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1 Introduction

We consider the initial value problem for a positive system of ordinary differential equations
(ODEs) in R™
w'(t) = F(t,w(t)),

w(0) = wy>0.

With positivity (actually, non-negativity) we mean that the solution vector w(t) > 0, V¢ >
0 if wg > 0. Here, and in the sequel, such inequalities are to be understood componentwise.
For such systems of ODEs we will study whether we can obtain a similar property for the
numerical solutions W, ~ w(t,), t, = nAt, At being the time step. In [4], the related
concept of monotonicity with semi-norms for linear multistep methods has been studied.
Here we focus on positivity and adapt the results obtained in [4]. In Section 2 we will
present an extension in the case of explicit two-step methods with forward Euler start-up
(to compute W), and we will point out the best method with respect to positivity, i.e.
W, >0 for n > 1, whenever Wy > 0. In Section 3 we consider the corresponding one-leg
formulation and show that this allows a slightly larger step size.



2 Positivity for linear two-step methods

Consider the following explicit linear two-step scheme

1

Wiio = Z [— Wi+ Bj At F(tnyj, Wiyj)|- (la)
=0

Observe that the freedom in scaling the coefficients has been used to set the coefficient in
front of W19 equal to 1. In the one-leg formulation we will use a different scaling.
The scheme (1a) is of second-order accuracy if

040:1—6,a1:§—2,ﬂ0:g—1,51:g+1, (1b)
where £ is a free parameter. We note that the scheme is zero-stable (stable for the trivial
equation w'(t) = 0, see [5]) if the condition —1 < o < 1 is satisfied, ie. if 0 < £ < 2.
In the remainder of this paper we shall always deal with methods that are second-order
accurate and zero-stable. In [4], both implicit and explicit methods have been analyzed.
In this section we will extend the results obtained in that paper for the explicit methods.
For monotonicity results with higher-order methods, we refer to [2, 3].

Following Shu [7], the step in (1la) is written as a linear combination of scaled forward
Euler steps yielding
1 3;
Woio=— Z & |:Wn+j + CjAtF(tn+j> WnJrj)] y G = _OTJ‘. (2)
j=0 J
We define Atpg to be the largest time step for which the forward Euler method, starting
from a positive value, yields a positive result, i.e.

v+ AtF(t,v) >0 forall v>0, t>0, 0<At<Atpg. (3)

Then, if
Bj >0 and «a; <0, ie. ¢; >0, for j=0,1, (4)

the terms within the square brackets in (2) are non-negative under the step size restriction
0 < ¢jAt < Atpg, j = 0,1. Therefore, W12 > 0 for all At < min(%,%)AtpE, for
arbitrary values of Wo, Wy, W, 1 > 0.

However, for the class of explicit second-order two-step methods, condition (4) for Gy
leads to £ > 2. Combining this with the zero-stability requirement 0 < & < 2 gives £ = 2
as the only possible value. This, however, results in ¢; = oo and hence At < 0. Indeed, for
& = 2 we obtain

Wiio= |Wy — Wn+1} + |:Wn+1 + 2AtF(tn+1, Wn+1) .

Although the second term gives a positive contribution for At < %At FE, the first term can
be negative for arbitrary positive W, and W11 which may result in W, 1o < 0.



Fortunately, if we consider appropriate starting conditions, a positive result can be
obtained [4, 3]. If W is obtained by the forward Euler method, i.e.

Wi=Wgy+ AtF(to, Wo), (5)

we have W > 0 for all At < Atpg (see (3)). By introducing a non-negative parame-
ter 6, which is specified later, and subsequently subtracting and adding /W, 1o_;,j =
1,2,---,n+ 1, in (1a), in which the added terms with j = 1,2,--- ,n are again written in
the form of (1a), we arrive at

Wiio= (—a1 — )W i1 + BiAL Frpy
n—1
+3 0 [(—ao — oy — YW, + (Bo + eﬂl)mpn_j] (©)
=0

4 gt [92W1 — BagWo + QﬂoAtFo}, n>0,

where F'j denotes F'(t;, W ;). Since W was calculated by the forward Euler method and
a1 = —1 — ag (see (1b)), this relation can be written as

Wite = (—a1 =)W1 + B1At Frpg
n—1
300 [(1=0)(0 — )W + (B0 + 05 ALF, |
=0

+ogn [(9 —ag)Wo + (0 + Bo)AtFy|,  n>0.

Considering this step as a linear combination of scaled forward Euler steps, we see that
W 12 > 0 if all coefficients are non-negative, i.e.

—a1—0>0, g1 >0, (1*0)(0*0&0) >0, Bp+6061>0, 0—ay=>0, 0+ 5y >0. (7)
These conditions imply the step size restriction At < v(0)Atpg, where

—a1—0 (1—9)(9—0[0) 9—0[0
B Bo+0B1 0+

Obviously, the larger v(6), the better are the positivity properties of the scheme.

~v(#) = min < ) =: min (A(0), B(6),C(0)). (8)

The conditions (7) define an eligible 6-interval, viz. 6 € [0pin, Omaz|, Where
emm = max(ao, _%7 _/80) = _ﬁ()a
Omaz = min(—aq, 1).

Observe that A(f), B(f) and C(#) are monotonic decreasing functions of # (recall the
condition 0 < £ < 2). Therefore, we obtain the maximal ~(6)-value

. B(‘gmm)zgig if0<§§%>
Ymaxz = 1IN (A(amzn)7 B(Hmzn)7 C(Hmzn)) = 9 ¢ 9
Albmin) = 57z 3 <E6<2.
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Figure 1: vz (solid), A(Omin) (dashed), and B(0pin) (dash-dotted) as functions of &.

The result is plotted in Figure 1. The ascending part of the y,q,-curve (i.e. for 0 < £ < %)
is an extension to the work in [4]. We note that in that paper only the minimum of A(6)
and B(#) was considered in (8), leading to a different value of 6,,;,. The forward Euler
starting procedure (5) was introduced afterwards, but this does not lead to a positivity
result for 0 < £ < %

From Figure 1 we see that, within the class of explicit second-order two-step method,
the optimal method with respect to positivity is the £ = % method (known as the extrap-
olated BDF2 method [5]). The resulting value for Yinaz is 3.

Remark. In (6), the sequence of subtracting and adding 67W,,;2_; was performed until
j =n+1. In [4] these terms were subtracted and added up to j = n. It has been proved [6]
that the latter choice has no advantages compared with the choice made in (6), i.e., does
not lead to a more relaxed condition on At. The proof is rather lengthy and technical and
therefore is not included in this paper.

3 Positivity for one-leg methods

One-leg schemes were introduced by Dahlquist [1] to facilitate the analysis of linear mul-
tistep methods. Therefore, it is of interest to study the positivity properties of methods
when formulated in the one-leg form. Similar to the preceding section, we will consider
explicit methods. We will see that the results are slightly better than those derived for the
linear multistep formulation.

A natural scaling for one-leg methods is to require 5y + 1 = 1. Starting from the linear
multistep formulation (1) we multiply the coefficients by a factor % to obtain

1

aWhia =) [— Wi + B At F(tn+, Wn-i-j)]u (10a)
=0
where 1 2 11 11
O[[):E*l, O[lzlfg, a2:ga 502575, /31:§+g (]'Ob)



Since £ > 0 we have

O0<ag= —(a1 + Oé()). (11)
The one-leg form of (10a) reads
oWhys = —aiWpy —agW, + AtF (6, W), (12)
Woie = SiWa +50Wa,

where t = B1tp11 + Botn = t, + B1At. This one-leg formulation is second-order accurate if
the coefficients satisfy (10b).
Let us define

V=W, —-0W,_1, 6€][0,1), n>1. (13)
Furthermore, we introduce the coefficients
af = —ag —agf, ab=—ap— 10 — a0 = (1 —0)(a2f — ap), (14
B = b, B3 = Bo + A0

The parameter 6 in (13) and (14) will be chosen such that the coefficients in (14) satisfy
al>0, Br>0, j=1,2. (15)
Assuming positive starting values
V1 > 0 and W1 > 0, (16)

we have the following theorem.

Theorem 1. Suppose that At < CAtpg, with C = min <g? gg), and 0 is such that the
conditions (15) and (16) are satisfied. Then V,, >0 and W, >0 for alln > 1.
Proof. The formulae (12)—(13) give
Ve = ajVipi +asW, + AtF (f, Wn+2) , (17)
W2 = BiVas1 + 5 Wh. (18)

Adding CW .5 to both sides in equation (17) we obtain
a2vn+2 - (Cq - C/BT)VTL-H + (O‘; - Cﬂ;)wn + CWn+2 + AtF (Ev Wn+2) .

The coefficients in this relation are non-negative, due to the definition of C and (11).
Therefore, V19 > 0 if

Vg1 20, W, >0, CWyio+ AtF (6, W,12) > 0. (19)

The term CWnJi + AtF (f, Wn+2) can be seen as a scaled forward Euler step. " Thus, it is
non-negative if W19 > 0 and At < CAtrg. From (18) and (15) we see that W19 > 0 if

Vi1 >0 and W, >0. (20)



Combining (19) and (20) we have
Vn+2 Z 0 if Vn+1 Z 0 and Wn 2 0. (21)

By assumption, we know that V; > 0, W1 > 0 (see (16)) and W > 0. Thus, (21)
yields Vo > 0. As a result, relation (13) gives Wy = Vo + W > 0. Having Vo > 0 and
W1 >0, we obtain V3 > 0 (again by (21)) which results in W3 = V3 +0Wy > 0, etc. for
all n > 4. O

Let us now return to assumption (16) on the starting values. If W is calculated
by the forward Euler method then we have W1 > 0 for all At < Atpg. Moreover,
Vi=W; —-0Wy=(1-0Wy+ AtFy > 0 under the additional step size restriction
At < (1—0)Atpp.

Using the above considerations we can formulate the following theorem on the positivity
condition for the one-leg method.

Theorem 2. If W is obtained by the forward Euler method (5) and 6 is such that condi-
tion (15) is satisfied, then the one-leg method (12) is positive under the step size restriction
At < 9L (0)Atpp where

~9L(9) = min(C,1 — #) = min <—a1 —azf (1= 6)(az6 — ao)’ 1-— 9) .

g Bo + 316

It is illustrative to compare this v9%(#) with the () derived in (8): Condition (15)
gives 0 € [Omin, Omaz], where

(22)

Orrin = max(g—g, —%) = b

B’

Omaz = min(—g—;, 1).

Observe that the terms in the minimum function in (22) are monotonic decreasing functions
of . Therefore, the optimal y?(6)-value is obtained at § = 6,5, = 2= and is given by

2+¢
oL _ . (2(1+£)(2—£) 2¢ )
a 2+8* '2+¢)

(23)

The result is plotted in Figure 2. From this figure we see that the best method with
respect to positivity is no longer the method with £ = % The optimal method with respect
to positivity is now the method with £ = %(\/17 — 1) =~ 0.78. The corresponding 7L  is

then $(v/17 — 3) &~ 0.56. Comparing (9) and (23) we see that the one-leg method allows a
slightly larger time step than the linear two-step method.
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Figure 2: Step size restriction for positivity of the one-leg methods (thick lines) and of the
linear two-step methods (thin lines, obtained from Figure 1).
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