(16). The resulting solution is used to modify the 
subdivision according to contact condition (13). Newton’s method is applied for the nonlinear system, and the linearized 
system in every inner iteration is solved by Gauss-elimination.

The limitation of this method shows when the problem size is large. Gauss-elimination, with complexity O(n3), is time-
consuming and memory-taking.

An alternative is the “ConvexGS” algorithm [32], which is a block Gauss–Seidel iteration. The elements in contact are 
processed one by one, with the recently updated tractions fixed. The subproblem defined on each element is derived based 
on the element-wise constraints in the convex optimization formulation (17). The corresponding nonlinear system (15)–(16)
for the element is solved by Newton’s method.

However, this method cannot benefit from an implementation using FFTs exploiting the BTTB structure.

3. New method: TangCG algorithm

We present our new algorithm TangCG for frictional contact in this section. Its main components are introduced in 
Section 3.1. Section 3.2 illustrates this method based on a small test, for additional insight. Section 3.3 gives the resulting 
algorithm.

3.1. Main components of the TangCG algorithm

The TangCG algorithm consists of six main components, shown in Fig. 1, where the adjacent pieces are related to each 
other.

The TangCG method adopts the framework of an active set strategy from the BCCG method [34]. In each outer iteration, 
the adhesion and slip areas are fixed and systems (14)–(16) are solved approximately; then we modify the subdivision 
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Fig. 1. The main components of the TangCG method. The adjacent pieces are related to each other.

of contact area, according to condition (13). A reduced system of equations is considered in inner iterations, where the 
constraints for elements in the slip area are automatically enforced.

The most pronounced component of the TangCG algorithm is as follows. Different from conventional methods that use 
traction variables, we change variables in the slip area, where the magnitude of tractions should equal the traction bound. 
On each slip element I , traction pI lies at a circle with radius gI . Therefore, we can define pI in a polar coordinate system 
with its two components pIx and pI y along the horizontal and vertical axes, respectively. Since gI is known, pI can be 
uniquely determined by the azimuth angle θI as: pI = gI · [cos(θI ), sin(θI )]. Thus, Eq. (15) is automatically satisfied. Only 
Eq. (16) is to be solved on each slip element.

For the resulting nonlinear system, TangCG employs a nonlinear conjugate gradient (NLCG) method. In each NLCG it-
eration, the system is linearized, and a CG process is applied. Concerning the construction of the search directions, the 
conjugacy may be lost as the iterations proceed. The Polak–Ribière formula [26] is in our case the preferable choice 
compared to the Fletcher–Reeves formula [8] to improve the search directions: the former directs the search direction 
automatically towards the steepest descent direction when the residual in the previous iteration is orthogonal to the new 
search direction, while the latter restarts the solution process in this case [27].

Preconditioning is done using the diagonal of the reduced system’s Jacobian matrix. This preconditioner is necessary for 
the TangCG method, which employs different variables in adhesion and slip areas. These quantities are brought to the same 
measure by this preconditioner. Without preconditioner the solver may largely disregard the residual in either the adhesion 
or the slip area, depending on the material parameters.

Since the TangCG algorithm avoids generating Jacobian matrices, the matrix–vector products (MVPs) encountered only 
depend on the influence coefficient matrix A in (7), which includes submatrices being block Toeplitz with Toeplitz blocks 
(BTTB). The fast Fourier transform (FFT) technique is applied to accelerate such MVPs with complexity O(n log n).

3.2. Illustration of the TangCG algorithm

This subsection aims at showing how the pieces shown in Fig. 1 are combined to result in an efficient algorithm. A very 
small test case is considered. It consists of only two elements in contact, with elements 1 and 2 in the adhesion and slip 
areas, respectively. The traction bounds gI , I = 1, 2 are given.

3.2.1. Change of variables in slip area
Let’s start with a prominent component of the method, which is the change of variables in the slip area. The following 

discussion is for the kth TangCG iteration, with the tractions pk−1 and slip sk−1 known from the previous iteration. For 
clarity of the equations, we avoid the iteration indices k − 1 and k where possible.

When the slip area S is empty, i.e. in the full adhesion case, the governing system s = Ap + w = 0 is linear. When the 
slip area S is not empty, it becomes nonlinear. Considering the two-element test, the governing system reads:

F f = 0, (18)

with

F1 = s1x, (19)

F2 = s1y, (20)

F3 = p2
2x + p2

2y − g2
2, (21)

F4 = p2xs2y − p2ys2x, (22)

where the first two equations correspond to adhesion element 1. Eqs. (21) and (22) for slip element 2 bring in nonlinearity, 
and TangCG applies an NLCG method. The nonlinear system (18) is linearized by a truncated Taylor expansion, which yields:

J f · δp f = −F f (pk−1), (23)

with Jacobian matrix J f = ∇F f (pk−1) having the following form:
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J f (pk−1) =
⎛
⎜⎝

Axx
11 Axy

11 Axx
12 Axy

12
A yx

11 A yy
11 A yx

12 A yy
12

0 0 p2x p2y

a1 a2 a3 a4

⎞
⎟⎠ , (24)

and:

a1 = p2x A yx
21 − p2y Axx

21, a2 = p2x A yy
21 − p2y Axy

21,

a3 = p2x A yx
22 − p2y Axx

22 + s2y, a4 = p2x A yy
22 − p2y Axy

22 − s2x.

This Jacobian matrix corresponds to variables δp f = [δp1x, δp1y, δp2x, δp2y]T . It is not symmetric and thus the CG method 
cannot be applied.

A change of variables in the slip area can overcome this difficulty. Since traction p2 is placed at a circle of radius g2 (e.g. 
see Fig. 2(a)), the nonlinear Eq. (21) is satisfied automatically and can be eliminated. The linearized version of this equation 
gives:

p2xδp2x + p2yδp2y = −(p2
2x + p2

2y − g2
2)

= 0 (since assuming ||p2|| = g2), (25)

which indicates δp2 ⊥ p2. It further yields:

δp2x = −p2yδθ2, δp2y = p2xδθ2. (26)

This relation satisfies ||δp2|| = ||p2||δθ2, which is the definition of the arc length corresponding to the angle δθ2. This arc 
length is approximated by vector δp2 which is orthogonal to p2.

3.2.2. Reduced system
Eliminating Eq. (21) yields a reduced system written as:

Fr = 0, (27)

and the linearized system with relation (26) is given by:

Jrδpr = −Fr, (28)

with a 3 × 3 Jacobian matrix:

Jr =
⎛
⎝ Axx

11 Axy
11 a1

A yx
11 A yy

11 a2
a1 a2 a4 p2x − a3 p2y

⎞
⎠ . (29)

The corresponding variables are δpr = [δp1x, δp1y, δθ2]T satisfying

δp f = T δpr, (30)

with transformation matrix T defined by:

T =
⎛
⎜⎝

1
1

−p2y

p2x

⎞
⎟⎠ , (31)

whose transpose can convert δp f to δpr . The reduced Jacobian matrix (29) is symmetric and positive definite (SPD), so we 
can apply CG to it.

3.2.3. Solution method for the reduced system
The reduced system (27) is solved by an NLCG method. In each of its iterations, the CG method is applied to the 

linearized system (28), with initial iterate δp0
r = 0.

First of all, we compute the residual of linearized system (28) by:

ra = −Fr − Jr · δp0,

= −Fr, (because δp0
r = 0), (32)

which is equal to the residual of the nonlinear system (27). The search direction va adopts the steepest descent direction 
when the area subdivision changed. Otherwise, it employs the Polak–Ribière formula. The line search aims at determining 
a step length α, such that the residual resulting from the updated iterate is orthogonal to the current search direction va . 
This yields a formula for α given by:
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α = (ra,va)

(va,qa)
, (33)

where qa is the change of the residual caused by va , defined by:

qa = Jrva. (34)

Subsequently, the iterate of linear system (28) is corrected by δp1
r = αva . This further gives:

T δp1
r = αT va ⇒ δp1

f = α · vs, (35)

where vs is the auxiliary search direction defined by:

vs = T va. (36)

The new traction iterate is given by:

pk = pk−1 + δp1
f = pk−1 + α · vk

s . (37)

Moreover, the tractions on each slip element need to be projected onto the corresponding circle. This represents one NLCG 
iteration.

3.2.4. Matrix–vector products
To compute qa in (34), TangCG does not directly implement this multiplication of Jacobian matrix Jr and vector va , but 

takes a detour, which allows the use of FFTs. Vector va is transformed to the auxiliary search direction vs by (36). Then its 
influence on slip δs can be computed by

δs = Avs, (38)

where the FFT technique can be applied due to the matrix A in (8). Eq. (34) with relation (26) yields:

qa =
(

δs1x

δs1y

p2xδs2y − p2yδs2x + s2y v2x − s2x v2y

)
. (39)

This indicates that on adhesion element 1 we have δs1 = qa1, and on slip element 2, δs2 also has its influence as seen in 
the last formula in (39).

3.2.5. Active set framework from BCCG(K)
An outer iteration is processed after every K inner iterations. It validates the contact conditions, and adjusts the subdivi-

sion of the contact area. The adhesion elements with ||pI || > gI are moved to the slip area, and are projected to ||pI || = gI . 
Remember that tractions pI of each slip element should have opposite directions with the slip sI . The elements are moved 
to the adhesion area if these two vectors lie in the same half plane. Finally, the tolerance of the solution is checked.

3.2.6. Illustration from view by angles
Since TangCG uses angle variables in the slip area, it can be explained from the view of angles as well. We define the 

anti-clockwise angle to be positive. Fig. 2 shows the kth TangCG iteration on slip element I . (We drop the superscripts k − 1
and k in this figure.) In this discussion, we will use six angles τi , i ∈ {1, 2, 3, 4, 5, 6}.

In Fig. 2(a), the traction pI lies at the circle with radius gI . It is expected that

θp = θs + π, (40)

i.e., the azimuth angle of slip sI plus π is equal to azimuth angle of pI . We notice that τ2 = θs + π − θp is the residual of 
Eq. (40); τ2 represents the angle along which pI should move, in order to be located opposite to sI . However, a change in 
pI also causes a change in sI . So τ2 is not the exact angle that pI needs to be changed with.

The angle residual computed by Eq. (32) is given by:

raI = −(pIxsI y − pI y sIx)

= || − p⊥
I ||||sI || cos(τ1)

= gI ||sI || sin(τ2) (since τ2 = π/2 − τ1)

≈ gI ||sI ||τ2, if τ2 → 0, (41)

where −p⊥
I = [pI y, −pIx] is orthogonal to pI , and τ1 is the angle between −p⊥

I and sI . Residual raI can be regarded as the 
angle τ2 scaled by gI ||sI ||. It gives a preliminary angle by which the traction pk

I should move.
In the first iteration, the search direction is equal to raI . As a result of linearization, the auxiliary search direction vsI is 

orthogonal to pI , as seen in Fig. 2(b). It is a linear approximation of the arc length, corresponding to the angle raI .
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Fig. 2. First TangCG inner iteration on slip element I . (a) At the beginning, traction pI lies at the circle with radius gI . It should be opposite to slip sI . 
(b) Primary residual raI (equal to search direction vaI ) is computed. The auxiliary search direction vsI is set to be orthogonal to pI , due to linearization. 
(c) Line search is performed to get a step length α = (va ,ra)

(va ,qa)
, where qaI is obtained from the information of two angles τ4, τ6. (d) Update the traction by 

pk−1
I + αvk

sI , which is then projected onto the circle, obtaining pk
I .

By the line search, the TangCG method computes the change of slip δsI , as shown in Fig. 2(c). It calculates the change of 
angle residual qa as in (39):

qaI = pIx · δsI y − pI y · δsIx + sI y · v Ix − sIx · v I y

= ||p⊥
I ||||δsI || cos(τ3) + ||v⊥

I ||||sI || cos(τ5)

= gI ||δsI || sin(τ4) + ||v⊥
I ||||sI || sin(τ6) (since τ4 = π/2 − τ3, τ6 = π/2 − τ5)

≈ gI ||δsI ||τ4 + ||v⊥
I ||||sI ||τ6, if τ4, τ6 → 0, (42)

where v⊥
I = [−v I y, v Ix]. The two angles τ4, τ6 are presented in Fig. 2(c). They, together with the concrete scaling, give the 

angle change qaI .
Then, the TangCG method computes the step length. The updating is shown in Fig. 2(d): after adding αvI to pk−1

I , the 
result is projected onto the circle again, which yields new iterate pk

I .

3.2.7. Preconditioning
The idea of preconditioning for Krylov subspace methods is to reduce the condition number of the coefficient matrix. In 

the TangCG algorithm, the preconditioner is applied to the reduced Jacobian matrix (29) in each NLCG iteration.
We use a diagonal matrix as the preconditioner, which scales the main diagonal of the Jacobian, to result in a matrix 

with constant diagonal entries. This constant can be chosen to be any diagonal component of Jacobian, corresponding to an 
adhesion element. The residuals in the adhesion and slip areas have different meanings: residuals are “slip” in the former 
and “angle” in the latter area. Hence, the preconditioner scales the quantities to the same measure, e.g. the measure in the 
adhesion area. Regarding computational time, the preconditioner should not cost much.

In the two element case, a preconditioner M for Jr in (29) is given by:

M =
⎛
⎝1

Axx
11/A yy

11
Axx

11/(a4 pk
2x − a3 pk

2y)

⎞
⎠ . (43)

With M = S2, the preconditioned matrix S Jr S has values of Axx on its main diagonal.
11
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3.3. The resulting algorithm

We detail the resulting TangCG algorithm with preconditioner M below. (The unpreconditioned algorithm can be ob-
tained by setting M = I .)

0. Given normal pressure pn and contact area C , we solve for the tangential tractions and the subdivision of the contact 
area. The initial adhesion and slip areas are set as: H0 = C and S0 = ∅. We use zero initial tractions p0 = 0.

1. Start iterations k = 1, 2, . . . by computing slip sk−1 = w + Apk−1.
2. Compute corresponding primary residual rk−1

a , as Eq. (32):{
rk−1

aI = −sk−1
I , I ∈ Hk−1,

rk−1
aI = −(pk−1

Ix sk−1
I y − pk−1

I y sk−1
Ix ), I ∈ Sk−1.

(44)

3. Preconditioning by: zk−1
a = Mrk−1

a .
4. Compute primary search direction vk

a:
4.1 If the subdivision did not change, i.e. Hk−1 = Hk−2, then choose vk

a conjugate to vk−1
a as:

vk
a = zk−1

a + βk · vk−1
a , with βk = max(0, βk

P R), (45)

where βk
P R is the Polak–Ribière formula: βk

P R = (zk−1
a ,rk−1

a −rk−2
a )

(zk−2
a ,rk−2

a )
.

4.2 Else, restart CG by using vk
a = zk−1

a , the steepest descent direction.
5. Compute auxiliary search direction vk

s by Eq. (36):

vk
sI =

{
vk

aI , I ∈ Hk−1,

vk
aI · [−pk−1

I y , pk−1
Ix ], I ∈ Sk−1.

(46)

Here, search direction vk
sI can be regarded as the desired change of traction δpk . For a slip element, this corresponds to 

the desired change of angle vk
aI .

6. Compute the change in the slip by Eq. (38), i.e.: δsk = qk
s = Avk

s .
7. Compute the change in primary residual qk

a by Eq. (39):{
qk

aI = qk
sI , I ∈ Hk−1,

qk
aI = pk−1

Ix · δsk
I y − pk−1

I y · δsk
Ix + sk−1

I y · vk
Ix − sk−1

Ix · vk
I y, I ∈ Sk−1.

(47)

8. Compute the step length by Eq. (33), i.e.: αk = (rk−1
a ,vk

a)

(qk
a,vk

a)
.

9. Update tractions: p̃k = pk−1 + αk · vk
s for all elements. Then use:

pk
I =

{
p̃k

I , I ∈ Hk−1,

gI · p̃k/||p̃k||, I ∈ Sk−1.
(48)

10. In the inner iteration, i.e. mod(k, K ) �= 0, the subdivision of the contact area is fixed, i.e., Hk = Hk−1, Sk = Sk−1, go to 
Step 1.

11. At the end of each K th inner iteration, i.e. mod(k, K ) = 0, do the following:
11.1 Check elements I ∈ Hk−1. If ||pk

I || > gI , then move I to the slip area, and set pk
I = gI · pk

I /||pk
I ||. This gives H̃k

and S̃k .
11.2 Compute sk = w + Apk , and check the elements I ∈ S̃k . If (pk

I , s
k
I ) > 0, then move I to the adhesion area. This 

results in Hk and Sk .
11.3 Check for convergence. If the subdivision of the contact area does not change, and the stopping criteria on the 

solution is satisfied, then we are done. Else go to Step 1.

Remark 1. Steps 1–10 present one inner iteration, where a nonlinear system is solved approximately by K iterations of NLCG. 
Line search is performed in Steps 5–8. Step 11 checks the contact conditions and convergence, according to the BCCG(K) 
algorithm. Moreover, Steps 9 and 11.1 insure that ||pI || = gI , I ∈ S is always satisfied.

Remark 2. In the above algorithm, there are K inner iterations before checking the conditions. It may happen that the 
tolerance is already reached within the K inner iterations. An improved version is to leave the inner iteration as soon as a 
tolerance is reached, and check the conditions in the outer iteration.
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Fig. 3. The convergence behavior of TangCG with and without preconditioning, compared to CG, for four different initial points.

3.4. 2 × 2 test

To investigate the performance of NLCG within the preconditioned TangCG algorithm, we enlarge the test to a 2 × 2
grid, where Elements 1 and 2 are in adhesion and 3 and 4 are in slip. The contact area is [−1, 1] × [−1, 1] mm2. The 
material parameters are: G = 200 N/mm2, ν = 0.42. The traction bound is defined as g = [0.4, 0.8, 0.282843, 0.5]. The 
true solution reads: p∗

1 = [0.2, 0.1]; p∗
2 = [0.1, 0.2]; p∗

3 = [0.2, 0.2]; p∗
4 = [0.3, 0.4]. The true slip is s∗

1 = [0, 0]; s∗
2 = [0, 0]; 

s∗
3 = [−0.1, −0.1]; s∗

4 = [−0.3, −0.4].
We linearize the nonlinear system at true solution p∗ . By setting δp3x = −β3 · p∗

3y , δ3y = β3 · p∗
3x , and δp4x = −β4 · p∗

4y , 
δ4y = β4 · p∗

4x , the Jacobian matrix is reduced to a 6 × 6 matrix:

J∗
r =

⎛
⎜⎜⎜⎜⎜⎜⎝

Axx
11 Axy

11 Axx
12 Axy

12 ax
31 ax

41
A yx

11 A yy
11 A yx

12 A yy
12 ay

31 ay
41

Axx
21 Axy

21 Axx
22 Axy

22 ax
32 ax

42
A yx

21 A yy
21 A yx

22 A yy
22 ay

32 ay
42

ax
31 ay

31 ax
32 ay

32 ay
33 p∗

3x − ax
33 p∗

3y ay
34 p∗

4x + ax
34 p∗

4y

ax
41 ay

41 ax
42 ay

42 ay
43 p∗

3x − ax
43 p∗

3y ay
44 p∗

4x + ax
44 p∗

4y

⎞
⎟⎟⎟⎟⎟⎟⎠

. (49)

Here, for elements I ∈ S and the elements in contact J ∈ C :

if I �= J : ax
I J = A yx

I J · p∗
Ix − Axx

I J · p∗
I y, ay

I J = A yy
I J · p∗

Ix − A yx
I J · p∗

I y,

if I = J : ax
I I = A yx

I I · p∗
Ix − Axx

I I · p∗
I y + s∗

I y, ay
I I = A yy

I I · p∗
Ix − A yx

I I · p∗
I y − s∗

Ix.

The Jacobian matrix (49) is SPD. Its condition number is found to be 88.
The TangCG algorithm employs an NLCG process, whose convergence should be similar to the linear CG algorithm when 

the iterates are close to true solution p∗ . We test whether this is also true for the TangCG algorithm. We also check whether 
the preconditioner improves the convergence near p∗ .

As a test, four different initial points are implemented, respectively, with their absolute distances to p∗ being δi =
0.02, 0.001, 1 × 10−5, 1 × 10−7 (i = 1, 2, 3, 4). CG is applied to the linearized system J∗

r δp∗
r = 0, with initial δp0

r =
T T (p∗ − p0). The iterate is converted to traction by (30) and further the nonlinear residual is compared with those by 
the unpreconditioned and preconditioned TangCG algorithms.

These results are shown in Fig. 3. It can be seen that the closer the initial point is at the true solution, the more similar 
the convergence by TangCG is to the CG convergence. As the iterate approaches the true solution, the Jacobian matrix 
obtained by linearization in each TangCG iteration is close to the exact Jacobian J∗

r . In this case, the NLCG method within 
TangCG is the same as CG, as seen in Fig. 3(d). Moreover, we find that the preconditioner indeed improves the convergence 
of TangCG.
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Table 1
Test setting: seven cases with different percentages of slip. Longitudinal shift ξ , lateral shift η and rotation shift φ are prescribed. They are used to compute 
rigid shift w (see Eq. (11)).

Subdivision of contact area ξ η φ

Case 1 full adhesion 0 0 5 × 10−7

Case 2 0.6% slip 1.5 × 10−5 0 1 × 10−5

Case 3 20% slip 0 0.0015 0.0012
Case 4 40% slip 0.0021 0.0010 0.003
Case 5 60% slip 0.0037 0.0048 0.004
Case 6 80% slip 0 0.005 0.009
Case 7 full slip 0.0044 0 0.08

Table 2
Unpreconditioned TangCG(K): the total number of inner iterations with different values of K for the seven slip cases, using a 120 ×100 grid (with 5732 ×2 =
11464 unknowns).

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

K = 1 30 46 135 100 148 85 48
K = 2 30 52 66 94 119 81 48
K = 3 30 54 86 83 105 77 65
K = 4 30 50 94 104 117 95 57
K = 5 30 53 78 104 165 87 37

4. Numerical results

Various Cattaneo shift problems are tested here with different patterns of slip. A sphere is pressed onto a plane, and 
is then shifted tangentially. The sphere and plane are of the same material, with shear modulus G = 200 N/mm2, and 
Poisson’s ratio ν = 0.42. The potential contact area is [−a, a] × [−b, b] where a = b = 1.2857 mm. The total normal force is 
Fn = 9.1954 N. The radii of the sphere are Rx = R y = 50 mm, and the profile of the sphere is h = 1

2Rx
x2 + 1

2R y
y2. Coulomb’s 

law is applied with friction coefficient μ = 0.4.
Since the two contacting bodies are quasi-identical, the solution process is decoupled to first solve the normal problem, 

followed by the tangential problem. The former is solved by Hertz theory [14] or a numerical method [35], which results in 
a contact area C and normal pressure pn . Applying Coulomb’s law, we thus obtain the traction bound g = μpn . Below we 
focus on solving the tangential problems, with seven different slip cases, as specified in Table 1. The stopping criterion on 
the accuracy of the tractions is given by

||pk − pk−1||
||pk|| < ε, (50)

where, if not specified differently, we use ε = 10−5. The norm used in this section is the “root-mean-square” norm, defined 
as ‖ x ‖rms=

√
1
n

∑n
i=1 x2

i . This stopping criterion is chosen since engineers pay most attention to tractions, rather than to the 
slip, which is the residual of nonlinear system (27). Moreover, when (50) is satisfied, the residual of this nonlinear system 
is smaller than 10−8 in our numerical tests.

The tangential solvers are TangCG(K) algorithms with and without preconditioning, using the improved version men-
tioned in Remark 2. Remember that K is the number of NLCG iterations for one nonlinear system before checking the 
contact conditions. We implemented these two algorithms for the seven problem cases, in order to find an optimal value 
for K . They are then compared with each other, yielding the most efficient algorithm. It is also compared with the ConvexGS 
method [32], from the perspective of iteration numbers and CPU time.

4.1. Optimal K

First we use a 120 × 100 grid, which involves 5732 contacting elements with 5732 × 2 = 11 464 traction unknowns. We 
apply K ∈ {1, 2, 3, 4, 5} for the seven cases of Table 1.

Table 2 gives the total number of inner NLCG iterations by TangCG(K) iterations. For Case 1, the full adhesion problem, 
the results are independent of the values of K . Remember that the TangCG(K) method starts with the subdivision H0 = C , 
and S0 = ∅. This is already the correct subdivision in the full adhesion case. The governing system is linear, and TangCG is 
actually equivalent to the CG method.

When slip occurs, different K values show different results. K = 1 is the fastest in the slight slip Case 2. It gets worse 
when more slip is included, as seen in Cases 3–6, where K = 3 seems a proper choice. The reason is that the slip area 
has to be found from initial area S0 = ∅. If K = 1, then only one inner iteration is performed and the traction iterates may 
not be accurate enough to perform a useful adjustment of the subdivision of the contact area: in Step 11 of the TangCG 
algorithm (see Section 3.3), many elements that are first moved from the adhesion to slip area, may be immediately moved 
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Table 3
Preconditioned TangCG(K): the total number of inner iterations with different values of K for the seven slip cases, using a 120 × 100 grid (with 5732 × 2 =
11464 unknowns).

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

K = 1 30 43 52 59 66 52 27
K = 2 30 50 47 52 77 60 32
K = 3 30 48 49 55 49 46 37
K = 4 30 45 56 52 56 50 34
K = 5 30 54 52 57 56 47 22

Fig. 4. Convergence of TangCG(3) with and without preconditioning for Cases 2–7, with ε = 10−8 in the stopping criterion (50). The horizontal axis is 
number of inner iterations, and the vertical axis is the relative difference between two iterates.

back. Using a larger value for K can improve this situation. However, if K is too large, there would be unnecessarily many 
inner iterations.

In the full slip Case 7, K = 5 results in the fastest convergence. The initial slip area S0 tends to be S = C . More precise 
solutions can move more elements into the slip area at once, which accelerates the convergence. Moreover, the results of 
other values for K are also acceptable.

From the above discussion, we find K = 3 is an optimal choice for the unpreconditioned TangCG(K) method in different 
cases. The same conclusion can be found for TangCG(K) with preconditioning, from the results in Table 3. Therefore, we will 
use K = 3 in the following tests.

4.2. Comparison between TangCG(3) with and without preconditioning

Comparing these two tables, we find that the preconditioner helps to accelerate the convergence, depending on the 
different slip situations. One exception is the full adhesion Case 1, where the main diagonal entries of the Jacobian are 
almost the same. Hence, the condition number after preconditioning hardly reduces.

Fig. 4 displays the convergence behavior of the two methods for Cases 2–7, that include slip. In this figure, we use 
ε = 10−8 in the stopping criterion (50), to examine the behavior of these two methods near the true solution. We find 
that TangCG(3) with preconditioning greatly speeds up the convergence and makes the method much more robust. It gives 
an almost linear reduction of the difference between two iterates, when approaching the true solution. TangCG(3) without 
preconditioning, on the other hand, displays a slower convergence speed, and even an oscillate reduction in Case 2.



J. Zhao et al. / Journal of Computational Physics 288 (2015) 86–100 99
Table 4
Numbers of inner iterations by preconditioned TangCG(3), and numbers of iterations by ConvexGS (shown in brackets).

Discretization 30 × 25 60 × 50 120 × 100 240 × 200

# traction unknowns 728 2880 11 464 45 736
Case 1 14 (23) 23 (32) 30 (50) 49 (77)
Case 2 20 (26) 33 (32) 48 (48) 62 (72)
Case 3 33 (31) 39 (37) 49 (56) 65 (88)
Case 4 33 (32) 41 (33) 55 (48) 76 (73)
Case 5 33 (31) 42 (32) 49 (45) 70 (69)
Case 6 34 (29) 34 (30) 46 (35) 73 (53)
Case 7 14 (18) 12 (18) 37 (18) 25 (18)

Fig. 5. CPU time in seconds by TangCG(3) with preconditioning and ConvexGS for (a) Cases 1 and 3, (b) Cases 5 and 7.

4.3. Comparison with ConvexGS method

We compare TangCG(3) with preconditioning to the performance of the ConvexGS method in the software CONTACT. 
The codes of the former were written in Matlab 7.13 (R2011b). The latter was programmed in Fortran. Both methods are 
implemented on a Linux desktop PC (Intel Core I5-2400 processor, quad-core, 3.1 GHz). First of all, iteration numbers by 
these two methods are compared in Table 4, where the iteration numbers by ConvexGS are given in brackets. As can be 
seen, iteration numbers of TangCG(3) are of O(n0.4), with n the number of unknowns.3 Moreover, TangCG(3) requires fewer 
iterations than ConvexGS for the test cases with a small percentage of slip. With more slip, the iteration numbers are 
comparable.

Fig. 5 shows the CPU time (in seconds) for some of the test cases, for TangCG(3) with preconditioning (denoted by solid 
lines), and ConvexGS (denoted by dashed lines). For the smallest problem, both methods require approximately the same 
computing time. The superiority of TangCG(3) shows when more unknowns are involved. The speedup factor is defined as 
the ratio of time by ConvexGS and by TangCG(3). For around 1 × 104 unknowns, the speedup factors for Cases 1, 3, 5, 7 
are about 13, 8, 8, 2, respectively. They grow to 27, 20, 19, 9 when the number of unknowns is multiplied by a factor of 4. 
Fig. 5 also displays curves of quadratic complexity O(n2) and linear complexity O(n) (denoted by the dash–dot lines). The 
CPU time curves for TangCG(3) remain between these two complexity lines. We find that the complexity of TangCG(3) is 
O(n1.7), which is faster than ConvexGS with O(n2.3). Note that ConvexGS cannot benefit from the favorable Toeplitz matrix 
structure.

5. Conclusion

In this paper we propose the TangCG algorithm to solve a nonlinear constrained optimization formulation, arising from 
the frictional contact problem. The corresponding KKT conditions provide the governing equations and contact conditions. 
The TangCG algorithm applies an active set strategy. The subdivision of the contact area is fixed and the resulting governing 
system is solved approximately. The resulting solution is used to modify the subdivision based on these contact conditions.

Because the magnitude of the tractions on a slip element equals the traction bound, we can change the conventional 
traction variables to azimuth angles, when placing the traction vector of each slip element in a polar coordinate system. 

3 There is no good estimate for Case 7, since the corresponding iteration numbers do not gradually increase but oscillate as unknown n grows.
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This changes the constraints to simple bounds such that the BCCG strategy can be used. The resulting nonlinear equations 
are solved by several NLCG iterations, which is based on linearization and applies a CG method in each iteration. A diagonal 
scaling preconditioner is necessary to bring the residuals of adhesion and slip areas to the same scale, and all matrix–vector 
products in this algorithm are speeded up by FFTs.

The TangCG algorithm is tested for Cattaneo shift problems, with different amounts of slip. The preconditioner is found to 
improve robustness and accelerate convergence when slip occurs. The computational time is reduced dramatically compared 
to ConvexGS, a state-of-the-art method for concentrated frictional contact problems. The corresponding speedup factor 
grows as problem size increases. This confirms the efficiency of our new method. Moreover, since rolling contact problems 
can be transformed into a sequence of shift problems, our TangCG method can also be applied in this case.
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