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ABSTRACT

Observational data of rainfall from a rain radar in Darwin in Australia is combined with data
defining the large-scale dynamic and thermodynamic state of the atmosphere around Darwin
to develop a multicloud model based on a stochastic method using conditional Markov chains.
We assign the radar data to clear sky, moderate congestus, strong congestus, deep convective or
stratiform clouds and estimate transition probabilities used by Markov chains that switch between
the cloud types and yield cloud type area fractions. Cross-correlation analysis shows that the mean
vertical velocity is an important indicator of deep convection. We show that, if conditioned on
the mean vertical velocity, the Markov chains produce fractions comparable to the observations.
The stochastic nature of the approach turns out to be essential for the correct production of area
fractions. The stochastic multicloud model can easily be coupled to existing moist convection
parameterization schemes used in general circulation models.

1. The cumulus parameterization problem

The representation of clouds and convection is of major
importance for numerical weather and climate prediction.
Moist convection, also called cumulus convection, trans-
ports heat, moisture and momentum vertically in the at-
mosphere, it influences dynamical, thermodynamical and
radiative processes and it has an impact on the large-scale
global circulation. In general circulation models (GCMs),
moist convection can not be explicitly resolved since the
scale of the involved processes is too small, therefore the
sub-grid processes have to be represented by parameteri-
zations, which are formulations of the statistical effects of
the unresolved variables on the resolved variables. We re-
fer to Arakawa (2004) for an overview of the the cumulus
parameterization problem. Formulating moist convection
parameterizations is a difficult problem: it introduces un-
certainties in model predictions (e.g. Randall et al. (2003))

and although models do agree that the cloud feedback is
positive or neutral, they do not agree on the strength of
the cloud feedback, e.g. Flato et al. (2013). It has been
shown by Lin et al. (2006) that the intraseasonal variability
of precipitation is generally too small in models and that
convectively coupled tropical waves are not well simulated.

An important issue considering cumulus parameteriza-
tions is that it is still not known which large-scale resolved
variables are most strongly related to moist convection, and
on which variables the closures of the parameterizations
should be based. In general we have the choice between
dynamical (e.g. vertical velocity) or thermodynamical (e.g.
the convective available potential energy (CAPE), relative
humidity (RH)) variables, which have been studied in a re-
cent paper by Davies et al. (2013a). Another important is-
sue is that if parameterizations are chosen to be determinis-
tic functions of the resolved variables, the subgrid response
of moist convection to large-scale variations can not cover
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the variety of responses that is possible in reality, as deter-
ministic parameterizations can only provide the expected
value of the response of moist convection in a grid box. In
view that GCMs resolutions are getting finer and finer, this
issue becomes more important, because with smaller grid
boxes the fluctuations around expected subgrid responses
become larger. Palmer (2001) pointed out that neglecting
subgrid variability can result in model errors and that this
can be corrected by using stochastic parameterizations to
represent subgrid processes. This has for example been
shown by Buizza et al. (1999) who improved the skill of
numerical weather prediction (NWP) with the European
Centre for Medium-Range Weather Forecasts’s system by
introducing stochastic elements in the physical parameter-
ization tendency. Their pioneering work gave impulse to
develop more sophisticated stochastic schemes.

Instead of perturbing all subgrid processes at once, it
is possible to improve GCMs by introducing stochastic el-
ements only in the deep convection parameterization, e.g.
Lin and Neelin (2000); Lin and Neelin (2003); Teixeira and
Reynolds (2008); Plant and Craig (2008) and Bengtsson
et al. (2013).

Rather than relying on physical intuition or deriving
parameterizations from first principles, stochastic parame-
terizations can be inferred directly from data. Crommelin
and Vanden-Eijnden (2008) showed that Markov chains,
with only a few states, for which the transition probabil-
ities had been estimated from data, could represent the
subgrid terms in the Lorenz ’96 (Lorenz (1996)) model
quite well, better than the determinstic parameterizations
and the stochastic parameterizations, based on autoregres-
sive processes, of Wilks (2005). The data-driven Markov
chain model inspired Kwasniok (2012) to develop a similar
model based on cluster-weighted Markov chains. In Dor-
restijn et al. (2013b) the Markov chain model of Crommelin
and Vanden-Eijnden (2008) was used to study stochastic
parameterization of shallow convection and in Dorrestijn
et al. (2013a) for deep convection.

A promising class of moist convection parameteriza-
tions based on the idea of evolving an ensemble of several
(convective) cloud types, inspired by Mapes et al. (2006)
and Johnson et al. (1999), is formed by multicloud models,
e.g. Khouider and Majda (2006); Khouider et al. (2010);
Majda et al. (2007); Frenkel et al. (2013); and Peters et al.
(2013). The clouds follow a life cycle starting from clear
sky to congestus clouds, to deep cumulus towers with strati-
form anvil clouds as a remnant of the towers spreading over
large areas, finally dissolving and come full circle at clear
sky. In the multicloud model of Dorrestijn et al. (2013a)
also shallow cumulus clouds are included.

In the present paper we use high-resolution (∼ 2.5×2.5
km2) observational data of rainfall in combination with
data defining the large-scale (∼ 150 × 150 km2) dynami-
cal and thermodynamical state of the atmosphere to infer

such a stochastic multicloud model. The large-scale data
are NWP analysis variable estimates improved with obser-
vations. The model is similar to the multicloud model of
Dorrestijn et al. (2013a) in which Large-Eddy Simulation
data was used to infer the model, as opposed to the obser-
vational data of this study. The multicloud model produces
area fractions for several cloud types which can be used as
stochastic parameterizations in the deep convection and
cloud schemes of GCMs. We also determine which large-
scale variables are strongly related to deep convection.

Our paper is organized as follows. In Section 2 we ex-
plain how we use Markov chains as a foundation for our
multicloud model. Then, in Section 3 we give a descrip-
tion of the observational data, explain how we classified
the data into cloud categories and how we dealt with ad-
vection while estimating transition probabilities between
cloud states. In Section 4 we assess the skill of large-scale
variables as indicators for deep convection. In Section 5
we construct our model, give expected area fractions and
standard deviations and we discuss scale adaptivity, i.e. the
ability to adapt the the size of a GCM grid box. We give
results in Section 6 by comparing area fractions from the
model with the observations and looking at their autocor-
relation functions. In Section 7 we discuss the possibilities
of implementation of the stochastic model in a convection
parameterization of a GCM and make some concluding re-
marks.

2. Markov chains

The multicloud model we use in this study consists of
Markov chains positioned on the nodes of a 2-dimensional
micro-grid. This model set-up has been used before in
Khouider et al. (2010); Dorrestijn et al. (2013a); Peters
et al. (2013). The state of each Markov chain at time t is
denoted Yn(t), where n is the micro-grid index. Each Yn
can take on 5 different values, corresponding to the follow-
ing categories: clear sky, moderate congestus, strong con-
gestus, deep convective and stratiform. The choice of these
specific categories will be discussed in Section 3. We will
refer to these categories as cloud types. As time evolves,
the Markov chains can switch, or “make a transition”, be-
tween states every ∆t = 10 minutes. All the Markov chains
on the micro-grid together determine the area fractions σm
for the various cloud types:

σm(t) =
1

N

N∑
n=1

1[Yn(t) = m], (1)

in which 1 is the indicator function (1[A] = 1 if A is true, 0
otherwise), N is the number of micro-grid nodes, and m ∈
{1, . . . , 5} the cloud type. We use radar data to estimate
the transition probabilities, needed in the Markov chain
model.

When used in a GCM, each GCM column contains N
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Markov chains that can switch to a different state every 10
minutes, resulting in time-evolving area fractions σm for
each cloud type and for each GCM column. These area
fractions can be used in the convection and cloud schemes
of a GCM. For example, the deep convective area fractions,
σ4, can serve as a mass flux closure at cloud base for a deep
convection parameterization scheme:

Mb = ρ σ4 wcb, (2)

in which ρ is the density and wcb is the vertical velocity
in a deep convective updraft at cloud base (e.g. Arakawa
et al. (2011); Möbis and Stevens (2012)). More examples
of possible applications in GCMs are given in Section 7.

As mentioned before, we use Markov chains with 5 pos-
sible states, so that the transition probabilities form a 5×5
transition matrix. Since these transition probabilities de-
pend strongly on the large-scale state of the atmosphere, we
make these probabilities conditional on functions of large-
scale variables (i.e., the variables that are normally resolved
by GCMs). These functions are called indicators of deep
convection. In Section 4 we discuss appropriate indica-
tors. The framework of conditional Markov chains (CMCs)
for parameterization was introduced by Crommelin and
Vanden-Eijnden (2008).

For now, we consider a discretized indicator X, such
that the possible states of X correspond to a finite num-
ber Γ of large-scale states. So, for each γ ∈ {1, . . . ,Γ} we
estimate a 5 × 5 transition probability matrix. The prob-
ability of CMCs switching from state α to state β given
the large-scale state γ can be estimated as follows (see also
Crommelin and Vanden-Eijnden (2008)):

Prob(Yn(t+ ∆t) = β|Yn(t) = α,X(t) = γ) = (3)

Tγ(α, β)∑
β Tγ(α, β)

where

Tγ(α, β) =
∑
t,n

1[Yn(t+ ∆t) = β]1[Yn(t) = α]1[Xn(t) = γ]

counts the number of transitions observed in the data from
cloud type α to β given that the large-scale state is γ. The
indices n and t run over space and time covered in the
training data set which is used to estimate the transition
probabilities. We remark that we do not condition the
Markov chains on X(t + ∆t), which reduces the number
of matrices to estimate significantly. For the estimation
of the transition matrices we use data sets corresponding
to two different scales: data sets that are formed by high-
resolution observations of rainfall at a scale that is equal to
or smaller than the micro-grid scale of the CMCs and data
sets that represent the large-scale atmospheric state at the
grid scale of a GCM. In the next section we introduce the
high-resolution observation data sets.
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Fig. 1. (a) A snapshot of the cloud top height derived
from Darwin radar observations and (b) the corresponding
rain rate.

3. The radar data

The microscale data consists of observational data of
precipitation obtained from the Darwin C-Band Polarimet-
ric (CPOL) Radar in Darwin, North-Australia. This data
is described in detail in Kumar et al. (2013). In the same
article it is explained how the radar data can be used to cal-
culate cloud top height (CTH) and rain rates. For two time
periods, 10 November 2005-15 April 2006 and 20 January
2007-18 April 2007, we have integer valued CTH and rain
rate observations at 10-minute timesteps, for a circular area
with radius 150 km and resolution of 2.5 × 2.5 km2. In Fig.
1 we show a snapshot of the CTH and the rain rates at one
time instance. The fields are rather noisy at the outer ring
of the radar domain and the radar does not give observa-
tions in the center of the radar domain, which is known as
the “cone of silence” and is due to the 42◦ maximum eleva-
tion angle (May and Ballinger (2007)). Therefore, we only
use pixels in between 25 km and 97.5 km from the center
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Table 1. Cloud type classification using thresholds for the cloud top height and the rain rate.

CTH [km]
rain rate [mm h−1]

≤ 12 > 12
≥ 6.5 stratiform (m = 5) deep convective (m = 4)

≤ 3 > 3
∈ [1.5, 6.5) moderate congestus (m = 2) strong congestus (m = 3)
< 1.5 clear (m = 1)

of the domain. This forms an annular shaped sub-domain
consisting of 4720 pixels of 2.5 × 2.5 km2 corresponding
to an area size of approximately 172 × 172 km2. Fig. 2
contains histograms of the CTH and the rain rates, show-
ing the distribution of these quantities. We consider CTH
below 1.5 km as clear sky to avoid the influence of radar
ground clutter. There is a bi-modal distribution of CTH,
with a minimum at around 4 km, which is close to the
freezing level at 5 km. To classify our cloud types, we use
thresholds for CTH to distinguish high clouds, low clouds
and clear sky. The bi-modal distribution in the cloud top
histogram suggests a CTH threshold to distinguish low and
high clouds (e.g. congestus and deep convective clouds) of
around 4 or 5 km. Congestus clouds have been observed
up to 9.5 km in the atmosphere (Johnson et al. (1999)).
We adopt the approach of Kumar et al. (2013), who devel-
oped a more objective identification of congestus and deep
convective clouds, taking the value 6.5 km as a threshold.
Further, we employ a rain rate threshold to make a distinc-
tion between clouds with intense precipitation and those
with little or no precipitation. This enables us to make a
distinction between deep convective clouds and stratiform
clouds as well as a distinction between strong and moderate
congestus. The rain rate histogram in Fig. 2b, shows an
approximately exponential distribution, so it is impossible
to argue for an obvious rain rate threshold. In the litera-
ture thresholds for partitioning convective and stratiform
precipitation vary between 10 and 25 mm h−1, and there
are several methods for partitioning which are described in
Lang et al. (2003). We choose a threshold of 12 mm h−1 to
distinguish between deep convective and stratiform clouds
and a threshold of 3 mm h−1 to distinguish between mod-
erate and strong congestus. Combining these thresholds
results in the following five cloud types: (1) clear sky, (2)
moderate congestus, (3) strong congestus, (4) deep con-
vective and (5) stratiform. In Table 1 we summarize the
classification into cloud types. Note that, although desired,
shallow cumulus clouds are not included in the model, for
the obvious reason that the rain radar does not observe
non-precipitating clouds.

After classification we have 2-dimensional fields with
discrete values (integers from 1 to 5). In Fig. 3 we give an
example of a classified field, which is the classified field cor-

responding to the CTH and rain rate fields shown in Fig.
1. After the classification the observed area fractions, σm,
can be calculated according to (1), with Yn the observed
cloud type and N = 4720 the number of radar pixels in the
annular domain. The observed area fractions are strongly
time-dependent, with σ1 (clear sky) varying between 0%
and 100%, σ2 (moderate congestus) between 0% and 55%,
σ3 (strong congestus) between 0% and 2.5%, σ4 (deep con-
vective) ranging from 0 to about 10% and σ5 (stratiform)
ranging from 0 to about 99%. The observed fractions are
depicted in Fig. 9 (discussed in Section 6) for a time period
of 5 days for all cloud types, and the deep convective area
fraction also in Fig. 7a (discussed in Section 6) for a longer
period of 3 months.

Besides calculating observed area fractions for the dif-
ferent cloud types, the classified data are used to estimate
transition probabilities between the cloud types for the
CMCs, using (3). This is a key step in creating the mul-
ticloud model. To give an idea of the observed transition
probabilities, not yet conditioned on the large-scale vari-
ables, we give the estimated transition matrix:

M̂ =


0.8987 0.0668 0.0006 0.0011 0.0329
0.4147 0.4707 0.0033 0.0026 0.1086
0.2563 0.2686 0.2177 0.0545 0.2029
0.1757 0.0284 0.0124 0.4295 0.3540
0.1185 0.0779 0.0010 0.0091 0.7935


The probability of a transition from cloud type m to cloud
type n can be found in the nth column of row m. For
example, the probability that a deep convective pixel will
be assigned to stratiform 10 minutes later, is 0.3540. The
probability that a deep site is again a deep site 10 minutes
later, is 0.4295, much larger than the expected deep con-
vective area fraction (at most 0.03 as can be seen Fig. 6,
discussed later in this paper). Some evidence for the life cy-
cle can be seen in this transition matrix, a deep convective
cloud likely turns into stratiform, which turns into clear
sky. Some entries are artefacts of the estimation method,
for example the probability of clear sky turning into strat-
iform is 0.0329, but in reality the stratiform cloud spreads
out from the top of a deep cumulus cloud.

For correct estimation of cloud type transition proba-

4



0 5 10 15 20
0

1

2

3

4

5

6

7
x 10

6

CTH [km]

N
o.

 o
f o

bs
er

va
tio

ns

(a)

0 25 50 75 100
10

0

10
2

10
4

10
6

Rain rate [mm h−1]

N
o.

 o
f o

bs
er

va
tio

ns

(b)

Fig. 2. Histograms of (a) the cloud top height and (b) the
rain rate observed with the Darwin radar in the periods
November 2005 - April 2006 and January-April 2007.

bilities, we have to take into account that clouds are ad-
vecting horizontally through the domain. To do this, we
translate the advected clouds in a radar image back to their
position in the previous image. In this way, we minimize
transitions that are only a result of advection. The ad-
vection, with zonal wind u and the meridional wind v, is
assumed to be a function of height and time only. We cal-
culate this translation separately for every cloud type (as
they are located at different heights in the atmosphere).
Let Zm(xi, yj , t) = 1[Y (xi, yj , t) = m], with Y (xi, yj , t)
the discretized radar pixel at location (xi, yj) at time t and
(xi, yj) running over all Nij = 4720 pixels in the annu-
lar shaped sub-domain. We calculate for every cloud type
m and for every time interval [t, t + ∆t] the optimal hori-
zontal displacements um∆t and vm∆t which minimize the
correlation

1

Nij

∑
ij

Zm(xi + um∆t, yj + vm∆t, t)Zm(xi, yi, t+ ∆t).
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Fig. 3. Example of radar data assigned to the categories
clear sky, moderate congestus, strong congestus, deep con-
vective and stratiform, corresponding to the CTH and rain
rate snapshots of Fig. 1.

By applying the Correlation Theorem (e.g. Press et al.
(1992)), fast Fourier transforms can be used to reduce
the calculation time for finding the displacements. At the
boundaries at the outer edge and in the center of the radar
domain, clouds flow into and out of the domain. We also
have to account for this during the estimation of cloud type
transition probabilities. More specifically, we do not count
transitions of “clouds” (including clear sky) that are in-
side the radar domain at time t, but which are outside the
domain at the previous time step t − ∆t or at the next
time step t + ∆t, due to advection. Without corrections,
the estimated probability transition matrix is significantly
different: for example the probability that a pixel assigned
to the deep convective cloud type is deep convective 10
minutes later would be estimated at 0.29 instead of 0.43.

The focus in this paper will primarily be on the deep
convective area fractions, when we determine the large-
scale variable on which to condition the CMC (Section 4)
and when we test the CMC (Section 7). Although the other
fractions can have applications in GCMs, the deep convec-
tive area fractions are the most important. Describing the
convective transport by deep convection accurately is cru-
cial for a GCM to work properly. Conditioning each in-
dividual cloud type on different large-scale variables could
improve the model, in particular for the strong congestus
clouds, that precede deep convection.

4. The large-scale data

We have data available that defines the large-scale dy-
namic and thermodynamic state of the atmosphere around
Darwin for the time periods November 2005-April 2006 and
January 2007-April 2007 for which we also have the radar

5



−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time lag τ [day]

C
C

F

 

 

−<ω>
CAPE
RH

Fig. 4. Cross-correlation functions (CCFs) of the deep
convective area fraction with -〈ω〉, CAPE and RH at 640
hPa for the 2005/2006 data set.

data. The large-scale fields are averages over 6 hour in-
tervals and have a vertical resolution of 40 pressure levels,
from ground level to about 20 km altitude. The data has
been prepared by Davies et al. (2013a) who used a vari-
ational analysis method to improve NWP analysis large-
scale variable estimates by constraining the moisture bud-
gets with observational rain data from the CPOL radar.
The large-scale data is also used in Davies et al. (2013b);
Peters et al. (2013) and Gottwald et al. (2014). Here, we
use the data to investigate which large-scale variables are
suitable indicators for the convective state of the atmo-
sphere and compare our findings with the results of Davies
et al. (2013a). Then, we will use the large-scale data ac-
cordingly for conditioning the multicloud CMC model. As
in Davies et al. (2013a), we consider thermodynamical and
dynamical variables. In particular, we will consider the
following well-known indicators: CAPE, the mean vertical
velocity 〈ω〉, and RH. CAPE is a measure for the stability
of the atmosphere and is formally defined as follows:

CAPE := Rd

∫ pLFC

pNB

(Tv,p − T v) dlnp ,

in which Tv,p is the virtual temperature of an undiluted
parcel, T v is the virtual temperature of the environment,
Rd is the gas constant of dry air, pNB the level of neu-
tral buoyancy and pLFC the level of free convection (e.g.
Siebesma (1998)). The mean vertical velocity we define as

〈ω〉 :=
1

p0 − p∗

∫ p0

p∗
ω(p)dp,

in which ω is the large-scale vertical velocity in hPa h−1,
p0 the pressure at the surface, and p∗ is pressure level 340
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Fig. 5. Histogram of the 25 intervals of -〈ω〉, found by
clustering the linearly interpolated 〈ω〉 values. The first
and last (25th) intervals are open on one side. Because ω
is a velocity in terms of pressure, positive 〈ω〉 corresponds
to downward mean large-scale motion and negative 〈ω〉 to
upward mean motion (as illustrated by the arrows).

hPa, chosen because the resulting 〈ω〉 gives the highest cor-
relation with deep convective area fractions (as calculated
with (4) that is given below). We find that the vertical
integral over ω gives higher correlations than ω at a single
pressure level. Further, the relative humidity is chosen at
pressure level 640 hPa, also because it gives the highest
correlation with deep convective area fractions. To assess
how well an indicator correlates with deep convection, we
calculate the time-lagged cross-correlation function (CCF)
of the indicator and the deep convective area fraction.

Given the timeseries of the deep convective area frac-
tion σ4(t) and the timeseries of the indicator X(t), the
normalized CCF of X(t) and σ4(t) is:

CCF(τ) =

∫ ∞
−∞

X̃(t+ τ)σ̃4(t)dt (4)

with X̃(t) = X(t)−µX

σX
(i.e. the indicator normalized by

subtracting its mean µX and dividing by its standard de-
viation σX), σ̃4 defined analogously, and τ the time lag of
X w.r.t. σ4. As such, the CCF lies in between -1 and 1.
If the maximum value of the CCF is attained at positive
time lag τ , the indicator X(t) tends to follow rather than
precede deep convection.

In Fig. 4 we plot the CCFs of the indicators −〈ω〉,
CAPE and RH with the observed deep convective area frac-
tion for the 2005/2006 period. The figure for the 2007 pe-
riod is similar (not included). Before calculating the CCF,
we linearly interpolate X to get its values every 10 minutes
instead of every 6 hours, because the sequences X and σ̃4
must have the same length. We see that 〈ω〉 has a larger
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correlation at zero time lag than CAPE and RH. Moreover,
also for negative time lags of a few hours this correlation
is higher. In this respect 〈ω〉 is the best indicator of deep
convection. We note that the maximum correlation of 〈ω〉
with σ4 is attained at a positive time lag. This may seem
to indicate that 〈ω〉 is an effect rather than a cause of deep
convection. However, this is a subtle issue, as 〈ω〉 may also
both be a trigger (i.e., cause) of deep convection and be re-
inforced by it, so that separating cause and effect becomes
difficult. In Peters et al. (2013) a related discussion can be
found.

In order to use an indicator for constructing the CMC
according to (3), it must be discretized into a finite num-
ber of states. If only one indicator is used, which is the
case is this paper, a finite number (Γ) of intervals can be
chosen, defined by thresholds. If a combination of several
indicators is used, one can choose thresholds for each indi-
cator separately, or use a clustering method as in Dorrestijn
et al. (2013b,a) and Kwasniok (2012). To give an exam-
ple, in Fig. 5 we show a histogram of 〈ω〉 discretized using
25 intervals. These intervals have been found by using
a cluster method, k-means, which minimizes the distance
between the 〈ω〉-values and the centers of the intervals. Us-
ing equidistant intervals is also an option, however, since
the 〈ω〉-values are not distributed uniformly, we prefer the
non-equidistant intervals found by k-means. Interval num-
ber 25, corresponds to negative 〈ω rangle or strongly posi-
tive large-scale vertical velocity (illustrated by the arrow),
which is favourable for deep convection, and we will later
see in Fig. 6 that the averaged observed deep convective
and stratiform area fractions are large (around 3% and
90%, respectively) for interval number 25.

5. A description of the multicloud model

Having classified the radar data into cloud types, and
having identified (and discretized) a suitable large-scale in-
dicator, 〈ω〉, we estimate the transition probability matri-
ces of the CMC using (3). We take the period from 10
November 2005 until 15 April 2006 as the training data
set, and we set Γ = 25. So, we have to estimate 25 matri-
ces each of size 5× 5, giving 625 parameters in total. This
may seem a large number, however the training data set
is very large, containing O(108) observations of transitions
(radar images at 10-minute intervals during 157 days, with
4720 pixels in each image).

In Section 6 we will validate the CMCs with the test
data set, but since we have estimated transition matrices,
we can already get some insight into the statistical proper-
ties of the cloud type area fractions generated by the CMC
as compared to the observed area fractions in the training
data set.

In Fig. 6, we plot the expected fractions and the stan-
dard deviation for both the observations and the CMC as

a function of the 〈ω〉-intervals seen before in Fig. 5. The
expected values of the CMC correspond to the invariant
distribution of the transition matrix for each 〈ω〉-interval.
The CMC expected values are almost equal to the observa-
tional expectations for all cloud types, the small differences
can be ascribed to the way we corrected for horizontal ad-
vection (as described before in Section 3).

We see in Fig. 6a that the expected deep convective
area fractions increase with increasing 〈ω〉-interval (cor-
responding to increasing upward mean vertical velocities)
and has its maximum of around 0.03 for interval number
24. Further, the strong congestus fractions in Fig. 6b,
increase with increasing 〈ω〉-interval, however, for inter-
val number larger than 22, the fraction decreases rapidly,
while expected deep and stratiform cloud fractions keep in-
creasing. The expected stratiform fractions increase with
increasing 〈ω〉-interval up to very high expected values of
90%. The expected value of moderate congestus is around
15% for downward mean motion, increases slightly with
increasing 〈ω〉-interval number. For 〈ω〉-interval numbers
above 22, the expected value of moderate congestus de-
creases which is caused by the stratiform decks that are
dominating the radar domain (for this 〈ω rangle-interval
numbers). Expected clear sky fractions decrease rapidly as
a function of the 〈ω〉-interval.

The standard deviation of the observational deep con-
vective arae fractions tends to increase with increasing 〈ω〉-
interval number, so it tends to increase if the expected value
increases and for high values of the 〈ω〉-interval number the
standard deviation is almost equal to the expected value.
The normalized observed standard deviation, the standard
deviation divided by the mean, is decreasing with increas-
ing mean, with values decreasing from 5 down to about 1.
So, we agree with the conclusion of Davies et al. (2013a)
that noise (or stochastic behaviour) decreases as a function
of increasing forcing.

The standard deviation of the observational strong con-
gestus area fractions depends on the expected values as
well, with a normalized standard deviation ranging from
1 (for relatively high fractions) up to 3 (for relatively low
fractions). The standard deviation of the stratiform area
fractions tends to increase as a function of the 〈ω〉-interval,
but decreases if the expected values become very large be-
cause of the upper bound of 100%. For moderate conges-
tus, the normalized standard deviation ranges between 0.5
and 1. The standard deviation of the clear sky area frac-
tion is around 10− 20%, independently of the 〈ω〉-interval
number, with an exception of interval number 25 for which
the standard deviation is only 2.4%.

The theoretical standard deviation of the CMC can be
calculated explicitly for each 〈ω〉-interval and is equal to√
N−1p(1− p), in which p is the expected value of the

fraction. So, the theoretical standard deviation depends
only on the expected value of the fraction and the number
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Fig. 6. Observational mean cloud type area fractions as a function of the 〈ω〉 intervals for the 2005/2006 training period
(solid line with circles) plus and minus the standard deviation (dash-dotted line) and the CMC expected cloud type area
fractions (solid line) plus and minus the standard deviation while using N = 100 CMCs (dashed line). Note the different
scaling on the y-axis.

of CMCs used to calculate the cloud type area fractions.
We choose a value of N = 100 such that the standard de-
viation of the deep convective area fractions is comparable
to the standard deviation of the observed deep convective
area fractions in the training data set. This implies that
the standard deviation of the CMC is too small for cloud
types with larger standard deviations (clear sky, moderate
congestus and stratiform) and too large for the strong con-
gestus cloud type (which has a small standard deviation).

Scale adaptivity

Ideally a parameterization of deep convection should be
adaptive to the size of the GCM grid box, see Arakawa et al.
(2011). By construction of the multicloud model, our pa-
rameterization of deep convection is indeed scale adaptive.
The value N of the number of CMCs can be adapted to the
horizontal grid spacing of the GCM. For a large size of the
GCM grid box, a large number of clouds fit into the model
column and therefore a large number of CMCs should be
taken to calculate the cloud type area fractions. For very
large GCM grids, the number of CMCs becomes very large

and hence the σm tend to a deterministic limit (equal to
the expected values associated with the large-scale inter-
val number). For smaller grid box sizes, the number of
CMCs is smaller and as a result, the area fractions gen-
erated by the multicloud model will be “more stochastic”,
fluctuating significantly around their expected values. It is
difficult to say to which horizontal size a CMC corresponds
exactly. The size corresponding to a CMC is equal to the
typical horizontal size of the cloud type under considera-
tion. Therefore, the horizontal size is larger than the area
of a radar data pixel (2.5 × 2.5 km2), which explains that
producing area fractions with CMCs while using a num-
ber smaller than the number of radar pixels in the radar
domain gives better results in Section 6, N = 100 versus
N = 4720. We emphasize that the value of N = 100 is
found during the training phase and not during the the
testing phase of the model. For N = 100 the horizontal
area size corresponding to a CMC is approximately 17×17
km2, which is the area of the 4720 radar pixels divided by
100.

To summarize the different length scales that are used
in this paper: radar pixels of 2.5 km, clouds of length scale
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Fig. 7. (a) Deep convective area fractions observed in Darwin (b,c) two realizations of deep convective area fractions
produced by N = 100 CMCs conditioned on 〈ω〉 and (d) the corresponding histograms comparing the CMC fractions
(averaged over 100 realizations) with the observed fractions (binned into intervals) on a logarithmic y-axis.

∼ 17 km which is also the length scale corresponding to
1 CMC, the length corresponding to the large-scale vari-
ables, the radar domain and a GCM grid box ∼ 150 km.
Finally, the length scale corresponding to the CMC frac-
tions: 17

√
N .

6. Results

To assess how well the multicloud model reproduces the
convective behaviour observed in the radar data set, we
first consider the cloud type area fractions. Then, we will
look at autocorrelation functions (ACFs) of the fractions
and 〈ω〉.

a. Area fractions

As mentioned, the radar data can be used to calculate
observed area fractions of each cloud type. We use 〈ω〉 as
indicator and take N = 100 CMCs. Then, we train the
CMCs as explained in Section 5 using the training data set

2005/2006. We assess the model by driving the CMCs with
〈ω〉 as observed in the other data set (from 2007). Thus,
different data sets are used for training and evaluation.

In Fig. 7a we show the deep convective area fractions
as observed in the Darwin radar test data set (2007). It
can be seen that the deep convective events are very inter-
mittent in the radar data, with periods of enhanced deep
convection and periods with less wide-spread convective
events. In Fig. 7b and 7c we give two realizations of the
deep convective area fractions as reproduced by the CMCs.
The CMC fractions display similar intermittent behaviour,
with maximum values that are slightly too high compared
to the observations. The CMC fractions have discrete val-
ues, namely σ4 ∈ {0.01, 0.02, 0.03, . . .}, because N = 100
CMCs are used. To further assess the quality of the deep
convective fractions, we calculate histograms of the deep
convective area fractions (Fig. 7d). Since the CMC frac-
tions are integer multiples of 0.01, we bin the Darwin ob-
served fractions into intervals of length 0.01, apart from the
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Darwin observations 2007
10x10 CMCs 25 clusters CAPE

Fig. 8. Deep convective area fractions produced by N =
100 CMCs conditioned on CAPE and (b) the correspond-
ing histograms in which the CMC fractions (averaged over
100 realizations) are compared to the observed fractions
(binned into intervals) on a logarithmic y-axis.

first interval which is [0, 0.005). Because high values of the
deep convective fractions are rare, we plot the histograms
on a logarithmic y-axis. We observe that the observational
fractions decrease exponentially, as is expected since rain
rates tend to decrease exponentially (see Fig. 2). The
CMC fractions follow the exponential decrease well and
the values are only slightly off.

We repeat the computations with CAPE as indicator
instead of 〈ω〉. In Fig. 8a we show the resulting CMC
deep convective area fractions (compare to Fig. 7a). We
observe that the fractions are also intermittent, but high
fraction values are too rare. Further, although periods of
enhanced convection and of less convective events are vis-
ible, they are not comparable with the observations. In
the histograms with a logarithmic y-axis (Fig. 8b) it is
indeed visible that fractions larger than 0.04 are too rare,
although a fraction of 8% is reached in one of the 100 re-
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Fig. 9. Deep convective area fractions produced by N =
692 CMCs conditioned on 〈ω〉 and (b) the corresponding
histograms of the binned CMC fractions averaged over 100
realizations compared to the binned observed fractions on
a logarithmic y-axis.

alizations. We conclude that in the present setting CAPE
is less suitable as indicator for deep convection than 〈ω〉.

As our third experiment, we use 〈ω〉 again as indicator
and keep everything as in the first experiment except for
taking N = 692 = 4761 which is (close to) the number of
radar pixels used to train the CMCs. We observe (Fig. 9)
that high values of the deep convective area fractions are
not reached anymore, values are not higher than 0.04. Be-
cause N is much larger than before, the fractions are rather
close to the (deterministic) expectation values. This means
that, although the number of CMCs is equal to the number
of radar lattice sites, the CMC fractions show lower max-
ima. We note that in our current set-up the CMCs on the
2D micro lattice sites are independent of their lattice neigh-
bors, which is not the case for the sites in the radar data.
This is the underlying cause of the lower CMC maxima.
Introducing local interactions between neighboring CMCs
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can improve this, but it makes the estimation of the CMCs
much more complicated, see Dorrestijn et al. (2013a).

As a final experiment we take again N = 100 CMCs
and 〈ω〉 as indicator, but we interchange the roles of train-
ing data set and test data set. Thus, we train the CMCs
with the 2007 data set and validate using fractions for the
2005/2006 period. The deep convective area fractions in
the 2005/2006 radar data reach higher maxima than in
the 2007 data set, with an overall maximum of about 10
percent (not shown). The fractions of the CMCs are less
likely to attain these highest peak values. Notwithstand-
ing this issue, the distribution of the CMC fractions is still
comparable to that of the observed fractions.

For a more detailed look at the fractions, in Fig. 10 we
show the area fractions of all 5 cloud types corresponding
to the first experiment (with N = 100 and 〈ω〉 as indicator)
for a much shorter period of 5 days. The timing of the deep
convective events produced by the CMCs is almost correct,
there is a small time lag visible in Fig. 10a. Furthermore,
it is clear that the deep convective fractions of the CMC
show maximum values of the peaks in agreement with the
observations, which is not the case for the expected values
of the CMC. The conclusion is that the stochastic fluc-
tuations of the multicloud model fractions are needed in
order to produce the correct maximum values of the deep
convection area fraction peaks. The stochastic nature of
the approach is essential for production of the correct area
fractions. A day-night cycle can be seen in the deep con-
vective fractions, owing to the presence of land in the radar
domain. This cycle is also present in the CMC fractions.

The strong congestus fractions in Fig. 10b are small,
so the CMC fractions, being integer multiples of 0.01, have
difficulties attaining the observational fractions. So, N =
100 seems to be too small for the strong congestus area
fractions. In Fig. 10c, we see stratiform area fractions.
The CMC fractions follow the observations correctly (in
a time sense), but the local maxima tend to be too low.
The stochastic part of the fractions is not as prominent as
for the deep convective area fractions. The observational
moderate congestus fractions in Fig. 10d are difficult to
follow for the CMCs: the value zero is never attained for
the CMC fractions. A conclusion is that 〈ω〉 is not such
a good indicator of moderate congestus clouds. These de-
pend probably more on boundary layer processes. The
clear sky fractions (Fig. 10e) of the CMC follow the obser-
vations quite well, but the minimum values of are not small
enough. The clear sky fractions are important, as 1 − σ1
is the cloud cover observed by the radar, which is a usable
quantity in GCMs, however, keep in mind that the radar
is not able to detect all clouds.

b. Autocorrelation functions

As a final assessment in this paper, we inspect ACFs
of the cloud type area fractions and 〈ω〉. The ACF of the

cloud type area fraction σm is

ACF(τ) =

∫ ∞
−∞

σ̃m(t+ τ)σ̃m(t)dt, (5)

which is the CCF of σ̃m with itself, cf. (4). Recall that σ̃m
is the normalized σm. The ACF of 〈ω〉 is defined analo-
gously. A main advantage of using Markov chains instead
of drawing samples that are uncorrelated in time from the
observed distribution of cloud types is that a Markov pro-
cess should be better capable of capturing the observed
ACF. In Fig. 11 we show normalized ACFs of the ob-
served area fractions (solid line with stars), the CMC area
fractions with N = 100 conditioned on 〈ω〉 (solid line) and
on CAPE (dashed line) and the ACF corresponding to 692

CMCs conditioned on 〈ω〉 (dotted line), for (a) deep con-
vective (b) strong congestus (c) stratiform (d) moderate
congestus and (e) clear sky. Also the ACF of 〈ω〉 is shown
(dash-dotted line). In (a) we see that apperently, the ACF
of the deep convective area fractions produced by N = 100
CMCs decreases too rapidly initially. Without the cor-
rection for advection as explained in Section 3 the ACF
decreases even more rapidly (not shown). The rapid initial
decrease indicates that the probability of a transition from
deep to deep is estimated too low. We see that the daily
cycle is well captured in the case that we conditioned on
〈ω〉. When CAPE is used as indicator the ACF decreases
more rapidly than when conditioned on 〈ω〉 and it can be
seen that the daily cycle is not captured. The ACF for the
observational data set of 2005/2006 is similar to the ACF
for the 2007 data set (not shown). We note that for a large
number of CMCs, close to the deterministic limit, the ACF
follows the ACF of 〈ω〉 almost perfectly. In (b), we see that
in order for the CMCs to follow the observational strong
congestus ACFs, the N = 69×69 performs better than the
N = 102. In (c) and (e) we see ACFs of the CMC, that are
comparable to the observational ACF, only if conditioned
on langleω〉, not if conditioned on CAPE. The presence of
a daily cycle in the fractions is clearly visible if conditioned
on 〈ω〉 except for strong congestus fractions produced with
N = 100 CMCs. Considering all ACFs, we conclude that
the ACFs for CMCs conditioned on 〈ω〉 are better than
if conditioned on CAPE (except for moderate congestus).
For N = 100, the ACF of deep convection is better than
for N = 692, while this is not the case for strong congestus
and moderate congestus. For stratiform and clear sky, the
number of CMCs does not strongly influence the ACFs.

7. Discussion and conclusion

In this study we constructed a multicloud model from
observational radar data in Darwin, Australia, combined
with large-scale data representing the atmosphere around
Darwin. The multicloud model consists of CMCs switching
between different cloud types (moderate congestus , strong
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Fig. 10. Area fractions of (a) deep convective, (b) strong congestus, (c) stratiform, (d) moderate congestus and (e) clear
sky observed in Darwin (dashed line), produced by 100 CMCs (solid line) conditioned on 〈ω〉 and the corresponding
expected area fractions of the CMCs (dash-dotted line) for a period of 5 days. Note the different scaling on the y-axis.

congestus, deep convective and stratiform clouds and clear
sky), a model set-up similar to Khouider et al. (2010) and
Dorrestijn et al. (2013a). The model is able to reproduce
cloud type area fractions comparable to the observational
fractions (especially for the deep convective area fractions,
on which we focussed primary). The vertically averaged
large-scale vertical velocity 〈ω〉 was found to be a good in-
dicator, whereas CAPE or RH were found to be less suit-
able indicators. This is in agreement with the findings of
Davies et al. (2013a).

The number N of CMCs used to form cloud type area
fractions was shown to be an important parameter of the
model: for moderate values of N the model shows signifi-
cant stochastic fluctuations and the model is able to pro-
duce area fractions comparable with the observational frac-
tions. For large values of N the model is more deterministic
and unable to reproduce fractions well. The stochastic na-
ture of the model is essential for making the fractions com-
parable to the observations. Further, by changing N the
multicloud model can be adapted to the horizontal scale
if implemented in a GCM, providing a way to make the
parameterization scale-adaptive. This makes the model
suitable for GCMs using non-uniform grids. Further, the

model can be used as a start for GCMs reaching grid sizes
that fall in the grey zone, i.e. for grid sizes so small that
subgrid convective flux terms are of the same order as the
resolved flux terms. For a discussion of the grey zone we re-
fer to Yu and Lee (2010) and Dorrestijn et al. (2013b). The
horizontal size to which a CMC corresponds is not clearly
determined. In principle it corresponds to the horizontal
size of the cloud type under consideration, which is differ-
ent for all cloud types. Using a different number of CMCs
for each cloud type is an option, but it is complicated and
lies out of the scope of this research. During the training
process, we found a value of N = 100, only taking deep
convective area fractions into account, which corresponds
to an area size of 17× 17 km2 for a single CMC.

In recent work of Gottwald et al. (2014), data-driven
methods, similar to our approach, are used to parameter-
ize deep convection. Observational data of a radar located
at Kwajalein is used to infer two stochastic processes. A
stochastic process for which samples are drawn at random
from the estimated distributions and a CMC. Both pro-
cesses are conditioned on ω at 500hPa. The states of the
CMC correspond to deep convective area fractions. With
both approaches they are able to reproduce deep convec-
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Fig. 11. Normalized ACFs of the observational area fractions (solid lines with stars), the CMC area fractions with
N = 100 conditioned on 〈ω〉 (solid lines) and on CAPE (dashed lines), the ACF corresponding to 692 CMCs conditioned
on 〈ω〉 (dotted lines) for the cloud types (a) deep convective (b) strong congestus (c) stratiform (d) moderate congestus
and (e) clear sky. Also the ACF of 〈ω〉 is shown (dash-dotted lines).

tive area fractions for the Darwin region. The models are
computationally less expensive than our model, because no
micro-grid is used and only deep convective area fractions
are considered. They point out that for the training process
of the CMC not enough data is available, since they only
use spatially averaged fraction values to train the CMCs.
Interestingly, they show that only a small adaptation has
to be performed before using the models at a different lo-
cation than where they have been trained. This supports
that also our multicloud model could be used more globally.
However, since convection is (in part) location dependent,
e.g. the presence of land or sea, our model could be im-
proved by using observations from multiple locations. This
could lead to a data-driven parameterization of convection
and clouds for the usage in numerical weather and climate
prediction models.

As the multicloud model was able to reproduce the
cloud type area fractions quite well, a natural step is to
test this model in a GCM. In Section 2, we mentioned that
the deep convective area fractions σ4 can be used as a clo-
sure for the mass flux at cloud base as in (2). The strong
congestus area fractions σ3, which also represents convec-

tion, can be added using a different updraft velocity, and
the same can be done with the moderate congestus frac-
tions σ2. When using the fractions only as a mass flux
closure, it is assumed that the GCM can further calculate
the entire vertical tendency profiles for e.g. heat and mois-
ture. An alternative is to define vertical heat and moisture
tendency profiles corresponding to each cloud type (e.g.
Khouider et al. (2010)) or explicitly inferring vertical heat
and moisture tendency profiles from data as in Dorrestijn
et al. (2013b). Another possible application of the model
in a GCM is that

∑
m>1 σm, or 1− σ1, can be used in the

parameterization of cloud cover.
The main weakness of our model is that there is no

spatial dependence between the CMCs other than through
the large-scale state, which results in too small standard
deviations for the CMC fractions when N is chosen to be
equal to the number of radar sites. The peak values of the
the observational fractions of the cloud types stratiform,
moderate congestus and for clear sky are difficult to pro-
duce, while keeping N such that the peak values of the
deep convective area fractions are good. The standard de-
viation for the cloud types stratiform, moderate congestus
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and for clear sky are too small and we saw that the ACFs
of the CMCs using N = 100 decrease too much initially
(except for stratiform and clear sky).

To summarize the strengths of our approach: realistic
observational data is used to estimate the model; the CMC
cloud type area fraction were shown to be comparable to
the observations, which is notable, because we used dif-
ferent data sets for training and validation. Furthermore,
we saw that the model can be adapted to the scale of the
GCM, giving larger fluctuations when a smaller number of
Markov chains is used to produce area fractions. Due to
the conditioning, memory effects are build in that are of-
ten absent in conventional stochastic convection schemes.
Implementation in a GCM for assessing the model in a dy-
namical environment is possible and it can be improved by
using additional data from different locations.
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