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A multirate time stepping strategy for parabolic PDE

ABSTRACT

To solve PDE problems with different time scales that are localized in space, multirate time
stepping is examined. We introduce a self-adjusting multirate time stepping strategy, in which
the step size at a particular grid point is determined by the local temporal variation of the
solution, instead of using a minimal single step size for the whole spatial domain. The approach
is based on the ‘'method of lines', where first a spatial discretization is performed, together with
local error estimates for the resulting semi-discret system. We will primarily consider implicit
time stepping methods, suitable for parabolic problems. Our multirate strategy is tested on
several parabolic problems in one spatial dimension (1D).
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To solve PDE problems with different time scales that are localized in space,
multirate time stepping is examined. We introduce a self-adjusting multirate time
stepping strategy, in which the step size at a particular grid point is determined
by the local temporal variation of the solution, instead of using a minimal single
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1 Introduction

There are usually two stages in the numerical solution of time-dependent partial dif-
ferential equations (PDEs). The first stage is the spatial discretization in which the
spatial derivatives of the PDE are discretized, for example with finite differences, finite
volumes or finite element schemes. By discretizing the spatial operators, the PDE with
its boundary conditions is converted into a system of ordinary differential equations
(ODEs) in R™,

w'(t) = F (t,w(t)) , w(0)=wo, (1.1)

called the semi-discrete system. It will be assumed that the components of w(t) are
associated with the PDE solution at grid points or surrounding cells, say w;(t) =~
u(z;,t), or with the weights of local trial functions in finite elements. This ODE
system is still continuous in time and needs to be integrated. So, the second stage in
the numerical solution is the numerical time integration of system (1.1).

Standard single-rate time integration methods for PDEs work with time steps that
are varying in time but constant over the spatial domain. There are, however, many
problems of practical interest where the temporal variations have different time scales
in different parts of the domain. To exploit these local time scale variations, one needs
multirate methods that use different, local time steps over the spatial domain.

The multirate approach introduced in this paper is based on local temporal error
estimation. Given a global time step At,, = t, —t,_1, we compute an approximation at
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Figure 1: Multirate time stepping for a time slab [t,_1,tx].

the new time level in all grid points. In those spatial regions where the error estimator
indicates that smaller steps are needed, the computation is redone with %Atn. The
result with the coarser time step will furnish boundary conditions for this refined step
by interpolation or by a ‘dense output’ formula. The refinement is continued with local
steps 27 !At,,, until the error estimator is below a certain tolerance for all grid points.
Schematically, with space horizontally and time vertically, the multirate time stepping
is displayed in Figure 1. Small time steps will be used in the more active space region
and larger ones in the less active space region.

The intervals [t,_1,t,] are called time slabs. After each completed time slab the
solutions are synchronized. In our approach, these time slabs are automatically gen-
erated, similar as in the single-rate approach, but without involving the imposed tem-
poral accuracy constraints on all components of (1.1).

An important issue in our strategy will be to determine the size of the time slabs.
These could be taken large with many levels of refinements, or small with few refine-
ments. A decision will be made based on an estimate of the amount of grid points
at which the solution needs to be calculated, including the overhead due to repeated
computations in refined regions.

In this report we use one-step Rosenbrock methods. Further we consider one-
dimensional problems and fixed spatial grids. Variable grids and higher spatial dimen-
sions is the focus of our present research. We note that due to the simple one-step
nature of our approach, after each completed time slab a regridding in space could be
performed without affecting the strategy described in this paper.

This paper is organized as follows. In Section 2 we will briefly discuss related
work on multirate schemes and introduce the two-stage Rosenbrock method that will
be used as our basic numerical integration method. It should be noted that other
one-step methods could also be used directly within our approach. In Section 3 the
multirate time stepping is described in detail, together with the time slab strategies.
In Section 4 we will discuss the performance of the schemes through several numerical
experiments for nonlinear parabolic problems. Section 5 contains the conclusions and
an outlook on further work.

2 Background material and preliminaries

2.1 Related work

Multirate algorithms based on multistep methods have been described by Gear and
Wells [6]. Their work represents some first, tentative steps towards an automatic mul-
tirate method. With multistep methods, extrapolations of past values may be needed.
Moreover, the use of multistep methods will make a coupling with grid refinements in
space more difficult than with one-step methods. For these reasons we decided to use
one-step methods.

In Giinther, Kveerng and Rentrop [7] a multirate scheme was introduced which is
based on partitioned Runge-Kutta methods with coupling between active and latent
components performed by interpolation and extrapolation of state variables. In partic-



ular, they introduced the notion of a compound step in which the macro-step (for latent
components) and the first micro-step (for the active components) are computed simul-
taneously. The partitioning into slow (latent) and fast (active) components is done
in advance before solving the problem, based on knowledge of the ODE system to be
solved (in their applications these where electrical circuits). A related scheme, based
on Rosenbrock or ROW methods was studied by Bartel and Giinther [2]. Kvaerng[11]
has presented some stability results for such schemes applied to systems of two linear
equations with one fast and one slow component.

An algorithm based on finite elements in time was proposed by Logg [12, 13]. In
a single-rate approach such schemes are computationally akin to fully implicit Runge-
Kutta methods. In the multirate approach this leads to very complicated implicit
relations, which are difficult to solve. Additional remarks on the strategy used for this
scheme can be found in Section 3.3.

Finally we mention that multirate schemes for explicit methods and non-stiff prob-
lems have been examined by Engstler and Lubich [3, 4]. In the first paper extrapolation
is used, and in their strategy the partitioning into different levels of slow to fast compo-
nents is obtained automatically during the extrapolation process. This approach looks
quite promising, but for stiff problems and implicit methods the necessary asymptotic
expansions seem difficult to obtain.

2.2 The Rosenbrock ROS2 method

Our multirate strategy is designed for one-step methods. In this paper we will use the
two-stage second-order Rosenbrock ROS2 method [9] as our basic numerical integration
method. To proceed from t,,_; to a new time level ¢,, = ¢,,_1+7, the method calculates

Wp = Wp—1 + 3151 + %%2,
(I =y7J)k1 = TF(tn—1,wWn—1) + Y72 F(tn-1,Wp—1) , (2.1)
(I — ’}/TJ)]_Cg = TF(tn, Wp—1 + ]_€1) — ’}/T2Ft(tn,1, wn,l) — 2]_61 s

where J ~ Fy, @"—1’ wp—1). The method is linearly implicit: to compute the internal
vectors ki and ko, a system of linear algebraic equations is to be solved. Method (2.1)
is of order two for any choice of the parameter v and for any choice of the matrix J.

Furthermore, the method is A-stable for v > % and it is L-stable if v = 1+ %\/5
In this report we use L-stability with v = 1 — %\/5, since this gives smaller error
coefficients in the local truncation error than the value v = 1 + %\/5 For the local
error estimation used in variable step size control we will use the embedded first-order
Rosenbrock method

En = Wp_1+ I_Cl . (22)

The test problems that will be considered in this paper lead to semi-discrete systems
(1.1) of the type
w'(t) = Aw(t) + b(t) + G(w(t)), (2.3)

where A is a discretized spatial operator, G(w) a reaction term, and b(t) is a vector
containing discretized Dirichlet boundary values. We note that with our multirate
approach, problems arise on parts of the spatial region with time dependent Dirichlet
conditions, even if these are not present in the original semi-discrete system (1.1). The
boundary term b(t) may only be known in ¢,_1 and t,; missing values will then be
found by interpolation, and the F; term in (2.1) will usually be approximated by

(b(tn) — b(ta—1) - (2.4)

N

ﬁt(tnfla wnfl) =
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This will not affect the order of the method. In all examples the exact Jacobian
matrix J = Fy(tn_1,wn—1) will be used. For large practical problems a suitable
approximation can be more efficient if that leads to more simple linear algebra systems.

The advantage of a Rosenbrock method is that only linear systems need to be
solved. Implicit Runge-Kutta methods could also be used in our multirate approach,
but then special attention should be given to the stopping criteria in Newton itera-
tions. Making a large global time step with these methods might require many Newton
iterations to get an iteration error smaller than a prescribed tolerance for the active
spatial regions. But an accurate approximation is not needed there, because the nu-
merical solution will be computed in the refinement steps. Therefore weighted norms
should be used in the stopping criteria.

2.3 Variable step size control

Let us consider an attempted step from time ¢,_; to t, = t,_1 + 7, with step size
Tp. Suppose this is done with two methods of order p and p — 1, giving the numerical
solutions w,, and w,, respectively. By comparing w,, with w, we obtain an estimate
for the local error,

E, = ||wnp — Wnl|co - (2.5)

Here the maximum norm is used because we aim at errors below the tolerance for all
spatial grid points.

Having the estimate E,, and a tolerance 7ol specified by the user, two cases can
occur: E, > Tol or E,, < Tol. In the first case we decide to reject this time step and
to redo it with a smaller step size T,ew, Where we aim at F,e,, = Tol. In the second
case we decide to accept the step and to continue the integration from ¢, to t,41. In
both cases we continue with a time step of size

Tnew = 197—71 ()/ TOl/Ena (26)

where the safety factor ¥ < 1 serves to make the estimate conservative so as to avoid
repeated rejections.

This form of variable step size selection is standard; see for example [14]. We will
use it in two ways in our multirate approach: to select the time slabs and to determine
the local regions where smaller step sizes are to be taken.

3 Multirate time stepping strategy

The time integration interval [0,T] will be partitioned into synchronized time levels
0=ty <t <...<ty=T. The length of the time slab [t,_1,t,] will be denoted
by At,.

3.1 Strategy I : uniform treatment within time slabs
3.1.1 Processing of one time slab
Let us consider a single time slab [t,,_1, t,], as illustrated in Figure 1. Suppose that the
approximation w,_1 at time t,_; is known, and we want to obtain an approximation
w, at the new time level. First we perform a single step with step size At,, and using an
error estimator we determine the spatial region where the computation of the solution
should be refined, that is, performed with a smaller time step. We refine in those
spatial points in which the estimated local error is larger than a prescribed tolerance
Tol. This set of points will be denoted as J;.

Refinement is done by doubling of the number of time steps on the local spatial
region. So at all points in J; we recalculate the solution using two steps of size %Atn.
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Figure 2: Refinement step in a time slab with interpolation points at the internal boundaries.

After this refinement phase we get the numerical solution in the spatial region J; at
time levels ¢,,_{ /2 and t,. We then define [J> as the subset of points from J; in which
the estimated local error is larger than the tolerance at either t,,_; 5 or t,, and for all
points from [J> we recalculate the solution using four time steps of size iAtn. This
is repeated until the error estimator indicates that there is no need of smaller steps
anymore. The processing of a time slab is then finished.

The interface, at the transition between the solutions obtained using different time
step sizes, should be treated properly. At the boundaries of a refinement domain we
will need solution values in points adjacent to that domain, which will serve as Dirichlet
boundary values for the refinement domain.

For example, as illustrated in Figure 2, in a first refinement step the solution is
advanced on a part of the spatial domain using the halved time step %Atn. For the
Rosenbrock method (2.1) this will require boundary values at the time levels ¢,,_1,
tn and t,_y /o, indicated by the open circles in the figure. At time level ¢, and t,
these are available from the solution that has been computed with coarse step At,.
At the intermediate time level ¢, ;5 we use interpolation based on the information
available at t,,_1 and t,; this information consists of approximate solution values wy
and approximate derivative values wj = F(tg,wy) for k =n — 1, n.

In our tests, with the second-order method (2.1), we have examined linear interpo-
lation based on w,,_; and w,, and quadratic interpolation based on w, 1, w!,_; and
wy,. For the numerical experiments presented in Section 4 both interpolations gave
nearly identical results.

In general, the order of the interpolation should be related to the order of the
time stepping method. With a basic integration method of order p, the error in one
step will be ~ AP+l Interpolation with a g-th order polynomial will introduce an
interpolation error ~ AtZ*! at the boundary points. Since we are interested in the
errors in the maximum norm, the choice ¢ = p is natural. On the other hand, it was
observed, also for higher-order methods, that taking ¢ = p — 1 often produces an order
of accuracy equal to p for the whole scheme, due to damping and cancellation effects.
A proper analysis for these effects is lacking at present.

3.1.2 Choosing the size of the time slabs

The size of the time slabs will be determined automatically while advancing in time.
When we are done with the processing of the n-th time slab of size At,, the size of
the next time slab is taken as

Atpiq = 25n+17r (3.1)

where s,,11 is the estimated (desired) number of levels of refinement for the (n+1)-st
time slab, and 7,;,; is the optimal step size which would give us an estimated error
smaller than the given tolerance if we were to use a single-rate approach for the next
time step from ¢, to t,, +7,;, ;. Both 5,41 and 7;; | will be estimated using information
from the last time slab. In general, s,4; may not coincide with the actual number



of levels of refinement that will be taken; we will usually refine until the estimated
error is smaller than the imposed tolerance. The estimations for s,; and 7;,, will
be discussed in the next subsections.

For the first time slab we use s; = 0, meaning that we would like to make a single
time step with an estimated error less than the prescribed tolerance Tol at all spatial
points. The size of the first time slab Aty is estimated using a small prescribed test
step size 7y together with the step size control formula

Aty = 91y ¥/ TOI/E(), (32)

where the safety factor 1, the tolerance Tol and the order p of the method are as in
(2.6), and Ej is the maximum norm of the estimated local error for the test step from
0 to 79. In the numerical experiments presented in this paper we use the ROS2 method
(p =2) with ¥ = 0.9 and 79 = 10~ 4.

If the time integration is near an output point or the endpoint 7', it should be
verified whether ¢, + At,,1; > T, and in that case we reset At, 11 =T — t,.

In our implementation an additional check of the new time slab size At, 11 will be
made. This is to cover a situation where shortly after the last accepted time level ¢,
a new source or reaction term suddenly becomes active. If, after the global time step
of size At, 41 has been performed, it turns out that refinement is needed everywhere,
then the size of the time slab is deemed too large. In that case a smaller size At,e, will
be selected by making a new estimate 7, based on the newly available information
and we also set Spe, = max(0, s,41 —1). Such rejections will only occur in exceptional
situations, with the sudden appearance of new active terms in the equations.

3.1.3 Estimation of 7,4

Using the information available from the n-th time slab we can estimate the value of
Ty +1 for the next time slab. This is done using the standard step size control technique;
the only difference is that at each spatial point we use the information from the last
available local time steps from the last time slab [t,,_1,t,]. For example, in the time
slab depicted in Figure 3, in order to estimate 7,7, ,, we will use the information from
the hatched areas where the last local time steps before t,, have been taken.

tn

tnfl

Figure 3: Time steps used for the estimation of 7, ;.

After each level of refinement we know the points in space we already have refined
(recall that for the k-th level of refinement this set of points is denoted by J;) and
which points in space we ought to refine in the next level of refinement. Therefore,
after the k-th level of refinement, for all points in Jj \ Jx+1, we estimate

™ = 927k at, ¥/ Tol /Ey, (3.3)

based on the local step sizes 2 ¥At,, in the k-th level of refinement and on Ej, which
is the maximum norm of the estimated error for the last time step at this level of
refinement. The estimate in (3.3) represents the step size which would give us a local
error smaller than the tolerance in all spatial points from Jj \ Jk41 if all is going well.
The safety factor ¥ makes the estimate conservative.



After having finished with all levels of refinement we determine 7, by

* . 0 1 2
Thy1 = Min (7'7531,7'7231,7'7&21,...). (3.4)
Expression (3.4) gives us an estimate of a step size with which we expect a local error
smaller than the tolerance in the whole spatial domain.

3.1.4 FEstimation of snp41

The estimation of s,; will be based on the anticipated amount of work needed to
cover a unit of time. The multirate approach will introduce space-time points where
the solution is computed several times, and this should be taken into account of course.

We suppose that the amount of work required for advancing one time step in
m spatial points is proportional to m” with » > 1. In this report one-dimensional
problems are considered in combination with the two-stage Rosenbrock method. At
each stage of this method one vector-function evaluation is done and one system of
linear algebraic equations with a band matrix is solved. Therefore, in this report we
can consider r = 1.

Suppose the n-th time slab has been processed using s,, levels of refinement, and
that in the k-th level of refinement m; points in space were refined, where mg = m.
Since 2F time steps are taken at this level of refinement to cover the time slab, the
amount of work involved with the k-th level of refinement is 2*m}. The amount of
work per time unit for the processing of the entire time slab is therefore considered to
be

o= Aitn(mg +2m] 4+ 2% ml ). (3.5)

In order to estimate the optimal amount of work per time unit we also study two
hypothetical (virtual) computations for this last time slab. In the first case we consider
what would have happened if we had taken the size of the time slab 2! times smaller
than At,, and in the second case what would have happened if we had taken the size
twice as large as At,. In both cases we can estimate the amount of work per unit
time, and this can be compared to the actual amount C that has been done. This
information will then be used for the next time slab.

For the first hypothetical case, let us assume we go back to the n-th time slab and
redo it with At], = %Atn, that is, 2! times smaller than the actual At,. Then we
would start with a time step of size At], on the whole spatial domain (my = m points).
The number of spatial points involved in the first refinement, with two steps of size
%At; = #Atn, can be estimated to be m; 1, because that was the number of points
used in the actual computation with this time step. In the same way we can estimate
that in the k-th level of refinement we would refine in m;,j spatial points and that
sn — [ levels of refinement would be used. Hence, the amount of work per time unit
for this hypothetical case would be approximately

C' = <y (mh+2mipy +---+2%'my ). (3.6)

If C' < C, we estimate that this hypothetical step would have given an improvement
in the amount of work, compared to the actual computation that has been done.

Lemma 3.1 Let p = (3)Y/". The value of C' in (3.6) attains its minimum for

I, = max{l :m; >pm}. (3.7)



Proof. Denote the right-hand side of (3.6), with At/, = 27!At,, as C]. Then it is
easily seen that

C,_1<C; (resp.C|_; > C)) = m; < pm (tesp. my > pm).  (3.8)
For the value [, in (3.7) we have
m=mg>my > 2ZMm, > pm>mp 1 > 2 Mg, .
It thus follows from (3.8) that
Co>Cy>--->C] and C] <Cp., <---<C;,
which provides the proof of the lemma. |

If I, > 0, then an improvement in amount of work per unit step could have been
obtained if the n-th time slab had been done with fewer levels of refinement and
smaller size of the time slab. Therefore, for the (n+1)-st time slab we try to improve
the performance by taking

Sna1l = Sn — Ly (3.9)

If I, = 0, there was apparently no need to decrease the number of levels of refine-
ment. But then more efficiency might be possible with a time slab of larger size (with
more levels of refinement) than in the actual computation. This leads us to the second
hypothetical case.

If the size of the n-th time slab had been two times larger than At,, that is
At!! = 2At,, then one time step of size At! on the whole spatial domain (mg = m
points) would have been performed, followed by refinement steps. Suppose that the
first level of refinement would have involved m, grid points. The second level of
refinement then would take four time steps of size %At'é = %Atn. In the processing
of the original time slab of size At,, we needed time steps of this size in my spatial
points. Therefore, it can be assumed that for the second level of refinement in the
virtual step, refinement would also take place on m; grid points. Similarly, the k-th
level of refinement can be assumed to involve my_; spatial points. In total we would
have s, + 1 levels of refinement. The amount of work per time unit for this case would
thus be approximately

c" = m§ + 2m} + 2°my + - + 25T m] ). (3.10)

air (
In this case, taking the size of the time slab two times larger than At,, would give us
an expected improvement in work per time unit if C' > C”, that is,

m, < pm, p= (%)l/r. (3.11)

We still need an estimate for m,. Let v = w,, — 1, be the difference between one
step in the embedded Rosenbrock method (2.1), (2.2) computed in the n-th time slab
with step size At,, and let E,, = ||v||co be the norm of this estimated local error. Then
E,, ~ AtP, with order p = 2 for the present Rosenbrock combination. In the first stage
of our hypothetical step, starting from t,_; with time step 2At,,, we would expect an
estimated local error of size 2P F,,. Consider the index set

Iy ={i :|vi| >27PTol}, (3.12)



where v; is the i-th component of the vector v. Then m, will be approximately equal
to the number of points |Z;| in this set. This estimate of m, can be determined during
the actual processing of the time slab without significant extra work. If

7] < pm, (3.13)

then it is expected that a larger time slab with more refinement levels would have
been more efficient. For the next time slab we then take s,11 = sn, + 1. We note
that a larger increase of refinement levels could be considered in a similar way, but it
seems better to be conservative about this, because s,4+1 = s, + 1 will already lead
(approximately) to a doubling of the size of the time slab (if 7,5, ~ 7;%).

Summarizing, after having completed the n-th time slab with s, levels of refine-
ment, we choose for the next time slab

Sp+1 if (3.13) is satisfied,
Sn+1 =

(3.14)
Sp — lu if (3.13) is not satisfied ,

where [, > 0 is defined by (3.7). Together with (3.1) and (3.4) this determines the size
Aty of the new time slab. The actual number of levels of refinements will determined
by the error estimations. The s,41 in (3.14) is merely an indication for this. In our
experiments the s, was usually equal to the number of levels of refinements, but
sometimes it was one more or one less.

3.2 Strategy II : recursive two-level approach

The time slab processing strategy presented in the above generally works very well,
but in some cases a modification is desirable.

It may happen that the strategy takes very large time slabs with a large number
of refinement levels. Then the smallest time steps are used throughout the entire time
slab. Although this is only locally in space, it can be inefficient if the local temporal
variation changes drastically inside this large time slab. Then the small time steps
may be needed only in some part of the time slab [t,_1,t,]. In such a situation our
strategy can be improved by applying the refinements not on the whole time slab but
just for the required, smaller time intervals.

Let us consider a time slab [t,_1,t,] with known approximation w, ;. As before,
we start with a single step At,, =t,, — t,_1, and use the error estimator to determine
the spatial region where we should refine in time. In that spatial region the time
slab is divided into two smaller sub-slabs with size %Atn. Next, each of these sub-
slabs is processed separately, in a similar way as the initial ‘global’ time slab. This is
a recursive processing strategy, which stops when the error estimator indicates that
there is no need of further subslabs. A simple illustration for two levels of refinement
is given in Figure 4.

This modified time slab size processing strategy is considered in combination with
a slightly modified time slab estimation. In the modified version the time slabs have

t'n.—l

Figure 4: Example of a time slab created by the original strategy I (left) and the modified
strategy II (right).



a different structure; they are no longer uniform over the whole time slab. Therefore,
not all the rationale from the previous time slab size estimation strategy can be used
directly for the modified version.

The size of a time slab can still be determined using the same formula

Atyyq = 2477 (3.15)

The value for 7, ,; can be determined using exactly the same procedure as in our
original multirate strategy. The desired number of the levels of refinement s, was
determined on the basis of values of the number of spatial points mg, m1,...,ms, in
the levels of refinement for the n-th time slab. For the modified strategy these number
of points are not constant anymore over the time slab. Still, for the new time slab
we have as a first guess that the refinement will proceed uniformly as in the last local
steps before t,,. Therefore, the estimations of the amount of work is done in the same
way as before, but now with values of m; based on the last available local steps before
t,- Using these values m; we can determine the desired number of levels of refinement
following the same procedure and rationale as in our original strategy. The size of the
time slab obtained in this way is the optimal size which can be obtained based on the
last information from the previous time slab.

3.3 Comparison to existing time slab strategies

Another time slab strategy has been presented by Jansson and Logg [10] for the multi-
adaptive Galerkin time-stepping algorithm of Logg [12, 13]. In their strategy a time
slab is created by first computing a desired time step for all components. The size of
the time slab is then taken as At = 07,42 With 7,4 the maximum over the desired
time steps and 6 € (0, 1) a fixed parameter. The components are then partitioned into
two sets. The components in the group with large time steps are integrated with time
step §At. The remaining components are processed by a recursive application of the
same procedure.

In this multi-adaptive Galerkin approach, the resulting implicit systems for all
refinements are solved simultaneously. This is the main difference with our approach.
We first solve the coarse step, and then, successively, the refined steps. This leads
to some overhead because in the refined regions the solution is computed repeatedly.
On the other hand, with our approach the implicit systems are all relatively simple;
basically the same as in a single-rate approach for (1.1) but with fewer points my in
the refined steps. The dimension of the implicit systems in the approach of Logg will
be very much larger than m, the number of components in (1.1), so these systems will
be very hard to solve. For this reason a damped functional (fixed point) iteration is
used in [10], but that can easily lead to a very large number of iterations per time slab.

In our case the size of a time slab is computed from the minimum time step over the
components and an expected number of levels of refinement. In our strategy the sizes
of the time slabs and the numbers of levels of refinement are automatically adjusted
to get an optimal amount of work per time unit.

4 Numerical experiments

For three parabolic one-dimensional test problems we will present the numerical re-
sults of both strategies: Multirate I (with uniform treatment within time slabs) and
Multirate II (with the recursive two-level approach). The results are compared to the
single-rate approach, also using the Rosenbrock pair (2.1) and (2.2). As measure for
the amount of work we will take the number of grid points in space and time, where

10



the fact that with our multirate approach solutions at certain points will be computed
several times is taken into account.

The results have been obtained on uniform grids in space with standard second-
order differences for discretization of the spatial derivatives. Fourth-order central
differences were also tried and the resulting temporal errors were very similar. For
the results reported here we used quadratic interpolations at grid interfaces. Linear
and cubic interpolations were also tried and the results were nearly identical, which
simply indicates that the interpolation errors were not significant in these tests. Linear
interpolation could potentially lower the order of accuracy, which is two for the ROS2
method, and therefore quadratic interpolation is our preferred interpolation here. As
mentioned before, with a higher order basic time stepping method, also the order
of interpolation should be increased. For a number of Runge-Kutta and Rosenbrock
methods dense output formulas are available [8] which can also be used.

The errors in the tables below are the maximum errors over the components at
selected output times 7', compared to a time-accurate ODE reference solution. Such
reference solutions were computed by using very small tolerance values.

4.1 A nonlinear reaction-diffusion equation with traveling wave solution

As a first test problem we consider the reaction-diffusion equation
U = €Ugy + ’yuz(l —u), (4.1)
for 0 < x < L,0 <t <T. The initial- and boundary conditions are given by
u(0,8) = up(L,t) = 0,  w(z,0) = (1+er@D)7H (4.2)

where A = %«/27/6. If the spatial domain had been the whole real line, then the
initial profile would have given the traveling wave solution u(z,t) = u(z — at,0) with
velocity a = % 2ve. In our problem, with homogeneous Neumann boundary condi-
tions, the solution will still be very close to this traveling wave provided the end time
is sufficiently small so that the wave front does not come close to the boundaries. The
parameters are taken as v = 1/e = 100 and L = 5, T = 3. An illustration of the

solution is given in Figure 5.

oF

0 1 2 3 4 5

Figure 5: Traveling wave solution for problem (4.1)—(4.2) at various times.

In space we used a uniform grid of 1000 points and standard second-order differ-
ences. In order to compute the internal boundary values, at the interfaces of regions
with different time steps, quadratic interpolation was performed using solutions al-
ready computed at the coarser level.

In Table 1 the errors (in the maximum norm with respect to the reference ODE
solution at time T') and the amount of work (number of space-time points for the
integration interval [0, T]) are presented for different tolerances. From these results it
is seen that a substantial improvement in amount of work is obtained for this problem.
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Table 1: Errors and work amount for problem (4.1)—(4.2).

Single-rate Multirate I Multirate IT
Tol error work error work error | work
1073 || 3.2-107% | 818818 || 3.4-1073 | 188138 || 2.1-1073 | 124356
5-107* || 1.9-1073 | 1128127 || 1.9-1073 | 246962 || 2.2-107% | 149763
107* || 4.8-107% | 2431429 || 5.1-10* | 411466 || 5.4-10"* | 308685
5-107° || 2.5-107% | 3408405 || 2.7-10"* | 550723 || 2.7-107* | 428549
107° || 5.3-107° | 7528521 || 5.5-107° | 1153759 || 5.7-107° | 1064115

For the single-rate scheme, the number of space-time points where the solution is com-
puted is almost seven times larger than for the multirate schemes. Moreover, the error
behaviour of the multirate schemes is very good. We have roughly a proportionality of
the errors and tolerances, and the errors of the multirate schemes are approximately
the same as for the single-rate scheme.

3

0 K
o] 25 5 1.8 2.6

Figure 6: Space-time grid for problem (4.1)—(4.2) with strategy I. The right picture gives an
enlargement for a part of the domain.

% 25 5 1.8 26

Figure 7: Space-time grid for problem (4.1)—(4.2) with strategy II. The right picture gives
an enlargement for a part of the domain.

The multirate strategy II (recursive two-level approach) works somewhat better
for this problem than strategy I, in particular for the larger tolerances. In Figure 6
the space-time grid is shown on which the solution was calculated for strategy I with
tolerance value Tol = 5-1073. (With this large tolerance the structure of the grid
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is better visible than with small tolerances.) One nicely sees that the refinements
move along with the steep gradient in the solution. From the more detailed picture
(enlargement on part of the domain), it is seen that there is some redundancy in the
fine level computations: in each time slab the fine level domains form a rectangle, and
this is the reason why the strategy II is more efficient for this problem. Figure 7 shows
the space-time grid for strategy II, again with Tol = 5-1073.

4.2 A nonlinear problem from combustion theory

As a second test for the time slab estimation strategies we consider a one-dimensional
nonlinear problem from combustion theory, taken from [1, 15],

up = dugy + f(u), flu) = 0%(1 +a—u)elt-t/w (4.3)
for t > 0 and 0 < z < 1. The initial- and boundary conditions are
u.(0,¢) =0, u(l,t) =1 and u(z,0) =1. (4.4)

For small times the solution gradually increases from unity with a ‘hot spot’ forming
at £ = 0. At a finite time, around ¢ = 0.26 ignition occurs and the solution at z = 0
jumps to a value 1 + a. A flame front then forms and propagates towards = = 1.
Around time t = 0.29 the front has reached the boundary of the domain and a steady
state settles in. An illustration of the solution is given in Figure 8.

2 J
t=.2615 t=.265 t=.27 t=.28 t=.29
1.5 t=.26 b
t=0
1
L
0 0.5 1

Figure 8: Solution of the combustion problem (4.3)—(4.4) at various times.

Problem (4.3) is considered with parameter values « =1, § =20, d = 1 and R = 5.
Discretization in space is again done with standard second-order central differences,
using a uniform grid with 100 points.

This problem is locally unstable causing considerable growth of local errors over
time. This growth manifests itself by producing global errors that are substantially
larger than the imposed tolerance for the local error estimate. As output time for the
errors we have taken T' = 0.27. At larger times the solution rapidly approaches a steady
state, and then all errors would become small, no matter what tolerances would be
used. For the time interval [0, 7] with several tolerance values , we present in Table 2
the errors (again measured in the maximum norm with respect to the reference ODE
solution) and the amount of work (number of space-time points).

For this problem we do not get a significant improvement in work with the multirate
schemes. This can be explained by the fact that a large part of the work is done before
ignition occurs and in that time interval the temporal variations are similar in the
whole space domain. After the ignition occurs there is an improvement in work for the
multirate approach, but that period is quite short for this problem. Moreover, even
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Table 2: Results for problem (4.3)—(4.4).

single-rate multirate I multirate II

Tol error work error | work error ‘ work
1073 || 2.2-1071 17200 || 3.5-1071 11940 || 3.8-1071 13445
5-107% || 1.3-107Y | 22300 || 2.3-107 | 15458 || 2.3-107 | 17732
107* || 3.7-1072 | 37600 || 4.6-10"2 | 29015 || 4.8-1072 | 32870
5.107°% || 1.9-1072 | 52400 || 1.8-1072 | 39804 || 1.8-1072 | 45052
107° || 3.8-1073 | 115400 || 3.0-1073 | 86015 || 3.8-1072 | 98758
5-107% || 1.9-107% | 162700 || 1.5-10"% | 121167 || 1.9-10"% | 139016

after ignition, the front is not very steep. Refinement will therefore be performed on
relatively large spatial regions.

It is also seen from the table that for this problem the multirate strategy I is slightly
better than strategy II. Apparently, the extra points where the solution is computed
in the first strategy are useful when the ignition occurs. It should be emphasized that
the error behavior of both strategies is good: the multirate errors are close to the
single-rate ones for the smaller tolerances.

Figure 9 shows the grid of space-time points in which the solution was calculated
for strategy I with Tol = 0.05. In the enlarged picture, for time approaching 7' = 0.27,
it is seen that the the placement of the space-time grid is correct when the flame
is propagating, but this phase is too short to give a substantial reduction in work
compared to the single-rate approach.

0.271

0.1r

00 0.5 1 0 1

Figure 9: Space-time grid for problem (4.3)—(4.4) with strategy I. The right picture gives an
enlargement for a part of the domain.

4.3 The Allen-Cahn equation
As a third test problem we consider the Allen-Cahn equation

Uy = €Ugy +u(l —u?), (4.5)
for t > 0, —1 < = < 2, with initial- and boundary conditions

uy(—1,t) =0, ugy(2,8) =0, u(z,0) = up(z), (4.6)

14



where the initial profile is given by

tanh((z + 0.8)/(2v/€)) for —1<2<-038,
tanh((0.2 — z)/(2v/€))  for —0.8 <z < 0.28,
ug(z) = { tanh((x — 0.36)/(2v/€)) for 0.28 < z < 0.4865, (4.7)
tanh((0.613 — z)/(2,/€)) for 0.4865 < z < 0.7065,
tanh((z — 0.8)/(2/€)) for 0.7065 < z < 2.

This problem is an extended version version of the bistable problem considered in [5].

The nonlinear reaction term in (4.5) has v = 1 and u = —1 as stable equilibrium
states, whereas the zero solution is an unstable equilibrium. The solution of (4.5)—
(4.7) starts with three ‘wells’, see Figure 10. The first well, on the left, persists during
the integration interval. The second well is somewhat thinner than the others and it
collapses at time ¢ ~ 41, whereas the third well collapses at ¢ ~ 141. For this problem
we considered € = 9-107* and we used a space grid of 400 points with second-order
central differences. A time-accurate numerical solution is shown in Figure 10.
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Figure 10: Evolution of the solution for problem (4.5)—(4.7).

To test the performance of the schemes, the time interval [0, 7] was considered with
T = 142. At this output point, the solution is still changing in the second well; for
larger times the solution becomes steady-state. In Table 3 the errors (measured in the
maximum norm with respect to the reference ODE solution) and the amount of work
(number of space-time points) for different tolerances are presented. For this problem
there is again a significant improvement in work with the multirate schemes compared
to the single-rate scheme.

Table 3: Errors and work amount for problem (4.5)—(4.7).

Single-rate Multirate I Multirate IT
Tol error work error work error ‘ work
5.107% || 3.8-107% | 102255 || 3.0-107% | 48342 || 3.6-107% | 36811
107 || 2.2-1073 | 217743 || 1.5-107% | 85241 || 1.1-1072® | 66360
5-107° || 1.2-1072 | 303958 || 1.0-10"2 | 107920 || 1.3-1072 | 75653
1075 || 2.8-107* | 664858 || 2.5-107* | 257473 || 2.6-107* | 227554
5.107¢ || 1.3-107* | 935533 || 1.1-107* | 355627 || 1.2-107% | 324501
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Strategy II again behaves slightly better for this problem than strategy I. The error
behavior of both multirate schemes is excellent: the errors are close to —or even smaller
than— the errors of the single-rate scheme. As in the other tests, this shows that our
multirate strategies behave very robustly.

5 Conclusions

In this paper we presented self-adjusting multirate time stepping strategies for parabolic
PDEs. The step size at a particular spatial grid point is determined by the local tem-
poral variation of the solution, in contrast to the use of a single step size for the whole
spatial domain as in the traditional (single-rate) methods. Numerical experiments con-
firmed that the efficiency of time integration methods can be significantly improved
by using large time steps at inactive spatial grid points, without sacrificing accuracy.

Although our two strategies produced results not too far apart, we do have a
slight preference for the recursive two-level approach (strategy IT) over the uniform
treatment within time slabs (strategy I). Cases can be constructed with very large
time slabs where strategy II will be much more efficient than strategy I.

Compared to the approaches in [7] and [12, 13], our multirate approach is more
simple: it avoids the use of compound steps or very large implicit systems. On the
other hand, there is some overhead with our approach, because in the refined regions
the solution is computed repeatedly. We do think, however, that for many problems
simplicity will be preferable. Since the structure of the problems with the refined steps
is the same as for the original problems, only on smaller spatial regions, existing linear
algebra solvers can still be used.

As basic time stepping methods, we used in this paper a second-order Rosenbrock
method with an embedded first-order method. The multirate approach could be ap-
plied without adjustments to higher-order methods. Preliminary experiments with
fourth-order Rosenbrock schemes showed again good results.

The multirate strategy discussed in this report can be extended to variable grids
in space, with regridding after each completed time slab. This will also enable the use
of explicit methods for hyperbolic problems. Along with this topic, we are currently
investigating the use of multirate time-stepping for multi-dimensional problems. It is
for 2D and 3D problems that a gain in efficiency is needed to be able to solve many
problems of practical importance within a reasonable execution time.
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A Appendix: Results for fourth-order Rosenbrock methods

The same tests were performed with some fourth-order Rosenbrock methods. A num-
ber of popular methods in this class are listed in [8, Tab.IV.7.2]. Here we consider the
well-known methods GRK4A and GRKA4T, due to Kaps and Rentrop [Numer. Math.
33 (1979)]. The interpolation at grid interfaces was performed with cubic Hermite
interpolation.

The safety factors 9 were originally taken to be 0.9, as for the second-order methods
before, but it turned out that for the combustion problem and Allen-Cahn problem a
better performance was obtained with ¢ = 0.8.

The results are given in the following tables. The conclusions from the experiments
with ROS2 remain unchanged. In general, the results with the GRK4T method were
somewhat better than for the GRK4A method. Both these fourth-order methods were
more efficient than the second-order ROS2 method, even when taking into account
that these methods have four stages. The ‘work’ in the tables is again the number of
space-time points, without counting the internal computations.

These results are preliminary. The spatial discretization was still done with second-
order finite differences, whereas fourth-order would be more natural to get a balance
between spatial and temporal errors. The cubic Hermite interpolation could lower the
accuracy of the schemes. An interpolation were the internal stage values are used could
(possibly) give a better accuracy. Moreover, order reduction and boundary corrections
were not investigated, and these might play a role for the fourth-order methods.

Table 4: Errors and work for problem (4.1)—(4.2) with GRK4A (¢ = 0.9).

single-rate multirate I multirate 11

tol error work error work error work
102 0.089 | 127127 0.068 49460 0.055 37261
5.103 0.05 | 154154 0.0827 54817 0.0804 43871
1073 0.0099 | 249249 0.0079 74012 0.0095 65457
5.1074 0.0046 | 308308 0.0051 82536 0.0044 65205
1072 | 7.86-10"% | 497497 | 7.84-10% | 114242 | 7.67-10~* 96879
5.107° | 3.69-10~* | 606606 | 3.67-10~% | 126019 | 3.16-10~* | 114333
10° | 6.563-10"° | 951951 | 5.75-10° | 177306 | 5.16 - 10> | 163467

Table 5: Errors and work for problem (4.1)—(4.2) with GRKAT (¢ = 0.9).

single-rate multirate I multirate II

tol error work error work error work
102 0.022 | 147147 0.046 | 45623 0.030 34827
5.1073 0.012 | 174174 0.029 | 49676 0.028 36279
10—3 0.0027 | 261261 0.0031 64600 0.0034 57292
5-107% 0.0014 | 311311 0.0018 72489 0.0017 | 66105
10~% | 3.07-10~% | 470470 | 3.76-10~* | 105769 | 3.64-10~* 94843
5-107° | 1.55-10~% | 561561 | 1.86-10~* | 118588 | 1.80-10—* | 108611
10=° | 3.18 - 107° | 846846 | 3.46-107° | 164325 | 3.10-10~° | 148812
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Table 6: Errors and work for problem (4.3)—(4.4) with GRK4A (9 = 0.8).

single-rate multirate I multirate I1

tol error | work error | work error | work
10-3 0.0647 | 6300 0.101 5218 0.101 4914
5.10~% 0.0554 7500 0.0605 5576 0.0632 5042
1074 0.0225 | 11200 0.0173 9086 0.0141 8144
5-107° 0.0113 | 13000 0.0121 | 10558 0.00799 9928
107> [ 2.73-1073 | 18400 | 2.71-10"2 | 16598 | 1.55-10~% | 14090
5-107% | 1.73-1073 | 20600 | 1.38-10~3 | 16660 | 1.39-10~3 | 16420

Table 7: Errors and work for (4.3)—(4.4) with GRK4T (¢ = 0.8).

single-rate multirate T multirate 1T
tol error | work error | work error | work
10—3 0.00914 6900 0.0125 6398 0.00964 5482
5.10~% 0.00612 8300 0.00786 8320 0.00803 7472
10~ 0.00153 | 11600 0.00112 | 11886 0.00209 | 11758
5-10 ° | 8.80-10 % [ 13100 | 8.27-10 % | 14942 | 8.95-10 % | 14298
10~=° | 2.77-10~% | 16700 | 2.76-10~* | 20998 | 2.80-10~% | 18444
5.107% [ 1.22-107% | 19800 | 1.37-10"% | 22417 | 1.47-10% | 23573
Table 8: Errors and work for problem (4.5)—(4.7) with GRK4A (¢ = 0.8).

single-rate multirate T multirate II
tol error work error | work error | work
10—3 0.172 30476 0.109 | 15145 0.154 | 10699
5.107% 0.0569 33283 0.0359 | 17431 0.0472 | 15041
10—4 0.00469 51328 0.00583 | 26019 0.00588 | 23863
5.107° 0.00177 64160 0.00194 | 36357 0.00192 | 30186
10~° | 2.11-10% | 103458 | 2.59-10~% | 60504 | 2.85-10~* | 49796
5.107% [ 8.83.10° | 127518 | 8.90 10" | 69615 | 8.65-10° | 66138

Table 9: Errors and work for problem (4.5)-(4.7) with GRK4T (¢ = 0.8).

single-rate multirate I multirate IT

tol error work error | work error | work
1073 0.0321 30476 0.0211 | 18790 0.0147 | 17715
5.10% 0.0127 | 34887 0.016 | 25784 0.0115 | 14106
10~% 0.00132 48120 0.0014 | 27202 0.00127 | 21184
5.107° | 5.58-10 % 58145 | 5.075-10* | 38475 | 5.95-10~% | 29075
107° | 8.39-10°° 88621 9.31-107° | 52189 | 9.02-107° | 47636
5.107% | 3.81-10~° | 107067 | 4.17-107° | 72206 | 4.33-10~° | 59357
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