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1 Introduction

We consider the initial value problem for a positive system of ordinary differential equations
(ODEs) in Rm

w′(t) = F (t, w(t)),

w(0) = w0 ≥ 0.

With positivity (actually, non-negativity) we mean that the solution vector w(t) ≥ 0, ∀ t >
0 if w0 ≥ 0. Here, and in the sequel, such inequalities are to be understood componentwise.
For such systems of ODEs we will study whether we can obtain a similar property for the
numerical solutions W n ≈ w(tn), tn = n∆t, ∆t being the time step. In [4], the related
concept of monotonicity with semi-norms for linear multistep methods has been studied.
Here we focus on positivity and adapt the results obtained in [4]. In Section 2 we will
present an extension in the case of explicit two-step methods with forward Euler start-up
(to compute W 1), and we will point out the best method with respect to positivity, i.e.
W n ≥ 0 for n ≥ 1, whenever W 0 ≥ 0. In Section 3 we consider the corresponding one-leg
formulation and show that this allows a slightly larger step size.
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2 Positivity for linear two-step methods

Consider the following explicit linear two-step scheme

W n+2 =
1∑

j=0

[
− αjW n+j + βj ∆t F (tn+j , W n+j)

]
. (1a)

Observe that the freedom in scaling the coefficients has been used to set the coefficient in
front of W n+2 equal to 1. In the one-leg formulation we will use a different scaling.

The scheme (1a) is of second-order accuracy if

α0 = 1− ξ, α1 = ξ − 2, β0 =
ξ

2
− 1, β1 =

ξ

2
+ 1, (1b)

where ξ is a free parameter. We note that the scheme is zero-stable (stable for the trivial
equation w′(t) = 0, see [5]) if the condition −1 ≤ α0 < 1 is satisfied, i.e. if 0 < ξ ≤ 2.
In the remainder of this paper we shall always deal with methods that are second-order
accurate and zero-stable. In [4], both implicit and explicit methods have been analyzed.
In this section we will extend the results obtained in that paper for the explicit methods.
For monotonicity results with higher-order methods, we refer to [2, 3].

Following Shu [7], the step in (1a) is written as a linear combination of scaled forward
Euler steps yielding

W n+2 = −
1∑

j=0

αj

[
W n+j + cj∆t F (tn+j , W n+j)

]
, cj = −βj

αj
. (2)

We define ∆tFE to be the largest time step for which the forward Euler method, starting
from a positive value, yields a positive result, i.e.

v + ∆tF (t, v) ≥ 0 for all v ≥ 0, t ≥ 0, 0 ≤ ∆t ≤ ∆tFE . (3)

Then, if
βj ≥ 0 and αj ≤ 0, i.e. cj ≥ 0, for j = 0, 1, (4)

the terms within the square brackets in (2) are non-negative under the step size restriction
0 ≤ cj∆t ≤ ∆tFE , j = 0, 1. Therefore, W n+2 ≥ 0 for all ∆t ≤ min( 1

c0
, 1

c1
)∆tFE , for

arbitrary values of W 0, W 1, · · · , W n+1 ≥ 0.

However, for the class of explicit second-order two-step methods, condition (4) for β0

leads to ξ ≥ 2. Combining this with the zero-stability requirement 0 < ξ ≤ 2 gives ξ = 2
as the only possible value. This, however, results in c1 = ∞ and hence ∆t ≤ 0. Indeed, for
ξ = 2 we obtain

W n+2 =
[
W n −W n+1

]
+

[
W n+1 + 2∆tF (tn+1, W n+1)

]
.

Although the second term gives a positive contribution for ∆t ≤ 1
2∆tFE , the first term can

be negative for arbitrary positive W n and W n+1 which may result in W n+2 < 0.
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Fortunately, if we consider appropriate starting conditions, a positive result can be
obtained [4, 3]. If W 1 is obtained by the forward Euler method, i.e.

W 1 = W 0 + ∆tF (t0,W 0), (5)

we have W 1 ≥ 0 for all ∆t ≤ ∆tFE (see (3)). By introducing a non-negative parame-
ter θ, which is specified later, and subsequently subtracting and adding θjW n+2−j , j =
1, 2, · · · , n + 1, in (1a), in which the added terms with j = 1, 2, · · · , n are again written in
the form of (1a), we arrive at

W n+2 = (−α1 − θ)W n+1 + β1∆t F n+1

+
n−1∑

j=0

θj
[
(−α0 − θα1 − θ2)W n−j + (β0 + θβ1)∆tF n−j

]

+ θn−1
[
θ2W 1 − θα0W 0 + θβ0∆tF 0

]
, n ≥ 0,

(6)

where F j denotes F (tj , W j). Since W 1 was calculated by the forward Euler method and
α1 = −1− α0 (see (1b)), this relation can be written as

W n+2 = (−α1 − θ)W n+1 + β1∆tF n+1

+
n−1∑

j=0

θj
[
(1− θ)(θ − α0)W n−j + (β0 + θβ1)∆tF n−j

]

+ θn
[
(θ − α0)W 0 + (θ + β0)∆tF 0

]
, n ≥ 0.

Considering this step as a linear combination of scaled forward Euler steps, we see that
W n+2 ≥ 0 if all coefficients are non-negative, i.e.

−α1 − θ ≥ 0, β1 ≥ 0, (1− θ)(θ − α0) ≥ 0, β0 + θβ1 ≥ 0, θ − α0 ≥ 0, θ + β0 ≥ 0. (7)

These conditions imply the step size restriction ∆t ≤ γ(θ)∆tFE , where

γ(θ) = min
(−α1 − θ

β1
,

(1− θ)(θ − α0)
β0 + θβ1

,
θ − α0

θ + β0

)
=: min (A(θ), B(θ), C(θ)) . (8)

Obviously, the larger γ(θ), the better are the positivity properties of the scheme.

The conditions (7) define an eligible θ-interval, viz. θ ∈ [θmin, θmax], where

θmin = max(α0,−β0

β1
,−β0) = −β0,

θmax = min(−α1, 1).

Observe that A(θ), B(θ) and C(θ) are monotonic decreasing functions of θ (recall the
condition 0 < ξ ≤ 2). Therefore, we obtain the maximal γ(θ)-value

γmax = min (A(θmin), B(θmin), C(θmin)) =





B(θmin) = ξ
2−ξ if 0 < ξ ≤ 2

3 ,

A(θmin) = 2−ξ
2+ξ if 2

3 ≤ ξ ≤ 2.
(9)
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Figure 1: γmax (solid), A(θmin) (dashed), and B(θmin) (dash-dotted) as functions of ξ.

The result is plotted in Figure 1. The ascending part of the γmax-curve (i.e. for 0 < ξ < 2
3)

is an extension to the work in [4]. We note that in that paper only the minimum of A(θ)
and B(θ) was considered in (8), leading to a different value of θmin. The forward Euler
starting procedure (5) was introduced afterwards, but this does not lead to a positivity
result for 0 < ξ < 2

3 .
From Figure 1 we see that, within the class of explicit second-order two-step method,

the optimal method with respect to positivity is the ξ = 2
3 method (known as the extrap-

olated BDF2 method [5]). The resulting value for γmax is 1
2 .

Remark. In (6), the sequence of subtracting and adding θjW n+2−j was performed until
j = n+1. In [4] these terms were subtracted and added up to j = n. It has been proved [6]
that the latter choice has no advantages compared with the choice made in (6), i.e., does
not lead to a more relaxed condition on ∆t. The proof is rather lengthy and technical and
therefore is not included in this paper.

3 Positivity for one-leg methods

One-leg schemes were introduced by Dahlquist [1] to facilitate the analysis of linear mul-
tistep methods. Therefore, it is of interest to study the positivity properties of methods
when formulated in the one-leg form. Similar to the preceding section, we will consider
explicit methods. We will see that the results are slightly better than those derived for the
linear multistep formulation.

A natural scaling for one-leg methods is to require β0 +β1 = 1. Starting from the linear
multistep formulation (1) we multiply the coefficients by a factor 1

ξ to obtain

α2W n+2 =
1∑

j=0

[
− αjW n+j + βj ∆t F (tn+j ,W n+j)

]
, (10a)

where
α0 =

1
ξ
− 1, α1 = 1− 2

ξ
, α2 =

1
ξ
, β0 =

1
2
− 1

ξ
, β1 =

1
2

+
1
ξ
. (10b)
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Since ξ > 0 we have
0 < α2 = −(α1 + α0). (11)

The one-leg form of (10a) reads

α2W n+2 = −α1W n+1 −α0W n + ∆tF
(
t, W n+2

)
,

W n+2 = β1W n+1 +β0W n,
(12)

where t = β1tn+1 + β0tn = tn + β1∆t. This one-leg formulation is second-order accurate if
the coefficients satisfy (10b).

Let us define
V n = W n − θW n−1, θ ∈ [0, 1), n ≥ 1. (13)

Furthermore, we introduce the coefficients

α∗1 = −α1 − α2θ, α∗2 = −α0 − α1θ − α2θ
2 = (1− θ)(α2θ − α0),

β∗1 = β1, β∗2 = β0 + β1θ.
(14)

The parameter θ in (13) and (14) will be chosen such that the coefficients in (14) satisfy

α∗j ≥ 0, β∗j ≥ 0, j = 1, 2. (15)

Assuming positive starting values

V 1 ≥ 0 and W 1 ≥ 0, (16)

we have the following theorem.

Theorem 1. Suppose that ∆t ≤ C∆tFE, with C = min
(

α∗1
β∗1

,
α∗2
β∗2

)
, and θ is such that the

conditions (15) and (16) are satisfied. Then V n ≥ 0 and W n ≥ 0 for all n ≥ 1.

Proof. The formulae (12)–(13) give

α2V n+2 = α∗1V n+1 + α∗2W n + ∆tF
(
t,W n+2

)
, (17)

W n+2 = β∗1V n+1 + β∗2W n. (18)

Adding CW n+2 to both sides in equation (17) we obtain

α2V n+2 = (α∗1 − Cβ∗1)V n+1 + (α∗2 − Cβ∗2)W n + CW n+2 + ∆tF
(
t, W n+2

)
.

The coefficients in this relation are non-negative, due to the definition of C and (11).
Therefore, V n+2 ≥ 0 if

V n+1 ≥ 0, W n ≥ 0, CW n+2 + ∆tF
(
t,W n+2

) ≥ 0. (19)

The term CW n+2 + ∆tF
(
t, W n+2

)
can be seen as a scaled forward Euler step. Thus, it is

non-negative if W n+2 ≥ 0 and ∆t ≤ C∆tFE . From (18) and (15) we see that W n+2 ≥ 0 if

V n+1 ≥ 0 and W n ≥ 0. (20)
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Combining (19) and (20) we have

V n+2 ≥ 0 if V n+1 ≥ 0 and W n ≥ 0. (21)

By assumption, we know that V 1 ≥ 0, W 1 ≥ 0 (see (16)) and W 0 ≥ 0. Thus, (21)
yields V 2 ≥ 0. As a result, relation (13) gives W 2 = V 2 + θW 1 ≥ 0. Having V 2 ≥ 0 and
W 1 ≥ 0, we obtain V 3 ≥ 0 (again by (21)) which results in W 3 = V 3 + θW 2 ≥ 0, etc. for
all n ≥ 4.

Let us now return to assumption (16) on the starting values. If W 1 is calculated
by the forward Euler method then we have W 1 ≥ 0 for all ∆t ≤ ∆tFE . Moreover,
V 1 = W 1 − θW 0 = (1 − θ)W 0 + ∆tF 0 ≥ 0 under the additional step size restriction
∆t ≤ (1− θ)∆tFE .

Using the above considerations we can formulate the following theorem on the positivity
condition for the one-leg method.

Theorem 2. If W 1 is obtained by the forward Euler method (5) and θ is such that condi-
tion (15) is satisfied, then the one-leg method (12) is positive under the step size restriction
∆t ≤ γOL(θ)∆tFE where

γOL(θ) = min(C, 1− θ) = min
(−α1 − α2θ

β1
,

(1− θ)(α2θ − α0)
β0 + β1θ

, 1− θ

)
. (22)

It is illustrative to compare this γOL(θ) with the γ(θ) derived in (8): Condition (15)
gives θ ∈ [θmin, θmax], where

θmin = max(α0
α2

,−β0

β1
) = −β0

β1
,

θmax = min(−α1
α2

, 1).

Observe that the terms in the minimum function in (22) are monotonic decreasing functions
of θ. Therefore, the optimal γOL(θ)-value is obtained at θ = θmin = 2−ξ

2+ξ and is given by

γOL
max = min

(
2(1 + ξ)(2− ξ)

(2 + ξ)2
,

2ξ

2 + ξ

)
. (23)

The result is plotted in Figure 2. From this figure we see that the best method with
respect to positivity is no longer the method with ξ = 2

3 . The optimal method with respect
to positivity is now the method with ξ = 1

4(
√

17 − 1) ≈ 0.78. The corresponding γOL
max is

then 1
2(
√

17− 3) ≈ 0.56. Comparing (9) and (23) we see that the one-leg method allows a
slightly larger time step than the linear two-step method.

Acknowledgement. The investigations of N.N.P.T. were supported by the Computa-
tional Science program, which is subsidized by the Netherlands Organization for Scientific
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Figure 2: Step size restriction for positivity of the one-leg methods (thick lines) and of the
linear two-step methods (thin lines, obtained from Figure 1).
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