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ABSTRACT

The Eggshell method was introduced by F. Henrotte as a novel magnetic force computation
method. It allows computation of the force by integrating the magnetic stress tensor over a shell
surrounding the body of interest. We investigate the numerical properties of this method for
current carrying wires, and permanent magnets immersed in two-dimensional stationary
magnetic fields, discretized by first and second order isoparametric triangular finite elements.
We do so by comparing the accuracy of the method, as a function of the mesh size and element
order, with the result of three classical force computation methods: the Lorentz, the Virtual Work
and the Maxwell Stress Tensor method. Our numerical results clearly show that for current
carrying wires the Lorentz method is the method of choice. For permanent magnets (for which
the Lorentz method no longer applies) the isoparametric second order Eggshell method is more
accurate than the Virtual Work or the Maxwell Stress Tensor method. These results make the
Eggshell method attractive for use in more complex problems. The Eggshell method is applied
on second order isoparametric elements. Its implementation is presented in detail as a set of
new MATLAB post-processing routines in the FEMLAB simulation environment.
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Abstract

Purpose The eggshell method was introduced by F. Henrotte as a novel magnetic force com-
putation method. It allows computation of the force by integrating the magnetic stress tensor
over a shell surrounding the body of interest. We investigate the numerical properties of this
method for current carrying wires, and permanent magnets immersed in two-dimensional station-
ary magnetic fields, discretized by first and second order isoparametric triangular finite elements.
Design/methodology/Approach We do so by comparing the accuracy of the method, as a
function of the mesh size and element order, with the result of three classical force computation
methods: the Lorentz, the Virtual Work and the Maxwell Stress Tensor method.

Findings Our numerical results clearly show that for current carrying wires the Lorentz method
is the method of choice. For permanent magnets (for which the Lorentz method no longer applies)
the isoparametric second order eggshell method is more accurate than the Virtual Work or the
Maxwell Stress Tensor method.

Research limitations/implications These results make the eggshell method attractive for use
in more complex problems.

Originality /value The eggshell method is applied on second order isoparametric elements. Its
implementation is presented in detail as a set of new MATLAB post-processing routines in the
FEMLAB simulation environment.

Keywords Finite element method, force computation, magnetostatics, second order isoparamet-
ric discretization, Virtual Work, Maxwell stress tensor.

Paper type Research paper

1 Introduction

Several methods exist for computing the magnetic force on a rigid body in the post-processing stage
of a finite element (FE) magnetic field computation. It is not immediately clear whether there is an
efficient method that gives accurate results for a broad class of problems. The issue of magnetic force
computation is therefore still a matter of current research as evidenced by the numerous recent papers
on this topic [1, 12, 6, 10, 13, 14, 15, 17].

The aim of this paper is to present implementation aspects and numerical results of the eggshell
method. This method recently introduced [7, 8] is derived from an energy variation principle. The force
is obtained by integrating the Maxwell stress tensor times the gradient of the FE shape functions over
a thin layer of finite elements surrounding a device on which the force is computed. The performance
of the eggshell method is compared with that of three classical force computation methods [18]: the
Lorentz, the Maxwell Stress Tensor, and the Virtual Work method.

In this paper we restrict ourselves to two-dimensional magnetostatic field computations with per-
pendicular current and linear constitutive relations. Numerical results demonstrate that, with first
order triangular finite elements, very fine meshes are needed to achieve results which satisfy our accu-
racy requirements. Second order isoparametric FEs appear to be more efficient to solve the discretized
magnetic vector potential equation. Qur numerical experiments were carried out with the FEMLAB
simulation package [5], applying adaptive mesh refinement around the device on which the force is



computed. The implementation of the eggshell method requires a procedure for marking the elements
forming the shell and a procedure for integrating over this shell. We wrote these procedures for
FEMLAB by extracting information from the FEMLAB mesh data structures.

As test problems for our comparison, we consider the example model Electromagnetic Forces on
Parallel Current Carrying Wires provided with the Electromagnetics Module [4], pages 71-72, and
variants of this model. We doubled the number of wires and replaced one or both wires by a permanent
magnet. For each problem we investigate the convergence of the computed force for a decreasing mesh
size. The academic nature of this problem is such that simple checks on the computed forces are
available.

This paper is structured as follows. In Section 2, the partial differential equation of the magnetic
field (2D, perpendicular current) is summarized. Section 3 describes the FE discretization for linear
and quadratic triangular elements. For the quadratic elements special attention is paid to elements
with curvilinear edges. Classical force computation methods are discussed in Section 4. The theoretical
background and implementation of the eggshell method is found in Section 5. Section 6 presents the
numerical results of both the classical and the eggshell methods. Our conclusions are given in Section 7.

2 Perpendicular Current Magnetostatic Formulation

Let J denote the electric current density in the electrical conductors and M the magnetization asso-
ciated with the permanent magnets. For isotropic media the magnetic reluctivity v can be expressed
as v = vy v,, where 1y is the magnetic reluctivity of empty space and v, the relative permeability.
For stationary fields and geometries without moving parts, the double curl equation for the magnetic
vector potential A can be written as

Vx(vrVxA-M)=17J. (1)

This equation is a system of coupled partial differential equations for the three components of A. The
magnetic induction B can be derived from A by

B=VxA. (2)

The magnetic field H is related to B by a constitutive relation, that depends on the materials con-
sidered:

H=vB-M. (3)

For 2D planar geometries with perpendicular current, the vectors J, M, A, B and H simplify to

=~

D
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J=(0,0,J,),

M = (M, (z,y), My(z,y), 0),
A = (0,0, A(z,y)),

B = (B:(z,y), By(z,y), 0),
H = (Hz(z,y), Hy(z,y), 0) . (8
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Given these expressions, the system of coupled PDEs (1) becomes a single scalar PDE for the vector
potential component A,

0 0A, 0 0A, _
(o) - 2 (v 2 ) < ©)

This is a diffusion equation with diffusion coefficient v and source term .J, — ag/f“” + aé\i Y In this paper,

we consider homogeneous Dirichlet boundary conditions, i.e., A, = 0. Having solved this PDE, the




magnetic induction can be computed by the 2D equivalent of (2)

0A, 0A,
B, = dB,=————. 10
ay an Y oz ( )
The magnetic field components H, and H,, in turn are given by (3)
H,=vB; — M, and H =vBy, — M,. (11)

The FE discretization [16] of (9) requires casting this equation in weak formulation. To this end,
we denote the domain on which the PDE is defined by 2 and its boundary by I'. Furthermore, L?({2)
is the space of square integrable functions and H() its subspace of functions with square integrable
first derivatives [11]. The functions of H!(f2) that vanish on I' are denoted by Hi (). The space
L?(Q) has the scalar product

(u, v) = /Q w(x) v(x) dx. (12)

The gradient

ou Ou

VUZ(%’B_y)’

u € HY(Q) (13)

belongs to L?(Q) x L%(2). Denoting by - the Euclidean scalar product, the inner product on the latter
space is defined as

(u, v) = /Q u(x) - v(x) dx. (14)

Given the current density component J, and the magnetization components M, and M,, we introduce
on HJ(f2) the linear form

oM,

. 1 . _
F o HYO) R F() = (J:— 25 7+ 7

; V), (15)

and on HJ(2) x H(Q) the bilinear form
A: Hi(Q) x Hy(Q) = R : A(w, v) = (v Vw, Vv). (16)

By multiplying both sides of (9) with v € H}(Q), integrating over 2 and applying integration by
parts, the following weak formulation of (9) is obtained

find u € Hy(Q) such that A(u, v) = F(v), Yov e Hy(Q). (17)

Under suitable conditions on v, J,, M, and M,, this weak formulation has a unique solution, the
weak solution of (9). Finally, choosing a finite dimensional subspace X C H}(Q) and solving

find u € X such that A(u, v) =F(v), Vve X, (18)

yields the spatial discretization of (17).

3 FE Discretization

In the FE method the space X in (18) is a space of piecewise polynomials. Assuming 2 to be a
polygonal domain, we denote by 7y a triangulation of 2. The subscript A denotes the mesh width



of the triangulation. When €2 has smooth curved boundaries, the triangulation only resolves the
boundary in the limit for A — 0.

We denote by P (k = 1,2) the space of polynomials in the variables z and y with total degree
less than or equal to k. With any triangulation 73, we associate the finite dimensional subspace

Xn=XF = {vh €C°(Q) |vpjr € Px, VT € Tp}, (19)
where vp,|7 is the restriction of v to T. For the construction of a basis for the subspace V},
Vi i={vn € XF|vp =00nT}, (20)

we associate a set of FE nodes ZF with the triangulation 7y, defined by
h

-

where a%., i € {1,2,3} and a%, i € {4,5,6} denote the vertices and the midpoints of the edges of
triangle T', respectively.

In order to resolve curvilinear boundaries for second order elements, isoparametric elements are
used (see Section 3.2.1). The midpoints of an edge having vertices on the boundary are then shifted to
the boundary. In a global enumeration over all triangles we denote the FE nodes by a; and introduce
the following subset of =p,

=) ={a; €Z;|a; ¢T}. (22)

P ={a%|i€{1,2,3}, T €T}, for first order elements
2

»={a%lie{1,---,6}, T €Ty}, forsecond order elements (21)

[1] [1]

To each node a; € EY, we associate the function N; € V}, such that
Nj(ag) = 0j¢, Ve . ay € Eh, (23)

where 4, is the Kronecker delta. The set {N; |a; € Z)} forms a basis for V.
Equation (9) is discretized by taking subspace V4, for X in (18), and approximating the solution u
by

up = Z Sj Nj . (24)

7 =0
J .ajeuh

The coefficients s; represent the values of up at the FE nodes.
In order to be able to formulate details about the eggshell method, we need to repeat some notations
and details that are familiar in FE theory.

3.1 Linear Triangular Elements

Let T; denote the first order reference triangle with vertices (&1,m) = (0,0), (&2,m2) = (1,0) and
(&3,m3) = (0,1) in the &n-plane, shown in Fig. 1. On this triangle T}, the first order Lagrange basis

~

functions N; have the following form

JYl(ﬁﬂl) = 1_€_n7
]XZ(& 77) = £’ (25)
Ns(&m) = .

Let (zi,9:),% € {1,2,3} denote the coordinates of the FE nodes a¥. of the general triangle T} € Ty, as
shown in Fig. 1. The area of T} is given by

A= %|($2—$1)(y3—yl)—($3—$1)(y2_y1)|' (26)
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Figure 1: Linear triangular element: reference (left) and general (right) triangle

By a coordinate transformation from T to Ti, the barycentric coordinates (; associated with the
vertex a’. can be expressed as

1

Ci = —(ai—i—bix—l—ci y), 1€ {1,2,3}, (27)
2/
where the values a;,b; and ¢;, ¢ € {1, 2, 3} denote (cf. [19], page 89)
ay = T2Y3 — T3Y2, b1 = y2—ys, c1 = T3— T2,
a2 = T3Y1 — T1Y3, by = Y3 — Y1, C2 = I1— T3, (28)
az = T1Y2 — T2Y1, bs = Y1 — Y2, c3 = T2 — 1.

The first order basis function N; associated with the vertex aj can be expressed as N; = (; ,i €
{1,2,3}. The FE approximation for the magnetic vector potential component on T} can be written as

3
uh|T1 = Z S; N’i . (29)
=1

By substituting (29) into (10), the discrete magnetic fluxes By, and By, on 17 can be expressed as

3 3
Bahyr, = ;si gy 04 Buhr, = = 2_;5 oz

We remark that for first order elements B, » and B, ; are constant per element.

(30)

3.2 Quadratic Triangular Elements

Let T denote the second order reference triangle with vertices (&1,m) = (0,0), (&2,m2) = (1,0) and
(&3,m3) = (0,1) and midpoints of the edges (£4,7m4) = (%,0), (&5,m5) = (%,%) and (&6,76) = (0, 1)

A~ ~

in the &n-plane, as shown in Fig. 2. On triangle T3, the second order Lagrange basis functions IV;
associated with the nodes (&;,7;:), 7 € {1,---,6} have the following form

(En) = 2(6+n—-1)(E+n—3) =26 +20° +46n—-36 -3 +1,
(&m) = 26(E—-3)=22-¢,

&n) = 2n(n—3)=20"—n, (31)
(&n) = —4(E+n—1)=—4E —4ln+4¢,

&n) = 4n,
&mn) = —4n(E+n-1)=—4n*>—4n+ 4.

22222
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Figure 2: Quadratic triangular element: reference (left) and general (right) triangle

As in the previous subsection, the expressions for the basis functions on a triangle T € T can
be obtained by a coordinate transformation from T to Ts. Let (z;,¥:),¢ € {1,---,6} denote the
coordinates of the FE nodes ai;p of a second order element. The second order basis functions N;
associated with the nodes a¥. and their natural derivatives can be expressed by

Ne (26— 1) -1 0 0
Ny G(2¢2—1) 0 4G -1 0
N = N§ _ <3(2C3 - 1) |:8_N 8_N B_N:| _ 0 0 4{3 -1 (32)
| N 4¢1Ca " 10¢ 0C 0¢s| 4¢2 4G 0 ’
Ny 4¢2(3 0 4¢3 4¢2
Ng 4¢3C1 4¢3 0 4G

where the functions (; are defined in (27). The discrete magnetic vector potential can be expressed
as six-term equivalent of (29), and the discrete magnetic flux densities as six-term equivalent of (30).
3.2.1 Quadratic Triangular Elements with Curvilinear Edges

When a second order triangle T' € T, has at least one curved edge, expressions for the Cartesian
derivatives of the shape functions N; need adjustment. These adjustments are detailed here for a
6-node isoparametric triangle as shown in Fig. 3. The element geometry is defined by the coordinates

(0,0,1) Y

(x353)

(xpys) (%))

[
(x],)’1)

(1,0,0) @.10) 0,1,0) X

Figure 3: The 6-node quadratic isoparametric triangle: reference (left) and general (right) triangle

of the nodes (z;,y;) ¢ € {1,---,6}. The corner nodes are numbered 1, 2, 3 in counterclockwise sense.



The side nodes are numbered 4, 5, 6 opposite to corners 3, 1, 2, respectively. It is shown in ([2], Ch.
24), that the differential area element of T is given by

dT = Jd¢dCadCs, (33)
where the Jacobian J is one-half times the determinant of the Jacobian matrix Jac
1 1 1
Jac = Z? 1%i ?9?1 Z? 1T ?92]2 26 Ti aazcva , J= %det(.]ac). (34)

6 aN; 6 aN; 6 dN;
Die1 Yige aC1 Doim1 Yige, aCa Doim1 Yiges aCs

J is a second order polynomial in (1, {2 and (3. The side nodes may be arbitrarily located within
the constraint that J remalns positive. A scalar function w interpolated over a second order triangle

satisfies g—’: = 26 Lw; 2N B N (likewise for —y) Taking w = 1, z,y, one obtains the following system of
linear equations
8 8¢
e @ 0 0
Jac | &2 %2 | — |1 ¢ (35)
9 9 0 1
ox oy
Solving this system yields
o¢ o¢
g_; Qa_éyi 1 Jy23 Jz32
53% 3; = ﬁ Jy31 Jz13 ’ (36)
% %—3 Jy12 Je21

in which Jz]z Zk lxk(aNk - BB—IZ:“) yji — Zk lyk(aNk — aNk) and J = —(JzzlJy;ﬂ - Jy12JE13).

Taking the dot product of the natural-coordinate partials (32) w1th the node coordinates, the entries
of the matrix in the right-hand side of (36) can be expressed as linear polynomials is {1, {2 and (3

Je21 = T2 — 11

+ 4 ) +
Jezz =23 — 22 + 4(Azxs(le— Ca) + (Aze — Az4)r),
Jeis=z1—x3 + 4(Aze(G—C) + (Azg— Azs)(), (37)
Jyiz=vy1—y2 + 4Aya(a—¢1) + (Ays — Ays)(s),
Jypzs=y2—ys + 4(Ays((z—¢2) + (Aya—Aye)r),
Jyi=ys—y1 + 4Ays(1—¢) + (Ays — Ays)e),
in which
Azy=z4 — 5(z1 4+ 32), Aws =5 — 5(z2+23), Awg =6 — 5(3 + 21), (38)
Ays =ys— 51 +12), Adys=ys —5(¥2+¥y3), Ays=1ys— 5(y3+y1)
The Cartesian derivatives of the shape functions are now given by
(4C1 — 1) Jy23 (4C1 — 1) Jz32
(4¢2 — 1)Jya1 (4¢2 — 1)Jp13
6_N — i (4<3 - 1) y12 8_N — i (4<3 - 1) z21 (39)
o  2J | 4Cdyas+ CGdys1) |7 Oy 2J | 4(Gedzs2 + Cidas) |
4(C3Jy31 + G2 Jy12) 4(¢3J13 + G2 Jz21)
4(C1dy12 + (3 Jy23) 4(C1Jz21 + (3J232)

Remark 3.1 It is clear that the straight-sided triangle geometry, i.e., Axy = Axs = Azg = 0, is
a special case for which the J;j;’s and Jyj;’s are independent of the (;’s, and the Jacobian Jac is
constant.
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4 Classical Force Computation Methods

In this section we recall three classical methods for computing the magnetic force: the Lorentz method,
the Maxwell Stress Tensor method and the Virtual Work method.

4.1 Lorentz Method

In Lorentz method the total magnetic force F on a current carrying device is computed by integrating
the volume force density J x B over the volume V of the device

F:/JdeV. (40)
\4

In 2D perpendicular current computations the domain of integration reduces to a cross section which
we denote by ;. Substituting (4) and (7) for J and B into (40) we obtain for the z- and y-components
of the total force

F, = —/ J, By dQ; and F, = / J. By dy . (41)
Ql Q1

Remark 4.1 Lorentz method can only be applied to electrical conductors with p, = 1. The method
does not allow computing the force on permanent magnets.

4.2 Maxwell Stress Tensor Method

In the Maxwell Stress Tensor(MST) method the total force on a magnetizable device with unit outward
normal n on its enclosing surface S is computed by integrating the product of the Maxwell stress tensor
ognm and n over the enclosing surface

F:/UEMndS. (42)
S

In this paper we always assume that the device on which we want to compute the force is surrounded
by empty space. Then the Maxwell stress tensor is given by

1 1
oy =——— (B-B)I+ —BBT, 43
o 2#0( ) Ho (43)

where I denotes the identity matrix.
In 2D perpendicular current computations the stress tensor simplifies to the 2 X 2 matrix

1 (B2+B2 0 1 ( B2 BB,
=—-— — z 44
TEM = T e < o B2+B )Y\ BB, B2 ) (44)

while the domain of integration in (42) reduces to the boundary of the 2D cross section of the device
denoted by I'y. By substituting

H, =vyB; and Hy, =1y B, (45)

in (44) we obtain the following expressions for the z- and y-components of the total force
1
F, = A —5n= (Hy B, + Hy By) + B, (ng Hy +ny Hy) | dI'q, (46)
1

and

1
Fo= [ |y e Bt 1, B) 4 By (o oty 1) . (47)
1



4.3 Virtual Work Method

In the Virtual Work method the force is computed from the magnetic energy of the system. The
magnetic energy Wgps of a system with volume V is given by

WEM:/V</OBH-dB). (48)

Under constant magnetic flux condition, the magnetic force is computed as
Fo = —VWg - (49)

Under constant current condition, the force is computed similarly, but with opposite sign.

5 Eggshell Method
5.1 Theoretical Background

In this section we give a description of the eggshell method for computing the force, omitting details
that can be found in [7, 8, 9]. In [8] the authors derive an expression for the time-variation of the
total energy of an electromechanical system 2 subject to a deformation. This variation is the sum of
two terms: a term equal to the rate of change of electromagnetic energy stored in the system Q and
a term expressing the mechanical work power received by 2. The latter is the time derivative of the
work Wgps done by the electromagnetic forces. The deformation of €2 is described by a vector field v
that attributes a velocity to each material particle in 2. The spatial gradient of v is denoted by Vv.
In [8] the Maxwell stress tensor o gy is defined as the dual of Vv as follows

Wgm
ot
where : denotes the tensor product, ie., T : R= )", 5 Tij R;;. Given an expression for the electro-

magnetic energy, the formalism proposed in [8] allows to derive an expression for the Maxwell stress
tensor. Integration by parts allows to rewrite (50) as

=Wam = / opm : VvdQ, (50)
Q

WEM:—/(diVO'EM)-VdQ+/nUEMVdI‘, (51)
Q T

where n denotes the outward normal at I'. From this expression the authors derive an expression
for the total magnetic force F on a rigid body Q. The rigid body 2; is assumed to be shifted an
infinitesimal amount du. It is argued that for computing the time derivative of the work Wgyy, it can
be assumed that displacement causes only a small region S (called the eggshell) surrounding the body
to deform. The (virtual) velocity field associated with that deformation and its gradient are

v =~du, Vv = Vyéu, (52)

where 7y is a smooth function whose value is 1 on the inner surface of the shell S touching 2; and 0
on its outer surface. The gradient Vv is 0 outside the shell S. Using (50), one consequently obtains

W = —F-(Sﬁ:/aEM : Vvds, (53)
S

where F is the resultant force on ;. Finally, one obtains by using (52) and after factoring out du

F:/O'EMV’YdS, (54)
S

which is the eggshell formula for the force on the rigid body €2;. In the limit of an infinitely thin shell,
one readily recovers expression (42).
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Figure 4: Ilustration of the eggshell S surrounding a circular cross section 2; on three increasingly
refined meshes

5.2 Implementation of Eggshell Method

The implementation of the eggshell method requires procedures for marking the elements forming the
shell and for integrating over this shell. We wrote these procedures as MATLAB functions, extracting
information from the FEMLAB mesh data structures. Isoparametric discretizations for those elements
that touch the boundary of €2; are taken into account.

5.2.1 Construction of the shell

The starting point for our implementation consists of identifying those triangles T' € T, whose union
defines the shell S. In Fig. 4 the shell around a circular cross section {; is shown on a sequence
of three adaptively constructed meshes. The finer the mesh, the thinner the eggshell becomes. The
construction of the shell is a two step process. In the first step, the FE nodes a% € Ej, lying on
the boundary of Q; are collected in a list. In a second step, all triangles T' € T, having at least on
node in the boundary list and lying in the exterior of 2; are marked. These steps require retrieving
information from the FEMLAB mesh structure. For details, we refer to [3] (from page 3-42 to page
3-55). At the end of the two-step process, the (z, y)-coordinates and the global numbers of the FE
nodes of the triangles in the shell are available.

5.2.2 Computation of the derivatives of the FE shape functions

Having the coordinates of the FE nodes at our disposal, the (z, y)-derivatives of the FE shape functions
can be constructed using the expressions (39). On S these derivatives are used to represent both the
discrete magnetic flux components B, , and By ; and the function vy introduced in (52).

For second order elements, the expressions (39) are polynomials in (;,7 € {1,2,3}. To represent
these polynomials, a class for polynomials polynom3 has been introduced. This class consists of a
vector holding the polynomial coefficients and a set of operations on this representation. For example,
if e is a vector of length 9, then p = polynom3(e) represents the polynomial

p=-eo+eili+eals+esls+eali® +es (il + esCils + erCa® + eslals + eols. (55)

The operations in the class allow to evaluate a polynomial in a point, to make linear combinations of
polynomials and to multiply polynomials. For curvilinear second order elements, the shape function
derivatives (39) must be divided by the polynomial 2.J. Division of two polynomials is not imple-
mented. Instead, division is delayed until quadrature over the shell is performed.
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The code NxNy, shown in Fig. 5, calculates the Jacobian J and the (z, y)-derivatives of the shape

functions for a single shell element. Properly speaking, Nx and Ny correspond to 2 J %—1;’ and 2J %—]Z,
respectively. The output values J, Nx and Ny can be constant, first or second order polynomials in

(1, (2, and (3, as commented in Fig. 5.

5.2.3 Assembling the stress tensor

The (z, y)-components of the discrete magnetic flux on an element T in the shell can be constructed
as linear combinations of the shape function derivatives corresponding to (30),

6 6
6Ni aNi
Bz’th = E Sia—y and By’th = — E Si%. (56)
i=1 =1

The coefficients s; in this expansion are retrieved from the discrete vector potential computed by
FEMLAB. The global numbering of the FE nodes in the shell is used to this end.

The magnetic stress tensor g, computed using expression (44) becomes a 2 X 2 matrix with
polynomials in (; as entries. The implementation Stress of ogs for a single shell element is given at
the bottom of Fig. 8.

5.2.4 Integration of og) Vv over the eggshell using Gaussian quadrature

For integrating o gas Vy over the shell, Gaussian quadrature is used. For isoparametric discretizations,
the Jacobian (34) is a function of the barycentric coordinates (3, {2 and (3 and can thus not be factored
out of the integration rules. We consider the following five Gaussian quadrature rules ([2], Ch. 24):

e the one point rule
When first order discretizations are used, ogps V7y is element-wise constant. In this case, the
one-point rule

11 111

en gt L 111
| PG a2~ IG5 PG 50 p) 67)

3°3°3
is exact. For second order discretizations higher order rules are required.
e two three point rules
We will use two three-point rules, referred to as rule=3 and rule=-3. Both rules have weights

equal to %, but differ in the position of the quadrature points, as indicated in Fig. 6 (b and c).
The rule=-3 or midpoint rule e.g. is given by

1. 11 11 1 11 11 1 1 1 1 1
F Q¢ ~ -~ J(=,=,0)F(=, = ~J0,=,=)F(0,=, =)+ =J(=,0,=) F(=,0,=).
/e (<1a<2,<3)d 3‘](2’2,0) (27270)+3J(0,272) (0,2a2)+3‘](2a072) (2’(],2)
(58)

e one siz and one seven point rule
The quadrature points of these Gaussian quadrature rules are shown in Fig. 6 (d and e). Their
weights are given in Fig. 7.

Fig. 7 displays the implementation of the Gaussian rules in TriGaussRuleInfo. The barycentric
coordinates of the quadrature points and the corresponding weights are given in the arrays Gauss.(
and Gauss.weight, respectively.

Due to the definition of the function v in (52), only nodes lying on the boundary of rigid body
) contribute to the integral (54). For a 6-node triangle, as shown in Fig. 3, this implies that when
two vertices lie on the boundary, the midpoint node contributes as well. The input parameter index
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function [J,Nx,Ny] = NxNy(node,order)
% The function NXNY computes the Jacobian determinant J, and the Cartesian derivatives of the shape functions
% multiplied by twice this determinant.

% Note:

% If order==1 J,Jx Nz, Jx Ny are constants

% If order==2 and non-curved triangles, J is constant, and 2Jx Nz, 2Jx Ny are polynomials of degree 1,
% for curved triangles J, 2Jx Nz, 2Jx Ny are polynomials of degree 2 in &1, £2 and &3

if (order==1)
Jx21=node(1,2)—node(1,1); Jx32=node(1,3)—node(1,2); Jx13=node(1,1)—node(1,3);
Jyl2=node(2,1)—node(2,2); Jy23=node(2,2)—node(2,3); Jy31=node(2,3)—node(2,1);

9% dN/dz = 1/(2*J) Nz{1:8}; dN/dy = 1/(2*J) Ny{1:3}

Nx=cell(1,3); Nx{1} =Jy23; Nx{2} =Jy31; Nx{3} =Jy12;

Ny=cell(1,3); Ny{1} =Jx32; Ny{2} =Jx13; Ny{3} =Jx21;

elseif (order==2)
dx(4:6)=4*[node(1,4)—0.5*(node(1,1)+node(1,2)),node(1,5)—0.5%(node(1,2)+node(1,3)), ...
node(1,6)—0.5%(node(1,3)+node(1,1))];

Jx21=polynom3([node(1,2)—node(1,1),dx(4),—dx(4),(dx(5)—dx(6))]);
Jx32=polynom3([node(1,3)—node(1,2),(dx(6)—dx(4)),dx(5),—dx(5)]);
Jx13=polynom3([node(1,1)—node(1,3),—dx(6),(dx(4)—dx(5)),dx(6)]);

dy(4:6)=4*[node(2,4)—0.5*(node(2,1)+node(2,2)),node(2,5)—0.5*(node(2,2)+node(2,3)), ...
node(2,6)—0.5*(node(2,3)+node(2,1))];
Jyl2=polynom3([node(2,1)—node(2,2),—dy(4),dy(4),(dy(6)—dy(5))]);
Jy23=polynom3([node(2,2)—node(2,3),(dy(4)—dy(6)),—dy(5).dy(5)]);
Jy31=polynom3([node(2,3)—node(2,1),dy(6),(dy(5)—dy(4)),—dy(6)]);

% dN/dz = 1/(2*]) Na{1:6}

Nx=cell(1,6); Nx{1} =polynom3([—1,4,0,0])*Jy23; Nx{2} =polynom3([—1,0,4,0])*Jy31;
Nx{3} =polynom3([—1,0,0,4])*Jy12;

Nx{4} =polynom3([ 0,0,4,0])*Jy23+polynom3([ 0,4,0,0])*Jy31;

Nx{5} =polynom3([ 0,0,0,4])*Jy31+polynom3([ 0,0,4,0])*Jy12;

Nx{6} =polynom3([ 0,4,0,0])*Jy12+polynom3([ 0,0,0,4])*Jy23;

% dN/dy = 1/(2*J) Ny{1:6}
Ny=cell(1,6); Ny{1} =polynom3([—1,4,0,0])*Jx32; Ny{2} =polynom3([—1,0,4,0])*Jx13;
Ny{3} =polynom3([—1,0,0,4])*Jx21;
Ny{4} =polynom3([ 0,0,4,0])*Jx32+polynom3([ 0,4,0,0])*Jx13;
Ny{5} =polynom3([ 0,0,0,4])*Jx13+polynom3([ 0,0,4,0])*Jx21;
Ny{6} =polynom3([ 0,4,0,0])*Jx21+polynom3([ 0,0,0,4])*Jx32;
end

% Determinant
J=0.5%(Jx21*Jy31—Jy12*Jx13);

Figure 5: The function NxNy computes the Jacobian J and the derivatives of the shape functions
2757 and 2797
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(a) rule=1 (b) rule=3 (c) rule=-3

(d) rule=6 (e) rule=7

Figure 6: Gaussian quadrature points (dark circles) for the curved 6-node triangles

of function IntegralElement in Fig. 8 contains a list of indices corresponding with the boundary
vertices. The input parameter order indicates whether first or second order elements are used. In
case of first order elements (order = 1), the one point rule is applied. In the j-loop for second order
elements, (cf. line 28-31 in Fig. 8), the gradient of a shape function centered on the boundary is
evaluated in the quadrature point ¢(™) = (Cl(m) , (2(7"), ém)),m € {1,---, M}, where M is the number
of quadrature points. Note that within this loop the division by 2.J, evaluated in ¢(™), is made as well.
According to (54), this gradient is multiplied by the stress tensor oz, evaluated in ¢(™) (line 21-22
and 33-34 of Fig. 8). Next, the product is divided by (2J(¢{(™))? and scaled by the Gauss weights.
Finally, the output parameter Integral corresponds to the contribution to the (z, y)-components of
the magnetic force for that particular triangle element, according to the quadrature rule.

6 Numerical Results

In this section, we compare the performance of the Lorentz, the MST and the Virtual Work method
(described in Section 4) and the eggshell method (described in Section 5). For this purpose, we
examine the model problem of the electromagnetic forces on parallel current carrying wires from
the Electromagnetics Module of FEMLAB (see [4], page 71) and three variations on this model. In
all models, the vector potential equation has been solved using first and second order isoparametric
elements on adaptively constructed meshes of triangles. Dirichlet boundary conditions are set on the
boundary of the computational domain. Only in the first model problem an analytical expression for
the force is available. However, we can verify our computational results of all four models by either
symmetry arguments, or, by checking that the resultant force on the different parts of the model
vanishes.

In FEMLAB, the postint function has been used to compute both the surface integrals (41) in the
Lorentz method and the line integrals (46) and (47) in the MST method. The Virtual Work method
has been implemented in the FEMLAB function cemforce, which supports linear elements only.

In the following four subsections, results of the computed forces versus the number of the FE
degrees of freedom (DOF) are plotted in two columns: the left and right column show the results
obtained using first and second order elements, respectively. In the legend of the figures S1 (shape=1)
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function [Gauss|=TriGaussRulelnfo(rule)
% Function TRIGAUSSRULEINFO gives number of Gauss points, the degree of the Gauss rule,
% the weights and coordinates of the Gauss quadrature rules.

if (rule==1)
Gauss.M=1; Gauss.degree=1; Gauss.weight(1) = 1.00000000000000;
Gauss.¢ =[[0.33333333333333 0.33333333333333 0.33333333333333]];
elseif (rule==-3)
Gauss.M=3; Gauss.degree=2; Gauss.weight(1:3) = 0.33333333333333;

10 Gauss.¢ =[[0.50000000000000 0.50000000000000 0.00000000000000]; ...
[0.00000000000000 0.50000000000000 0.50000000000000]; .. .
[0.50000000000000 0.00000000000000 0.50000000000000]];

elseif (rule==3)

Gauss.M=rule; Gauss.degree=2; Gauss.weight(1:3) = 0.33333333333333;

Gauss.( =[[0.666666666666667 0.166666666666667 0.166666666666667]; . . .
[0.166666666666667 0.666666666666667 0.166666666666667]; . . .
[0.166666666666667 0.166666666666667 0.666666666666667]];

elseif (rule==6)

Gauss.M=rule; Gauss.degree=4;

20 Gauss.weight(1:3) = 0.109951743655322; Gauss.weight(4:6) = 0.223381589678011;

Gauss.¢ =[[0.816847572980459 0.091576213509771 0.091576213509771]; ...
[0.091576213509771 0.816847572980459 0.091576213509771]; ...
[0.091576213509771 0.091576213509771 0.816847572980459]; ...
[0.108103018168070 0.445948490915965 0.445948490915965]; . . .
[0.445948490915965 0.108103018168070 0.445948490915965]; . . .
[0.445948490915965 0.445948490915965 0.108103018168070]];

elseif (rule==7)

Gauss.M=rule; Gauss.degree=5; Gauss.weight(1) = 0.225000000000000;

Gauss.weight(2:4) = 0.125939180544827; Gauss.weight(5:7) = 0.132394152788506;

30 Gauss.¢ =[[0.333333333333333 0.333333333333333 0.333333333333333]; ...
[0.797426985353087 0.101286507323456 0.101286507323456]; .. .
[0.101286507323456 0.797426985353087 0.101286507323456]; .. .
[0.101286507323456 0.101286507323456 0.797426985353087]; . . .
[0.059715871789770 0.470142064105115 0.470142064105115]; ...
[0.470142064105115 0.059715871789770 0.470142064105115]; ...
[0.470142064105115 0.470142064105115 0.059715871789770]];

end

Figure 7: The function TriGaussRuleInfo sets up Gaussian quadrature on a triangle
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function[Integral]=IntegralElement(Gauss,Node,index,order,s,10);
% INTEGRALELEMENT computes the (z,y)-components of the total force on a single element
% given by its barycentric coordinates of the boundary nodes in the array .

[J,Nx,Ny]=NxNy(Node,order);
(=Gauss.(; weight=Gauss.weight; M=Gauss.M;

Stress=ComputeStress(s,u0,Nx,Ny);

10 if (order==1)
% For first order the Nz and Ny values can be computed directly, since the Jacobian does not depend on { (m)
for j=1:3
Nx{j} =Nx{j}/(2*7); NyLi}=Ny{i}/(2*9)
end
Gradient=[0;0];
for j=index
% Gradient=sum (over j) of [dN(j)/dz dN(j)/dy]~T
Gradient=Gradient + [Nx{j};Ny{j}];
end
20 % funm = Stress x Gradient
funm = [double(Stress.c11) * Gradient(1) + double(Stress.c12) * Gradient(2);...
double(Stress.c21) * Gradient(1) + double(Stress.c22) * Gradient(2)];
Integral=J*funm; % weight = 1

else
Integral=[0;0];
for m=1:M

Gradient=[0;0]; Jm=J(¢(m,1:3));
for j=index
% Gradient=sum (over j) of [dN(j)/dz dN(j)/dy]"T evaluated in (™)
30 Gradient=Gradient + [Nx{j}(¢(m,:));Ny{j}(¢(m,:))]/(2*Jm);
end
% funm = Stress (evaluated in ¢(™)) x Gradient
funm = [Stress.c11({(m,:)) * Gradient(1) + Stress.c12({(m,:)) * Gradient(2);...
Stress.c21(¢(m,:)) * Gradient(1) + Stress.c22({(m,:)) * Gradient(2)]/(4*Jm?);
Integral = Integral + weight(m)*Jm*funm;
end
end

function Stress=ComputeStress(s,u0,Nx,Ny);
40 % COMPUTESTRESS assembles the stress tensor ogpr times (2 J)? in a structure array with fields of polynomials

Bx = polynom3(0.0); By = Bx;
for j=1:length(Nx)

Bx = Bx + s(j) * Ny{j}; By = By — s(j) * Nx{j}
end

cll = 1./(2%uo) * (By*By — Bx*Bx); c12 = —1./uo * Bx*By;
Stress = struct(’c11?,cl1,’c12?,c12,7¢217,c12,’¢c22’,—1. * cl1);

Figure 8: The function IntegralElement computes the contribution of a single triangular element
to the total magnetic force. The function ComputeStress computes the stress tensor times (2J)?
for first and second order triangles in free space
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Figure 9: Flux line plot for model 1 up to model 4

refers to first order elements, while S2 (shape=2) refers to second order elements. In ordering the
methods, the MST method is treated differently. Numerical results show that the MST method with
first order triangles requires very fine meshes in order to obtain good results. We therefore report on
the MST method for quadratic elements only. To make the difference in convergence for the different
methods more clear, we chose to insert the results of the MST method for quadratic elements in the
left column instead of the right one. As discussed in Section 5.2.4, we always use the rule=1 for the
first order eggshell method; for the second order eggshell method numerical results are given for the
Gauss rules rule=3, rule=-3 and rule=6. It is observed that Gauss rule rule=7 does not give more
accurate results than Gauss rule rule=6. According to Remark 4.1, no Lorentz method results in
model problems with a permanent magnets are shown.

6.1 First Model Problem

We consider a configuration of two parallel current carrying wires of infinite length placed in empty
space. The wires have a circular cross section of equal radius and their centers are placed on the
z-axis at equal distance from the origin. The current is equal to 1 A and —1 A in the left and right
wire, respectively. The current density is constant over the wires and they are assumed to be non-
permeable. The empty space surrounding the wires is modelled by a circle with a radius that is large
compared to the radius of the wires. Details of the first model problem are given by

radius of wires (r) 20cm
center of left/right wire (£0.5m,0.0m)
current density (Jo) 1/7r® A/m?
current density (J) in left/right wire +Jo
radius of computational domain 5m .

The flux line plot and the results of the force computation for this model can be found in Fig. 9(a)
and in Fig. 10, respectively.

The z-component of the force on the left/right wire F, can be shown analytically to be approxi-
mately equal to F1.92-10~7 N, whereas F,, = 0.0 N. Fig. 10(a-b) and (c-d) depict the computed F,
and F, values, respectively. An additional check on the computed force values is the verification that
the sum of F, on the left and right wire equals zero. In Fig. 10(e-f) these sums are plotted. From
Fig. 10(a),(c) and (e), showing the results of the Lorentz, the Virtual Work, the eggshell and the MST
methods, we conclude that for first order elements the methods converge equally fast to the correct
value. We remark that for these methods the initial mesh is not sufficiently fine to obtain a good
approximation to the analytical solution. At least four refinement steps are necessary to obtain the
first two significant digits of the solution. Although Fig. 10(a) shows that the MST method give more
accurate results on coarse meshes, Fig. 10(c) and (e) demonstrate that the aforementioned methods
outperform the MST method on finer meshes even for linear discretizations.
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By comparing the scale of the y-axis in the left and right column of Fig. 10, we observe that for
second order elements the initial mesh already provides two significant digits of the solution. From
Fig. 10(d) and (f), a faster convergence can be seen for the Lorentz method. Fig. 10(d) shows that
F, computed by the Lorentz method is smaller than 107 N on the finest mesh. For the eggshell
method it remains at least two orders of magnitude larger depending on the Gaussian rule considered.
Fig. 10(f) shows that on the finest mesh the difference between the Lorentz and eggshell method
(rule=3) is smaller. By studying this model problem only, it is difficult to draw conclusions concerning
the different Gaussian rules. It is, however, clear that rule=-3 gives the least satisfactory results.

By comparing the left and right column, we may conclude that our second order eggshell implemen-
tation outperforms previously existing implementations of the Virtual Work and the MST methods
for the force computation on a conductor.

6.2 Second Model Problem

In the second model problem we replace the right wire in the first model problem by a permanent
magnet magnetized in the y-direction. The geometrical and physical properties of the left wire remain
unchanged. The magnet has a circular cross section with the same radius as the wire and is assumed
to be non-permeable. The value for the pre-magnetization M, = 10A4/m is chosen such that the F
value is comparable to that in the first model problem. Numerical results make clear that, in order
to obtain accurate force results, it is necessary to increase the radius of the computational domain.
Details of the second model problem are given by

radius wire and magnet 20cm
center of wire/magnet (¥0.5m,0.0m)
current density (Jo) 1/7r® A/m?
current density in wire (J) Jo
pre-magnetization (M, My) (0A/m,10 A/m)
radius of computational domain 40m .

The flux line plot and the results of the force computation for this model can be found in Fig. 9(b)
and in Fig. 11, respectively.

Fig. 11(a-b) and (c-d) show the computed F, and F), values on the magnet. Both the F, values
and the sum of the F, values on the wire and the magnet should vanish in the limit for small meshes.
We conclude from Fig. 11(a) and (c) that, for the computation of the force on the magnet, the Virtual
Work and the eggshell methods perform equally well for first order elements, whereas the MST method
converges slower.

On the coarsest mesh, the second order eggshell method with rule=3 and rule=6 gives two sig-
nificant digits of the solution of F, on the magnet and it converges almost monotonically for smaller
mesh widths as shown in Fig. 11(b). With rule=-3 the eggshell method provides a good solution
on the coarsest grid, but gives a larger error on the once refined mesh. For the other methods, the
initial mesh appears to be not fine enough as illustrated by Fig. 11(a). Fig. 11(d) shows that for the
computation of F,, on the magnet, the eggshell method (rule=6) comes close to a value of 6 - 10713 N.
With the rules rule=3 and rule=-3 the values obtained on the finest mesh remain one and two orders
of magnitude larger. The values of the sum of the F, components computed by the second order
eggshell method on the finest mesh lie between 107° N and 3 - 107'° N depending on the Gaussian
rules employed. This value is larger than for the previous model problem, and is still reasonably large
compared to the value of —2.5- 1077 N for the force on the magnet.

By comparing the left and right column in Fig. 11, we may conclude that the eggshell method for
second order elements outperforms previously existing implementations of the Virtual Work and the
MST methods for the force computation on a permanent magnet.
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6.3 Third Model Problem

In the third model problem we consider a configuration of four current carrying wires with circular
cross section and equal radius. The wires are placed such that their centers form a square with its
center in the origin. The top right and bottom left conductors carry a current of 1 A while the top
left and bottom right conductors carry —1A. Details of the third model problem are given by

radius of wires (r) 20cm
center of wire in first/second quadrant (£0.5m,0.5m)
center of wire in third/fourth quadrant (¥0.5m, —0.5m)
current density (Jo) 1/7r? A/m?
current density in first/third wire (J>) Jo
current density in second/fourth wire (J,) —Jo
radius of computational domain 5m .

The flux line plot and the results of the force computation for this model can be found in Fig. 9(c)
and in Fig. 12, respectively.

Fig. 12(a-b) and (c-d) show the computed F, values on the wire in the first and second quadrant,
respectively. The sum of the force on the four wires should converge to zero. The z-component of this
sum is shown in Fig. 12(e-f).

This model problem corroborates the conclusions drawn from the first model problem. Again, for
this problem the Lorentz method is the method of choice. The eggshell method, however, outperforms
previously existing Virtual Work and MST implementations. Fig. 12(b) and (d) show that the ap-
proximation error in the force obtained on coarse meshes with the Gaussian rule rule=-3 is larger
than the one obtained by the other two Gaussian rules. This effect can also be observed in Fig. 10(b)
and in Fig. 11(b). The present results confirm the now expected result that the Gaussian rule rule=6
gives the most reliable results.

6.4 Fourth Model Problem

In the fourth model problem, we replace the dipole formed by the two bottom wires in the third model
problem by a permanent magnet with a rectangular cross section magnetized in the y-direction. The
value of the pre-magnetization is chosen such that the value of F,, on the wires is comparable in size
to that in the third model problem. Details of the fourth model problem are given by

radius of wires (r) 20cm
center of wire in first/second quadrant (£0.5m,0.5m)
current density (Jo) 1/7r® A/m?
current density wire in first/second quadrant (J) +Jo

size of magnet 0.9m x 0.4m
center of magnet (0m,—0.5m)
pre-magnetization (M, My) (0A/m,2.5 A/m)
radius of computational domain 5m .

The flux line plot and the results of the force computation for this model can be found in Fig. 9(d)
and in Fig. 13, respectively.

Fig. 13(a-b), showing the F, values on the wire in the first quadrant, closely resembles Fig. 12(a-
b), showing these values in the third model. Similarly, Fig. 13(c-d) with F, values on the wire in
the second quadrant are good copies of both Fig. 10(a-b) and Fig. 12(c-d). Although the F) values
differ in magnitude, we observe a comparable convergence behavior for each of the methods. The
results of the Virtual Work and the first order eggshell methods on a given mesh are similar. The
initial mesh is too coarse for both methods, but sufficiently fine for the second order MST method.
For the second order eggshell method, the Gaussian rule rule=-3 results in the poorest performance
compared to the rules rule=3 and rule=6. For the first model, we compared the results of eggshell
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(rule=3 and rule=6) with those obtained by the Lorentz method, and we concluded that for the F,
values both methods are performing equally well. For the fourth model problem, the Lorentz method
cannot compute the force on the magnet, and, therefore, we find the eggshell method (rule=3 and
rule=6) to be the best choice for this kind of problems.

In Fig. 13(e-f) the F, values on the permanent magnet are plotted instead of the F, values as in
Fig. 11(a-b). As the z-components of the force in the wires neutralize each other, the force in the
z-direction is close to zero. The convergences behavior of F}, on the magnet is a good equivalent of
those of the F, shown in Fig. 11(a-b). This model problem thus gives a nice summary of the previous
models. In Fig. 13(g) the sum of F, remains above 107!, whereas in Fig. 13(h) it drops below this
value, an indication that second order methods should be recommended in practise.

7 Conclusions

The aim of this work was to investigate the efficiency and the accuracy of the recently introduced
eggshell method for magnetic force computations. We did so by comparing the performance of the
method with the Lorentz, the Virtual Work and the MST methods. As model problems we considered
four configurations of conductors and permanent magnets immersed in two-dimensional perpendicular
current stationary magnetic fields. The models were discretized by first and second order isoparametric
triangular finite elements on adaptively constructed meshes of triangles. All models were constructed
in such a way that several checks on the computed solution are available.

Our conclusions can be summarized as follows. In all model problems, the MST method was the
slowest to converge. Therefore, we do not favor the use of this method. For computing the force on
conductors, the Lorentz method is the method of choice. For this application, the Lorentz, Virtual
Work and eggshell methods on first order discretizations converge equally fast to the solution. The
former method, however, is conceptually simpler and performs better than the other methods for
second order discretizations. For computing the force on permanent magnets (for which the Lorentz
method no longer applies), the Virtual Work and eggshell methods converge equally fast on first order
discretizations. On second order discretizations, we obtained promising results for the eggshell method,
whereas no implementation of the Virtual Work method was available in the simulation code used.

Both the finite element field simulation and the force computation by the classical methods was
performed in the FEMLAB simulation environment. Qur implementation of the eggshell method,
as described in Section 5.2, was included in the same simulation environment. The second order
isoparametric discretization extends the magnetic force computation capabilities of the FEMLAB
package.
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Figure 10: model 1: electromagnetic forces on two parallel current carrying wires
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Figure 12: model 3: four parallel current carrying wires. The wires are placed such that their centers
form a square centered around the origin
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Figure 13: model 4: two parallel current carrying wires and a permanent magnet. The permanent
magnet has a rectangular cross section and is magnetized in the y-direction



24

3]
[4]
[5]
[6]

[l

[17]

[18]
[19]

FEMLAB. FEMLAB, Version 2.2, Reference Manual, November 2001.
FEMLAB. FEMLAB, Version 3.0, Electromagnetics Module, Model Library, January 2004.
FEMLAB. FEMLAB, Version 3.0, Users Guide, January 2004.

G. Henneberger, Ph. K. Sattler, and D. Shen. Force Calculation with Analytical Accuracy in
the Finite Element Based Computational Magnetostatics. IEEE Trans. Magn., 27(5):4254-4247,
1991.

F. Henrotte, G. Deliege, and K. Hameyer. The Eggshell Approach for the Computation of
Electromagnetic Forces in 2D and 3D. COMPEL, 23:996-1005, 2004.

F. Henrotte and K. Hameyer. Computation of Electromagnetic Force Densities: Maxwell Stress
Tensor vs. Virtual Work Principle. J. Comput. Appl. Math., 168:235-243, 2004.

F. Henrotte, H Vande Sande, G. Deliege, and K. Hameyer. Electromagnetic Force Density in a
Ferromagnetic Material. IEEE Trans. Magn., 40:553-556, 2004.

K. Komeza, A. Pelikant, J. Tegopoulos, and S. Wiak. Comparative Computation of Forces
and Torques of Electromagnetic Devices by Means of Different Formulae. IEEE Trans. Magn.,
30(5):3475-3478, 1994.

J. L. Lions and E. Magenes. Nonhomogeneous Boundary Value Problems and Applications.
Springer-Verlag, Berlin, 1972.

L.H. De Medeiros, G. Reyne, and G. Meunier. Comparison of Global Force Calculation on
Permanent Magnets. IEEE Trans. Magn., 34(5):3560-3563, 1998.

W. Miiller. Comparison of Different Methods of Force Calculation. IEEE Trans. Magn.,
26(2):1058-1061, 1990.

Z. Ren. Comparison of Different Force Calculation Methods in 3D Finite Element Modelling.
IEEE Trans. Magn., 30(5):3471-3474, 1994.

G. Reyne, Sabonnadiére, J. L. Coulomb, and P. Brissonneau. A Survey of the Main Aspects
of Magnetic Forces and Mechanical Behaviour of Ferromagnetic Materials Under Magnetisation.
IEEE Trans. Magn., 23(5):3765-3767, 1987.

P. P. Sylvester and R. L. Ferrari. Finite Elements for Electrical Engineers. Cambridge University
Press, New York, third edition, 1996.

J. P. Webb. An Estimator for Force Errors in Finite-Element Analysis. IEEE Trans. Magn.,
39(3):1428-1431, 2003.

H. H. Woodson and J. R. Melcher. Electromechanical Dynamics I, II and II1. John Wiley, 1968.

0.C. Zienkiewics and R. L. Taylor. The Finite Element Method: Volume 1 The Basics.
Butterworth-Heinemann, fifth edition, 2000.



