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Chapter 1

Introduction

Pattern formation is a very lively field of research within the nonlinear sciences,
where the traditional disciplines of mathematics, physics, chemistry, and biology
merge, interact, and exchange ideas. Reaction-diffusion equations (RDEs) serve
as relevant, often simplified models within several branches of these fields. For
instance, pulses traveling through nerve cells, as well as vegetation patterns [44]
and stripes on zebras [37] are modeled by RDEs, see Figure 1.1. From a mathe-
matical perspective, RDEs are arguably the simplest nonlinear partial differential
equations (PDEs) that exhibit complex patterns observed in many natural sys-
tems such as spiral waves and spatio-temporal chaos which are observed in many
natural systems, see Figure 1.1. Therefore, RDEs can be considered as the key
prototype models in which one can begin to develop a fundamental understanding
of complex patterns.

Localized structures form a special class of solutions to these RDEs related to
the aforementioned patterns. These structures are solutions to the PDE remain-
ing close to a trivial background state except in one or more localized spatial
regions, see Figure 1.2. Fronts and pulses are the most well-known and well-
studied localized structures in one spatial dimension; spots, spirals, and stripes
are examples of localized structures in two dimensions. Localized patterns can be
seen as the foundation for the mathematical analysis of more complex patterns.

In recent years, significant progress has been made in our mathematical under-
standing of the simplest localized structures. These being fronts and pulses that
are stationary or move with a constant speed through a 1-dimensional domain
[59]. In general, the behavior of localized structures is less well-ordered: those
structures interact with each other and thus also move with different velocities,
see Figure 1.2. At present, there is a well-developed theory that describes the
interaction of fronts and pulses in the weak interaction regime [19, 20, 55]. In
this regime these fronts or pulses are ‘far away’ from each other, meaning, all

1



2 Chapter 1. Introduction

Figure 1.1: In the left frame, one sees pattern formation on the coats of two
zebras [73]. In the right frame, one sees pattern formation at the edge of the
Negev Dessert. The dark stripes correspond to vegetation, whereas the lighter
stripes correspond to sand. Note that the scale of this frame is in decimeters.
Both phenomena are modeled by RDEs.
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Figure 1.2: In the left frame, we plotted a localized stationary 2-pulse or 4-front
solution of the three-component system under investigation in this thesis, see
(1.1.3). Note that two of the components (V and W ) interact strongly, while the
U -component interacts only via their background states. In the right frame, we
plotted an interacting 3-front solution of the same system; only the U -component
is plotted. In the context of Figure 1.1: black/dark corresponds to U = −1, and
white/light to U = 1.
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Figure 1.3: The schematically experimental setting of a planar gas-discharge sys-
tem (with high-ohmic barrier) [74].

components of the structure interact only through their trivial background states
mentioned above. However, there is no mathematical theory that explains the
interaction of fronts and pulses in the strong interaction regime where the fronts
and pulses are close to each other, and all solution components are far from equi-
librium in the regions between the fronts and pulses. In that regime, interesting
behavior such as collision, repulsion, annihilation, and self-replication of fronts
and pulses can be observed; in a daily life setting, one could, for instance, think
of the collision of two stern waves. In between the weak and strong interaction
regimes lies a third regime, the semi-strong interaction regime, where certain
components of the fronts or pulses interact via the background state, while the
remaining components interact strongly with each other, see Figure 1.2. Under-
standing this regime is a fundamental next step in furthering our understanding
of how localized structures interact. In this thesis, we take a first step in that
direction for a specific RDE.

1.1 Model equations

1.1.1 Physical background

In the mid-nineties, the physicist H. G. Purwins studied pattern formation in
gas-discharges, the effect that creates light in fluorescent tubes, see Figures 1.3
and 1.4. He mainly considered the interactions of localized states with each other
and first modeled his observations by a two-component RDE

{

Ut = DU∆U + f(U) − κ3V + κ1 ,
τVt = DV ∆V + U − V ,

(1.1.1)
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III

III IV

Figure 1.4: Examples of experimentally observed patterns [74].

where f(U) was taken to be a cubic polynomial. Numerical simulations revealed
that certain 2-dimensional structures – such as traveling spots – were unstable;
they were, nevertheless, observed in experiments – an apparent contradiction. To
rectify this situation, Purwins introduced a third component to his model [54, 60],







Ut = DU∆U + f(U) − κ3V − κ4W + κ1 ,
τVt = DV ∆V + U − V ,
θWt = DW ∆W + U − W .

(1.1.2)

It turned out that this extended model supports stable traveling spots and a va-
riety of other interesting localized solutions, as well. In subsequent years, many
variations of this model were studied extensively by several research groups of
both physicists ([5, 32, 54, 60, 65, 70]) and mathematicians ([50–53, 71]). These
studies went beyond the original gas-discharge context and established the Pur-
wins system as a paradigm model within the field of pattern formation that can
be used to investigate the interaction of fronts, pulses, and spots.

1.1.2 Mathematical background

Besides its physical background and the richness of dynamics it exhibits, exempli-
fied by such patterns as breathing pulses, scattering pulses, and bouncing pulses,
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the model (1.1.2) is also particularly interesting from a mathematical point of
view. Even within the class of RDEs, the extended Purwins model has a remark-
ably transparent structure, especially in the scaling we consider in this thesis. In
the next chapter, we will show that (1.1.2) can be rescaled, under certain circum-
stances, into a particularly simple form. In one spatial dimension, this rescaled
version is given by











Ut = Uξξ + U − U3 − ε(αV + βW + γ) ,

τVt = 1
ε2 Vξξ + U − V ,

θWt = D2

ε2 Wξξ + U − W ,

(1.1.3)

with

0 < ε ≪ 1 ; D > 1 ; 0 < τ, θ ≪ ε−3 ; (ξ, t) ∈ R × R
+ ;

α, β, γ ∈ R and O(1) with respect to ε .

This equation is the central object of study of this thesis. Note that we consider it
in a single spatial dimension, since we use the dynamical systems approach of spa-
tial dynamics to study it. The model is singularly perturbed (see Section 1.2.1),
bistable (see Section 1.2.2), and its U -component is only weakly coupled to its
V,W -components which, in turn, are linearly coupled back to U . Moreover, ex-
plicit nonlinear effects occur directly only through the U3 term in the first PDE.
As a consequence, localized states typically interact in a semi-strong fashion, see
Figure 1.2. The combination of these properties makes this model amenable to a
rigorous mathematical analysis, something which has not yet been accomplished
before for three-component systems.

In this thesis, we study (1.1.3) to gain insight in the interactions of fronts and
pulses in the semi-strong interaction regime.

1.2 Basic concepts

In this section, we lay down certain basic features of (1.1.3) in relatively simple
terminology. We have chosen to do so by means of a number of specific examples.
This way, we can solidify the introduction of these concepts by means of con-
crete calculations. First, we expound on the notion of a singular perturbation by
looking into simple yet instructive perturbations of cubic polynomials and ordi-
nary differential equations (ODEs). Next, we introduce the concept of bistability.
In Section 1.3, we proceed in a similar fashion: we exemplify the three main
mathematical tools used in this thesis by three relatively simple examples. These
examples are chosen for convenience in introducing the mathematical techniques
we use, and wherever possible we specify if there is a connection between the
example and some part of the full model (1.1.3).
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1.2.1 Singular perturbations

In simple terms, a singularly perturbed problem is a problem containing a small
parameter, usually denoted by ε, with the property that one cannot obtain a
valid approximation to all of its solutions by setting this small parameter to
zero. This feature of singularly perturbed problems is in stark contrast with the
behavior of regularly perturbed problems, where one can directly obtain such an
approximation by setting the small parameter to zero. To obtain more insight
what differentiates a singularly and a regularly perturbed setting, we now consider
several simple examples.

A cubic algebraic equation

In the first example, we contrast the behavior of the roots of the regularly per-
turbed cubic equation

x3 − x2 + ε = 0 , 0 < ε ≪ 1,

to that of the roots of the singularly perturbed equation

εx3 − x2 + 1 = 0 , 0 < ε ≪ 1. (1.2.1)

In both cases, we consider the behavior of these roots as we let ε → 0. A priori,
one may think that approximations of the zeroes of either equation can be (for-
mally) obtained from the reduced equation which is obtained by setting ε → 0
in the original equation. However, this is only true for the regularly perturbed
equation; its reduced equation has the zeroes xr

0 = 0, with multiplicity two, and
xr

0 = 1. It is simple to show that these values are the limiting values of the roots
for ε 6= 0 as we let ε → 0. The reduced equation corresponding to the singu-
larly perturbed equation has, on the contrary, only two zeroes xs

0 = ±1, since
it is of degree two instead of three. The third zero of the singularly perturbed
equation has ‘disappeared’ in the limit ε → 0; in fact, it is O(ε−1) and thus be-
comes arbitrarily large for ε → 0. More explicitly, for ε = 0.01, the zeroes of the
singularly perturbed equation are approximately xs = 1.005, xs = −0.9951, and
xs = 99.99, while the zeroes of the regularly perturbed equation approximately
read xr = 0.1057, xr = −0.09554, and xr = 0.9898.

So, by naively setting ε → 0, one loses information on one of the zeroes of the sin-
gularly perturbed equation, while this is not the case for the regularly perturbed
one.

The asymptotic behavior of the third zero of the singularly perturbed equation
can, naturally, also be determined. Indeed, by rescaling the variable y := εx,
(1.2.1) transforms into

y3 − y2 + ε2 = 0 .
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The corresponding reduced equation is now of degree three, and it also yields the
root ys

0 = 1 apart from the the double zero solution. In the original variable, this
first root becomes xs

0 = ε−1 and it corresponds to the leading order approximation
of the third root (which is not captured by the reduced equation of (1.2.1)); the
double zero solution, in turn, corresponds to the bounded roots xs

0 = ±1.

Ordinary differential equations

The terminology introduced above can be transplanted easily to the field of dif-
ferential equations. An example of a singularly perturbed ODE is the equation
for a rescaled damped oscillator,

εẍ + ẋ + x = 0 , 0 < ε ≪ 1,
x(0) = A1, ẋ(0) = A2 ,

(1.2.2)

where˙= d
dt , and A1, A2 are arbitrary real numbers. Setting ε → 0 in this equation

yields the reduced equation

ẋ + x = 0.

The solution to this first order ODE is readily found to be x0(t) = Ce−t. This
formula, in turn, yields that x0(0) = C = A1 and ẋ0(0) = −C = A2. Therefore,
the reduced problem cannot satisfy both initial conditions, unless A1 = −A2.

In this particular example, the general solution to the full equation (1.2.2) can be
explicitly found to be

x(t) = C1e
−

“

1+
√

1−4ε
2ε

”

t
+ C2e

−
“

1−√
1−4ε

2ε

”

t
= C1e

−( 1
ε +O(1))t + C2e

−(1+O(ε))t ,

where C1 and C2 are determined by the initial conditions. We see that, here also,
one of the exponents is of O(ε−1) and thus becomes arbitrarily large for ε → 0.

So, here again, setting ε → 0 leads to the loss of crucial information. This
fact is most readily evident through our observation above that the reduced ODE
cannot accommodate both initial conditions. However, the reduced dynamics
actually describes the long time behavior of the full system, see Figure 1.5 and
Section 1.3.1 (where the reduced dynamics are termed slow dynamics). On the
other hand, this is a mere coincidence: if one changes the +ẋ into a −ẋ in (1.2.2)
the new reduced dynamics does no longer describe the asymptotic behavior of
the full system, since the stability type of the fixed point at x = 0 changes from
attractive to repulsive.

A prototype example of a regularly perturbed ODE is the first order ODE

ẋ = −(1 − ε)x , 0 < ε ≪ 1,
x(0) = A1 .

(1.2.3)
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ẋ(t)

x(t)

x(t)

t

Figure 1.5: In the left frame, we plotted the phase portrait of the singularly
perturbed rescaled damped oscillator (1.2.2) (solid line) and of its reduced problem
(dotted line). Note that all initial conditions eventually approach 0. Observe that,
to leading order, all initial conditions align with the linear subspace associated
with the reduced problem. In the right frame, we plotted the time series of the
specific initial condition A1 = 1 and A2 = 14.36. Note that we set ε = 0.1 in both
frames.

The solution to this equation is given by

x(t) = A1e
−(1−ε)t = A1e

−t + O(ε) ,

while the solution to the corresponding reduced equation reads x0(t) = A1e
−t. In

this case, then, the dynamics of the reduced equation offers a good approximation
of the full dynamics for all time t, see Figure 1.6. A slightly more complicated ver-
sion of this simple first order ODE will be analyzed in more detail in Section 1.3.3
in order to introduce the renormalization group (RG) method.

A second example of a regularly perturbed ODE is offered by the equation for a
rescaled oscillator with small damping,

ẍ + εẋ + x = 0 , 0 < ε ≪ 1,
x(0) = A1, ẋ(0) = A2 .

(1.2.4)

The solution to this full equation is given by

x(t) = C1e
− 1

2 (ε+
√

ε2−4)t + C2e
− 1

2 (ε−
√

ε2−4)t = A2 sin t + A1 cos t + O(εt),(1.2.5)

whereas the solution to the reduced equation reads x0(t) = A2 sin t + A1 cos t.
After an O(ε−1) time scale the expansion of (1.2.5) is no longer well-ordered, and
secular terms get a leading order influence. However, since the reduced equation
misses the effect of the small damping, these secular terms do not appear in the
solution to the reduced equation. Therefore, trajectories of the full problem do
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t

t

x(t)

x0(t)

x0(t)

x(t)

Figure 1.6: In the left frame, we plotted the solutions to the regularly perturbed
equation (1.2.4) (solid line) and to the reduced equation (dotted line). The initial
conditions here were A1 = 3, A2 = 2, and ε = 0.1. The trajectory corresponding
to the reduced equation mimics the dynamics of the full equation, to leading
order and over a bounded time interval. After some time, however, the dynamics
of the reduced equation is completely different from the actual full dynamics.
In the right frame, we plotted the solutions to the full and reduced equations
corresponding to (1.2.3). The initial condition here was A1 = 3, whereas ε = 0.1.
Note that the trajectory of the reduced equation describes the dynamics of the
full equation to leading order for all time.

indeed follow the trajectories of the reduced problem to leading order but only
up to O(ε−1) time. This observation serves to highlight the important fact that
the reduced equation of a regularly perturbed problem can also yield insufficient
approximations, see Figure 1.6.

In conclusion, whereas one observes a radical change in the dimensionality of
the dynamics of the singularly perturbed system (made explicit foremost by a
reduction in the dimensionality of the system) when one sets the small parameter
to zero, this is not the case for regularly perturbed problems.

1.2.2 Stability and bistability

The concept of bistability is best illustrated by Figure 1.7. Consider the double-
well (two minima) potential landscape plotted in the figure. Because of friction,
a marble dropped in this landscape eventually ends up in one of the two wells.
For a given, sufficiently large but not too large, friction, the initial position of
the marble fully determines the well in which it ends up resting. For instance,
marble 1 in Figure 1.7 ends up in the first well, while marble 2 ends up in the
second well. However, there is also the possibility that the marble lands exactly
on the peak (maximum) in between the two wells (marble 3 in Figure 1.7). In
this case, the marble does not move at all. This situation is highly unlikely of
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3

III

2

1

ẋ > 0 ẋ > 0 ẋ < 0ẋ < 0

Figure 1.7: A double-well potential. Because of friction, marble 1 will end up in
well I, while marble 2 will end up in well II. The third marble will not move at
all.

course, since an arbitrarily small perturbation would cause the marble to move
into one of the two wells. Mathematically, we call this peak location unstable, as
opposed to the two wells which are termed stable. Accordingly, we say that this
double-well landscape is of bistable nature.

Mathematically, a simple example of a bistable ODE is

ẋ = x − x3 , x(0) = A1 . (1.2.6)

This first order ODE has two attracting (stable) fixed points at x = ±1 and an
unstable fixed point at x = 0. This unstable fixed point acts as a separatrix
between the two attractors at x = ±1, that is, negative initial conditions tend
to −1 and positive initial conditions go to +1 without trajectories originating
from one region being able to cross into the other, see Figure 1.8. Moreover, note
the connection between (1.2.6) and the (graph of the) potential in Figure 1.7:
x − x3 > 0 in the regions where ẋ > 0 and x − x3 < 0 in the regions where
ẋ < 0. Mathematically speaking, x − x3 corresponds to minus the derivative of
− 1

2x2 + 1
4x4, the graph of which corresponds to the potential of Figure 1.8.

Perhaps the simplest bistable PDE [26, 45] reads,

Ut = Uxx + U − U3,

which is identical to the U -component of (1.1.3) with ε = 0. Besides the trivial
fixed points at U(x, t) ≡ ±1 and at U(x, t) ≡ 0, this PDE also has the spatially
inhomogeneous stationary solutions U(x, t) = ± tanh (1

2

√
2x) that connect x = ∓1

to x = ±1. In Section 1.3.2, we analyze the stability of one of these inhomogeneous
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x(t)

x(t)
t

ẋ(t)

Figure 1.8: In the left frame, we plotted the phase portrait of the bistable ODE
(1.2.6). The arrows indicate the direction in which a trajectory evolves. For
instance, trajectories starting in x = −0.5 end up in x = −1, while trajectories
starting in x = 0.5 end up in x = 1. In the right frame, we plotted the time series
of several initial conditions. Positive initial conditions tend to +1 and negative
initial conditions go to −1. Therefore, the unstable fixed point at x = 0 acts as a
separatrix.

solutions to introduce the concept of the Evans function, see also Sections 2.2.1
and 3.4.1.

1.3 More advanced concepts

The three main mathematical tools which we use in this thesis are geometric
singular perturbation theory (Chapter 2), the Evans function (Chapter 3), and
the RG method (Chapter 4). Proceeding along the lines of the previous section,
we introduce and explain the basic ideas underlying these concepts by means of
three simple examples.

1.3.1 Geometric singular perturbation theory

Consider the reaction kinetics of the two-component limit model of (1.1.3) (with
τ = ε−1, α = −1, β = 0, and γ = 0),

{

u̇ = u − u3 + εv ,
v̇ = ε(u − v) ,

(1.3.1)

where ˙ = d
dt , u, v ∈ R

1, and 0 < ε ≪ 1. This small parameter ε gives the

system its singular character. With a change of time scale, t̂ := εt, this system is
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u

v

0−1 1
u

v

−1 0 1

(−1,−1)

(1,1)

Figure 1.9: In the left frame, we plotted the dynamics of the FRS (1.3.2) and in
the right frame, we plotted the dynamics of the SRS (1.3.3). The dynamics of the
SRS, the slow dynamics, is only defined on the fixed points of the FRS.

transformed into
{

εu′ = u − u3 + εv ,
v′ = u − v ,

with ′ = d
dt̂

. The time scale corresponding to t is termed the fast time scale,

whereas the time scale corresponding to t̂ is called slow. Accordingly, the former
system is called the fast system, while the latter one is called the slow system.
These two systems are equivalent for ε 6= 0 but have very different reduced equa-
tions, i.e., limit systems as ε → 0. The fast reduced system (FRS) reads

u̇ = u − u3 and v ≡ v0 ∈ R . (1.3.2)

This is a 1-parameter family of 1-dimensional systems parametrized by v ≡ v0, a
constant in R. The slow reduced system (SRS), on the other hand, is given by

{

0 = u − u3 ,
v′ = u − v ,

(1.3.3)

which is a 1-dimensional differential-algebraic system. In fact, the SRS is only
defined exactly on the fixed points of the FRS by virtue of these points coinciding
with the solutions to that constraint. Both reduced systems are simpler and of
lower dimension compared to the full systems and therefore easier to analyze; see
Figure 1.9 for their dynamics.
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The idea underlying geometric singular perturbation theory is to analyze the full
system (with ε 6= 0 but sufficiently small) by suitably combining the dynamics
of the two limiting systems, see [33, 39, 43, 64] for instance. The foundations of
the theory were laid out by Fenichel [27, 28], and the theory is accordingly also
called Fenichel theory. We first need to recall certain definitions before we can
state Fenichel’s persistence theorems.

Consider the following slow-fast system (in fast formulation)
{

u̇ = f(u, v; ε) ,
v̇ = εg(u, v; ε) .

(1.3.4)

A manifold Mε is said to be locally invariant under the flow generated by (1.3.4)
if there exists a neighborhood V ⊃ M such that no orbit can leave M without
leaving V .

A locally invariant manifold M0 is called normally hyperbolic if the eigenval-
ues of the linearization Duf(u, v; 0) restricted to M0 are bounded away from the
imaginary axis.

The stable manifold W s(M) and unstable manifold Wu(M) of a manifold M
which is locally invariant under a flow φ(·; :) are defined as follows:

W s(M) := {y | d (φ(t; y),M) → 0 as t → +∞} ,
Wu(M) := {y | d (φ(t; y),M) → 0 as t → −∞} ,

with φ(0; y) = y and d(·, :) is the usual Euclidean distance.

Fenichel’s first persistence theorem states that, if the FRS has a normally hyper-
bolic invariant manifold M0, then, for ε small enough, the full system possesses a
locally invariant slow manifold Mε that is O(ε) close to M0 in the C1 topology.
Moreover, Fenichel’s second persistence theorem states that the full system also
possesses locally invariant stable and unstable manifolds W s,u(Mε) which are
O(ε) close to the stable and unstable manifolds W s,u(M0) of the FRS.

We are ready to apply these the two persistence theorems to the problem at hand.
The three manifolds M±1,0

0 := {(u, v) |u = ±1, u = 0} are normally hyperbolic,
since each M±1,0

0 is invariant with respect to the FRS (1.3.2) and

d

du
(u − u3)

∣

∣

∣

∣

M±1,0
0

= 1 − 3u2
∣

∣

M±1,0
0

= {−2, 1} .

Moreover,

W s(M±1
0 ) = R±\{0} × R , Wu(M±1

0 ) = M±1
0 ,

W s(M0
0) = M0

0 , Wu(M0
0) = [−1, 1]\{0} × R .
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By Fenichel’s first persistence theorem, the full system (1.3.1) possesses locally
invariant slow manifolds M±1,0

ε that are O(ε) close to M±1,0
0 , respectively. Note

that M±1,0
0 themselves are no longer (locally) invariant manifolds as ε 6= 0. We

now (formally) determine M±1,0
ε . By Fenichel theory, we know that M±1,0

ε can
be expressed as a graph u = h±1,0

ε (v); local invariance then yields

u = h±1,0
ε (v) =⇒ u̇ =

dh±1,0
ε

dv
v̇ = ε

dh±1,0
ε

dv
(u − v) .

On the other hand, u̇ = u − u3 + εv. Combining these two expressions for u̇, we
obtain an equation for h±1,0

ε (v),

ε
dh±1,0

ε

dv
(u − v) = u − u3 + εv .

Expanding h±1,0
ε asymptotically in ε, h±1,0

ε (v) = h±1,0
0 (v)+εh±1,0

1 (v)+O(ε2), and
equating O(1) terms of course yields the normally hyperbolic manifolds M±1,0

0 ;
h0

0 = 0 and h±1
0 = ±1. Substituting these expressions in the O(ε) terms of the

expansion yields,

h0
1 + v = 0 =⇒ M0

ε = {(u, v) | u = h0
ε(v) = −εv + O(ε2)} ,

−2h±1
1 + v = 0 =⇒ M±1

ε = {(u, v) | u = h±1
ε (v) = ±1 + εv

2 + O(ε2)} .

By Fenichel’s second persistence theorem, M±1
ε have local 2-dimensional sta-

ble manifolds, W s(M±1
ε ), and M0

ε has a local 2-dimensional unstable manifold,
Wu(M0

ε ). Moreover, since the full problem (1.3.1) is planar, all initial conditions
in between M−1

ε and M0
ε lie in both Wu(M0

ε) and W s(M−1
ε ), and hence are

forward asymptotic to M−1
ε . A similar statement can be made for all initial

conditions between M0
ε and M+1

ε . Moreover, since M±1
ε possess attracting fixed

points ±uf , respectively, M0
ε acts as a separatrix between W s(−uf ) and W s(uf ).

In Figure 1.10, we plotted the dynamics of (1.3.1).

1.3.2 The Evans function

In this section, which can be seen as background information to the first part of
Section 3.4.1, we introduce the notion of the Evans function. In particular, we
use an Evans function to determine explicitly the linear stability properties of a
heteroclinic stationary solution to a bistable PDE, that is, to determine the spec-
trum of the linearized flow corresponding to a certain time independent solution
joining two distinct trivial states of the PDE. Note that, under certain rather
general conditions, which apply to the specific PDE under consideration in this
section, linear stability of a solution implies that the solution is also nonlinear
stable [59].

For concreteness of presentation, we work with the bistable PDE introduced in
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u u

v v

(0,0)

(−1,−1)

(1,1)

Figure 1.10: In the left frame, we plotted the dynamics of the FRS and the
SRS of (1.3.1), see Figure 1.9. In the right frame, we plotted the dynamics of
the full system with ε = 0.1. The fixed points of the system are (0, 0) and
±uf = ±(1.0488, 1.0488) (to four decimals places). The former is unstable, while
the latter two are stable. Observe the locally invariant slow manifolds M±1,0

ε

close to M±1,0
0 , respectively, whose existence are guaranteed by Fenichel’s first

persistence theory. The asymptotic dynamics on M±1,0
ε is given by the SRS to

leading order. For the two attracting manifolds M±1
ε this can be seen in the plot.

Moreover, note that M0
ε acts as a separatrix between W s(−uf ) and W s(uf ).
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-2 -1 1 2

-2

-1

1

2

u−
h (x)

u+
h (x) = uh(x)

u
x

ux

Figure 1.11: In the left frame, we plotted the phase portrait of the stationary
solutions of (1.3.5). It possesses two heteroclinic stationary solutions u±

h (x). In
the right frame, we plotted the even and odd eigenfunctions of the associated linear
stability problem (1.3.7), which have been determined using an Evans function.

Section 1.2.2,

Ut = Uxx + U − U3 , (1.3.5)

which also forms the backbone of the three-component system (1.1.3). Equa-
tion (1.3.5) possesses the heteroclinic stationary solutions U(x, t) = u±

h (x) :=

± tanh
(

1
2

√
2x

)

, see also Section 2.2.1. Here, we analyze the solution u+
h (x) con-

necting U = −1 (at x = −∞) to U = +1 (at x = ∞), see Figure 1.11. Then, by
symmetry considerations, we replicate our results for the remaining heteroclinic
solution u−

h (x). For notational convenience, we drop the superscript ‘+’ in u+
h (x).

To determine the linear stability properties of uh(x), we consider the (standard)
small perturbation of uh(x)

U(x, t) = uh(x) + eλtu(x) , (1.3.6)

where x ∈ R, λ ∈ C, and u is an integrable function. Note that this is a real-
istic assumption: nonintegrable perturbations cannot be assumed to be small in
any natural topology. Plugging this perturbation into (1.3.5), and linearizing we
obtain the stability problem

0 = uxx +
(

1 − 3(uh)2 − λ
)

u = uxx +

(

3sech2

(

1

2

√
2x

)

− (λ + 2)

)

u . (1.3.7)

Thus, the linearized operator reads

L =
d2

dx2
+

(

3sech2

(

1

2

√
2x

)

− 2

)

;

its spectrum is equal to the union of its point spectrum and its essential or con-
tinuous spectrum. The part of the spectrum in the left half of the complex plane
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corresponds to stable eigendirections, whereas spectrum in the right half plane
corresponds to unstable eigendirections, see (1.3.6).

The essential spectrum σess covers instabilities under perturbations ‘at infinity’.
Usually, it is straightforward to determine this essential spectrum for a localized
solution [59, 63]; here, σess = {λ ∈ R |λ ≤ −2}. Roughly speaking, this can be
concluded as follows: for |x| large, (1.3.7) is to leading order given by

uxx − (λ + 2)u = 0 ,

with the general solution reading

u(x) = A1e
√

λ+2x + A2e
−
√

λ+2x .

This solution becomes oscillatory, also in the neighborhood of infinity, for λ ∈
(−∞,−2] = σess. So, although these solutions u(x) are bounded, they fail to be
integrable for λ ∈ σess and thus do not belong the function space we settled on in
advance.

The point spectrum, that is, the set of isolated eigenvalues corresponding to lo-
calized integrable eigenfunctions, is usually much harder to determine. It is here
where the Evans function, an analytic function whose zeroes correspond to these
isolated eigenvalues [1, 21–24], comes into play. Generally, and for λ /∈ σess, it is
possible to construct two sets E1 and E2 of solutions to the linearized system in
such a way that E1 forms a basis for the subspace of solutions that approach zero
at positive spatial infinity, while E2 forms a basis for the subspace of solutions
that approach zero at negative spatial infinity. Together E1 and E2 span the
solution space of the linear problem. Since the eigenfunctions corresponding to
isolated eigenvalues necessarily converge to zero in both spatial limits, as they are
integrable, any eigenfunction is an element of both E1 and E2. The Evans func-
tion D is defined as the determinant of the Wronskian of the fundamental matrix
solution generated by E1 and E2. In general, this Evans function is nonzero, i.e.,
E1 and E2 together form a basis of the solution space. However, for any specific
value of λ to be in the point spectrum, E1 and E2 must be linearly dependent,
and therefore the Wronskian must be zero. Thus, zeroes of the Evans function D
correspond to isolated eigenvalues in the point spectrum of the linearized opera-
tor [1, 59, 63]. Note that, an Evans function is only determined up to a scaling
constant by construction. Therefore, there exists a whole 1-dimensional subspace
of Evans functions rather than a unique Evans function.

We now proceed to determine the point spectrum of (1.3.7) and the correspond-
ing eigenfunctions with the help of an Evans function. Upon rescaling y via
y := 1

2

√
2x, the stability problem (1.3.7) reads

0 = uyy +
(

6sech2y − P 2
)

u , (1.3.8)
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where P 2 := 2λ + 4. To avoid that λ ∈ σess, P 2 should satisfy P 2 ∈ C\(−∞, 0].
It follows that we can select the square root branch in such a way that P ∈
C

+ = {P ∈ C | ℜ(P ) > 0}. It is hard to solve this problem straightforwardly, but
this can be done via a reduction to (so-called) hypergeometric functions. To do
so, we introduce the function F (y) := u(y) coshP y and the independent variable
z := 1

2 (1 − tanh y). Since y ∈ (−∞,∞), it follows that z ∈ (0, 1) and

d

dy
=

d

dz

dz

dy
= − sech2y

2

d

dz
= −2z(1 − z)

d

dz
.

Therefore, (1.3.8) transforms to

0 = Fyy − 2P tanh (y)Fy −
(

P 2 + P − 6
)

sech2(y)F

= z(1 − z)Fzz + (P + 1)(1 − 2z)Fz − (P + 3)(P − 2)F ,
(1.3.9)

where in the two steps the respective factors sechP y and 4z(1−z) are divided out.
This is a hypergeometric differential equation. The solution space of the general
hypergeometric differential equation,

z(1 − z)Fzz + (c − (a + b + 1) z)Fz − abF = 0 ,

is spanned by the hypergeometric series

F (a, b|c|z) := 1 +

∞
∑

n=1

a(a + 1) . . . (a + n − 1)b(b + 1) . . . (b + n − 1)

n!c(c + 1) . . . (c + n − 1)
zn

and z1−cF (a−c+1, b−c+1|2−c|z), see [48] for example. Here, a = P+3, b = P−2,
and c = P +1, and therefore F (P +3, P −2|P +1|z) and z−P F (3,−2|1−P |z) are
two independent solutions of (1.3.9). Note that F (3,−2|1 − P |z) is a quadratic
polynomial in z,

F (3,−2|1 − P |z) = 1 − 6

1 − P
z +

12

(1 − P )(2 − P )
z2 .

Next, we define a scaled version of z−P F (3,−2|1 − P |z) which is also a solution
to (1.3.9)

J−(z;P ) := (2z)−P (1 − P )(2 − P )F (3,−2|1 − P |z) .

Note that the scaling factor 2−P is incorporated only for our convenience. Now,
J−(z;P ) solves (1.3.9), has no singularities at P = 1, 2, and limz→1 J−(z;P ) is
bounded. Working backwards, we find then that

u−(y;P ) := sechP (y) J−(z;P ) , with z =
1

2
(1 − tanh y) ,

solves (1.3.8) and limy→−∞ u−(y;P ) = 0. By the reversibility symmetry of equa-
tion (1.3.8) (i.e., its invariance under the change y → −y)

u+(y;P ) := u−(−y;P ) = sechP (y)J−(1 − z;P )
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is also a solution of (1.3.8) and limy→∞ u+(y;P ) = 0. Hence, we have explicitly
constructed two independent solutions of (1.3.8). Plainly, u−(y;P ) corresponds
to the set E2, whereas u+(y;P ) corresponds to E1.

Using these independent solutions, we now define the Evans function

D̃(P ) :=

∣

∣

∣

∣

u−(y;P ) u+(y;P )
d
dy u−(y;P ) d

dy u+(y;P )

∣

∣

∣

∣

.

Note that the function D̃ is independent of y by Abel’s identity, see also [1]. Note
also that, since u+ has been obtained from u− by an application of the reversibility
symmetry, u+ and u− can only be dependent for values of P if u+ = ±u−. This
implies that the eigenfunctions are either odd or even. In general, D(P ) cannot
be computed explicitly. However, in the context of this example, a tedious yet
direct computation shows that

D̃(P ) = u−(y;P ) d
dy u+(y;P ) − u+(y;P ) d

dy u−(y;P )

= sechP (y)J−(z;P )
(

J−(1 − z;P ) d
dy

(

sechP y
)

+sechP y dz
dy

d
dz (J−(1 − z;P ))

)

− sechP (y)J−(1 − z;P )
(

J−(z;P ) d
dy

(

sechP y
)

+ sechP y dz
dy

d
dz (J−(z;P ))

)

= sech2P y

22P−1ZP (1−z)P (z(1 − z) (Q(z;P )Qz(1 − z;P ) − Q(1 − z;P )Qz(z;P ))

−PQ(z;P )Q(1 − z;P ))

= 2P
(

12z(1 − z)
(

−12z2 + 12z + P 2 − 4
)

−
(

144z4 − 288z3

−12P 2z2 + 192z2 + 12P 2z − 48z + P 4 − 5P 2 + 4P
))

= −2P
(

P 2 − 1
) (

P 2 − 4
)

.

Recalling the definition of P , we find that the Evans function associated with
the linear stability of the front solution uh(x) of (1.3.5) reads

D(λ) = D̃(P (λ)) = −8
√

2λ

(

λ +
3

2

)√
λ + 2 .

The zeroes of this Evans function, and thus the isolated eigenvalues of (1.3.7),
are λ = 0 and λ = − 3

2 . The zero eigenvalue is due to the translation invariance
of the system (see also the next paragraph), and therefore the heteroclinic so-
lution uh(x) is linearly stable as λ < 0. Note also that the essential spectrum
corresponds to {λ ∈ R |λ ≤ −2}, so that D(λ) is purely imaginary for λ ∈ σess.
Thus for this system also the essential spectrum can be obtained from the Evans
function calculation.
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Since the original problem (1.3.5) is translation invariant – that is, every trans-
lated version (in x) of a solution to (1.3.5) is also a solution to (1.3.5) – λ = 0 was
expected to be an eigenvalue with corresponding eigenfunction equal to (a scaled
version of) the derivative of the heteroclinic solution uh(x). A short computation
shows that

λ = 0 =⇒ P = 2 =⇒ J−(z; 2) = 3 =⇒ u−(y; 2) = 3 sech2y = u+(x; 2) .

Thus, λ = 0 indeed yields an even eigenfunction that is a scaled version u′
h(x) –

this is given by 1
2

√
2 sech2

(

1
2

√
2x

)

– namely 3 sech2
(

1
2

√
2x

)

. The other eigenvalue,
λ = − 3

2 , yields

λ = − 3
2 =⇒ P = 1 =⇒ J−(z; 1) = −3(1 − 2z)

=⇒ u−(y; 1) = −3 sech y tanh y = −u+(y; 1) .

Thus, the second (odd) eigenfunction is given by −3 tanh
(

1
2

√
2x

)

sech
(

1
2

√
2x

)

, see
Figure 1.11.

1.3.3 The renormalization group method

There are a variety of methods which entail a form or another of renormalization,
and all these methods are called RG methods. Originally, renormalization was
developed in field theory and in the theory of phase transitions [42, 61, 66, 67] to
cope with irregularities in critical exponents. More recently, the RG method has
been adapted to deal with various perturbation and asymptotic problems arising
both in ODEs and PDEs [7]. These new methods use either a continuous in-
variance condition [7, 10] or a discrete one [68, 69]; see also [49] for a discussion
and examples of this RG method. Another type of an RG method using scaling
invariance to prove rigorously that the solutions to a nonlinear parabolic PDEs
have a particular asymptotic form, was developed in [6] and has originated in
statistical physics. This method has also been used to prove stability of solutions,
see [18].

The aforementioned RG methods also differ from the RG method we use in this
thesis. Our method was developed in [55] and uses renormalization to estab-
lish the existence and nonlinear stability properties of certain special solutions to
PDEs and ODEs. Moreover, it was also used in [16] to validate a formally derived
system of ODEs describing the dynamics of semi-strongly interacting fronts. It is
for this purpose that we employ the RG method, see Chapter 4.

We remark that in many physical problems, the dynamics of the positions of
fronts are referred to as collective coordinates, see for example [3]. In [19, 20, 55],
it is proved that for a certain type of weakly interacting structures, a reduction
to such collective coordinates always possible is. However, in this thesis we are
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dealing with semi-strongly interacting structures. For such a structures, the au-
thor is not aware of methods other than that developed in [55] (and used in this
thesis) to prove rigorously the collective coordinates reduction.

To explain the basic ideas behind the RG method we use in Chapter 4 [16, 31,
47, 55], we consider the first order nonautonomous ODE,

ẋ = −(1 − ε(t))x , 0 < |ε(t)| ≤ ε0 < 1,
x(0) = A0 ,

(1.3.10)

for ε0 small enough (see below). Note that for ε(t) ≡ ε, (1.3.10) can be solved
explicitly: x(t) = A0e

−(1−ε)t, see (1.2.3). It follows that there is a globally at-
tracting fixed point at x = 0. This is, of course, also the case for any general
ε(t) satisfying 0 < |ε(t)| ≤ ε0 ≪ 1. However, for the sake of demonstration, we
pretend that both the exact solution of (1.3.10) and the existence of the attract-
ing fixed point at the origin are unavailable. Using the RG method, we identify
the attracting fixed point at x = 0 and prove that it is, indeed, globally attracting.

The variation of constants formula applied to (1.3.10) yields

x(t) = e−tA0 +

∫ t

0

e−(t−s)ε(s)x(s)ds . (1.3.11)

Defining
y(t) := sup

0<t′<t
et′ |x(t′)|

and multiplying both sides of (1.3.11) by et, we obtain the estimate

etx(t) ≤ |A0| + ε0

∫ t

0

y(s)ds ≤ |A0| + ε0ty(t) .

Note that the last term is secular: it becomes arbitrarily large for increasing t.
Taking the supremum over all time up to time τ yields

y(τ) ≤ |A0| + ε0τy(τ) =⇒ y(τ) ≤ |A0|
1 − ε0τ

.

It seems that, according to this inequality, the secular term yields blow up for
too large τ , see also Figure 1.12. A prototypical area of applications of the RG
method concerns problems on which the estimates exhibit similar secular behav-
ior. Problems solved by using the RG method often have this property of an
uncontrollable secular term. Using these naive estimates, we have an a priori
finite time control over the solution,

|x(t)| ≤ 2e−t|A0| , t ∈
(

0,
1

2ε0

)

. (1.3.12)
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The idea behind the RG method is to choose a specific new initial condition A1

at time t = 1
2ε0

– the moment when (1.3.12) loses its validity – and to repeat
the above procedure using this new initial condition A1. (Note that we can also
renormalize at any other moment smaller than 1

ε0
This specific choice of A1 is

A1 := 2e−
1

2ε0 |A0| ,

namely, the upperbound of (1.3.12) at t = 1
2ε0

. Using this new initial condition,
we now consider the initial value problem

ẋ = −(1 − ε(t))x , 0 < |ε(t)| ≤ ε0 ≪ 1,

x
(

1
2ε0

)

= A1 .

The variation of constants formula combined with the above estimates yields,
then,

|x(t)| ≤ 2e
−

“

t− 1
2ε0

”

|A1| = 4e−t|A0| , t ∈
(

1

2ε0
,

1

ε0

)

.

Repeating this renormalization procedure, we obtain

|An+1| := 2e−
1

2ε0 |An| = 2(n+1)e−
n+1
2ε0 |A0| .

An easy induction shows, then, that

|x(t)| ≤ 2e
−

“

t− n
2ε0

”

|AN | = 2(n+1)e−t|A0| , t ∈
(

n

2ε0
,
n + 1

2ε0

)

.

Thus,

|x(t)| ≤ 2|A0|e−t(1−2ε0 log 2) for all t.

Since ε0 is a small enough, which in this particular case means ε0 < 1
2 log 2 , we

obtain a net contraction of the initial condition A0. Therefore, there is a globally
attracting fixed point of (1.3.10) at x(t) = 0. See Figure 1.12.

In Chapter 4, we use this same method to establish the attractivity of a set
spanned by N -front solutions. There, however, we do not choose a different
initial condition when we renormalize; instead, we choose a different position of
the fronts we linearize about.

1.4 Outline

As we already remarked, system (1.1.3) is the central object of study in this thesis.
Our ultimate goal is to understand the semi-strong front and pulse interactions
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Figure 1.12: Schematic depiction of the main idea underlying the RG method.
After a finite time, the secular term becomes too large (diverges) and one has to
renormalize. For (1.3.10), this entails to choosing a new initial condition.

present in this system. Before we can thoroughly study those interactions, we
need to first study the existence and stability properties of the ‘simple’ asymp-
totic states. That is, we need to analyze the existence and stability of several
stationary or uniformly traveling 1- or 2-pulse solutions (2- or 4-front solutions).
In all of these cases, and for both the existence and stability problems, we find
that we can reduce the system of PDEs to a 6-dimensional system of first or-
der ODEs in the spatial variable ξ, so that the analysis reduces to investigating
these ODEs. Note that these ODEs turn out to be autonomous and nonlinear
for the existence problem and nonautonomous but linear for the stability problem.

In Chapter 2, we consider the existence problem. This chapter was published
in 2009 under the title Pulse dynamics in a three-component system: existence
analysis in the Journal of Dynamics and Differential Equations, and it is joint
work with A. Doelman and T.J. Kaper. The main mathematical tool we use in
that chapter is geometric singular perturbation theory (see Section 1.3.1).

In Chapter 3, we consider the nonlinear stability problem. This chapter was
published in 2008 under the title Pulse dynamics in a three-component system:
Stability and bifurcations in the journal Physica D, and it is also joint work with
A. Doelman and T.J. Kaper. The main mathematical tool used here is the Evans
function (see Section 1.3.2).
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It should be noted that these first two chapters are more than merely prelim-
inary work towards the interaction analysis of the final chapter, as they deal
with several other issues. For example, we analyze the way in which the sec-
ond inhibitor, the W -component, alters the dynamics of the two-component limit
model (1.1.1). More specifically, we map out the type of dynamics exhibited by
the three-component model which is absent from the two-component limit model
(1.1.1). As in the case of the original Purwins system (1.1.2), several solutions
only exist or are only stable in the extended model (1.1.3). For instance, station-
ary 2-pulse solutions do not exist in the two-component limit model (Section 2.6)
but do exist in the extended three-component model (Section 2.5.2). In a similar
vein, stationary 1-pulse solutions can only emerge from a saddle-node bifurcation
in the extended system; this is not the case in the limit system, see Corollary 3.4.2
and Figure 3.3. We also study the possible bifurcations of stable stationary 1-
pulse solutions. Besides the aforementioned saddle-node bifurcation, a 1-pulse
solution can bifurcate into a breathing 1-pulse solution (Hopf bifurcation) or into
a traveling 1-pulse solution as the bifurcation parameter τ keeps increasing, see
Sections 2.4 and 3.5.2. Note that the latter bifurcation can be either supercritical
or subcritical, see Lemma 2.4.1 and Figure 3.11. Moreover, observe that these
bifurcations only occur for large τ = O(ε−2). This makes the bifurcation analysis
much more involved compared to the existence and stability analysis of stationary
1-pulse solutions.

In the final chapter, we analyze the semi-strong front and pulse interactions.
Using the RG method (see Section 1.3.3), we derive systems of ODEs describing
the motion of the various fronts of an N -front solution. This derivation contains
a fully nonlinear PDE analysis, in contrast to the previous chapters. Eventu-
ally, we analyze the derived ODEs to understand the semi-strong front and pulse
dynamics. This chapter has been recently submitted for publication under the
title Front interactions in a three-component system, and it is joint work with A.
Doelman, T.J. Kaper, and K. Promislow.

Finally, we would like to clarify that the material in this thesis only offers a
the first few glimpses into the dynamics generated by (1.1.3). One of the main
‘gaps’ in our current understanding is related to the fact that we only study in-
teractions in the parameter regime where τ = O(1), see the last chapter. In
particular, we do not study the much more interesting regime τ = O(ε−2), where
uniformly traveling, breathing, and stationary 1-pulse solutions co-exist and in-
teract, see Chapters 2 and 3. The reason behind that is quite fundamental: in
that regime, the essential spectrum associated with the stability of an N -front
solution lies asymptotically close to the imaginary axis. As a consequence, some
of the central estimates on which the RG method is built no longer hold. Our
analysis is also limited in the sense that we only consider patterns in one spatial
dimension; a natural and challenging future project concerns the analysis of the
planar variant of (1.1.3). This is a natural next step, for instance to make a bet-
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ter comparison with the (numerical) observations obtained for the original model
(1.1.2). Two a priori bottlenecks for this analysis concern the extensions of, first,
the dynamical system-informed spatial dynamics approach and of the RG method
to a 2-dimensional setting. To the former bottleneck there exist solutions in the
literature, while the latter bottleneck is still largely unsolved.
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Chapter 2

Existence

2.1 Introduction

Spatially-localized structures, such as fronts, pulses and spots, have been found
to exhibit a wide variety of interesting dynamics in dissipative systems. These
dynamics include repulsion, annihilation, attraction, breathing, collision, scatter-
ing, self-replication, and spontaneous generation. The richness of the observed
dynamics typically increases with the complexity and the size of the system. Lo-
calized structures, that do not exist in reaction-diffusion equations (RDEs) with a
small number of components, may readily exist when more components and more
terms are added to the system. Likewise, solutions that are unstable in small or
simple RDEs may become stable with such additions.

The aim of this chapter is to report on the mathematical analysis of a paradigm
example that exhibits this increased richness. In particular, we study the three-
component model introduced in [60] and studied further in [5, 51, 53, 54, 70, 71],
see also the previous chaprter. In one space dimension, the equations are







Ut = DUUxx + f(U) − κ3V − κ4W + κ1 ,
τVt = DV Vxx + U − V ,
θWt = DW Wxx + U − W ,

(2.1.1)

where we used the notation of [51], see also (1.1.2). Note that (2.1.1) has the re-
versibility symmetry x → −x. Here, the (U, V )-subsystem is a classical, bistable
two-component RDE, which exhibits dynamics similar to the classical FitzHugh-
Nagumo (FHN) equations (although here DV 6= 0, whereas DV = 0 in FHN), and
the variable W denotes an added inhibitor component. We will show that it is
responsible for increasing the richness of the types of solutions the model possesses.

In (2.1.1), U, V , and W are real-valued functions of x ∈ R and t ∈ R
+, and

27
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the subscripts indicate partial derivatives. The parameters τ and θ are positive
constants, and the primary interest is in using τ as the bifurcation parameter.
The diffusivities of the respective components are denoted by DU ,DV , and DW ,
f(U) is a bistable cubic reaction function (often taken to be f(U) = 2U − U3),
κ3 and κ4 denote reaction rates, and κ1 denotes a constant source term.

The fundamental discovery reported in [60] is that, in this three-component model,
the added component W can stabilize stationary and traveling single spot so-
lutions and multi-spot solutions in two space dimensions, which otherwise are
inherently unstable in the classical two-component (U, V )-bistable model. This
stabilization was shown to occur when DW is sufficiently large relative to DU and
DV , because then the presence of W prevents spots from extending in the direc-
tions perpendicular to their directions of motion. In this manner, W suppresses
the instability that spots undergo in two-component systems [60].

The dynamics of pulses in the 1-dimensional model (2.1.1) is also known to
be richer than in the corresponding 1-dimensional version of the two-component
model. Pulses collide, scatter, annihilate, among others, as has been shown in
[51, 52], whereas the dynamics of pulses in the restricted two-component system
is much less rich. A special class of unstable 2-pulse solutions, called scattors or
separators, is identified for (2.1.1) in [51, 52]. It is shown that their stable and
unstable manifolds organize the evolution in phase space of all nearby solutions.
More precisely, during the course of a collision between two pulses, they converge
to a separator state, and the location of the initial data relative to the stable and
unstable manifolds of this separator determines how and when the pulses scatter
off each other. Furthermore, in some parameter regimes, the scattering process
may be directed by a combination of two separators, where the colliding pulses
first approach one separator, spend a long time near it, and then approach a sec-
ond separator state, and then finally repel or annihilate, see [51, 52].

Our work is inspired by the results from [54, 60] and [51, 52]. We carry out
a complementary, rigorous analysis of the existence of certain pulse solutions for
a scaled version of the three-component model, see (2.1.6) below. The model has a
rich geometric structure that will be studied using geometric singular perturbation
theory, and we note that the application of this theory is challenging due to the
fact that the associated ordinary differential equations (ODEs) are 6-dimensional.

2.1.1 Statement of the model equations

In [5, 51, 53, 54, 60, 70, 71], the numerical values of the diffusivities of the three
species differ by several orders of magnitude. For example, in [51], the values are
DU = 5 × 10−6, DV = 5 × 10−5, and DW = 10−2. Therefore, we are motivated
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to introduce a scaled spatial variable

x̃ =
x√
DV

. (2.1.2)

For computational convenience we also scale out the factor two in the nonlinearity
f(U) = 2U − U3. Therefore, we introduce

t̃ = 2t , (Ũ , Ṽ , W̃ ) = 1
2

√
2(U, V,W ), (τ̃ , θ̃) = 2(τ, θ),

(κ̃1, κ̃3, κ̃4) = 1
2 ( 1

2

√
2κ1, κ3, κ4).

(2.1.3)

In terms of these scaled quantities, the system (2.1.1) is







Ũt̃ = ε2Ũx̃x̃ + Ũ − Ũ3 − κ̃3Ṽ − κ̃4W̃ + κ̃1 ,

τ̃ Ṽt̃ = Ṽx̃x̃ + Ũ − Ṽ ,

θ̃W̃t̃ = D2W̃x̃x̃ + Ũ − W̃ ,

(2.1.4)

with the nondimensional diffusivities ε2 = DU

2DV
≪ 1 and D2 = DW

DV
≫ 1.

As to the parameters in the reaction terms, the numerical values that are used in
[51] are (κ1, κ3, κ4) = (−7, 1, 8.5), and very similar values are used in [60]. While
these are O(1) with respect to ε, it is helpful to first study the system with O(ε)
values of these parameters; i.e., to introduce scaled parameters, as follows:

κ̃1 = −εγ, κ̃3 = εα, κ̃4 = εβ, (2.1.5)

where α, β, and γ are O(1) quantities and where we have taken κ1 to be negative,
since it is negative in all of the above cited articles.

The rationale for this choice of scalings (2.1.5) is threefold. First, this choice
was made to facilitate the mathematical analysis, since in this regime the terms
in the U -equation corresponding to the source and to the coupling from the in-
hibitor components are weak, yet not too weak. In fact, the effects of the source
and the coupling terms are too weak when they are of O(ε2) [14]. Second, it
turns out that much of the rich pulse dynamics exhibited by system (2.1.4) ex-
ists also when the parameters have O(ε) values, as we will show in this chapter
(see also [56]). Therefore, one might reasonably hope to understand the origins
of the dynamics observed in [51] by beginning with the present analysis. Third,
in the numerical simulations of [51, 60], which were done on bounded domains,
the W variable stays near −0.8, approximately. Hence, in a very approximate
(and rough) sense one might argue, as follows, that there is an effective impact
of the parameters in the U -equation of (2.1.4) that is of O(ε). Since κ̃3 = 0.5
and ε = 1

10

√
5 ≈ 0.22, the effect of V in this equation can indeed be considered

to be O(ε). Moreover, by the scalings (2.1.3), κ̃4W̃ − κ̃1 ≈ 0.07 for W = −0.8
(and κ1,4 as in [51]), which is clearly also O(ε). Thus, it appears that the impact
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of the source and coupling terms are indeed small. Of course this last argument
is far from being mathematically consistent. However, this argument formed the
original motivation to introduce the aforementioned rescalings.

In light of the above scalings, the model equations that we study are






Ut = ε2Uxx + U − U3 − ε(αV + βW + γ) ,
τVt = Vxx + U − V ,
θWt = D2Wxx + U − W ,

(2.1.6)

where we dropped the tildes. Furthermore, we require that 0 < ε ≪ 1, 0 < τ, θ ≪
ε−3, D > 1, and α, β, γ ∈ R, where the upper bound on τ and θ is derived in
Section 2.3.1. Moreover, we assume that the solutions (U(x, t), V (x, t),W (x, t))
are bounded over the entire domain.

At various stages throughout the analysis, we will see that it is also useful to
examine the three-component model in a stretched (or ‘fast’) spatial variable
ξ = x

ε :











Ut = Uξξ + U − U3 − ε(αV + βW + γ) ,

τVt = 1
ε2 Vξξ + U − V ,

θWt = D2

ε2 Wξξ + U − W .

(2.1.7)

We refer to this system as the fast system, and to system (2.1.6) as the slow
system.

The system (2.1.6) or (2.1.7) is well-suited as a paradigm for the analysis of
three-component RDEs. On the one hand, it is sufficiently nonlinear and com-
plex so that it supports a rich variety of localized structures, and on the other
hand it is sufficiently simple, with linear reaction functions in the second and third
components and with linear coupling, so that much of the dynamics can be com-
puted analytically, including certain bifurcations. In this respect, we believe that
the results presented here also provide a basis to establish a theory of interacting
pulses in this paradigm model.

2.1.2 Outline of the main results

We begin in Section 2.2 with examining the stationary, or standing, 1-pulse solu-
tions. For these solutions, the U -component consists of a front, which connects
the (quiescent) state U = −1 + O(ε) to the (active) state U = 1 + O(ε), and a
back, which provides the opposite connection, concatenated together to form a
pulse (or homoclinic orbit). Both the front and the back are sharp, so that the
pulse is highly localized, due to the asymptotically small value of ε2 in (2.1.6).
The V -component of the 1-pulse solutions consists of a smooth pulse that is cen-
tered on the middle of the interval in which the U -component is in the active
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Figure 2.1: Stable stationary 1-pulse and 2-pulse solutions of system (2.1.6)
obtained via numerical simulation. For the 1-pulse the system parame-
ters are (α, β, γ,D, τ, θ, ε) = (3, 1, 2, 5, 1, 1, 0.01), and for the 2-pulse we had
(α, β, γ,D, τ, θ, ε) = (2,−1,−0.25, 5, 1, 1, 0.01).

state and that varies over slightly wider interval than the U -pulse. Finally, the
W -component also consists of a single, smooth pulse, but it varies on a wider
interval than either of the other two components due to the fact that D > 1.
See Figure 2.1. The standing 1-pulse solutions are formally constructed in Sec-
tion 2.2.2. Then, we make this construction rigorous in Theorem 2.2.1, which
states that the three-component model (2.1.6) possesses standing 1-pulse solu-
tions whenever the system parameters satisfy (2.2.22). See Section 2.2.3 for the
statement of this theorem and Section 2.2.4 for its proof.

Next, we analyze the existence of traveling 1-pulse solutions. This analysis, pre-
sented in Section 2.3, follows the same two-step procedure: we first construct
solutions formally (see Section 2.3.1) and then we prove their existence rigorously
(see Sections 2.3.2 and 2.3.3). The main result is Theorem 2.3.1, which states that
there exist traveling pulse solutions whenever either τ or θ (or both) is O(ε−2)
and the system parameters satisfy (2.3.13).

Given these results about standing and traveling 1-pulse solutions, it is of interest
to investigate the bifurcation of the former into the latter. We do so in Section 2.4.
The leading order results are given by (2.4.2) in Section 2.4.1, and then the rigor-
ous, high-order asymptotics for the main bifurcation parameter τ as a function of
the other parameters is summarized in Lemma 2.4.1, see Section 2.4.2. It turns
out that this bifurcation can be supercritical, as well as subcritical, depending
on the parameters, see Corollaries 2.4.2 and 2.4.3. This result contrasts with the
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bifurcation result for the 2-dimensional version of this model, obtained in [54],
where it was shown that this bifurcation is supercritical.

Having completed our analysis of the 1-pulse solutions, we next turn our at-
tention to 2-pulse solutions of (2.1.6). The main result is Theorem 2.5.1, which
guarantees the existence of 2-pulse solutions whenever the system parameters
satisfy (2.5.6). These 2-pulse solutions have U -components that consist of two
copies of the U -component of the single pulses, while the V - and W -components
exhibit two peaks as well, but are not near equilibrium in the interval between
their two peaks. See Figure 2.1. In this sense, the interaction between the pulses
is semi-strong, according to the terminology of [12]. We also note that (2.5.6) is
rather complex, and we present investigations of it when D = 2, and when D is
general. Moreover, we give the asymptotics of the key quantities as D → ∞. See
Sections 2.5.2 and 2.5.3, respectively.

After completing the analysis of these pulse solutions, we examine in Section 2.6
the two-component (U, V )-subsystem, obtained from (2.1.6) by setting W con-
stant at −1. This analysis of the two-component system enables us to make
observations about the differences between the two-component and the three-
component systems. For instance, for the 2-pulse solutions, we observe that the
inclusion of the third component is essential, because the two-component version
of the model cannot possess 2-pulse solutions. Simply put, there is not enough
freedom in the two-component model to permit for the construction of these solu-
tions, and our analysis reveals why the third component – which naturally makes
the phase space of the associated ODE problem 6-dimensional – creates sufficient
space/freedom for their existence.

In Section 2.7.1 we present the results of a series of numerical simulations of
(2.1.6). These simulations confirm the various analytical existence and bifur-
cation results presented herein, and they also reveal the presence of rich pulse
interactions, including pulse reflection and annihilation, stable breathing single
and double pulses (which bifurcate from stationary pulse solutions), pulse scat-
tering, as well as combinations of these. See Figures 2.14–2.18. The single and
double pulses analyzed in this chapter are key building blocks to understand these
rich pulse interactions. Finally, in Section 2.7.2, we summarize our analysis and
discuss some related items.

Remark 2.1.1. The 2-pulse solutions constructed in [25, 34] for the FHN differ in
several respects from those constructed here. In FHN, these are essentially copies
of the 1-pulse solution, that must be very far apart, and that exhibit oscillatory
behavior in the interval between the pulses. The mechanism responsible for their
existence is related to the classical Shilnikov mechanism.

Remark 2.1.2. Other examples of stabilization via the inclusion of an addi-
tional component in a model are given for instance by the Gray-Scott and Gierer-
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Meinhardt systems. In these, 1-pulse (homoclinic) solutions that are unstable
with respect to the scalar RDE for the activator component are stabilized in
certain parameter regimes by the coupling to the equation for the inhibitory com-
ponent. The diffusive flux of inhibitor into the pulse domains helps to localize
the activator concentration, hence stabilizing 1-pulse solutions, and we refer to
[12, 13] for the mathematical analysis using the Evans function and the stability
index. Moreover, it is is worth noting that the converse may also arise; namely
in [14] it is shown that stable fronts of a bistable, scalar RDE are destabilized
through coupling to a second component when the parameters are chosen so that
either the essential spectrum approaches the origin or an eigenvalue emerges from
the essential spectrum and becomes unstable.

2.2 Stationary 1-pulse solutions

2.2.1 Basic observations

First, we look at stationary pulses of system (2.1.7), i.e., we put (Ut, Vt,Wt) =
(0, 0, 0). By introducing p = uξ, q = 1

εvξ and r = D
ε wξ, we transform system

(2.1.7) into a 6-dimensional singularly perturbed ODE






























uξ = p ,
pξ = −u + u3 + ε(αv + βw + γ) ,
vξ = εq ,
qξ = ε(v − u) ,
wξ = ε

D r ,
rξ = ε

D (w − u).

(2.2.1)

Although ξ is the spatial variable, it will play the role of ‘time’ in our analysis.
The system possesses two symmetries

(ξ, p, q, r) → (−ξ,−p,−q,−r) and
(u, p, v, q, w, r, γ) → (−u,−p,−v,−q,−w,−r,−γ) .

(2.2.2)

Note that the first symmetry corresponds to the reversibility symmetry (x, ξ) →
(−x,−ξ) in (2.1.6), (2.1.7), respectively. The fixed points of system (2.2.1) have
p = q = r = 0, and u = v = w with u3 + u(−1 + ε(α + β)) + εγ = 0. Solving this
last equation yields

u±
ε = ±1 ∓ 1

2
ε (α + β ± γ) + O(ε2), u0

ε = εγ + O(ε2). (2.2.3)

Hence, there are three fixed points,

P±
ε = (u±

ε , 0, u±
ε , 0, u±

ε , 0), P 0
ε = (u0

ε, 0, u0
ε, 0, u0

ε, 0). (2.2.4)

It can be checked that P±
ε , respectively P 0

ε , represent stable, respectively unsta-
ble, trivial states of the partial differential equations (PDEs) (2.1.6) and (2.1.7).
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Figure 2.2: The phase portrait of the fast reduced Hamiltonian system (2.2.5).

The fast reduced system (FRS) is obtained by letting ε ↓ 0 in (2.2.1),
{

uξ = p ,
pξ = −u + u3 ,

(2.2.5)

as well as (vξ, qξ, wξ, rξ) = (0, 0, 0, 0), i.e., (v, q, w, r) ≡ (v∗, q∗, w∗, r∗) with v∗, q∗,
w∗, r∗ ∈ R constants. The fixed points of the FRS are given by (u, p) ∈ {(±1, 0),
(0, 0)}. The former are saddles. The latter, (0, 0), is a center that corresponds to
P 0

ε and thus to an unstable trivial state of (2.1.6) – we will therefore not consider
it.

We define the 4-dimensional invariant manifolds M±
0 by

M±
0 := {(u, p, v, q, r, w) ∈ R

6 : u = ±1, p = 0},

which are the unions of the saddle points over all possible v∗, q∗, w∗, r∗ ∈ R.
Planar system (2.2.5) is integrable with Hamiltonian

H(u, p) =
1

2
(p2 + u2) − 1

4
(u4 + 1) , (2.2.6)

which is chosen such that H(u, p) = 0 on M±
0 . The FRS possesses heteroclinic

orbits (u0,±
h (ξ), p0,±

h (ξ)) that connect the fixed points (u, p) = (±1, 0) to (u, p) =
(∓1, 0),

u0,±
h (ξ) = ∓ tanh

(

1

2

√
2ξ

)

, p0,±
h (ξ) = ∓1

2

√
2sech2

(

1

2

√
2ξ

)

. (2.2.7)

See Figure 2.2. The manifolds M±
0 are normally hyperbolic, and they have 5-

dimensional stable and unstable manifolds W s,u(M±
0 ) that are the unions of the
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4-parameter (v∗, q∗, w∗, r∗)-families of 1-dimensional stable and unstable mani-
folds of the saddle points (u, p) = (±1, 0) in (2.2.5).

Fenichel’s first persistence theorem [27, 39, 43] implies that for ε small enough,
system (2.2.1) has locally invariant slow manifolds M±

ε which are O(ε) C1-close
to M±

0 , i.e., M±
ε can be represented by

M±
ε := {u = ±1 + εu±

1 (v, q, w, r; ε), p = εp±1 (v, q, w, r; ε)} , (2.2.8)

where the graphs u1 and p1 can be computed by an expansion in ε,

M±
ε = {u = ±1 − 1

2
ε (αv + βw + γ) + O(ε2), p = O(ε2)} . (2.2.9)

The application of Fenichel’s second persistence theorem establishes that M±
ε

have 5-dimensional stable and unstable manifolds, W s,u(M±
ε ), that are O(ε) C1-

close to their ε = 0 counterparts W s,u(M±
0 ). Observe that the critical points P±

ε

have 3-dimensional stable and unstable manifolds W s,u(P±
ε ) which are contained

in W s,u(M±
ε ).

There are two slow reduced limit systems (SRS), both of which we write in terms
of the fast variable ξ: one that governs the flow on M−

ε ,
{

vξξ = ε2(v + 1 + O(ε)),

wξξ = ε2

D2 (w + 1 + O(ε)),
(2.2.10)

and one that governs the flow on M+
ε ,

{

vξξ = ε2(v − 1 + O(ε)),

wξξ = ε2

D2 (w − 1 + O(ε)).
(2.2.11)

Observe that (v, q, w, r) = (±1, 0,±1, 0) + O(ε) are saddle points on M±
ε that

correspond to the fixed points P±
ε (2.2.4). Also note that the v- and w-equations

are to leading order decoupled, so that both ODEs can be considered separately.
See also Remark 2.2.1. Hence, we have a (v, q)-subsystem and a (w, r)-subsystem,
both with two saddle points. These four saddle points each have 1-dimensional
stable and unstable manifolds, ls,u,±

v,w , that are given to leading order by

ls,±
v = {q = ±1 − v} , ls,±

w = {r = ±1 − w} ,
lu,±
v = {q = ∓1 + v} , lu,±

w = {r = ∓1 + w} .
(2.2.12)

In Figure 2.3, we sketch some orbits on the manifolds M±
ε .

2.2.2 The construction of 1-pulse solutions γ−

h,j(ξ) homo-

clinic to P−

ε

In this section, we consider symmetric stationary 1-pulse solutions γ−
h,j(ξ) that

are homoclinic (denoted by the subscript ‘h’) to P−
ε (denoted by the superscript
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v
P−

ε P+
ε

lu,−
v

ls,−v

ls,+w

lu,+
w

M+
εM−

ε

w

q r

Figure 2.3: The flow generated by the (v, q)-subsystem on M−
ε and that of the

(w, r)-subsystem on M+
ε . Note that stable/unstable manifolds ls,u,±

v and ls,u,∓
w

have the same slopes.

‘−’). The last subscript ‘j’ is an index which is needed since there can be more
than one pulse solution for a given set of parameters. Here, we present the formal
derivation. Then, in section 2.2.3, we formulate a theorem based on this analysis
– Theorem 2.2.1, and we prove this theorem in Section 2.2.4. This proof also
establishes the validity of the asymptotic analysis in this section. Note that or-
bits homoclinic to the other fixed point P+

ε can be obtained from these orbits by
application of the symmetries (2.2.2).

Before we start with the construction of γ−
h,j(ξ), we introduce some notation.

From Figures 2.1 and 2.4, we notice that there are five different regions, three
in which the leading order spatial evolution is given by the SRS (2.2.10) and
(2.2.11), and two regions that are governed by the FRS (2.2.5). Since the PDEs
are translation invariant, we may parametrize the pulse solution so that its u, v, w-
components are at a local extremum at ξ = 0, i.e., p−h,j(0) = q−h,j(0) = r−h,j(0) = 0

– we will find that v−
h,j(0) and w−

h,j(0) are maxima, while u−
h,j(0) is a (local) mini-

mum. Moreover, we introduce ξ∗ as the position of the ‘jump mid-point(s)’, more
precisely ξ∗ is such that γ−

h,j(ξ) is half-way between the two slow manifolds at

ξ = ξ∗, i.e., u−
h,j = 0 at ξ = ±ξ∗ (2.2.2). We will find that ξ∗ = O( 1

ε ), but at
this point of the analysis it is still undetermined. Next, we define the two ‘fast
intervals’ I∓f and the three ‘slow intervals’ I∓s , I0

s ,

I−f :=
(

−ξ∗ − 1√
ε
,−ξ∗ + 1√

ε

)

, I+
f :=

(

ξ∗ − 1√
ε
, ξ∗ + 1√

ε

)

,

I−s :=
(

−∞,−ξ∗ − 1√
ε

]

, I0
s :=

[

−ξ∗ + 1√
ε
, ξ∗ − 1√

ε

]

, I+
s :=

[

ξ∗ + 1√
ε
,∞

)

.
(2.2.13)

Note that the choice of the width for I±f of 2√
ε

is standard, but arbitrary. We can

now give a more precise definition of the five regions mentioned above (see Figure
2.4).
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1: The dynamics take place exponentially close to the slow manifold M−
ε :

ξ ∈ I−s .

2: The dynamics take place in the fast field: ξ ∈ I−f .

3: The dynamics take place exponentially close to M+
ε : ξ ∈ I0

s .

4: The dynamics take place in the fast field: ξ ∈ I+
f .

5: The dynamics take place exponentially close to M−
ε : ξ ∈ I+

s .

By definition,

γ
−

h,j = (u−

h,j , p
−

h,j , v
−

h,j , q
−

h,j , w
−

h,j , r
−

h,j) ∈ W
u(P−

ε ) ∩ W
s(P−

ε ) ⊂ W
u(M−

ε ) ∩ W
s(M−

ε ),

while the jump mid-points are defined by

γ−
h,j(±ξ∗) = (0,∓p∗, v∗,∓q∗, w∗,∓r∗).

Furthermore, since γ−
h,j(ξ) remains exponentially close to M+

ε for ξ ∈ I0
s , γh,j(ξ)

is also exponentially close to Wu(P−
ε )∩W s(M+

ε ) and to W s(P−
ε )∩Wu(M+

ε ) for
sufficiently long time. Note that γ−

h,j(ξ) /∈ Wu(M−
ε ) ∩ W s(M+

ε ) or W s(M−
ε ) ∩

Wu(M+
ε ), since it has to be able to jump back again from M+

ε to M−
ε .

By considering possible take off and touch down points of jumps through the fast
field and by studying, in fact explicitly solving, the slow flows on M−

ε (2.2.10) and
on M+

ε (2.2.11), we obtain relations between the coordinates (v∗,∓q∗, w∗,∓r∗)
of the jump mid-points and their spatial positions ±ξ∗ that uniquely determine
the homoclinic orbit(s) γ−

h,j(ξ); see Remark 2.2.1.

For ε 6= 0, the Hamiltonian H(u, p) (2.2.6) is not conserved

d
dξ H(u(ξ), p(ξ)) = uuξ + ppξ − u3uξ

= up + p
(

−u + u3 + ε(αv + βw + γ)
)

− u3p
= εp(αv + βw + γ) .

(2.2.14)

Since (u−
h,j(ξ), p

−
h,j(ξ)) must be O(ε) close to the heteroclinic solution

(u0,−
h (ξ), p0,−

h (ξ)) (2.2.7) of the FRS (2.2.5) in the fast field I−f , the total change

in H for an orbit γ−
h,j(ξ) that jumps from M−

ε to M+
ε is approximated by

∆−
f H(v∗, q∗, w∗, r∗) =

∫

I−
f

Hξdξ

=
∫

I−
f

εp0,−
h (ξ + ξ∗)(αv∗ + βw∗ + γ)dξ + O(ε

√
ε)

= ε(αv∗ + βw∗ + γ)
∫ ∞
−∞ p0,−

h (ξ)dξ + O(ε
√

ε)

= 2ε(αv∗ + βw∗ + γ) + O(ε
√

ε),



38 Chapter 2. Existence

q, r

v, w
u, p

q, r

v, w
u, p

P−
ε

P+
ε

M+
εM−

ε

lu,+
v,w

ls,+v,w

ls,−v,w

lu,−
v,w

M−
ε

4

2

31

5

Figure 2.4: A schematic sketch of a standing pulse solution γ−
h,j(ξ) in the 6-

dimensional (u, p, v, q, w, r)−phase space. In region 1, the pulse is exponentially
close to M−

ε for a long ‘spatial time’ and approaches P−
ε as ξ → −∞. It ‘takes

off’ from M−
ε at ξ = −ξ∗ − 1√

ε
(by definition) and ‘jumps’ through the fast field

(ξ ∈ I−f ) towards M+
ε – this is region 2. In region 3, γ−

h,j(ξ) touches down near

M+
ε at ξ = −ξ∗ + 1√

ε
and remains exponentially close to M+

ε until ξ = ξ∗ − 1√
ε
,

from where it jumps back towards M−
ε , which defines region 4 (ξ ∈ I+

f ). In the

final region, 5, γ−
h,j(ξ) is again exponentially close to M−

ε and approaches P−
ε as

ξ → ∞. See also Figure 2.1 in which γ−
h,j(ξ) exhibits the same structure.
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where we have used (2.2.7), (2.2.14), and assumed that ξ∗ = O( 1
ε ). Note that

∆−
f H in principle depends on (v∗, q∗, w∗, r∗), the slow (v, q, w, r)-coordinates of

the jump mid-points, and that these coordinates do not vary to leading order
during a jump through the fast field,

∆−
f v =

∫

I−
f

vξdξ =
∫

I−
f

εqdξ = 2q∗
√

ε + O(ε) = O(
√

ε) ,

∆−
f q =

∫

I−
f

qξdξ =
∫

I−
f

ε(v − u)dξ = 2v∗
√

ε + O(ε) = O(
√

ε) ,

∆−
f w =

∫

I−
f

wξdξ =
∫

I−
f

ε
D rdξ = 2r∗

1
D

√
ε + O(ε) = O(

√
ε) ,

∆−
f r =

∫

I−
f

rξdξ =
∫

I−
f

ε
D (w − u)dξ = 2w∗

1
D

√
ε + O(ε) = O(

√
ε) .

(2.2.15)

On the other hand, such an orbit γ−
h,j(ξ) cannot have a total change of more than

O(ε2) over a jump through the fast field I−f , since

H(u, p)|M±
ε

= 1
2

(

(

±1 − 1
2ε(αv + βw + γ) + O(ε2)

)2
+ O(ε2)2

)

− 1
4

(

(

±1 − 1
2ε(αv + βw + γ) + O(ε2)

)4
+ 1

)

= 1
2 ∓ 1

2ε(αv + βw + γ) − 1
4 ± 1

2ε(αv + βw + γ) − 1
4 + O(ε2)

= O(ε2) ,

(2.2.16)

where we recall (2.2.8), (2.2.9). Thus, we conclude that for an orbit γ−
h,j(ξ)

that jumps from M−
ε to M+

ε the following relation for the slow (v∗, q∗, w∗, r∗)-
coordinates of the jump mid-point must hold to leading order

αv∗ + βw∗ + γ = 0 . (2.2.17)

Note that ∆−
f H(v∗, q∗, w∗, r∗) is in fact a Melnikov function that measures the

distance between Wu(M−
ε ) and W s(M+

ε ) as they intersect the {u = 0} hyper-
plane (see [12, 14, 57]). Condition (2.2.17) determines the 3-dimensional set of
initial conditions in {u = 0} that defines the 4-dimensional intersection of the two
5-dimensional manifolds Wu(M−

ε ) and W s(M+
ε ) (recall that the phase space is

6-dimensional and that the p-coordinates of these initial conditions are necessarily
O(ε) close to p0,−

h (0) = 1
2

√
2 (2.2.7)).

By the reversibility symmetry (2.2.2), we know that (2.2.17) also must hold for the
(v∗,−q∗, w∗,−r∗)-coordinates, which are the coordinates of the jump mid-points
of the orbits that jump from M+

ε to M−
ε near ξ = ξ∗.

Next, we study the slow flows on M±
ε . The equations (2.2.10) and (2.2.11) for

these flows are linear and decoupled to leading order, thus we may solve for v and
w separately. Based on the above analysis, we write down the following boundary
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conditions for the solutions in regions 1, 3, and 5:

vh(±∞) = −1, vh(−ξ∗ ± 1√
ε
) = vh(ξ∗ ∓ 1√

ε
) = v∗ + O(

√
ε),

qh(±∞) = 0, qh(−ξ∗ ± 1√
ε
) = −qh(ξ∗ ∓ 1√

ε
) = q∗ + O(

√
ε),

wh(±∞) = −1, wh(−ξ∗ ± 1√
ε
) = wh(ξ∗ ∓ 1√

ε
) = w∗ + O(

√
ε),

rh(±∞) = 0, rh(−ξ∗ ± 1√
ε
) = −rh(ξ∗ ∓ 1√

ε
) = r∗ + O(

√
ε),

(2.2.18)

see Figures 2.1 and 2.4. Note that there are more (boundary) conditions than free
parameters in the general solutions of (2.2.10) and (2.2.11). As a consequence,
we find that both v∗ and q∗, as well as w∗ and r∗, must be related,

q∗ = v∗ + 1, r∗ = w∗ + 1, (2.2.19)

which in geometrical terms is equivalent to (v∗, q∗) ∈ lu,−
v , and (w∗, r∗) ∈ lu,−

w

(2.2.12), see also Figure 2.3. Moreover, (2.2.18) yields additional relations between
v∗ and ξ∗ and between w∗ and ξ∗,

v∗ = −A2 , w∗ = −A
2
D where A = e−εξ∗ . (2.2.20)

Observe that, since ξ∗ > 0, A ∈ (0, 1), so that v∗, w∗ ∈ (−1, 0). For (v∗, q∗, w∗, r∗)
and ξ∗ that satisfy (2.2.18), (2.2.19) and (2.2.20), we obtain the explicit (slow)
solutions,

vh(ξ) =

8

<

:

2eεξ sinh εξ∗ − 1,

−2e−εξ∗ cosh εξ + 1,

2e−εξ sinh εξ∗ − 1,

wh(ξ) =

8

<

:

2e
ε
D

ξ sinh ε
D

ξ∗ − 1 in 1,

−2e−
ε
D

ξ∗ cosh ε
D

ξ + 1 in 3,

2e−
ε
D

ξ sinh ε
D

ξ∗ − 1 in 5

(2.2.21)

to leading order in ε. Thus, together with the Melnikov condition (2.2.17), the
boundary conditions (2.2.18) imply three relations between v∗, w∗, and ξ∗. These
relations combine into the following jump condition on A,

αA2 + βA
2
D = γ + O(

√
ε) . (2.2.22)

A solution A ∈ (0, 1) of this equation uniquely determines the jump mid-points
(v∗,∓q∗, w∗,∓r∗) in phase space of a homoclinic solution γ−

h,j(ξ), as well as their
spatial positions ±ξ∗ (2.2.20).

Remark 2.2.1. We comment briefly on the coupling between the V - and W -
components and on the related fact that the homoclinic orbits are isolated. In the
PDE (2.1.7), the variables V and W seem to be only coupled through the equation
for U . In the construction of γ−

h,j(ξ), this coupling induces the Melnikov condition
(2.2.17) and gives a natural relationship between the v∗- and w∗-coordinates of the
jump mid-points. However, we observe that there is an additional geometrically-
induced coupling between these two components that is not directly obvious from
the equations. In particular, the jump mid-points ξ∗ must be the same for both
the v- and w-components in (2.2.1), which implies that also the ‘time-of-flight’
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along the slow manifolds must be the same for both the v- and w-components,
since the parametrizations of all of the components of a homoclinic orbit γ−

h,j(ξ)
are of course the same. Hence, from among the entire 1-parameter set of pairs
(v∗, w∗) that satisfy the Melnikov condition (2.2.17), a unique pair, with v∗ =
−(−w∗)D (2.2.20), is selected by this ‘time-of-flight’ constraint. Together, the
two constraints determine the values of v∗ and w∗ uniquely and thus establish
that the homoclinic orbits are isolated.

2.2.3 Existence theorem

Based on the analysis of the previous section, we can formulate the following
existence result:

Theorem 2.2.1. Let (α, β, γ,D) be such that (2.2.22) has K solutions Aj ∈ (0, 1)
(K ∈ {0, 1, 2}), and let ε be small enough. If K = 0, there are no symmet-
ric orbits homoclinic to P−

ε in system (2.2.1). If K > 0, then there are K
symmetric homoclinic orbits γ−

h,j(ξ), j ∈ {1,K} to P−
ε that have a structure as

sketched in Figure 2.4, i.e., the orbits γ−
h,j(ξ) consist of five distinct parts, two

fast parts in which it is O(ε) close to a fast reduced heteroclinic orbits (u0,∓
h (ξ ∓

ξ∗), p
0,±
h (ξ ∓ ξ∗), v∗,±q∗, w∗,±r∗) (2.2.7) with (v∗, q∗, w∗, r∗) given by (2.2.19)

and (2.2.20), and three slow parts in which (u−
h,j(ξ), p

−
h,j(ξ)) = (±1, 0)+O(ε) and

(v−
h,j(ξ), q

−
h,j(ξ), w

−
h,j(ξ), r

−
h,j(ξ)) are given by (2.2.21), up to O(

√
ε) corrections,

with

ξ∗ = ξ∗,j = −1

ε
log Aj = O

(

1

ε

)

. (2.2.23)

The orbits γ−
h,j(ξ) correspond to stationary pulse solutions

(U(ξ, t), V (ξ, t),W (ξ, t)) ≡ (uh,j(ξ), vh,j(ξ), wh,j(ξ))

of (2.1.7).

Moreover, if |αD| > |β| and sgn(α) 6= sgn(β), then a saddle-node bifurcation
of homoclinic orbits occurs, to leading order in ε, as γ crosses through

γc1(α, β,D) = (−α)−
1

D−1 β
D

D−1

(

D− 1
D−1 − D− D

D−1

)

> 0 for α < 0 < β,

γc2(α, β,D) = α− 1
D−1 (−β)

D
D−1

(

D− D
D−1 − D− 1

D−1

)

< 0 for β < 0 < α.
(2.2.24)

The explicit expressions for the values γc1,2 of the saddle-node bifurcations
are based on a straightforward leading order analysis: set the partial derivative
of (2.2.22) with respect to A equal to zero to obtain

Ac = A1(α, β,D) =

(

−αD

β

)− 1
2

D
D−1

∈ (0, 1) , (2.2.25)
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Ac

α + β

γc1

γ

A

γ

α + β

γc2

Ac
A

Figure 2.5: A graphical representation of the jump condition (2.2.22) and the
associated saddle-node bifurcations as described by Theorem 2.2.1 for α < 0 < β
(with α + β > 0) and for β < 0 < α (also with α + β > 0). Note that AK ∈ (0, 1)
for all parameter combinations.

and then insert this expression back into formula (2.2.22) to obtain γc1,2 (2.2.24).

In Figure 2.5, the relations between Aj and γ as solutions of (2.2.22) have been
plotted. The two saddle-node cases at Ac described by the theorem are also clearly
visible. Two other bifurcations occur: one at γ = A = 0, which corresponds to
ξ∗ = ∞ (2.2.23), i.e., the plateau at which the U -component of the 1-pulse solu-
tion is near 1 becomes infinitely long; the other at γ = α + β, A = 1, where the
pulse becomes infinitely thin – see also Lemma 2.2.2 below.

2.2.4 The proof of Theorem 2.2.1

The existence of the homoclinic orbit γ−
h,j(ξ) ⊂ Wu(P−

ε ) ∩ W s(P−
ε ) will be es-

tablished by studying Wu(M−
ε ) and Wu(P−

ε ) as they pass along M+
ε . The re-

versibility symmetry (2.2.2) plays a crucial role in the proof.

The manifold Wu(P−
ε ) is 3-dimensional, so that all orbits γ−

P (ξ) ⊂ Wu(P−
ε ) can

be represented by a 2-parameter family, γ−
P (ξ) = γ−

P (ξ; v∗, w∗), where (v∗, w∗)
represents the jump mid-point. Of course, we only consider the part of Wu(P−

ε )
that is spanned by orbits γ−

P (ξ) that are O(ε) close to a heteroclinic solution of the
FRS (2.2.5) away from M−

ε and M+
ε , i.e., we do not pay attention to the other

‘half’ of Wu(P−
ε ) that is spanned by solutions with a monotonically decreasing

u-coordinate – see Figure 2.2. More precisely, γ−
P (ξ) is exponentially close to M−

ε

for asymptotically large, negative values of ξ, jumps away as ξ increases, and
crosses through the {u = 0} hyperplane at

γ−
P (−ξP,∗) = γ−

P (−ξP,∗(v∗, w∗)) = (0, p∗, v∗, q∗, w∗, r∗). (2.2.26)
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Note that γ−
P (ξ; v∗, w∗) must be exponentially close to the slow unstable mani-

fold Wu
slow(P−

ε ) ⊂ M−
ε that is spanned by lu,−

v and lu,−
w (2.2.12), so that q∗ =

v∗ + 1, r∗ = w∗ + 1 as in (2.2.19). Moreover, we note that this family of orbits
γ−

P (ξ; v∗, w∗) with finite pairs (v∗, w∗) has as its natural geometric completion
the slow unstable manifold Wu

slow(P−
ε ) ⊂ Mε in the limit that |v∗| → ∞ and

|w∗| → ∞ such that their ratio remains fixed.

Within Wu(P−
ε ), there is a priori a 1-parameter family of orbits that is forward

asymptotic to M+
ε , because Wu(P−

ε ) ∩ W s(M+
ε ) is the intersection of a 3- and

a 5-dimensional manifold in a 6-dimensional space, i.e., Wu(P−
ε ) ∩ W s(M+

ε ) is
expected to be 2-dimensional. The Melnikov calculus [12, 14, 57] of the pre-
vious section implies that γ−

P (ξ; v∗, w∗) ⊂ Wu(P−
ε ) ∩ W s(M+

ε ) if v∗ and w∗
are related by (2.2.17). By construction, Wu(P−

ε ) ∩ W s(M+
ε ) is spanned by

γ−
het(ξ; v∗) = γ−

P (ξ; v∗, w∗(v∗)) with w∗(v∗) given by (2.2.17).

The evolution of γ−
het(ξ; v∗) near M+

ε is governed by the linear SRS (2.2.11).
If v∗, w∗ ∈ (−1, 0), then γ−

het(ξ) intersects the {q = 0}-hyperplane (Figure 2.3).
We may assume that the intersection γ−

het(ξ; v∗) ∩ {q = 0} takes place at ξ = 0.
This assumption determines the jump mid-point ξhet,∗(v∗) = ξP,∗(v∗, w∗(v∗)).
Moreover, it follows that ξhet,∗(v∗) > 0 (2.2.26). For ξ > −ξhet,∗(v∗) + O(ε−1/2),
i.e., if γ−

het(ξ; v∗) is exponentially close to M+
ε , the evolution of the r-coordinate

r−het(ξ; v∗) of γ−
het(ξ; v∗) can be computed explicitly. For general v∗, r−het(0; v∗) 6= 0,

but there are special values of v∗ such that r−het(0; v∗) = 0. In fact, r−het(0; v∗) = 0
if and only if v∗ = −A2

0,∗, where A0,∗ solves an algebraic equation that is to lead-
ing order given by (2.2.22). Note that this is in essence how (2.2.22) has been
obtained. However, also note that the relation (2.2.22) has been deduced for the
so far only formally constructed homoclinic orbit γ−

h,j(ξ) ⊂ Wu(P−
ε ) ∩ W s(P−

ε ),

while A0,∗ corresponds to the heteroclinic orbit γ−
het(ξ; v∗) ⊂ Wu(P−

ε )∩W s(M+
ε ).

This is explained by the fact that ξj,∗, the position of the jump mid-point of
γ−

h,j(ξ), is of O(ε−1) (2.2.23). Thus γ−
h,j(ξ) must be exponentially close to M+

ε

for an asymptotically long ‘time’. Hence, it must be exponentially close to
W s(M+

ε ). We define the (rigorously constructed) critical heteroclinic orbit γ−
0,∗(ξ)

by γ−
0,∗(ξ) = γ−

het(ξ; v∗) with v∗ determined by A0,∗. Moreover, we observe that

γ−
0,∗(ξ) is such that ‖γ−

h,j(ξ) − γ−
0,∗(ξ)‖ is exponentially small for ξ < 0; and

|Aj − A0,∗| is also exponentially small, but nonzero. Note that γ−
0,∗(ξ) cannot be

symmetric, since it remains exponentially close to M+
ε for ξ > 0; this necessarily

implies that p−0,∗(0) 6= 0.

Now assume that K 6= 0, i.e., that there exits at least one solution A = Aj ∈ (0, 1)
of (2.2.22), and that (α, β, γ,D) are such that Wu(M−

ε ) and W s(M+
ε ) intersect

transversely, i.e., that γ is not asymptotically close to γc1,c2(α, β,D), the values
at which the saddle-node bifurcations occur (2.2.24). The above arguments im-
ply that the heteroclinic orbit γ−

0,∗(ξ) ⊂ Wu(P−
ε ) ∩ W s(M+

ε ) with A0,∗ = Aj to
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leading order, exists and, by construction, that γ−
0,∗(0) ∈ {q = r = 0}.

By definition, the orbit γ−
0,∗(ξ) for ξ ∈ (a, b) spans a curve Γ−

0,∗(a, b) ⊂ R
6,

and there is a 3-dimensional tube T −
0,∗ ⊂ Wu(P−

ε ) around Γ−
0,∗(a, b) (for any

−∞ < a < b ≤ ∞) which consists of all orbits γ−(ξ; v∗, w∗) ⊂ Wu(P−
ε ) with

(v∗;w∗) so close to (−A2
0,∗, w∗(−A2

0,∗)) that

sup
ξ≤− 1

2 ξ0,∗

‖γ−(ξ; v∗, w∗) − γ−
0,∗(ξ)‖ < e

− 1√
ε ,

where −ξ0,∗ = −ξhet,∗(v∗), the position of the jump mid-point of γ−
0,∗(ξ). The

existence of T −
0,∗ follows from the continuous dependence on the initial conditions

of solutions of smooth ODEs (as (2.2.1) clearly is); T −
0,∗ defines an open neighbor-

hood of Γ−
0,∗(a, b) for any −∞ < a < b ≤ ∞ in the relative topology of Wu(P−

ε ).

Note that T −
0,∗ contains both orbits that jump away from M+

ε O(
√

ε) close to

γ−
0,∗(− 1

2ξ0,∗) – these are the orbits close to ∂T −
0,∗ that only remain close to M+

ε

up to ξ = − 1
2ξ0,∗ + O(ε−1/2) – and orbits that are exponentially close to M+

ε

for arbitrarily long ‘time’ – the orbits that are close enough to γ−
0,∗(ξ). Note

also that the ‘secondary’ jump mid-points, i.e., the points at which the orbits
γ−(ξ; v∗, w∗) take off again from M+

ε , of all orbits in T −
0,∗ must be exponentially

close to the curve Γ−
0,∗(− 1

2ξ0,∗,∞), that is itself exponentially close to M+
ε and is

approximated, or represented, by a part of a solution curve of (2.2.11) – compare
to region 3 in Figure 2.4 in which the curve Γ−

0,∗(−ξ∗, ξ∗) is approximated.

The tube T −
0,∗ is stretched by the fast dynamics near M+

ε into a 3-dimensional
manifold that is no longer exponentially small in the direction of the fast unstable
eigenvalue of M+

ε – see Remark 2.2.2. In fact, T −
0,∗ is exponentially close and

parallel to Wu(M+
ε ). Since Wu(M+

ε ) intersects W s(M−
ε ) transversely – which

can be shown by the same Melnikov-type arguments that established the inter-
section of Wu(M−

ε ) and W s(M+
ε ) – it follows that T −

0,∗ ∩ W s(M−
ε ) exists as a

2-dimensional submanifold of T −
0,∗. We label this manifold as S−

0,∗; it consists of a
1-parameter family of orbits γ−(ξ; v∗, w∗) ⊂ Wu(P−

ε ) ∩ W s(M−
ε ), i.e., orbits in

Wu(P−
ε ) that are homoclinic to M−

ε . Since T −
0,∗ is exponentially close to γ−

0,∗(ξ)

for ξ ≤ −1
2ξ0,∗, and since γ−

0,∗(ξ) takes off from M−
ε at Wu

slow(P−
ε ), it follows

by the reversibility symmetry (2.2.2) that the orbits in S−
0,∗ touch down on M−

ε

close to W s
slow(P−

ε ), the slow stable manifold of P−
ε in M−

ε that is spanned by ls,−
v,w.

The existence of the homoclinic orbit γ−
h,j(ξ) is established if it can be shown

that there is an orbit γ−(ξ; v∗, w∗) ⊂ S−
0,∗ that indeed touches down exactly on

W s
slow(P−

ε ). This result will follow from another application of the reversibil-
ity symmetry. The above construction of the 2-dimensional manifold S−

0,∗ ⊂
Wu(P−

ε )∩W s(M−
ε ), that is based on the heteroclinic orbit γ−

0,∗(ξ) ⊂ Wu(P−
ε )∩
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W s(M+
ε ) and on the tube T −

0,∗, has a symmetric counterpart in the 2-dimensional

manifold S+
0,∗ ⊂ W s(P−

ε ) ∩ Wu(M−
ε ), that is based on the heteroclinic orbit

γ+
0,∗(ξ) ⊂ W s(P−

ε )∩Wu(M+
ε ) and on the tube T +

0,∗. Note that by construction all

orbits in S+
0,∗ touch down (or: take off in backward ‘time’) on W s

slow(P−
ε ) ⊂ M−

ε .

Thus, γ−
h,j(ξ) exists if it can be shown that S−

0,∗ and S+
0,∗ intersect.

To show this, we first note that

S−
0,∗ ∩ S+

0,∗ = T −
0,∗ ∩ T +

0,∗ ⊂ Wu(P−
ε ) ∩ W s(P−

ε ),

since orbits in T −
0,∗ that are also in T +

0,∗ ⊂ W s(P−
ε ) ⊂ W s(M−

ε ) must, by defini-

tion, lie inside S−
0,∗. Moreover,

dim
(

S−
0,∗ ∩ S+

0,∗
)

= dim
(

T −
0,∗ ∩ T +

0,∗
)

= 1.

Since both S±
0,∗ consist of solutions of (2.2.1), the dimension of S−

0,∗ ∩S+
0,∗ cannot

be zero, i.e., S−
0,∗ ∩ S+

0,∗ cannot be a point. It also cannot be two, which would

imply that the 2-dimensional sets S±
0,∗ coincide. This is not the case, since S±

0,∗
are, as subsets of T ±

0,∗, stretched like T ±
0,∗, thus S−

0,∗ is parallel to Wu(M+
ε ) and

S+
0,∗ to W s(M+

ε ). Hence, we may conclude that we have proved the existence of
the (locally) uniquely determined homoclinic orbit γh,j(ξ) ⊂ Wu(P−

ε )∩W s(P−
ε ),

if we have shown that T −
0,∗ and T +

0,∗ intersect.

This follows from the local stretching of the tubes T −
0,∗ and T +

0,∗ near M+
ε . To see

this, we consider the curves Γ−
0,∗(− 1

2ξ0,∗,
1
2ξ0,∗) and Γ+

0,∗(− 1
2ξ0,∗,

1
2ξ0,∗) that are

associated to γ−
0,∗(ξ) and γ+

0,∗(ξ) (note that γ+
0,∗(ξ) jumps at +ξ0,∗ by (2.2.2)). By

construction, Γ−
0,∗(− 1

2ξ0,∗,
1
2ξ0,∗) and Γ+

0,∗(− 1
2ξ0,∗,

1
2ξ0,∗) are exponentially close

to each other and exponentially close to M+
ε . The tube T −

0,∗ is stretched in the

direction of the fast unstable eigenvalue of M+
ε near Γ±

0,∗(− 1
2ξ0,∗,

1
2ξ0,∗) and is

exponentially close to Wu(M+
ε ), while T +

0,∗ is stretched in the direction of the

fast stable eigenvalue of M+
ε near Γ±

0,∗(− 1
2ξ0,∗,

1
2ξ0,∗) and is exponentially close

to Wu(M+
ε ). Moreover, both 3-dimensional manifolds T ±

0,∗ extend to two sides –

{u < 1} and {u > 1} – of M+
ε near Γ±

0,∗(− 1
2ξ0,∗,

1
2ξ0,∗), since they both contain

orbits that are asymptotic to M+
ε . Thus, T −

0,∗ and T +
0,∗ must have a nontrivial

intersection. This completes the proof for K > 0.

Observe that the left hand side of (2.2.22) has at most one extremum for A ∈ (0, 1),
namely

A =

(

−αD

β

)− 1
2

D
D−1

,

see (2.2.25). Therefore, K cannot be more than two.
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Finally, we briefly consider the situation in which K = 0, i.e. in which there is no
solution A ∈ (0, 1) of (2.2.22). In this case, the critical heteroclinic orbits γ∓

0,∗(ξ)
cannot be constructed, and it follows immediately that Wu(P−

ε ) ∩ W s(P−
ε ) = ∅.

The saddle-node bifurcations occur at the transition from K = 2 to K = 0 and
must be locally unique by the C1-smoothness with respect to ε of the stable and
unstable manifolds of M±

ε and P±
ε [27, 28]. 2

Remark 2.2.2. In [40, 41], the stretching and squeezing associated to the passage
of an invariant manifold along a slow manifold are described by the Exchange
Lemma. This lemma can be used to study the deformation of Wu(P−

ε ) as it
passes along M+

ε . Indeed, one may verify explicitly that the sets of touch down
points of the tracked manifold on the slow manifolds are transverse to the flows on
those manifolds. However, we have chosen for a somewhat more direct approach
here.

2.2.5 Explicit analysis of the number K of stationary 1-
pulse solutions

Theorem 2.2.1 above establishes that K ≤ 2. In this section, we carry out a
straightforward analysis of the jump condition (2.2.22) to derive explicit results
for the number (K) of stationary 1-pulse solutions in (2.1.6) for a given set of
parameters. The following lemma is an example; it is stated without proof.

Lemma 2.2.2. Let (α, β,D) be such that |αD| > |β|. Then, for ε > 0 small
enough, and γc1,c2 as given in (2.2.24), we have
(a1) if sgn(α) = sgn(β), sgn(γ) = sgn(α), and |γ| < |α + β|, then K = 1.
(a2) if sgn(α) = sgn(β), sgn(γ) = sgn(α), and |γ| > |α + β|, then K = 0.
(a3) if sgn(α) = sgn(β) and sgn(γ) 6= sgn(α), then K = 0.

(b1) if sgn(α) = −1 = −sgn(β), α + β > 0, and sgn(γ) = −1, then K = 0.
(b2) if sgn(α) = −1 = −sgn(β), α + β > 0, and 0 < γ < α + β, then K = 1.
(b3) if sgn(α) = −1 = −sgn(β), α + β > 0, and α + β < γ < γc1, then

K = 2.
(b4) if sgn(α) = −1 = −sgn(β), α + β > 0, and γ > γc1, then K = 0.

(c1) if sgn(α) = −1 = −sgn(β), α + β < 0, and γ < α + β, then K = 0.
(c2) if sgn(α) = −1 = −sgn(β), α + β < 0, and α + β < γ < 0, then K = 1.
(c3) if sgn(α) = −1 = −sgn(β), α + β < 0, and 0 < γ < γc1, then K = 2.
(c4) if sgn(α) = −1 = −sgn(β), α + β < 0, and γ > γc1, then K = 0.

(d1) if sgn(α) = 1 = −sgn(β), α + β > 0, and γ < γc2, then K = 0.
(d2) if sgn(α) = 1 = −sgn(β), α + β > 0, and γc2 < γ < 0, then K = 2.
(d3) if sgn(α) = 1 = −sgn(β), α + β > 0, and 0 < γ < α + β, then K = 1.
(d4) if sgn(α) = 1 = −sgn(β), α + β > 0, and γ > α + β, then K = 0.
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(e1) if sgn(α) = 1 = −sgn(β), α + β < 0, and γ < γc2, then K = 0.
(e2) if sgn(α) = 1 = −sgn(β), α + β < 0, and γc2 < γ < α + β, then K = 2.
(e3) if sgn(α) = 1 = −sgn(β), α + β < 0, and α + β < γ < 0, then K = 1.
(e4) if sgn(α) = 1 = −sgn(β), α + β < 0, and γ > 0, then K = 0.

See also Figure 2.5, where we plotted (2.2.22) for certain parameter combi-
nations. The left frame represents the cases (b1) – (b4), the right frame (d1) –
(d4).

2.3 Traveling pulse solutions

In this section, we establish the existence of localized 1-pulse solutions to (2.1.6)
that travel with a fixed, well-determined, speed. As in the previous section, we
will construct these pulses as homoclinic orbits γ−

tr,j(ξ) to the critical point P−
ε .

2.3.1 The formal construction of traveling 1-pulse solutions,
γ−

tr,j(ξ)

We introduce the moving coordinates η = x − ε2ct and, with a slight abuse of
notation, set ξ = η

ε , so that (2.1.6) reduces to the 6-dimensional dynamical system,































uξ = p ,
pξ = −u + u3 + ε(αv + βw + γ − cp) ,
vξ = εq ,
qξ = ε(v − u) − ε3cτq ,
wξ = ε

D r ,

rξ = ε
D (w − u) − ε3

D2 cθr ,

(2.3.1)

with an additional parameter c for the speed of the traveling pulse. The structure
of this equation justifies our choice for the magnitude of c (= O(ε2)). With this
scaling, the perturbation of the fast (u, p)-subsystem induced by c is of the same
order as the perturbations induced by the V,W -components in the U -equation of
(2.1.6). Note that, unlike (2.2.1), (2.3.1) depends explicitly on the parameters τ
and θ. However, the critical points of (2.3.1) are identical to those of (2.2.1) and,
thus, given by (2.2.4).

The fast reduced system is identical to (2.2.5), as long as τ, θ ≪ 1
ε3 , and is

thus again governed by the Hamiltonian H(u, p) (2.2.6). For any c of O(1), sys-
tem (2.3.1) possesses two invariant slow manifolds and their associated stable and
unstable manifolds, which we denote, with a slight abuse of notation, by M±

ε and
W s,u(M±

ε ). Although M±
ε depend on c, the leading and first order approxima-

tions of M±
ε are still given by (2.2.8) and (2.2.9), so that it again follows that

H(u, p)|M±
ε

= O(ε2) (2.2.16).
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However, there are two significant differences between (2.3.1) and (2.2.1). First,
(2.3.1) does not have the reversibility symmetry of (2.2.1) for c 6= 0. As a con-
sequence, we cannot expect to find symmetric pulses and, more importantly, we
cannot exploit the symmetry in the construction of the pulse and in the associated
validity proof. However, system (2.3.1) does inherit the symmetry,

(ξ, p, q, r, c) → (−ξ,−p,−q,−r,−c) , (2.3.2)

which implies that the traveling pulses do not have a preferred direction, i.e., to
any pulse traveling with speed c > 0, there is a symmetrical counterpart that
travels with speed c < 0. Second,

d

dξ
H(u(ξ), p(ξ)) = εp(αv + βw + γ − cp) , (2.3.3)

instead of (2.2.14), which implies that the Melnikov conditions will depend in an
O(1) fashion on c – which also further validates our scaling of the magnitude of
the speed of the pulses.

As in section 2.2.2, we define the position of the jump mid-points of γ−
tr,j(ξ)

to be ∓ξ∗, i.e., γ−
tr,j(ξ) crosses the hyperplane {u = 0} at ξ = ∓ξ∗ (ξ∗ > 0). The

coordinates of the jump mid-points are defined by

γ−
tr,j(∓ξ∗) = (0, p∓∗ , v∓

∗ , q∓∗ , w∓
∗ , r∓∗ ). (2.3.4)

Unlike the symmetric stationary case, the coordinates of the jump through the
fast field from M−

ε to M+
ε , denoted by (p−∗ , v−

∗ , q−∗ , w−
∗ , r−∗ ), will differ from those

of the jump back from M+
ε to M−

ε , denoted by (p+
∗ , v+

∗ , q+
∗ , w+

∗ , r+
∗ ). Moreover,

the middle of the pulse, γ−
tr,j(0), has become slightly artificial by this definition,

in the sense that ξ = 0 does not in general correspond to an extremum of any
of the U -, V - or W -components in (2.1.6). Nevertheless, with this definition we
can use the same partition of the homoclinic orbit γ−

tr,j(ξ) into five regions – see

Section 2.2.2 – with I∓f,s and I0
s as in (2.2.13).

We again use the Melnikov function to measure the distance between Wu(M−
ε )

and W s(M+
ε ). We find, assuming that ξ∗ = O( 1

ε ),

∆−
f H(v−

∗ , q−∗ , w−
∗ , r−∗ ) =

∫

I−
f

Hξdξ

=
∫

I−
f

εp0,−
h (ξ + ξ∗)

(

αv−
∗ + βw−

∗ + γ

−cp0,−
h (ξ + ξ∗)

)

dξ + O(ε
√

ε)

= 2ε
(

αv−
∗ + βw−

∗ + γ − 1
3

√
2c

)

+ O(ε
√

ε),

where we have implicitly used that the slow coordinates (v, p, w, r) do not vary
to leading order during a jump through the fast field, i.e., that

∆∓
f v, ∆∓

f p, ∆∓
f w, ∆∓

f q = O(
√

ε) (2.3.5)
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(see 2.2.15)). Since H(u, p)|M∓
ε

= O(ε2), we find as the first Melnikov condition,

αv−
∗ + βw−

∗ + γ =
1

3

√
2c. (2.3.6)

Since there is no reversibility symmetry, the second Melnikov condition for the
jump from M+

ε to M−
ε is slightly different,

αv+
∗ + βw+

∗ + γ = −1

3

√
2c , (2.3.7)

which follows from

∆+
f H(v+

∗ , q+
∗ , w+

∗ , r+
∗ ) =

∫

I+
f

Hξdξ

=
∫

I+
f

εp0,+
h (ξ − ξ∗)

(

αv+
∗ + βw+

∗ + γ

−cp0,+
h (ξ − ξ∗)

)

dξ + O(ε
√

ε)

= 2ε
(

αv+
∗ + βw+

∗ + γ + 1
3

√
2c

)

+ O(ε
√

ε)

(compare p0,+
h (ξ) to p0,−

h (ξ) – (2.2.7)). Note that the jump conditions are consis-
tent with the symmetry (2.3.2).

We can proceed (formally) as in the stationary case. We solve the (linear) slow
subsystems explicitly, imposing boundary conditions like those in (2.2.18) at the
boundaries of the three slow regions (1, 3, and 5) and also imposing the Melnikov
conditions (2.3.6) and (2.3.7). Here, we present this analysis for the critical case
τ, θ = O( 1

ε2 ), since traveling pulses can only exist for these values of τ and θ.
More precisely, if both τ, θ ≪ 1

ε2 , then the flows on M±
ε are symmetric to leading

order and the only asymmetries in the construction of γ−
tr,j(ξ) are introduced by

the c’s in the Melnikov conditions (2.3.6) and (2.3.7). From this, it follows that
c = 0, i.e., that γ−

tr,j(ξ) = γ−
h,j(ξ), the stationary pulse – see Remark 2.3.1.

Thus, we introduce τ̂ and θ̂ by

τ̂ = ε2τ ≪ 1

ε
, θ̂ = ε2θ ≪ 1

ε
.

The flows on M−
ε and M+

ε are, up to correction terms of O(ε3), given by

{

vξξ = −εcτ̂vξ + ε2(v + 1) ,

wξξ = −εc θ̂
D2 wξ + ε2

D2 (w + 1) ,
and

{

vξξ = −εcτ̂vξ + ε2(v − 1) ,

wξξ = −εc θ̂
D2 wξ + ε2

D2 (w − 1) ,

see Figure 2.6. The eigenvalues λ±
v,w of the to leading order decoupled (v, q)- and

(w, r)-subsystems are given by

λ±
v = 1

2

(

−cτ̂ ±
√

c2τ̂2 + 4
)

, λ±
w = 1

2
1
D

(

− cθ̂
D ±

√

c2θ̂2

D2 + 4

)

, (2.3.8)
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M−
ε

lu,−
v

v

M+
ε

r

w

ls,+w

P+
ε

lu,+
w

P−
ε

q

ls,−v

Figure 2.6: The asymmetric slow flows for the (v, q)-subsystem on M−
ε (left) and

the (w, r)-subsystem on M+
ε (right) for c positive.

which clearly establishes the asymmetric character of the flows on M±
ε (for τ̂ , θ̂ 6=

0). The stable and unstable manifolds of P±
ε restricted to M±

ε are spanned by

ls,±
v = {q = λ−

v (∓1 + v)} , ls,±
w = {r = Dλ−

w(∓1 + w)} ,
lu,±
v = {q = λ+

v (∓1 + v)} , lu,±
w = {r = Dλ+

w(∓1 + w)} ,
(2.3.9)

(compare with (2.2.12)).

Since the slow (v, q, w, r)-coordinates do not vary to leading order during a jump
through the fast field (2.3.5), we can ‘match’ the solutions in the slow regions 1,
3, and 5 by imposing boundary conditions as in (2.2.18). As in the stationary
case, there are more boundary conditions than free parameters. Hence, there are
relations between the coordinates of the jump mid-points,

(v−
∗ , q−∗ ) ∈ lu,−

v , (w−
∗ , r−∗ ) ∈ lu,−

w , (v+
∗ , q+

∗ ) ∈ ls,−
v , (w+

∗ , r+
∗ ) ∈ ls,−

w , (2.3.10)

as may be seen from the system geometry (see Figure 2.7). Furthermore,

v±
∗ = s±v

(

e±2ελ∓
v ξ∗ − 1

)

− 1 , w±
∗ = s±w

(

e±2ελ∓
wξ∗ − 1

)

− 1 , (2.3.11)

with

s±v = − 2λ±
v

λ±
v − λ∓

v
< 0, s±w = − 2λ±

w

λ±
w − λ∓

w
< 0. (2.3.12)

(Note that (2.3.10) and (2.3.11) reduce to their stationary equivalents (2.2.19) and

(2.2.20) if either c = 0 or τ̂ = θ̂ = 0 – see Remark 2.3.1.) We conclude that for any
given pair (c, ξ∗), the (slow) coordinates (v∓

∗ , q∓∗ , w∓
∗ , r∓∗ ) of the jump mid-points

are uniquely determined by the above conditions combined with the matching
conditions (2.3.5). Moreover, we have the following leading order approximations
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of the v- and w-components of γ−
tr,j(ξ) in the slow regions (1, 3, 5),

vtr =











−2s−v eελ+
v ξ sinh ελ+

v ξ∗ − 1 in 1,

s−v eελ+
v (ξ−ξ∗) + s+

v eελ−
v (ξ+ξ∗) + 1 in 3,

2s+
v eελ−

v ξ sinh ελ−
v ξ∗ − 1 in 5,

wtr =











−2s−weελ+
wξ sinh ελ+

wξ∗ − 1 in 1,

s−weελ+
w(ξ−ξ∗) + s+

weελ−
w(ξ+ξ∗) + 1 in 3,

2s+
weελ−

wξ sinh ελ−
wξ∗ − 1 in 5,

see Figure 2.7. The Melnikov conditions (2.3.6) and (2.3.7) impose two relations
between c and ξ∗,







1
3

√
2c = α

(

s−v

(

e−2ελ+
v ξ∗ − 1

)

− 1
)

+ β
(

s−w

(

e−2ελ+
wξ∗ − 1

)

− 1
)

+ γ ,

− 1
3

√
2c = α

(

s+
v

(

e2ελ−
v ξ∗ − 1

)

− 1
)

+ β
(

s+
w

(

e2ελ−
wξ∗ − 1

)

− 1
)

+ γ .
(2.3.13)

A pair of solutions (c, ξ∗) to (2.3.13) with c 6= 0 corresponds formally to a homo-
clinic solution γ−

tr,j(ξ) of (2.3.1) and thus to a pulse solution of (2.1.6) that travels

with speed ε2c.

Remark 2.3.1. If τ, θ ≪ 1
ε2 , i.e., if τ̂ , θ̂ = 0 to leading order, then λ±

v = ±1,
λ±

w = ± 1
D , and s±v = s±w = −1, so that (2.3.13) reduces to

−1

3

√
2c = αA2 + βA

2
D − γ =

1

3

√
2c,

to leading order, with A as in (2.2.20). Hence, c = 0 and γ−
tr,j(ξ) = γ−

h,j(ξ)
(2.2.22).

2.3.2 Existence theorem for traveling pulse solutions

Theorem 2.3.1. Let (α, β, γ,D, τ, θ) be such that τ = τ̂
ε2 , θ = θ̂

ε2 , and assume
that (2.3.13) has K solution pairs (cj , (ξ∗)j) with cj 6= 0. Let ε > 0 be small
enough. If K = 0, then there are no homoclinic orbits to P−

ε in (2.3.1) with
c 6= 0. If K > 0, there are K homoclinic orbits γ−

tr,j(ξ), j ∈ {1, . . . ,K}, to P−
ε

in (2.3.1) that have a structure as sketched in Figure 2.7 and that correspond
to traveling 1-pulse solutions of (2.1.6) which travel with speed ε2c∗j 6= 0, where
c∗j = c∗j (ε) = cj + O(ε).

The proof of Theorem 2.3.1 is similar to that of Theorem 2.2.1 in Section
2.2.4. Nevertheless, there are differences, especially since the proof of Theorem
2.2.1 strongly depended on the reversibility symmetry in (2.2.1). The proof is
given in Section 2.3.3.
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q, r

v, w
u, p

q, r

v, w
u, p

M+
εM−

ε

P+
ε

ls,+v,w

P−
ε

ls,−v,w

lu,+
v,w

lu,−
v,w

1

2

4

3

5

Figure 2.7: A schematic sketch of a traveling pulse γ−
tr,j(ξ) homoclinic to P−

ε .

Generically, K can be expected to be positive for open regions in the (α, β, γ,D, τ̂ ,

θ̂)-parameter space. However, a priori, it is not clear whether parameter combi-
nations exist for which K can be nonzero. In fact, though (2.3.13) is a relatively
simple expression, it can – of course – not be solved explicitly. Nevertheless, it
can be evaluated, and the (open) region in parameter space in which K 6= 0 can
be determined with a simple and reliable numerical procedure. Moreover, (2.3.13)
can be approximated asymptotically in various limit settings. As an example, we
consider the case

τ̂ =
1

δ
≫ 1, θ̂ = hδ ≪ 1,

i.e., we assume that τ̂ is large and θ̂ is small, but both still O(1) with respect to ε.
We thus introduce an artificial second asymptotic parameter δ that is independent
of ε such that 0 < ε ≪ δ ≪ 1. We further assume that all other parameters,
including h, are O(1) with respect to δ. We search for solutions (c, ξ∗) of (2.3.13)
such that

c > 0, c = O(1), X∗ = εδξ∗ = O(1),

with respect to δ. Note that this implies that we look for homoclinic orbits that
spend a long ‘time’ (O( 1

εδ )) near M+
ε . It follows by a straightforward computation

from (2.3.11) that,

v−
∗ = −2e2 X∗

c (1+O(δ)) + 1 + O(δ), v+
∗ = −1 + O(δ),

w−
∗ = O(δ), w+

∗ = O(δ),
(2.3.14)

so that (2.3.13) reduces to

1

3

√
2c = αv−

∗ + γ + O(δ), −1

3

√
2c = −α + γ + O(δ).
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Hence, there exists a homoclinic orbit γ−
tr,1(ξ) to P−

ε in (2.3.1) for α > γ with

c = c1 =
3

2

√
2(α − γ) + O(δ, ε). (2.3.15)

Moreover, X∗,1, and thus (ξ∗)1, can be determined through v−
∗ and (2.3.14). By

the symmetry (2.3.2), we conclude that K = 2 for τ̂ ≫ 1, θ̂ ≪ 1 and α > γ.

2.3.3 Proof of Theorem 2.3.1

The construction of

γ−
tr,j(ξ) ⊂ Wu(P−

ε ) ∩ W s(P−
ε ) ⊂ Wu(P−

ε ) ∩ W s(M−
ε )

is again based on a special heteroclinic orbit γ−
∗,∗(ξ) ⊂ Wu(P−

ε ) ∩ W s(M+
ε ), a

tube T −
∗,∗ ⊂ Wu(P−

ε ) around it, their counterparts in backwards ‘time’ γ+
∗,∗(ξ) ⊂

W s(P−
ε ) ∩ Wu(M+

ε ) and T +
∗,∗ ⊂ WS(P−

ε ), so that γ−
tr,j(ξ) ⊂ T −

∗,∗ ∩ T +
∗,∗.

For any c > 0 (fixed), Wu(P−
ε ) is represented by the 2-parameter family of orbits

γ−
P (ξ; v−

∗ , w−
∗ ) ⊂ Wu(P−

ε ). We know by the Melnikov analysis that there is a
1-parameter subfamily of orbits γ−

het(ξ; v
−
∗ ) = γ−

P (ξ; v−
∗ ;w−

∗ (v−
∗ )) ⊂ Wu(P−

ε ) ∩
W s(M+

ε ), with w−
∗ (v−

∗ ) determined by (2.3.6). The orbits γ−
het(ξ; v

−
∗ ) follow the

slow flow on M+
ε , and it can be checked that those with v−

∗ ∈ (−1, S−
v ) again

cross the {q = 0}-hyperplane. Here, S−
v is determined by the observation that

(v−
∗ , q−∗ ) ∈ lu,−

v in the (v, q)-subsystem on M−
ε (2.3.10), while (v−

∗ , q−∗ ) must be
to the left of ls,+

v in the (v, q)-subsystem on M+
ε so that γ−

het(ξ; v
−
∗ ) may cross

through {q = 0}; a similar condition must hold for (w−
∗ (v−

∗ ), r−∗ ) in the (w, r)-
subflows on M∓

ε – see Figure 2.7. For each v−
∗ ∈ (−1, S−

v ) the intersection of
γ−
het(ξ; v

−
∗ ) with {q = 0} occurs by definition at ξ = ξ−het(v

−
∗ ) ∈ (−ξ∗, ξ∗), and

these intersections define a 1-dimensional curve denoted by

Z− = {(u−(v−
∗ ), p−(v−

∗ ), v−(v−
∗ ), 0, w−(v−

∗ ), r−(v−
∗ ))

= γ−
het(ξ

−
het; v

−
∗ )) : v−

∗ ∈ (−1, S−
v )}, (2.3.16)

see Figure 2.8, where one point on Z− is illustrated, since v−
∗ is fixed in the figure.

The curve Z− is by construction exponentially close to M+
ε , and its projection

on M+
ε is given by

Z
−

slow = {(1 + εu
+

1 (v−

, 0, w
−

, r
−), p+

1 (v−

, 0, w
−

, r
−), v−

, 0, w
−

, r
−) : v

−

∗
∈ (−1, S

−

v )},

see (2.2.8).

We perform the same construction in backwards (spatial) time and define the
1-parameter family of orbits γ+

het(ξ; v
+
∗ ) ∈ W s(P−

ε ) ∩ Wu(M+
ε ) by (2.3.7), the 1-

dimensional curve Z+ = {(u+(v+
∗ ), p+(v+

∗ ), v+(v+
∗ ), 0, w+(v+

∗ ), r+(v+
∗ ))} ⊂ {q =

0}, and its projection Z+
slow on M+

ε . The (w, r)-components of Z±
slow define two
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curves, that typically intersect, i.e., the condition (w−(v−
∗ ), r−(v−

∗ )) = (w+(v+
∗ ),

r+(v+
∗ )) determines for each given c a discrete number of critical values (v−

∗,∗(c),

v+
∗,∗(c)). However, for general c, the 1-dimensional curves Z−

slow and Z+
slow do not

intersect within the 3-dimensional manifold M+
ε , i.e., v−(v−

∗,∗(c)) 6= v+(v+
∗,∗(c))

in general. Nevertheless, the combined condition,

(v−(v−

∗
(c)), w−(v−

∗
(c)), r−(v−

∗
(c))) = (v+(v+

∗
(c)), w+(v+

∗
(c)), r+(v+

∗
(c))), (2.3.17)

in principle determines discrete critical values cj of c for which Z−
slow and Z+

slow

intersect (transversely) in M+
ε . It is a matter of straightforward calculations to

show that (2.3.17) is equivalent to (2.3.13).

The present construction is computationally more cumbersome than that of sec-
tion 2.3.1, but its character is more geometrical and it can thus be more easily
extended into a validity proof. To do so, we define (for any c) the special het-
eroclinic orbits γ−

∗,∗(ξ; c) = γ−
het(ξ; v

−
∗,∗) ⊂ Wu(P−

ε ) ∩ W s(M+
ε ) and γ+

∗,∗(ξ; c) =

γ+
het(ξ; v

+
∗,∗) ⊂ W s(P−

ε ) ∩ Wu(M+
ε ). The tube T −

∗,∗(c) ⊂ Wu(P−
ε ) is spanned by

those orbits γ−
P (ξ; v−

∗ , w−
∗ ) ⊂ Wu(P−

ε ) that are exponentially close to γ−
∗,∗(ξ; c)

for ξ < 1
2 (−ξ∗ + ξ−het(v

−
∗,∗)). Likewise, the tube T +

∗,∗(c) ⊂ W s(P−
ε ) is spanned by

those orbits γ+
P (ξ; v−

∗ , w−
∗ ) ⊂ W s(P−

ε ) that are exponentially close to γ+
∗,∗(ξ; c)

for ξ > 1
2 (ξ∗ + ξ+

het(v
+
∗,∗)). In forwards ‘time’, T −

∗,∗(c) is stretched along Wu(M+
ε ),

while T +
∗,∗(c) is stretched along W s(M+

ε ) in backwards ‘time’. By construc-
tion, the (stretched) tubes intersect the 5-dimensional hyperplane {q = 0} in
2-dimensional manifolds, Z±

T (c) (by definition).

The theorem is proved if it can be established that there are nonzero values
of c for which Z−

T (c)∩Z+
T (c) 6= ∅, since each point in this intersection determines

a point in Wu(P−
ε ) ∩ W s(P−

ε ) ∩ {q = 0}.

To show this, we extend {q = 0} to a 6-dimensional space, denoted by {{q = 0}, c},
by adding c as an independent variable. This space contains the extended man-
ifolds {Z−

T (c), c} and {Z+
T (c), c} as 3-dimensional subsets. Since γ−

∗,∗(ξ; c) and
γ+
∗,∗(ξ; c) are exponentially close to M+

ε as they intersect {q = 0}, and since the

projections Z−
slow and Z+

slow intersect by construction near c = cj determined by
(2.3.13), it follows that {Z−

T (c), c} and {Z+
T (c), c} are exponentially close for c

near cj . As in the proof of Theorem 2.2.1, it now follows from the fact that
T −
∗,∗(c) is stretched along Wu(M+

ε ) and T +
∗,∗(c) along W s(M+

ε ), that – in the

6-dimensional space {{q = 0}, c} – the 3-dimensional manifolds {Z−
T (c), c} and

{Z+
T (c), c} must intersect transversely in discrete points that have c-coordinates

c∗j (ε), which are to leading order determined by (2.3.13) or (2.3.17). Hence,

Z−
T (c) ∩ Z+

T (c) = γ−
tr,j(ξ) ∩ {q = 0} 6= ∅ at c∗j (ε) = cj + O(ε). 2
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v−(v−∗ )
lu,+
v

q

v

γ−
het(ξ; v

−
∗ )|v,q

ls,+v ls,+w

w

lu,+
w

M+
εM+

ε

r

(w−(v−∗ ), r−(v−∗ ))

γ−
het(ξ; v

−
∗ )|w,r

P+
ε P+

ε

Figure 2.8: Example of the construction of v−(v−
∗ ), w−(v−

∗ ), and r−(v−
∗ ).

2.4 Bifurcation from stationary to traveling pulse
solutions

2.4.1 Leading order analysis

To investigate the nature of the bifurcation from stationary 1-pulse solutions to
traveling 1-pulse solutions, we start by considering the traveling pulse just after
‘creation’, that is, we set

c = δ , (2.4.1)

with 0 < ε ≪ δ ≪ 1 (so c is no longer an unknown anymore). We expand the

three unknowns, τ̂ = τ̂∗,0 + O(δ) , θ̂ = θ̂∗,0 + O(δ) , ξ∗ = ξ∗,0 + δξ∗,1 + O(δ2).

Notice that τ̂∗,0 and θ̂∗,0 determine the bifurcation values of τ̂ and θ̂ at which the
bifurcation occurs, since the speed of the bifurcating traveling pulse reduces to
zero at τ̂ = τ̂∗,0 and θ̂ = θ̂∗,0. Since the bifurcation is co-dimension one we expect

to find a relation between τ̂∗,0 and θ̂∗,0.

The eigenvalues (2.3.8) and (2.3.12) become

λ±
v = ±1 − 1

2 τ̂∗,0δ + O(δ2), λ±
w = ± 1

D − 1
2

θ̂∗,0

D2 δ + O(δ2) ,

s±v = −1 ± 1
2 τ̂∗,0δ + O(δ2), s±w = −1 ± 1

2
θ̂∗,0

D δ + O(δ2).

We also expand the four equalities in (2.3.11), using A0 := e−εξ∗,0 ,

v±
∗ = −A2

0 ∓τ̂∗,0δ
(

1
2 − 1

2A2
0 + A2

0 log A0

)

+ 2εξ∗,1A
2
0δ +O(δ2) ,

w±
∗ = −A

2
D
0 ∓ θ̂∗,0

D δ
(

1
2 − 1

2A
2
D
0 + 1

DA
2
D
0 log A0

)

+ 2 ε
D ξ∗,1A

2
D
0 δ +O(δ2) .
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Next, we substitute the above expansions into the jump condition (2.3.13), and
we recall that c = δ, to obtain















γ = αA2
0 + βA

2
D
0 (twice) ,

0 = 4εξ∗,1

(

αA2
0 + β

D A
2
D
0

)

,

1
3

√
2 = ατ̂∗,0

(

1
2 − 1

2A2
0 + A2

0 log A0

)

+
βθ̂∗,0

D

(

1
2 − 1

2A
2
D
0 + 1

D A
2
D
0 log A0

)

,

(2.4.2)

where we equated coefficients on O(1) and O(δ) terms, respectively, and added
and subtracted the two O(δ) equations. Note that the equation for A0 is identical
to that of the stationary 1-pulse orbit (2.2.22): near the bifurcation the width
of the traveling pulse is to leading order equal to that of the stationary pulse.
Equations (2.4.2) determine the three unknowns A0 (which gives ξ∗,0), τ̂∗,0 as

function of θ̂∗,0, and ξ∗,1 = 0. The solution τ̂∗,0 as function of θ̂∗,0, is plotted in
Figure 2.9 for several values of D.

Remark 2.4.1. We briefly consider the case of D large, i.e., D = O( 1
δ ). It

immediately follows from (2.4.2) that ξ∗,0 = − 1
2

1
ε log

(

γ−β
α

)

. (Here, we also have

to assume that γ > β, α > 0 or that γ < β, α < 0). Moreover,

τ̂∗,0(θ̂) =
2

3

√
2

(

α − (γ − β) + (γ − β) log

(

γ − β

α

))−1

+ O(δ) .

This τ̂∗,0 is analogous to the (τ̂2)∗,0 we find in the analysis for traveling pulses of
the reduced two-component system (2.6.1) – see Section 2.6.

2.4.2 Subcriticality and supercriticality of the bifurcation

To determine the nature (supercritical versus subcritical) of the bifurcation, see
Figure 2.11, and also for the stability analysis of the next chapter, we actually need
the correction terms up to and including third order in δ in the above calculations.
To keep the calculations within reasonable limits, we set the bifurcation parameter
θ equal to one, such that in the above analysis the w-component is symmetric and
has no higher order corrections, i.e., θ̂ = 0 in (2.3.8), etc. Note that θ has also
been set to θ = 1 in [53, 70, 71]. Moreover, most of the numerical results presented

in [5, 51, 54, 60] are for θ = 1. We also assume that αA2
0 + β

DA
2/D
0 > 0, which

implies that the stationary 1-pulse limit is not near a saddle-node bifurcation and
that it is stable, see Theorem 3.4.1.

Lemma 2.4.1. Let (α, β, γ,D, τ, θ, ε) be such that τ = O( 1
ε2 ), θ = 1, α > 0,

(2.2.22) holds, and αA2
0 + β

D A
2/D
0 > 0, where A0 = e−εξ∗,0 and 0 < ε ≪ 1. For

c = δ, with ε ≪ δ ≪ 1, a traveling pulse exists for τ = 1
ε2 (τ̂∗,0 + δ2τ̂∗,2 + O(δ3)),
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Figure 2.9: For (α, β, γ, ε) = (3, 1, 2, 0.01), the bifurcation point τ̂∗,0(θ̂∗,0) is plot-
ted for D = 2, 5, 10, 100. The value of the jump mid-point ξ∗,0 is, respectively,
40.547, 47.018, 50.356, 54.393 and is computed through (2.4.2). When D = ∞, we

have ξ∗,0 = 54.931 and τ̂∗,0(θ̂∗,0) = τ̂∗,0 = 1.0460. This is the dotted line in the
figure.

with

τ̂∗,0 = 2
3

√
2 1

α(1−A2
0+A2

0 log A2
0)

> 0 ,

τ̂∗,2 = 3
32

√
2α(τ̂∗,0)

4[1 − A2
0 + A2

0 log A2
0 − 1

3A2
0 log3 A2

0

+
αA4

0 log2 A2
0(log A2

0−1)

αA2
0+

β
D A

2/D
0

] .

(2.4.3)

Note that the sign of τ̂∗,2 determines the nature of the bifurcation: a negative
τ̂∗,2 yields a subcritical bifurcation, while a positive τ̂∗,2 yields a supercritical bi-
furcation. For given system parameters, we can evaluate (2.4.3) to determine the
sign of τ̂∗,2. Moreover, we observe that it is possible for the same (α, β,D) for
τ̂∗,2 to take on positive, as well as negative, values, depending on γ (via A0), as
is illustrated in Figure 2.10.

Proof. The proof consists of an elaborate – but straightforward – asymptotic
analysis of the jump conditions (2.3.13). Plugging in v±

∗ , w±
∗ with θ = 1 yields,

to leading order in ε,

α(s±v (e±2ελ∓
v ξ∗ − 1) − 1) − βe−2 ε

D ξ∗ + γ = ∓1

3

√
2c .

After expanding the two unknown variables τ̂ and ξ∗,

τ̂ = τ̂∗,0+δτ̂∗,1+δ2τ̂∗,2+δ3τ̂∗,3+O(δ4) , ξ∗ = ξ∗,0+δξ∗,1+δ2ξ∗,2+δ3ξ∗,3+O(δ4) ,
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Figure 2.10: Left frame: (α, β,D) = (3, 1, 5). Right frame: (α, β,D) = (3,−1, 5).
Note that we did not plot τ̂∗,2 but a ‘scaled’ version 1

C τ̂∗,2. To be more precise,

C = 3
32

√
2α(τ̂∗,0)

4, and the scaling therefore depends on A0. However, C > 0
for A0 ∈ (0, 1). Thus, the scaling does not change the sign of τ̂∗,2. Moreover,

note that the vertical asymptote (for β < 0) is exactly where αA2
0 + β

DA
2
D
0 = 0

(A0 = Ac, see (2.2.25)). The last free parameter, γ, actually determines the value
of A0 via (2.4.7). Thus for (α, β,D) = (3, 1, 5) it is possible to have a negative,
as well as a positive τ̂∗,2.

we obtain the leading order approximations of (2.3.8) and (2.3.12),

λ±
v = ±1 − 1

2 τ̂∗,0δ + (± 1
8 τ̂2

∗,0 − 1
2 τ̂∗,1)δ

2 + (± 1
4 τ̂∗,0τ̂∗,1 − 1

2 τ̂∗,2)δ
3 + O(δ4),

s±v = −1 ± 1
2 τ̂∗,0δ ± 1

2 τ̂∗,1δ
2 ∓ ( 1

16 τ̂3
∗,0 − 1

2 τ̂∗,2)δ
3 + O(δ4).

(2.4.4)

With these expressions we deduce

e±2ελ∓
v ξ∗ = e−2εξ∗,0 + e−2εξ∗,0(∓ετ̂0ξ∗,0 − 2εξ∗,1)δ + e−2εξ∗,0

[− 1
4ε(τ̂∗,0)

2ξ∗,0 ∓ ετ̂∗,1ξ∗,0 ∓ ετ̂∗,0ξ∗,1 ± 2ε2τ̂∗,0ξ∗,0ξ∗,1

+ 1
2ε2(τ̂∗,0)

2(ξ∗,0)
2 + 2ε2(ξ∗,1)

2 − 2εξ∗,2]δ
2 + e−2εξ∗,0

[

− 1
2ετ̂∗,0τ̂∗,1ξ∗,0 ∓ ετ̂2ξ∗,0 ± 1

4ε2(τ̂∗,0)
3(ξ∗,0)

2

+ε2τ̂∗,0τ̂∗,1(ξ∗,0)
2 ∓ 1

6ε3(τ̂∗,0)
3(ξ∗,0)

3 − 1
4ε(τ̂∗,0)

2ξ∗,1

∓ετ̂∗,1ξ∗,1 + 3
2ε2(τ̂∗,0)

2ξ∗,0ξ∗,1 ± 2ε2τ̂∗,1ξ∗,0ξ∗,1

−ε3(τ̂∗,0)
2(ξ∗,0)

2ξ∗,1 ± 2ε2τ̂∗,0(ξ∗,1)
2 ∓ 2ε3τ̂∗,0ξ∗,0(ξ∗,1)

2

− 4
3ε3(ξ∗,1)

3 ∓ ετ̂∗,0ξ∗,2 ± 2ε2τ̂∗,0ξ∗,0ξ∗,2 + 4ε2ξ∗,1ξ∗,2

−2εξ∗,3] δ
3 + O(δ4) ,

(2.4.5)
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and

e−2 ε
D ξ∗ = e−2 ε

D ξ∗,0 − 2
D εξ∗,1e

−2 ε
D ξ∗,0δ + e−2 ε

D ξ∗,0 [ 2
D2 ε2(ξ∗,1)

2

− 2
D εξ∗,2]δ

2 + e−2 ε
D ξ∗,0 [− 4

3D3 ε3(ξ∗,1)
3 + 4

D2 ε2ξ∗,1ξ∗,2

− 2
D εξ∗,3]δ

3 + O(δ4) .

(2.4.6)

(Recall that εξ∗,j = O(1).)

Combining (2.4.4), (2.4.5), and (2.4.6), we find to leading order (twice)

αA2
0 + βA

2
D
0 = γ , (2.4.7)

which agrees with the first equation in (2.4.2).

The O(δ) corrections read

± 1
2ατ̂∗,0(1 − A2

0 + A2
0 log A2

0) + 2εξ∗,1(αA2
0 + β

DA
2
D
0 ) = ± 1

3

√
2 .

By adding and subtracting the above two equations, we obtain

ξ∗,1 = 0 , τ̂∗,0 =
2

3

√
2

1

α(1 − A2
0 + A2

0 log A2
0)

,

which agrees with (2.4.2), since θ̂∗,0 = 0. Note that the function 1−A2
0+A2

0 log A2
0

is positive for all A0 ∈ (0, 1) – it decreases monotonically from one to zero as A0

increases from zero to one. Since α > 0 it follows that τ̂∗,0 > 0.

At O(δ2), we find

0 = ± 1
2ατ̂∗,1(A

2
0 − 1) − αA2

0[− 1
4ε(τ̂∗,0)

2ξ∗,0 ∓ ετ̂1ξ∗,0 + 1
2ε2(τ̂∗,0)

2(ξ∗,0)
2

−2εξ∗,2] − 1
2εα(τ̂∗,0)

2ξ∗,0A
2
0 + 2 β

D εξ∗,2A
2
D
0

(since ξ∗,1 = 0). Subtracting the two equalities implies

ατ̂∗,1(1 − A2
0 + A2

0 log A2
0) = 0 ⇒ τ̂∗,1 = 0 .

Adding both terms yields

ξ∗,2 =
1

16

1

ε

αA2
0(τ̂∗,0)

2 log A2
0(log A2

0 − 1)

αA2
0 + β

DA
2/D
0

.

We note that log A2
0 − 1 < log A2

0 < 0 and αA2
0 + β

D A
2/D
0 > 0, therefore,

sgn(ξ∗,2) = sgn(α) = +1. Thus, the width of the pulse (2ξ∗) is larger than
the leading order width (2ξ∗,0), i.e., the width of the traveling pulse is larger than
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the width of the standing pulse.

The O(δ3) term is given by

0 = ±α( 1
16 (τ̂∗,0)

3 − 1
2 τ̂∗,2)(A

2
0 − 1) ∓ 1

2ατ̂∗,0A
2
0[− 1

4ε(τ̂∗,0)
2ξ∗,0

+ 1
2ε2(τ̂∗,0)

2(ξ∗,0)
2 − 2εξ∗,2] ∓ αA2

0[ετ̂∗,2ξ∗,0 − 1
4ε2(τ̂∗,0)

3(ξ∗,0)
2

+ 1
6ε3(τ̂∗,0)

3(ξ∗,0)
3 + ετ̂∗,0ξ∗,2 − 2ε2τ̂∗,0ξ∗,0ξ∗,2 ∓ 2εξ∗,3] + 2 β

D εξ∗,3A
2
D
0 .

Adding both terms implies ξ∗,3 = 0, subtracting yields,

0 = α( 1
16 (τ̂∗,0)

3 − 1
2 τ̂∗,2)(A

2
0 − 1) − 1

2ατ̂∗,0A
2
0[− 1

4ε(τ̂∗,0)
2ξ∗,0

+ 1
2ε2(τ̂∗,0)

2(ξ∗,0)
2 − 2εξ∗,2] − αA2

0[ετ̂∗,2ξ∗,0 − 1
4ε2(τ̂∗,0)

3(ξ∗,0)
2

+ 1
6ε3(τ̂∗,0)

3(ξ∗,0)
3 + ετ̂∗,0ξ∗,2 − 2ε2τ̂∗,0ξ∗,0ξ∗,2] ,

which can be rewritten as

0 = −αA2
0τ̂∗,0εξ∗,2 log A2

0 + 1
48αA2

0(τ̂∗,0)
3 log3 A2

0 − 1
16α(τ̂∗,0)

3(1 − A2
0

+A2
0 log A2

0) + 1
2ατ̂∗,2(1 − A2

0 + A2
0 log A2

0) .

Then, using the expression for τ̂∗,0 and ξ∗,2, we obtain

τ̂∗,2 = 1
8 (τ̂∗,0)

3 − 1
32

√
2αA2

0(τ̂∗,0)
4 log3 A2

0

+ 3
32

√
2

α2A4
0(τ̂∗,0)

4 log2 A2
0(log A2

0−1)

αA2
0+

β
D A

2/D
0

,
(2.4.8)

which can be rewritten as in (2.4.3). 2

For D large, we can analytically determine the sign of τ̂∗,2 in (2.4.3), as we now
show.

Corollary 2.4.2. Let (α, β, γ,D, τ, θ, ε) and A0 be as in Lemma 2.4.1 and assume
that D = 1

δ with 0 < ε ≪ δ ≪ 1. Define AZ
0 ∈ (0, 1) as the (unique) solution of

1 − A2
0 + A2

0 log A2
0 +

2

3
A2

0 log3 A2
0 − A2

0 log2 A2
0 = 0 (2.4.9)

(AZ
0 = 0.11063 . . .). Then, τ̂∗,2 > 0 for parameter combinations such that 0 <

A0 < AZ
0 + O(δ) and τ̂∗,2 < 0 for 1 > A0 > AZ

0 + O(δ).

Proof. It follows from (2.4.3) that, to leading order in δ,

τ̂∗,2|D=O(δ−1) = 3
32

√
2α(τ̂∗,0)

4[1 − A2
0 + A2

0 log A2
0 − 1

3A2
0 log3 A2

0

+A2
0 log2 A2

0(log A2
0 − 1)]

= 3
32

√
2α(τ̂∗,0)

4[1 − A2
0 + A2

0 log A2
0 + 2

3A2
0 log3 A2

0 − A2
0 log2 A2

0]

=: Cτ̂
′
∗,2 ,
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with C = 3
32

√
2α(τ̂∗,0)

4 > 0 and τ̂
′
∗,2 = 1 − A2

0 + A2
0 log A2

0 + 2
3A2

0 log3 A2
0 −

A2
0 log2 A2

0. Thus sgn(τ̂∗,2) = sgn(τ̂
′
∗,2). We notice that τ̂

′
∗,2(0) = 1 and τ̂

′
∗,2(1) =

0. We now show that τ̂
′
∗,2(s), with s := A2

0, has a negative minimum by differen-
tiating,

d

ds
τ̂

′
∗,2 = (log s)

(

2

3
log2 s + log s − 1

)

.

Thus, with z := log s (so that z ∈ (−∞, 0)), we see that τ̂
′
∗,2(z) has a unique

extremum if 2
3z2 + z − 1 = 0, i.e., z = zM = − 3

4 − 1
4

√
33. This implies that

AM
0 = e−

1
8 (3+

√
33) ∈ (0, 1), so that

τ̂
′
∗,2(A

M
0 ) = 1 − e−

1
4 (3+

√
33)

(

31

4
+

5

4

√
33

)

< 0.

Hence, AM
0 determines a negative minimum of τ̂

′
∗,2, which implies τ̂

′
∗,2 must change

sign once for A = AZ
0 ∈ (0, AM

0 ), where AZ
0 is determined by (2.4.9). 2

An additional consequence of Lemma 2.4.1, that holds for more general values
of D, is

Corollary 2.4.3. Let (α, β, γ,D, τ, θ, ε) and A0 be as in Lemma 2.4.1. Further-
more, assume that β < 0, αD > −β, A0 > Ac > AZ

0 (with Ac, A
Z
0 as in (2.2.25),

(2.4.9), respectively), then the bifurcation is subcritical, i.e., τ̂∗,2 < 0.

Proof. Observe that in this case

αA4
0 log2 A2

0(log A2
0 − 1)

αA2
0 + β

DA
2/D
0

< A2
0 log2 A2

0(log A2
0 − 1) < 0.

Therefore, τ̂∗,2(A0) < Cτ̂
′
∗,2(A0), with τ̂

′
∗,2(A0) as defined above, and Cτ̂

′
∗,2(A0)

is negative for A0 > AZ
0 . 2

Remark 2.4.2. If, in addition to the conditions in Corollary 2.4.3, it is also
assumed that α > γ, then it follows from our analysis in Section 2.3.2 that there
is a traveling pulse with speed c = 3

2

√
2(α − γ) + O(δ, ε) > 0 for τ̂ ≫ 1 (2.3.15).

This indicates that the curve c = c(τ̂) has a fold structure, i.e., for increasing
τ̂ (and all other parameters fixed) there is a saddle-node bifurcation of traveling
pulses at τ̂ = τ̂SN < τ̂∗,0 at which two traveling pulses bifurcate with speeds
c±(τ̂) > 0 and c±(τ̂SN ) = cSN > 0; the pulse associated to c−(τ̂) merges with the
stationary pulse at τ̂ = τ̂∗,0, while the other pulse exists for all τ̂ > τ̂SN , so that
c+(τ̂) → 3

2

√
2(α − γ) as τ̂ → ∞. This can be checked by using a continuation

method for the solutions of (2.3.13), see Figure 2.11. Hence, there exist parameter
combinations for which two types of traveling pulses coexist with the stationary
pulse (for τ̂SN < τ̂ < τ̂∗,0). Both the stationary pulse and the traveling pulse
associated to c+(τ̂) may be stable, see Figure 3.11 of Chapter 3.



62 Chapter 2. Existence
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√

2

τ̂∗,0

|c||c|

Figure 2.11: The solution curve of equation (2.3.13) in the (τ̂ , c) plane for the
parameter values (α, β, γ,D, θ, ε) = (5,−3, 1, 4, 1, 0.01). We have chosen the pa-
rameters in such a fashion that they satisfy the conditions in Remark 2.4.2. In
the left frame we observe a subcritical bifurcation at τ̂ = τ̂∗,0 = 6.01363. More-
over, we observe that as τ̂ goes to infinity the upperbranch, c+(τ̂), goes to the
theoretically-predicted, leading order value, 3

2

√
2(α − γ) = 6

√
2, see (2.3.15). Fi-

nally, from this numerical continuation we observe that the two branches merge
at a saddle-node bifurcation at τ̂num

SN = 0.84917 and cnum
SN = 6.3027. In the right

frame, the region near τ̂ = τ̂∗,0 is magnified.

2.5 Stationary 2-pulse solutions

In this section, we establish the existence of localized, symmetric, standing, 2-
pulse solutions of (2.1.6). We construct these pulses as homoclinic orbits γ−

2p,j(ξ)

to the critical point P−
ε .

2.5.1 The construction of γ−

2p,j(ξ) homoclinic to P−

ε

We search for stationary pulse-like solutions. Therefore, the PDE (2.1.7) again
reduces to (2.2.1), and the basic observations (on the fixed points, the reduced
limits, the slow manifolds, etc.) are the same as in Section 2.2.1. However, for
symmetric standing 2-pulse solutions, we have to distinguish nine different regions
instead of the five regions as we did for the 1-pulse solutions – see Section 2.2.2.
We again parametrize the 2-pulse solutions so that its u, v, w-components are at
a local extremum at ξ = 0. However, there are three local extrema, see Figure
2.1, and for symmetry considerations we choose to put the zero of the ξ-axis at
the second location, the one exponentially close to M−

ε . It turns out that v−
2p,j(0)

and w−
2p,j(0) are local minima, while u−

2p,j(0) is a local maximum, see Figure 2.1

and Figure 2.12. We define the four ‘jump mid-points’ of γ−
2p,j by ±ξ1,2

∗ (not to
be confused with the ξ∗,1, ξ∗,2 of the previous section). Where the last ‘back’ (i.e.,
the final jump of M+

ε back to M−
ε ) of γ−

2p,j(ξ) crosses the {u = 0}-hyperplane at
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ξ = ξ1
∗ , and the last front of γ−

2p,j(ξ) crosses the same hyperplane at ξ = ξ2
∗ . Note

that by construction 0 < ξ2
∗ < ξ1

∗ . The reversibility symmetry implies that −ξ1
∗ is

the jump mid-point of the first front and −ξ2
∗ is the jump mid-point of the first

back. Thus,

γ−
2p,j(±ξ1

∗) = (0,∓p1
∗, v

1
∗,∓q1

∗, w
1
∗,∓r1

∗) ,

γ−
2p,j(±ξ2

∗) = (0,±p2
∗, v

2
∗,±q2

∗, w
2
∗,±r2

∗) .
(2.5.1)

We assume that ξ1
∗ , ξ2

∗ , as well as ξ1
∗−ξ2

∗ , are large, i.e., ξ1,2
∗ and ξ1

∗−ξ2
∗ are O( 1

ε ).

We now define the four fast intervals I2,4,6,8
f and the five slow intervals I1,3,5,7,9

s

I2,4
f :=

(

−ξ1,2
∗ − 1√

ε
,−ξ1,2

∗ + 1√
ε

)

, I6,8
f :=

(

ξ2,1
∗ − 1√

ε
, ξ2,1

∗ + 1√
ε

)

,

I1
s :=

(

−∞,−ξ1
∗ − 1√

ε

]

, I3,7
s :=

[

∓ξ1,2
∗ + 1√

ε
,∓ξ2,1

∗ − 1√
ε

]

,

I5
s :=

[

−ξ2
∗ + 1√

ε
, ξ2

∗ − 1√
ε

]

, I9
s :=

[

ξ1
∗ + 1√

ε
,∞

)

.

The nine different regions are then

1: The dynamics take place exponentially close to the slow manifold M−
ε :

ξ ∈ I1
s .

2: The dynamics take place in the fast field: ξ ∈ I2
f .

3: The dynamics take place exponentially close to M+
ε : ξ ∈ I3

s .

4: The dynamics take place in the fast field: ξ ∈ I4
f .

5: The dynamics take place exponentially close to M−
ε : ξ ∈ I5

s .

6: The dynamics take place in the fast field: ξ ∈ I6
f .

7: The dynamics take place exponentially close to M+
ε : ξ ∈ I7

s .

8: The dynamics take place in the fast field: ξ ∈ I8
f .

9: The dynamics take place exponentially close to M−
ε : ξ ∈ I9

s .

The analysis of the formal construction is now nearly the same as for the stand-
ing 1-pulse case (Section 2.2.2); the only difference is that it involves a bit more
bookkeeping. However, qualitatively, nothing changes; for example we still have
∆2,4,6,8

f (v, w, q, r) = O(
√

ε), the equivalent of (2.2.15). The homoclinic v, w-
component on the slow manifolds are still governed by (2.2.10) and (2.2.11). To-
gether with the usual boundary conditions, of which there are in total forty, we
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get

v2p(ξ) =























2eεξ
(

sinh
(

εξ1
∗
)

− sinh
(

εξ2
∗
))

− 1 in 1 ,

−e−ε(ξ+ξ1
∗) − eε(ξ−ξ1

∗) − 2eεξ(sinh (εξ2
∗)) + 1 in 3 ,

−e−ε(ξ+ξ1
∗) + e−ε(ξ+ξ2

∗) + eε(ξ−ξ2
∗) − eε(ξ−ξ1

∗) − 1 in 5 ,

−e−ε(ξ+ξ1
∗) − eε(ξ−ξ1

∗) − 2e−εξ(sinh (εξ2
∗)) + 1 in 7 ,

2e−εξ
(

sinh (εξ1
∗) − sinh (εξ2

∗)
)

− 1 in 9 ,

(2.5.2)

and likewise

w2p(ξ) =























2e
ε
D ξ

(

sinh
(

ε
D ξ1

∗
)

− sinh
(

ε
D ξ2

∗
))

− 1 in 1 ,

−e−
ε
D (ξ+ξ1

∗) − e
ε
D (ξ−ξ1

∗) − 2e
ε
D ξ(sinh ( ε

D ξ2
∗)) + 1 in 3 ,

−e−
ε
D (ξ+ξ1

∗) + e−
ε
D (ξ+ξ2

∗) + e
ε
D (ξ−ξ2

∗) − e
ε
D (ξ−ξ1

∗) − 1 in 5 ,

−e−
ε
D (ξ+ξ1

∗) − e
ε
D (ξ−ξ1

∗) − 2e−
ε
D ξ(sinh ( ε

D ξ2
∗)) + 1 in 7 ,

2e−
ε
D ξ

(

sinh ( ε
D ξ1

∗) − sinh ( ε
D ξ2

∗)
)

− 1 in 9 .

(2.5.3)

By the reversibility symmetry (2.2.2), there are two Melnikov conditions (instead
of the expected four), which are analogous to (2.2.17),

αv1,2
∗ + βw1,2

∗ + γ = 0 , (2.5.4)

with v1,2
∗ and w1,2

∗ defined in (2.5.1). When we define A1 := e−εξ1
∗ and A2 := e−εξ2

∗

(0 < A1 < A2 < 1), and combine this with the above results (2.5.2),(2.5.3), and
(2.5.4), we obtain







−αA2
1 + αA1A2 − αA1A

−1
2 − βA

2
D
1 + βA

1
D
1 A

1
D
2 − βA

1
D
1 A

− 1
D

2 + γ = 0 ,

+αA2
2 − αA1A2 − αA1A

−1
2 + βA

2
D
2 − βA

1
D
1 A

1
D
2 − βA

1
D
1 A

− 1
D

2 + γ = 0 .
(2.5.5)

By adding and subtracting, this system can be transformed into



















G1(A1, A2) := α(A1 − A2)
2 + β(A

1
D
1 − A

1
D
2 )2 = 0 ,

G2(A1, A2) := α(A2
2 − A2

1) − 2αA1A
−1
2 + β(A

2
D
2 − A

2
D
1 )

−2βA
1
D
1 A

− 1
D

2 = −2γ .

(2.5.6)

The above formal analysis gives rise to the following theorem.

Theorem 2.5.1. Let (α, β, γ,D) be such that (2.5.6) has K solution pairs (A1, A2)
with 0 < A1 < A2 < 1, and let ε > 0 be small enough. If K = 0, then there are
no homoclinic orbits to P−

ε in (2.2.1) that have a structure as sketched in Fig-
ure 2.12. If K > 0, there are K homoclinic orbits γ−

2p,j(ξ), j ∈ {1, . . . ,K}, to

P−
ε in (2.2.1) (with structure as in Figure 2.12). These correspond to symmetric

standing 2-pulse solutions of (2.1.6).
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Given the form of equations (2.5.6), it is natural to solve A1 and γ as functions
of A2 and the system parameters α, β and D. In Figure 2.13, both A1 and γ are
plotted. Note also that G1(A1, A2) cannot vanish in (2.5.6) if sgn(α) = sgn(β).
Thus, there only exist homoclinic 2-pulse solutions if sgn(α) 6= sgn(β) – see sec-
tion 2.6.

Proof of Theorem 2.5.1. A symmetric standing 2-pulse γ−
2p,j(ξ) is reversible

(2.2.2) and we can therefore argue along the same lines as in the proof of Theorem
2.2.1. In fact, the proof of this theorem goes in essence very similar to that of
Theorem 2.2.1. Therefore, we will omit most details. By the first Melnikov con-
dition in (2.5.4), there exists a 1-parameter family of orbits γ1,−

het (ξ; v1
∗;w

1
∗(v

1
∗)) ∈

Wu(P−
ε ) ∩ W s(M+

ε ). We define the tube T −
1,∗ ⊂ Wu(P−

ε ) as the collection of

orbits in Wu(P−
ε ) that are exponentially close to γ1,−

het (ξ; v1
∗;w

1
∗(v

1
∗)) for ξ <

−ξ1
∗ . All orbits in T −

1,∗ approach M+
ε and follow the slow flow on M+

ε for some
‘time’ (which may be infinite), after which they take off parallel (and exponen-
tially close to) Wu(M+

ε ). In other words, near M+
ε T −

1,∗ is strongly stretched
along the direction of Wu(M+

ε ). It thus follows by the application of the sec-
ond Melnikov condition in (2.5.4) that T −

1,∗ intersects W s(M−
ε ); the intersection

T −
1,∗ ∩W s(M−

ε ) is again 2-dimensional, i.e., it consists of a 1-parameter family of
orbits ⊂ Wu(P−

ε ) ∩ W s(M−
ε ). As in the proof of Theorem 2.2.1, it can now be

shown that there is a unique orbit γ2,−
0,∗ (ξ) ⊂ T −

1,∗∩W s(M−
ε ) that is homoclinic to

M−
ε such that γ2,−

0,∗ (0) ∈ {q = r = 0} – note that this also determines the position
of the symmetry point ξ = 0. Again, the algebra leading to the construction of
γ2,−
0,∗ (ξ) is equivalent to the above analysis and yields at leading order (2.5.6). The

existence of the 2-pulse homoclinic orbits γ−
2p,j(ξ) now follows by arguments that

are identical to those in Theorem 2.2.1. It is based on the construction of the
sub-tube T −

2,∗ ⊂ T −
1,∗ around γ2,−

0,∗ (ξ), its symmetrical counterpart T +
2,∗ around the

orbit γ2,+
0,∗ (ξ) and the application of the reversibility symmetry. 2

Remark 2.5.1. In the proof presented above we have used that the jump mid-
points v1,2

∗ and w1,2
∗ satisfy certain constraints. In particular, v1

∗ ∈ (−1, 0),

w1
∗ = − 1

β (αv1
∗ + γ), v2

∗ ∈ (v1
∗, V ) and w2

∗ = − 1
β (αv2

∗ + γ), where V = − ξ1
∗+ξ2

∗
2 −

1
2ε log

(

1 − e−2εξ2
∗ + e−ε(ξ1

∗+ξ2
∗)

)

. These constraints arise naturally from the re-

quirement that the tracked orbits lie on the correct side of the stable and unstable
manifolds of the slow manifold, so that they can have a second pulse.

Remark 2.5.2. In our analysis we have focused on the existence of localized one-
and 2-pulse patterns. As for instance in [17], the same geometrical approach as
in the proofs of Theorems 2.2.1, 2.3.1 and 2.5.1 can be applied to establish the
existence of many other kinds of stationary or traveling patterns, such as N -pulse
solutions and various kinds of spatially-periodic wave trains. We refrain from
going into the details here. However, we do notice that these patterns can be
stable and do play an important role in the dynamics of (2.1.7) – see section 2.7.1
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ε
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ε
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Figure 2.12: A schematic sketch of a symmetric 2-pulse γ−
2p,j(ξ) homoclinic to

P−
ε .

and especially Figure 2.15.

2.5.2 The existence of 2-pulse solutions

Just as was the case for the K of Theorem 2.2.1, it is, a priori, not clear whether
there exist parameter combinations for which the K of Theorem 2.5.1 is nonzero.
To show that these parameter regimes do exist we first choose an explicit D as
an example, that is, we put D = 2. Naturally, we also have to assume sgn(α) 6=
sgn(β). With this special choice of D we analyze (2.5.6). It transforms into
{

H1(A1, A2) := α(A1 − A2)
2 + β(

√
A1 −

√
A2)

2 = 0 ,

H2(A1, A2) := α(A2
2 − A2

1) − 2αA1

A2
+ β(A2 − A1) − 2β

√

A1

A2
= −2γ .

(2.5.7)

Observe that the equality H1(A1, A2) = 0 does not depend on γ. Moreover, γ
only appears in the right hand side of H2(A1, A2) = −2γ. That is, γ only shifts
H2(A1, A2) up or down. So, instead of solving for A1 and A2 in terms of the un-
known parameters α, β and γ, it is much easier to fix α, β and A2 and to determine
A1 and γ such that (2.5.7) is solved. Actually, by doing so, we impose, alongside
α and β, one of the jump mid-points ξ2

∗ and try to locate the second jump mid-
point ξ1

∗ and γ such that (2.1.7) possesses a standing 2-pulse. Of course, we could
also choose to start with α, β, and A1 and determine A2 and γ that satisfy (2.5.7).

The zero of H1(A1, A2), for which 0 < A1 < A2, is given by the relation

√

A1 +
√

A2 =

√

−β

α
. (2.5.8)
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When we implement this into formula (2.5.7) for H2(A1, A2) we find, after some
manipulation, a unique γ:

γ = α − 2α(1 + A2
2)

√

− β

αA2
− β

(

1 + 3A2 +
1

A2
−

√

−A2β

α
−

√

− β

αA2

)

.(2.5.9)

However, there are also restrictions on the choice of A2. We need 0 < A1 < A2 <
1. Therefore,

−1

4

β

α
< A2 < min

{

−β

α
, 1

}

. (2.5.10)

We conclude that if A2 satisfies (2.5.10), there is a (α, β, γ)-parameter combina-
tion such that (2.5.7) is satisfied, i.e., such that a 2-pulse solution exists. However,
if (2.5.10) cannot be satisfied – which is the case when |4α| < |β|, there are no
such 2-pulse solutions.

This nonexistence result can be generalized to all D > 1:

Corollary 2.5.2. Let sgn(α) 6= sgn(β). There is an open region in (α, β, γ,D)-
space for which homoclinic 2-pulse solutions as described in Theorem 2.5.1 exist.
However, if |α|D2 < |β|, then there are no such 2-pulse solutions.

Proof. We start again by observing that G1(A1, A2) = 0 does not depend on
γ, and that the γ in G2(A1, A2) = −2γ only shifts G2(A1, A2) up or down. So,
again instead of solving A1 and A2 in terms of α, β and γ via (2.5.6), we solve
this equation for given α, β and A2 with the unknown parameters A1 and γ.

The condition 0 < A1 < A2 < 1 yields the following generalization of (2.5.10)

(

− β

αD2

)
1
2

D
D−1

< A2 < min

{

(

−β

α

)
1
2

D
D−1

, 1

}

. (2.5.11)

Here, the latter inequality ensures A2 ∈ (0, 1), and the former implies A1 < A2.
This interval is empty when |α|D2 < |β|. 2

2.5.3 Asymptotics for D → ∞
In this section, we analyze the large D asymptotics of solutions of equation (2.5.6).
From Figure 2.13, we observe that, over a large portion of the interval A2 ∈ (0, 1),
the solution curves for A1 lie near the axis, and the solution curves for γ lie near the
lower dashed curve. Moreover, these curves approach their respective asymptotes
as D increases. We establish this result precisely in the following lemma:

Lemma 2.5.3. Assume that α > 0 > γ > β. Then, for strictly O(1) values of

A2 ∈
(

0,
√

−β
α

)

, as measured with respect to the asymptotically small parameter
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Figure 2.13: In the left frame, A1 is plotted as function of A2 for several values
of D. In the right frame, γ is plotted as function of A2 for the same values for D.
The dashed curve represents the asymptotic behavior for D large and is given by
(2.5.12). The 2-pulse orbits are typically created or annihilated in a saddle-node
bifurcation – see Section 2.7, Figure 2.15.

1
D , the solutions A1 = A1(α, β,A2,D) and γ = γ(α, β,A2,D) of equation (2.5.6)
satisfy, to leading order,

A1 =

(

1 −
√

−α

β
A2

)D

, γ = −α

(
√

−β

α
− A2

)2

as D → ∞. (2.5.12)

The lower dashed curve in the right frame of Figure 2.13 is this parabola of
γ as function of A2. It is also useful to combine the results of (2.5.12) of this
lemma into expressions for A1 and A2 in terms of the given system parameters.
The result is, to leading order,

A1 =

(

γ

β

)
D
2

, A2 =

√

−β

α
−

√

−γ

α
.

We also remark that in both frames there is a boundary layer at A2 = A1, which
is why we require A2 to be strictly of O(1) for this result and we recall that the
existence construction requires that A1 < A2. In the boundary layer, the graph
of A1 limits on the diagonal, with a slope of −1, while the graph of γ is nearly
vertical. Although the asymptotic analysis is not too involved, we refrain from
going into the details here. Nevertheless, we notice that, by (2.5.6), γ = α + β in
the limit A2 ↓ A1, see Figure 2.13.

Proof of Lemma 2.5.3. We observe that, for A2 strictly of O(1) in (0,1),
we may assume that

A1 = CD , (2.5.13)

to leading order, for some C ∈ (0, 1). Indeed, if one instead assumed that A1 =
aδσ to leading order, for δ = 1

D and for some σ > 0, then from the first equation
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in (2.5.6) one would find that A2 = 0 to leading order, which is a contradiction.
Hence, with the assumption (2.5.13), the first equation in (2.5.6) becomes

αA2
2 + β(C − 1)2 = 0,

to leading order, where we used that A
1/D
2 = 1 + O(D−1) for A2 ∈ (0, 1), and

that 1
/D log(A2) ≪ C. Solving, one finds, to leading order,

A1 =

(

1 −
√

−α

β
A2

)D

, (2.5.14)

which is precisely the first formula of (2.5.12).

With the asymptotics for A1 in hand, one may use the second formula in (2.5.6)
to find the asymptotics for γ. To leading order,

γ = −1

2

[

αA2
2 + β

(

1 −
(

1 −
√

−α

β
A2

)2
)

− 2β

(

1 −
√

−α

β
A2

)

]

.

Simplifying the right member, we find precisely the asymptotic result (2.5.12) for
γ. 2

To conclude this section on the large D asymptotics, we comment briefly on
the form of the W profile for stationary 2-pulse solutions in the interval between
the two pulses. From the above asymptotics, we find, to leading order,

εξ = O(1) , εξ2
∗ = − log A2 = O(1) ,

εξ1
∗ = −D log

(

1 −
√

−α
β A2

)

= O(D) .
(2.5.15)

Hence, from (2.5.3), we find in region 5, to leading order,

w2p(ξ) = −e−
ε
D (ξ+ξ1

∗) + e−
ε
D (ξ+ξ2

∗) + e
ε
D (ξ−ξ2

∗) − e
ε
D (ξ−ξ1

∗) − 1

= 2
√

−α
β A2 − 1

= 1 − 2
√

γ
β .

(2.5.16)

Therefore, for each A2 ∈
(

0,
√

−β
α

)

, the W -component is constant to leading

order, where the constant is given by (2.5.16). Moreover, we observe that W
takes on all of the values in the interval (−1, 1), since the above analysis applies

for all A2 ∈
(

0,
√

−β
α

)

.

A stability analysis similar to that presented in the next Chapter shows that the
2-pulse solutions are stable for parameter combinations in the ‘boundary layer’.
However, they are unstable for parameter values near the dashed curve in the
asymptotic regime studied in Lemma 2.5.3.
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2.6 The two-component model

In this section, we investigate the two-component (U, V )-subsystem of the three-
component model, that is, we send D to infinity and assume that the W -component
is constant at W = −1 everywhere in the PDE (2.1.6). The PDE model reduces
to

{

Ut = ε2Uxx + U − U3 −ε(α2V + γ2) ,
τ2Vt = Vxx + U − V ,

(2.6.1)

with the same assumptions as before, 0 < ε ≪ 1, 0 < τ2 ≪ ε−3 and α2, γ2 ∈ R.
Note that the notation for the parameters has the following correspondence with
the parameters of the three-component model: α2 = α, τ2 = τ and γ2 = γ − β.

It can be shown with the same techniques used in this chapter that for τ2 = O(1)
the two-component system has standing 1-pulse solutions homoclinic to P−

2,ε =

(u−
2,ε, 0, u−

2,ε, 0) with u−
2,ε = −1 + 1

2ε(α2 − γ2) +O(ε2) if there exists an A ∈ (0, 1)
satisfying

α2A
2 = γ2 + O(

√
ε) ,

recall (2.2.22). Hence, we immediately observe that necessary conditions for
a standing pulse homoclinic to P−

2,ε to exist are that sgn(α2) = sgn(γ2) and

0 < |γ2| < |α2|. Also, the existence of traveling pulse solutions to P−
2,ε for large

τ2 can be proved, and in the end it boils down to solving a system of equations
which is a simplification of (2.3.13). Moreover, when we increase τ2 from an O(1)
parameter to an O(ε−2) parameter a traveling pulse solution bifurcates from a

standing pulse solution at (τ2)0,∗ = 1
ε2 (τ̂2)0,∗ = 1

ε2
2
3

√
2

(

α2 − γ2 + γ2 log
(

γ2

α2

))

.

This bifurcation can be supercritical, as well as subcritical. See also Section 2.4
and especially the proof of Lemma 2.4.2.

Finally, the two-component system possesses no symmetric standing 2-pulse so-
lutions to P−

2,ε. Physically, this can be explained by the fact that the model has
too few free constants (too few dimensions). The absence of 2-pulse solutions
is also plausible when we look at Theorem 2.5.1. There only exists a standing
2-pulse solution if at least sgn(α) 6= sgn(β) and for the two-component system
this condition cannot be fulfilled because there is no equivalent parameter for β
in the two-component system.

To summarize, we have shown that the two-component model also possesses
stationary and traveling pulse solutions. However, it does not support 2-pulse
solutions.

Remark 2.6.1. There are two ways in which the three-component system (2.1.6)
may limit on a two-component system, either by considering W → V , associated
to D ↓ 1, or by W → W0, a constant when D → ∞. In the former case one has
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to make the additional assumption that τ = θ. Since in most studies of systems
like (2.1.1)/(2.1.6) D ≫ 1 and τ ≫ θ, we do not consider this limit here.

If one considers the limit D → ∞ in Theorems 2.2.1 and 2.3.1 for 1-pulse so-
lutions, then it immediately follows that W → −1 uniformly on R – see for
instance (2.2.21). However, since the two-component limit cannot have standing
2-pulse solutions, taking the limit D → ∞ in Theorem 2.5.1 is less straightfor-
ward. In fact, this limit has already been discussed in section 2.5.3 (under the
assumption that A2 = O(1)). It follows from (2.5.15) that the width of the pulses
in the 2-pulse solution increases linearly with D, while the distance between the
pulses approaches a finite limit. Thus, on bounded intervals, the 2-pulse solution
of the three-component system limits on a 1-pulse solution of a two-component

(U, V )-system that is homoclinic to (U, V ) = (+1,+1) (with W → 1 − 2
√

γ
β , the

constant value given in (2.5.16)).

2.7 Simulations, conclusions and discussion

2.7.1 Simulations

In this section, we show the results of some numerical simulations to further illus-
trate the theory presented in this chapter and also to illustrate some of the basic
pulse interactions and instabilities. These simulations are carried out using the
numerical software presented in [4].

We already illustrated a stationary 1-pulse solution in the left frame of Figure 2.1.
Therefore, we begin here with some traveling pulses of the type constructed in
Section 2.3. The pulses shown in Figure 2.14 exist for values of τ greater than
the theoretically-predicted value τ̂∗,0 = 0.59 for the bifurcation in which travel-
ing pulses are created (which translates into an unscaled τ∗,0 = 59). In the left
frame, the traveling pulse collides with its mirror image pulse at the boundary,
since the boundary conditions are of homogeneous Neumann type, and afterwards
they repel each other. By contrast, in the right frame, the pulse and its mirror
image collide and then annihilate. The changeover from repulsion to annihilation
after the collision occurs at τnum

ann = 112. Finally, we observe that the numerically-
observed value of the bifurcation to traveling waves is τnum

∗ = 103, which is within
the relative error of magnitude O(ε−1) = O(10) of the leading order theoretical
value τ∗,0 = 59. Of course, in these simulations ε is not yet really small, and
hence we checked that the value of τnum

∗ decreases toward the value predicted by
the leading order theory as ε is decreased. For example, for ε = 0.01, we find
τnum
∗ = 5.95 × 103 (compared to 5.9 × 103 theoretically).

Next, we illustrate the theoretical results for stationary 2-pulse solutions of (2.1.6),
as derived in Section 2.5. For each of the four values of γ = 0.8, 0.75,−0.25, −0.3,
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Figure 2.14: Stable traveling pulses. The parameter values are (α, β, γ,D, θ, ε) =
(6, 3, 4, 2, 1, 0.1), and τ is the bifurcation parameter. Here, we plotted a bouncing
traveling pulse solution for τ = 110 and an annihilation of a traveling pulse for
τ = 115 .

Figure 2.15 shows the corresponding stationary solution. Based on the simula-
tions for these parameter values, we find that the homogeneous background state
U = −1 undergoes a subcritical bifurcation into a 2-pulse solution at γnum = 0.78.
Likewise, due to the reversibility symmetry, the homogeneous state U = +1 bi-
furcates supercritically into a 2-pulse solution at γnum = −0.78, though we do
not show this. In addition, we observe that, as we decrease γ from 0.78, the width
of the pulses increases, until there is a bifurcation at γnum = −0.27 at which the
pulses coalesce, and the solution is U = +1 everywhere, except inside an inte-
rior layer and inside the layers at the boundaries of the computational interval.
This solution is a spatially-periodic solution. Moreover, the observed value for
this coalescence of the pulses agrees well with the theoretically-predicted value of
γ = −0.31 for the saddle-node bifurcation, which occurs at the minimum in the
curve shown in the right frame of Figure 2.13.

One of the most commonly-encountered bifurcations that the pulse solutions un-
dergo is a supercritical Hopf bifurcation in which the widths, and heights, of the
pulses oscillate periodically in time. In Figure 2.16, we show a breathing 1-pulse
in the left frame, and a breathing 2-pulse in the right frame. For the 1-pulse solu-
tion (with ε = 0.1), the Hopf bifurcation occurs at τnum

H = 47. Moreover, we find
that the breather dies out for τ = 49.8. For the 2-pulse solution (with ε = 0.01),
the Hopf bifurcation takes place at τnum

H,2p = 4590. Moreover, at τ = 5060, the
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Figure 2.15: Plots of the stationary solutions of the three-component model (2.1.6)
for four values of γ: γ = 0.8, 0.75,−0.25,−0.3. The values of the other parameters
are (α, β,D, τ, θ, ε) = (2,−1, 5, 1, 1, 0.01).
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Figure 2.16: Stable breathing 1-pulse and 2-pulse solutions. For the simulation
shown in the left frame, τ = 49.7, and the other parameters are (α, β, γ,D, θ, ε) =
(6, 3, 4, 10, 1, 0.1). Also, we note that the interval used in the simulation is ξ ∈
[−100, 100], however we have displayed only a subinterval to better display the
breathing behavior. For the simulation shown in the right frame, τ = 5000, and
the other parameters are (α, β, γ,D, θ, ε) = (2.2,−1, 0, 10, 1, 0.01). Also, we note
that the interval used in the simulation is ξ ∈ [−1000, 1000].

breathing 2-pulse solution becomes unstable and dies out. We note that we have
observed breathing 2-pulse solutions for which the pulse widths breath in an an-
tisymmetric manner.

Scattering of pulses is also observed in the three-component model (2.1.7). In
the left frame of Figure 2.17, we show the V -component of a 2-pulse solution
in which the pulses initially approach each other, spend a substantial amount of
time at a nearly constant distance from each other with a significantly-decreased
amplitude, and then regain their original amplitudes and repel each other. The
pulses continue to repel each other until they reflect off the boundary, and the
process repeats. A similar phenomenon has been observed in [51, 52]. There
the unstable, stationary 2-pulse, which the 2-pulse data approaches, is called a
‘scattor’ (or ‘separator’). The importance of a scattor stems from the observation
made in [51, 52] that the forward evolution of 2-pulse data that approaches it is
determined by where that data lies with respect to the stable and unstable man-
ifolds of the scattor or separator solution. The relation between scattors and the
2-pulse solutions constructed in this chapter is the subject of future investigation.



2.7. Simulations, conclusions and discussion 75

0

2

4

6

8

10

x 104

1500

1000

500

0

−500

−1000

−1500

−1
0
1

0

0.5

1

1.5

2

2.5

3

3.5

x 104

150010005000−500−1000−1500

ξ

V

t

t

ξ

U

Figure 2.17: Scattering of two pulses. In the left frame, we show the V -component
over a long time interval, and in the right frame we show the U -component dur-
ing the third central scattering event (not shown for the V -component). The
parameter values are (α, β, γ,D, τ, θ, ε) = (6, 3, 2, 2, 6500, 1, 0.01).

We emphasize that the time interval shown in Figure 2.17 is long and that the
length of time where the two pulses are near to each other is also long in compar-
ison to the time interval over which the pulses move an O(1) distance. Moreover,
we found that the duration of this time interval can be changed by varying the
parameter values. Finally, it is worth noting that, during the time that the two
pulses are near the boundaries, they are also near their counterparts across the
boundary, in what also appears to be a scattor state.

To conclude this brief section illustrating some of the pulse dynamics, we show
the spatio-temporal evolution of 4-pulse initial data in Figure 2.18. Initially, the
four pulses approach each other. Then, they start to breath in a time-periodic
manner, until finally the middle two pulses die out and the two remaining pulses
become stationary. In the right frame, we have zoomed in on the time interval
containing the last few breathing periods, and here the destabilization process is
visible in detail. The maximal widths per period of the inner two pulses increase
as the time of annihilation gets closer and closer, while the minimal widths de-
crease. One can see that during the final oscillation the maximal pulse widths
exceed the lengths of the gaps between the pulses. Finally, stepping back out to
the time scale shown in the left frame, one sees that the time asymptotic state is
a stable 2-pulse solution of the type constructed in Section 2.3, with pulse centers
well inside ξ = −1000 and ξ = 1000 on the domain ξ ∈ [−2000, 2000].
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Figure 2.18: The spatio-temporal dynamics of a solution with symmet-
ric 4-pulse initial data. The parameter values are (α, β, γ,D, τ, θ, ε) =
(2.1,−1, 0, 5, 3900, 1, 0.01). Note that we actually give an asymmetric 2-pulse
as initial condition and just ‘mirrored’ the domain, this can be done because of
the Neumann boundary conditions. Note that the time interval shown in the left
frame is so long that the breathing is not visible. Therefore, in the right frame,
we zoomed in on the time interval [11.2 × 106, 11.4 × 106] for the same solution,
so that the breathing is clearly visible.
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2.7.2 Conclusions and discussion

In this chapter, we established the existence of stationary and traveling 1-pulse
solutions of the three-component model (2.1.6), as well as the existence of station-
ary 2-pulse solutions. The main results are presented in Theorem 2.2.1, Lemma
2.2.2, and Theorem 2.3.1 for the 1-pulse solutions, and in Theorem 2.5.1 for the
2-pulse solutions. Moreover, we studied various bifurcations of these solutions, in-
cluding the saddle-node bifurcation in which the stationary 1-pulse solutions are
created (see Theorem 2.2.1), the bifurcation from stationary to traveling 1-pulses
(showing that this may be either subcritical or supercritical depending on the
system parameters, see Lemma 2.4.1 and Corollary 2.4.2), and the saddle-node
bifurcation of 2-pulse solutions, see Figure 2.13.

In the course of this analysis, we also showed that this three-component sys-
tem constitutes an ideal system on which to study pulse dynamics. On one hand,
it is sufficiently simple for analysis using geometric singular perturbation theory,
with all of the reaction terms, except for one, being linear. On the other hand,
it is sufficiently nonlinear to support rich pulse dynamics. Indeed, the extent of
this richness was first demonstrated in [51, 52, 54, 60], and these interacting pulse
solutions exist also for the scaled equations (2.1.6) studied here. We think that
the analysis presented in this chapter offers a useful starting point for the analysis
of these various pulse interaction scenarios.

Finally, we considered the limit in which the three-component system (2.1.6)
reduces to the more classical two-component system (2.6.1). This two-component
system is almost the same as the FHN, except that the second species (inhibitor)
also diffuses here. It is shown that the two-component system possesses only the
1-pulse solutions, and not the 2-pulse solutions of the type studied here. Hence,
the addition of the third component, as introduced in [60], is essential for the
existence of 2-pulse solutions.

Stability of the solutions studied here is an important topic, as is demonstrated
for instance by the bifurcations to breathing pulses shown in Figure 2.16. This is
the topic of the next chapter, in which we use the Evans function and the Non-
Local Eigenvalue Problem method [12] to carry out this analysis.

The methods and analysis of this chapter can be extended to carry out the analysis
of pulse solutions in the three-component model with heterogeneity that is stud-
ied in [71]. There, heterogeneity is introduced in (2.1.1) by making the constant
term in the U -component vary in space according to a smoothed out step function.
The heterogeneity induces interesting new pulse dynamics, such as rebounding off
defects, pinning by defects, and penetration of defects, as observed in numerical
simulations. The invariant manifold theory from the field of geometric singular
perturbation theory that we have used in this chapter, as well as the Melnikov
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conditions that we used, can also be applied to these types of heterogeneous sys-
tems, so that the pulse solutions may be constructed. In conjunction with these
observations, we point to an earlier example in which geometric singular per-
turbation theory was used to establish the existence of standing wave solutions
in a RDE of the Fabry-Perot interferometer, which involves spatially-dependent
coefficients. See [58].



Chapter 3

Stability

3.1 Introduction

The analysis of the dynamics and interactions of spatially-localized structures,
such as pulses or fronts, consists of a hierarchy of problems. As a first step, the
existence of stationary, or uniformly traveling, localized solutions must be con-
sidered. If the dynamics are governed by a partial differential equation (PDE)
in which the space variable is 1-dimensional, this is equivalent to constructing
a homoclinic orbit (for a pulse) or a heteroclinic orbit (for a front) in an ordi-
nary differential equation (ODE) reduction. As a next step, it is necessary to
obtain information about the stability of these homoclinic or heteroclinic orbits
as solutions of the PDE. A full mathematical understanding of the dynamics and
interactions of the localized structures can only be developed if these first two
issues, existence and stability, are in some way settled.

From this point of view, this work may be considered as the natural next step
following the existence analysis of Chapter 2. In that chapter, the existence of
various types of localized structures of (multi-)pulse type (or of multi-front type,
see Figure 3.1) is established for a three-component reaction-diffusion equation
(RDE) that was originally introduced in [60]. By the scalings introduced in the
previous chapter, this equation can be written (in one space dimension) as











Ut = Uξξ + U − U3 −ε(αV + βW + γ) ,

τVt = 1
ε2 Vξξ + U − V ,

θWt = D2

ε2 Wξξ + U − W ,

(3.1.1)

with 0 < ε ≪ 1, D > 1, 0 < τ, θ ≪ ε−3, α, β, γ ∈ R and O(1) with respect to ε,
and (ξ, t) ∈ R×R

+ (see Remark 3.1.1). In this chapter, the stability of the pulse
solutions to (3.1.1) that were constructed in the previous chapter is considered.

79
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In recent years, system (3.1.1) has been studied, mostly by numerical simula-
tions, as a paradigm model in three components, see [5, 32, 50, 51, 53, 54, 60, 65].
The dynamics exhibited by the localized solutions to equation (3.1.1) are remark-
ably rich. This phenomenon may perhaps be related to the intuition that three-
component RDEs may have more ‘freedom’ to generate complex dynamics than
one- or two-component equations. This intuition can be considered as a math-
ematical fact if one compares two-component systems to scalar, one-component,
systems (for instance since scalar RDEs in one (unbounded) spatial dimension
cannot have stable localized solutions of pulse type, whereas two-component sys-
tems can, as for example in the Gray-Scott and Gierer-Meinhardt equations).
However, there is no decisive mathematical evidence that three-component RDEs
indeed may generate behavior that cannot be observed in two-component systems
(see also Remark 3.1.3). In fact, the mathematical literature on pattern formation
in RDEs is almost completely devoted to the study of scalar and two-component
systems (see however [29], in which a three-component model with two fast and
one slow component is studied).

This latter observation provides a second – and, from the mathematical point
of view perhaps, more important – motivation for the analysis in this chapter.
We develop an approach by which the stability of (multi-)front or (multi-)pulse
patterns of a three-component system can be established. Although we focus
the attention on the explicit model (3.1.1), the ideas can readily be extended
to the stability analysis of localized structures in other singularly perturbed N -
component systems. However, as in previous work on two-component systems [12–
14], the assumption that the system is singularly perturbed, i.e., that 0 < ε ≪ 1
in (3.1.1), is essential.

Apart from the richness of its dynamics, equation (3.1.1) is remarkable in the
sense that the methods allow us to determine the spectra associated with the sta-
bility of the (multi-)pulse solutions in terms of explicit expressions (Remark 3.1.1).
Thus, although (3.1.1) has three components, we will for instance show, for the
stationary 1-pulse solution plotted in Figure 3.1, that it is possible to explicitly
determine whether it bifurcates into a traveling pulse solution, see Chapter 2 and
[50], or into a breathing pulse solution (by a Hopf bifurcation). Moreover, both
types of bifurcations are induced by a preceding edge bifurcation, i.e., the creation
of a ‘new’ eigenvalue from the essential spectrum, that can also be investigated in
full analytical detail – see Section 3.5. We also obtain analytical expressions for
the four eigenvalues associated to the stability of the 2-pulse solution of Figure
3.1, based on which we can formulate general results (in terms of the parameters
in (3.1.1)) on the stability and instability of these 2-pulse solutions (Section 3.6).
This combination of being accessible for detailed mathematical analysis and of
exhibiting rich and complex dynamics indeed makes system (3.1.1) a paradigm
for the study of pulse dynamics in three-component RDEs.
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Figure 3.1: Stable stationary 1-pulse and 2-pulse solutions of system
(3.1.1) obtained via numerical simulation. For the 1-pulse the parameters
where (α, β, γ,D, τ, θ, ε) = (3, 1, 2, 5, 1, 1, 0.01), and for the 2-pulse we had
(α, β, γ,D, τ, θ, ε) = (2,−1,−0.25, 5, 1, 1, 0.01).

The approach to the stability of localized patterns in (3.1.1) is based on the Evans
function D(λ), of which the zeroes correspond to the eigenvalues of the linearized
operator associated to the stability of a localized solution. The Evans function
is analytic as function of λ outside the essential spectrum σess of this linearized
operator [1, 59]. It has already been shown in [1] that D(λ) can be decomposed
into the product of a fast and a slow Evans function, Dfast(λ) and Dslow(λ), if the
governing RDE is singularly perturbed. In [11–13], a method, called the NLEP
method, was developed in the context of two-component RDEs by which both
components, and their zeroes, can be determined explicitly. In fact, it was shown
that D(λ) could be written, up to a nonzero constant, as the product of two
transmission functions t1(λ) and t2(λ), where t1(λ) is analytic and corresponds
to Dfast(λ), while t2(λ) is meromorphic and corresponds to Dslow(λ). Equation
(3.1.1) has two slow components (V (ξ, t) and W (ξ, t)) so that one expects, by the
ideas of [12, 13], that there again is one fast transmission function t1(λ) and four
slow-fast transmission functions tij(λ), i, j = 2, 3 – see Section 3.3. One of the
main results of this chapter is the following explicit decomposition of D(λ),

D(λ) = d(λ)Dfast(λ)Dslow(λ) = d(λ) t1(λ) [t22(λ)t33(λ) − t23(λ)t32(λ)] ,

where d(λ) is nonzero and smooth (outside σess) – see also Remark 3.1.2. More-
over, all transmission functions can be determined (to leading order in the asymp-
totically small parameter ε) by an extension of the NLEP method to three-
component systems. In fact, another extension of the NLEP method is necessary:
the 1-pulse solutions to (3.1.1) are of 2-front type – Figure 3.1 – so that the con-
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cept of ‘intermediate transmission functions’ has to be introduced, see Section 3.4.
As a consequence, all slow-fast transmission functions tij(λ) have second order
poles, that are cancelled by the zeroes of t1(λ) – this phenomenon was called the
NLEP paradox in [12, 13] (in which only simple poles appeared).

The major part of this chapter is devoted to analytically computing the zeroes of
the slow Evans function Dslow(λ). In Section 3.4, it is shown for τ, θ = O(1) with
respect to ε, that, to leading order, Dslow(λ) = t22(λ)t33(λ) − t23(λ)t32(λ) has a
zero at

λ = ε2λ̂− = −3
√

2ε2

(

αA2 +
β

D
A

2
D

)

, with A ∈ (0, 1) such that αA2+βA
2
D = γ,

a result that determines the stability of the 1-pulse solution represented in Figure
3.1 – see Theorem 3.4.1. This 1-pulse solution may lose its stability when τ, θ
become O( 1

ε2 ). The stability/bifurcation analysis of the standing 1-pulse solu-
tion, and the associated traveling pulse solution derived in the previous chapter
is the main topic of Section 3.5. Although the expressions that determine the
eigenvalues, which now include new eigenvalues that have appeared from σess,
have become more involved than in the case τ, θ = O(1), the ‘NLEP-machinery’
enables us to explicitly determine the co-dimension 1 regions in parameter space
at which the pulse undergoes a Hopf, saddle-node, or drift (i.e., a bifurcation into
a traveling pulse) bifurcation. In the final section, Section 3.6, the stability of
the 2-pulse (or 4-front) pattern is established, where, for simplicity, we restricted
ourselves to the case τ, θ = O(1).

Combined with Chapter 2, the results of this chapter provide a foundation for
a mathematical analysis of the pulse dynamics generated by (3.1.1) – see [5, 32,
50, 51, 53, 54, 60, 65] and Remark 3.1.1. Due to the singularly perturbed na-
ture of (3.1.1), it exhibits pulse- and/or front-interactions of a semi-strong nature
[15, 16, 47]. Unlike the situation of weak pulse interactions [19, 20, 55, 59], in
which the pulses are assumed to be ‘sufficiently far apart’, so that the pulses to
leading order can be considered as ‘particles’, pulses that undergo semi-strong
interactions typically change shape and even may bifurcate, see also [38, 62].
Note that such an analysis of semi-strong pulse interactions differs from, and is
complementary to, the analysis of [20, 50], in which the pulse interactions are
of a weak nature, but in which it is assumed that the parameters in the system
are such that the pulses are close to a bifurcation (sometimes of co-dimension
≥ 1). The semi-strong approach of [15, 16, 47] allows one to study nontrivial
pulse dynamics (including the bifurcations induced by the interactions [15]), for
parameters that are not necessarily close to a bifurcation value of the limiting
isolated pulses. However, unlike the approach of [20, 50], it is necessary for the
semi-strong analysis to have full control over the existence and stability of the
interacting structures. Therefore, the semi-strong analysis must be preceded by
results such as those in the previous chapter and in the present chapter, while
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the approach of [20, 50] may for a large part be based on assumptions on the
properties of the linearized system associated to the stability of the pulses.

Finally, it should be noted that the multi-front nature of the pulse solutions
to (3.1.1) – Figure 3.1 – imply that instead of for instance considering the semi-
strong interactions of two pulse solutions, one should study the (semi-strong)
interactions of four localized heteroclinic fronts – see for instance the simulations
represented in Figures 2.17 and 2.18 of the previous chapter. A stable 2-pulse
solution of the type depicted in Figure 3.1 is expected to appear as an attracting
fixed point in the system of ODEs that governs the interaction between these four
fronts. This is the subject of Chapter 4.

Remark 3.1.1. Equation (3.1.1) has a particularly simple structure. The slow
components V and W only have linear reaction terms, while the coupling between
the fast component U to the slow components in the fast (U -)equation is only
O(ε) weak. This form of the equation has been proposed in Chapter 2. Certainly
not all versions of (3.1.1) considered in the literature [5, 32, 50, 51, 53, 54, 60]
are of the type considered here. Especially the assumption that the coupling
term ‘ε(αV + βW + γ)’ in the U -equation is O(ε) small, may a priori seem to
be too restrictive. However, it is argued in Chapter 2 that this is not the case.
Moreover, it is shown that the richness of dynamics of the system with weak
coupling is comparable to those studied in the literature. We refer to Chapter 2
for more details on the choices of the parameters.

Remark 3.1.2. The fact that the four slow-fast transmission functions tij(λ),
i, j = 2, 3, appear as a determinant of a 2 × 2-matrix in the expression for the
slow Evans function Dslow(λ) follows by an orthogonalization procedure of Gram-
Schmidt type in a 2-dimensional manifold of slowly growing solutions to the lin-
earized stability problem (see Section 3.3). A similar argument applied to the
linear system associated to the stability of a pulse (or front) solution to an N -
component system with N −1 slow components, yields that Dslow(λ) will be given
by the determinant of an (N−1)×(N−1) matrix of (N−1)2 slow-fast transmission
functions. Moreover, it is shown in Remark 3.4.3 that the 2×2-determinant of our
three-component system reduces to one transmission function t2(λ) = t22(λ) in
the situation in which (3.1.1) approaches a two-component limit (Remark 3.1.3).

Remark 3.1.3. At several places in the text, see especially Remark 3.4.3, Re-
mark 3.5.1, and Lemma 3.6.3, we consider the limit D ≫ 1. This case may be
seen as a two-component limit of (3.1.1), since the W -component of a 1-pulse
solution converges uniformly to W ≡ −1, see (3.2.10) (and the previous chapter).
The results for this two-component limit can be seen as ‘regular limits’ of the
results for the full system. However, it was shown in the previous chapter that
the 2-pulse solutions cannot exist in the two-component model. This is confirmed
by Lemma 3.6.3, in which it is shown that the parameter region of stable 2-pulse
solutions shrinks to zero as D → ∞.
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3.2 Review of existence theory

The existence analysis for various types of pulse solutions was presented in Chap-
ter 2. Here, we summarize the results. Moreover, we also derive some integral
relations, (3.2.18), (3.2.28), and (3.2.35), for the higher order correction terms
of the constructed homoclinic pulses. This information will be needed for the
stability analysis.

3.2.1 Standing 1-pulse solutions

We start with the existence results for standing 1-pulse solutions. For standing
pulse solutions, system (3.1.1) transforms into a 6-dimensional ODE































uξ = p ,
pξ = −u + u3 + ε(αv + βw + γ) ,
vξ = εq ,
qξ = ε(v − u) ,
wξ = ε

D r ,
rξ = ε

D (w − u).

(3.2.1)

This system has three fixed points

P±
ε = (u±

ε , 0, u±
ε , 0, u±

ε , 0), P 0
ε = (u0

ε, 0, u0
ε, 0, u0

ε, 0), (3.2.2)

where u±
ε and u0

ε are given by

u±
ε = ±1 ∓ 1

2
ε (α + β ± γ) + O(ε2), u0

ε = εγ + O(ε2). (3.2.3)

Moreover, for 1-pulse solutions, we can divide the spatial domain into five in-
tervals, three slow intervals and two fast intervals. The fast intervals are given
by

I−f :=

(

−ξ∗ −
1√
ε
,−ξ∗ +

1√
ε

)

and I+
f :=

(

ξ∗ −
1√
ε
, ξ∗ +

1√
ε

)

, (3.2.4)

where ξ∗ is the so-called jumping point. In physical terms this is the half-width
of the pulse under investigation, see Figure 3.1. More mathematically, ξ∗ > 0 is
the point where uh(ξ∗) = 0, given that (uh)ξ(0) = 0, with uh(ξ) the u-component
of the homoclinic pulse solution of (3.2.1). The three slow intervals I±,0

s are

I−s :=
(

−∞,−ξ∗ − 1√
ε

]

, I0
s :=

[

−ξ∗ + 1√
ε
, ξ∗ − 1√

ε

]

,

I+
s :=

[

ξ∗ + 1√
ε
,∞

)

,
(3.2.5)

and they are the complements of the two fast intervals.

The existence theorem for the standing 1-pulse solutions reads
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Theorem 3.2.1. Let ε > 0 be small, and let (α, β, γ,D) be such that

αA2 + βA
2
D = γ + O(

√
ε) . (3.2.6)

has K solutions A ∈ (0, 1) (K ∈ {0, 1, 2}). If K = 0, there are no symmetric or-
bits homoclinic to P−

ε in system (3.2.1). If K > 0, then, for ε small enough, there
are K symmetric homoclinic orbits γh(ξ) to P−

ε , that is, there are orbits γh(ξ) that
consist of five distinct parts, two fast parts where ξ ∈ I±f , in which it is O(ε) close

to a fast reduced heteroclinic orbit (u∓
fast(ξ ± ξ∗), p

∓
fast(ξ ± ξ∗), v∗,±q∗, w∗,±r∗),

with

u±
fast(ξ) = ∓ tanh

(

1

2

√
2ξ

)

, p±fast(ξ) = ∓1

2

√
2sech2

(

1

2

√
2ξ

)

, (3.2.7)

v∗ = −A2 , w∗ = −A
2
D , q∗ = v∗ + 1 , r∗ = w∗ + 1 and A := e−εξ∗ , (3.2.8)

and three slow parts where ξ ∈ I±,0
s , in which (uh(ξ), ph(ξ)) = (±1, 0) +O(ε) and

(vh(ξ), qh(ξ), wh(ξ), rh(ξ)) are given by

vh(ξ) =







2eεξ sinh εξ∗ − 1 in I−s ,
−2e−εξ∗ cosh εξ + 1 in I0

s ,
2e−εξ sinh εξ∗ − 1 in I+

s ,
(3.2.9)

and

wh(ξ) =







2e
ε
D ξ sinh ε

D ξ∗ − 1 in I−s ,
−2e−

ε
D ξ∗ cosh ε

D ξ + 1 in I0
s ,

2e−
ε
D ξ sinh ε

D ξ∗ − 1 in I+
s ,

(3.2.10)

up to O(
√

ε) corrections. The orbits γh(ξ) correspond to stationary 1-pulse solu-
tions

(U(ξ, t), V (ξ, t),W (ξ, t)) ≡ (uh(ξ), vh(ξ), wh(ξ))

of (3.1.1).

Moreover, if |αD| > |β| and sgn(α) 6= sgn(β), then a saddle-node bifurcation
of homoclinic orbits occurs as γ crosses through

γc1(α, β,D) = (−α)−
1

D−1 β
D

D−1

(

D− 1
D−1 − D− D

D−1

)

> 0 for α < 0 < β,

γc2(α, β,D) = α− 1
D−1 (−β)

D
D−1

(

D− D
D−1 − D− 1

D−1

)

< 0 for β < 0 < α.
(3.2.11)

Finally,

Ac(α, β, γc1,c2,D) =

(

−αD

β

)− 1
2

D
D−1

∈ (0, 1) . (3.2.12)
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The PDE (3.1.1) is translation invariant, yielding that the derivative of the
pulse is a solution to the linearized stability problem with eigenvalue λ = 0 [59].
It is useful to label the derivatives of the u-components in the fast fields. Note
that these derivatives are by definition p±fast(ξ), thus

ψ−(ξ) := 1
2

√
2sech2

(

1
2

√
2(ξ + ξ∗)

)

, ψ+(ξ) := 1
2

√
2sech2

(

1
2

√
2(ξ − ξ∗)

)

.(3.2.13)

Observe that ψ+(ξ) is actually − d
dξ (u+

fast(ξ − ξ∗)). However, with this choice of

ψ+(ξ), we have that ψ+(ξ), as well as ψ−(ξ), are strictly positive, and for both
functions we have to leading order

∫

I±
f

ψ±(ξ)dξ = 2 and

∫

I±
f

(ψ±(ξ))2dξ =
2

3

√
2 . (3.2.14)

This completes the review of the existence theory for standing 1-pulse solutions,
as presented in the previous chapter.

For the stability theory, we will also need some information about the second
order correction term of the u-component, u±

h,2(ξ), of the standing 1-pulse in the

fast regions I±f . In particular, we need an integral relation involving these terms.
We differentiate (3.2.1) once with respect to ξ. Also, we scale (vh)ξ(ξ) = ε(ṽh)ξ(ξ)
and (wh)ξ(ξ) = ε(w̃h)ξ(ξ), since these components vary slowly in ξ (and since one
can show that these components cannot be larger than O(ε) – see Section 3.4
and especially Remark 3.4.2, where a similar property is deduced for the slow
components of basis functions associated to small eigenvalues). We obtain







((uh)ξ)ξξ + (uh)ξ(1 − 3u2
h) = ε2(α(ṽh)ξ + β(w̃h)ξ) ,

((ṽh)ξ)ξξ = −ε(uh)ξ + ε2(ṽh)ξ ,

((w̃h)ξ)ξξ = − ε
D2 (uh)ξ + ε2

D2 (w̃h)ξ .

(3.2.15)

For the fast u-component, we may assume a perturbation expansion of the form

u±
h (ξ) = u±

h,0(ξ) + ε2u±
h,2(ξ) + O(ε3) ,

where u±
h,0(ξ) are given in Theorem 3.2.1, in particular, they are translations of

u±
fast(ξ) (3.2.7).

At second order in the fast regions I±f , we find

L−
(

u−
h,2

)

ξ
= α

(

(ṽ−
h )ξ(−ξ∗)

)

+ β
(

(w̃−
h )ξ(−ξ∗)

)

+ 6u−
h,0u

−
h,2(u

−
h,0)ξ ,

L+
(

u+
h,2

)

ξ
= α

(

(ṽ+
h )ξ(ξ∗)

)

+ β
(

(w̃+
h )ξ(ξ∗)

)

+ 6u+
h,0u

+
h,2(u

+
h,0)ξ .

(3.2.16)

Here, L± are given by

L±u := uξξ + (1 − 3(u±
h,0)

2)u , (3.2.17)
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and, up to O(
√

ε) corrections,

(ṽ−
h )ξ(−ξ∗) = 1 − e−2εξ∗ , (ṽ+

h )ξ(ξ∗) = e−2εξ∗ − 1 ,
(w̃−

h )ξ(−ξ∗) = 1
D (1 − e−2 ε

D ξ∗) , (w̃+
h )ξ(ξ∗) = 1

D (e−2 ε
D ξ∗ − 1) ,

where we used (3.2.9) and (3.2.10). Since L±ψ± = 0, we deduce for (3.2.16) by
the Fredholm Alternative or Solvability condition that

∫

I±
f

u±
h,0u

±
h,2

(

ψ±)2
dξ = −1

3

(

α
(

1 − e−2εξ∗
)

+
β

D

(

1 − e−2 ε
D ξ∗

)

)

. (3.2.18)

3.2.2 Traveling 1-pulse solutions

For traveling 1-pulse solutions of (3.1.1), we introduce the co-moving variable
ξtp = ξ − εct. In this co-moving frame we analyze stationary solutions, that is,
we investigate the following system































uξ = p ,
pξ = −u + u3 + ε(αv + βw + γ − cp) ,
vξ = εq ,
qξ = ε(v − u) − ε3cτq ,
wξ = ε

D r ,

rξ = ε
D (w − u) − ε3

D2 cθr ,

(3.2.19)

where we dropped the underscore tp in ξtp. Also, for the dynamics of a travel-
ing 1-pulse solution, we need to distinguish five different regions. They are still
given by I±f , I±,0

s (3.2.4), (3.2.5). However, the point ξ = 0 is now a bit arti-
ficial. For standing pulse solutions we have, by the reversibility symmetry, that
(p(0), q(0), r(0)) = (0, 0, 0), this is not longer true for traveling pulse solutions,
see Chapter 2.

It follows from the existence analysis that we need to rescale τ and θ. More
precisely, τ := 1

ε2 τ̂ , θ := 1
ε2 θ̂ with, τ̂ , θ̂ = O(1), see the previous chapter. The

existence theorem (Theorem 2.3.1 from Chapter 2) for the traveling pulse reads

Theorem 3.2.2. Let ε > 0 be small enough, and let (α, β, γ,D, τ, θ, ε) be such

that τ = τ̂
ε2 , θ = θ̂

ε2 . Moreover, assume that







1
3

√
2c = α

(

s−v

(

e−2ελ+
v ξ∗ − 1

)

− 1
)

+ β
(

s−w

(

e−2ελ+
wξ∗ − 1

)

− 1
)

+ γ ,

− 1
3

√
2c = α

(

s+
v

(

e2ελ−
v ξ∗ − 1

)

− 1
)

+ β
(

s+
w

(

e2ελ−
wξ∗ − 1

)

− 1
)

+ γ
(3.2.20)

has K solution pairs (cj , (ξ∗)j) with cj 6= 0, where λ±
v,w are defined by

λ±
v = 1

2

(

−cτ̂ ±
√

c2τ̂2 + 4
)

, λ±
w = 1

2
1
D

(

− cθ̂
D ±

√

c2θ̂2

D2 + 4

)

, (3.2.21)



88 Chapter 3. Stability

and s±v,w are defined by

s±v = − 2λ±
v

λ±
v −λ∓

v
< 0 , s±w = − 2λ±

w

λ±
w−λ∓

w
< 0 . (3.2.22)

If K = 0, then there are no homoclinic orbits to P−
ε in (3.2.19) with c 6= 0. If

K > 0, there are K homoclinic orbits γtp(ξ) to P−
ε in (3.2.19) that correspond

to traveling 1-pulse solutions of (3.1.1) which travel with speed εc∗j 6= 0, where
c∗j = c∗j (ε) = cj + O(ε).

The homoclinic orbits γtp(ξ) consist of five distinct parts, two fast parts
in which they are O(ε) close to a fast reduced heteroclinic orbits (u±

fast(ξ ∓
ξ∗), p

±
fast(ξ ∓ ξ∗), v±

∗ , q±∗ , w±
∗ , r±∗ ) (3.2.7), with (v±

∗ , q±∗ , w±
∗ , r±∗ ) given by

v±
∗ = s±v

(

e±2ελ∓
v ξ∗ − 1

)

− 1 , q±∗ = λ∓
v (v∗ + 1) ,

w±
∗ = s±w

(

e±2ελ∓
wξ∗ − 1

)

− 1 , r±∗ = λ∓
w(w∗ + 1) ,

(3.2.23)

and three slow parts in which (utp(ξ), ptp(ξ)) = (±1, 0)+O(ε) and (vtp(ξ), qtp(ξ),
wtp(ξ), rtp(ξ)) are given by

vtp(ξ) =











−2s−v eελ+
v ξ sinh (ελ+

v ξ∗) −1 in I−s ,

s−v eελ+
v (ξ−ξ∗) + s+

v eελ−
v (ξ+ξ∗) +1 in I0

s ,

2s+
v eελ−

v ξ sinh (ελ−
v ξ∗) −1 in I+

s ,

(3.2.24)

and

wtp(ξ) =











−2s−weελ+
wξ sinh (ελ+

wξ∗) −1 in I−s ,

s−weελ+
w(ξ−ξ∗) + s+

weελ−
w(ξ+ξ∗) +1 in I0

s ,

2s+
weελ−

wξ sinh (ελ−
wξ∗) −1 in I+

s ,

(3.2.25)

up to O(
√

ε) corrections.

For small speed c, that is, c = δ with 0 < ε ≪ δ ≪ 1, the bifurcation parameter
τ̂ as function of θ̂ is given to leading order by

τ̂tp(θ̂) = 1
α(1−A2+A2 log A2)

(

2
3

√
2 − β θ̂

D

(

1 − A
2
D + A

2
D log A

2
D

))

, (3.2.26)

where A solves (3.2.6). Note that τ̂tp determines the value at which the traveling
pulses bifurcate from the standing pulses, see Section 2.4 and note that we used
a slightly different notation in this Chapter, τ̂tp instead of τ̂∗,0.

For the stability theory of traveling 1-pulse solutions (Section 3.5.3) we also need
some information about the first and second order correction terms of the u-
components in the fast fields I±f . Unlike for the standing pulse solutions, we now
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have O(ε) terms. In the fast fields I±f , the V - and W -components of the pulses
are to leading order constant and determined by the jump conditions (3.2.20).
These jump conditions combined with (3.2.19) yield that in the fast fields I±f the
u-components are given by

(

u±
tp

)

ξξ
= −u±

tp +
(

u±
tp

)3
+ ε

(

∓ 1
3

√
2c − c

(

u±
tp

)

ξ

)

+ O(ε2) .

Next, we expand u±
tp(ξ):

u±
tp(ξ) = u±

tp,0(ξ) + εu±
tp,1(ξ) + ε2u±

tp,2(ξ) + O(ε3) .

To leading order, the ODE is the same as in the case of standing 1-pulse solutions,
and we have

u±
tp,0(ξ) = ∓ tanh

(

1
2

√
2 (ξ ∓ ξ∗)

)

.

The O(ε) terms read

L±u±
tp,1 = ∓c

(

1
3

√
2 − ψ±)

, (3.2.27)

with L± and ψ±(ξ) defined as before (3.2.17), (3.2.13).

Lemma 3.2.3. The first order correction terms u±
tp,1(ξ) of (part of) the homo-

clinic orbit utp(ξ) are even functions around ±ξ∗.

Proof. First notice that the right hand side of (3.2.27) is an even functions
around ±ξ∗. Also, observe that L± conserves the parity of a function, i.e., if u(ξ)
is odd/even with respect to ξ ± ξ∗, so is L±u. Altogether, when we split the first
order correction terms of the u-component in the fast fields up into an even part
and an odd part, i.e., u±

tp,1(ξ) := u±,even
tp,1 (ξ) + u±,odd

tp,1 (ξ), we get
{

L± (

u±,even
tp,1

)

= ∓c
(

1
3

√
2 − ψ±)

,

L±
(

u±,odd
tp,1

)

= 0 .

Recall that we look for bounded solutions at infinity. Therefore, we obtain from
the last equation u±,odd

tp,1 (ξ) = K±ψ±(ξ), but ψ±(ξ) is an even function around

±ξ∗, so K± = 0. Thus u±
tp,1(ξ) := u±,even

tp,1 (ξ) + u±,odd
tp,1 (ξ) = u±,even

tp,1 (ξ). 2

Notice that, by (3.2.14), the solvability condition is fulfilled for u±
tp,1(ξ), and it

gives us no extra information.

Lemma 3.2.3 provides all the information on u±
tp,1(ξ) that we need. Thus, we

now investigate the second order correction term of the u-component, u±
tp,2(ξ).

As in the last section, by looking at the derivative and by using the solvability
condition, we obtain

0 = ∓6
∫

I±
f

u±
tp,0u

±
tp,2(ψ

±)2dξ ∓ 3
∫

I±
f

(u±
tp,1)

2(ψ±)2dξ

+6
∫

I±
f

u±
tp,0u

±
tp,1(u

±
tp,1)ξψ

±dξ − c0

∫

I±
f

(u±
tp,1)ξξψ

±dξ

+2α(vtp)ξ(±ξ∗) + 2β(wtp)ξ(±ξ∗) .

(3.2.28)
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3.2.3 Standing 2-pulse solutions

The three-component model (3.1.1) also supports standing, symmetric 2-pulse so-
lutions. We find them as solutions of (3.2.1). However, we now have to distinguish
nine different intervals instead of five. We have four fast intervals I2,4,6,8

f and five

slow intervals I1,3,5,7,9
s . The fast intervals read

I2,4
f :=

(

−ξ1,2
∗ − 1√

ε
,−ξ1,2

∗ + 1√
ε

)

, I6,8
f :=

(

ξ2,1
∗ − 1√

ε
, ξ2,1

∗ + 1√
ε

)

, (3.2.29)

where ξ1
∗ is the jumping point of the last ‘back’ and ξ2

∗ is the jumping point of the
last ‘front’, so 0 < ξ2

∗ < ξ1
∗ and u2p(ξ

1,2
∗ ) = 0. The five slow intervals are again the

complement of the four fast intervals. For notational convenience, we introduce
A1,2 := e−εξ1,2

∗ such that 0 < A1 < A2 < 1.

In the existence analysis of Section 2.5, we established the following theorem:

Theorem 3.2.4. Let ε > 0 be small enough, and let (α, β, γ,D) be such that

8

<

:

G1(A1, A2) := α(A1 − A2)
2 + β(A

1
D
1 − A

1
D
2 )2 = 0 ,

G2(A1, A2) := α(A2
2 − A2

1) − 2αA1A
−1

2 + β(A
2
D
2 − A

2
D
1 ) − 2βA

1
D
1 A

−
1
D

2 = −2γ ,

(3.2.30)

has K solution pairs (A1, A2) with 0 < A1 < A2 < 1. Then there are K homo-
clinic orbits γ2p(ξ) to P−

ε in (3.2.1) that correspond to symmetric standing 2-pulse
solutions of (3.1.1).

The homoclinic orbits γ2p(ξ) consist of nine distinct parts, four fast parts and
five slow parts. In the fast parts, the orbits γ2p(ξ) are O(ε) close to the fast
reduced heteroclinic orbits

(u−
fast(ξ + ξ1

∗), p
−
fast(ξ + ξ1

∗), v
2
∗, q

2
∗, w

2
∗, r

2
∗) ,

(u+
fast(ξ + ξ2

∗), p
+
fast(ξ + ξ2

∗), v
4
∗, q

4
∗, w

4
∗, r

4
∗) ,

(u−
fast(ξ − ξ2

∗), p
−
fast(ξ − ξ2

∗), v
6
∗, q

6
∗, w

6
∗, r

6
∗) ,

(u+
fast(ξ − ξ1

∗), p
+
fast(ξ − ξ1

∗), v
8
∗, q

8
∗, w

8
∗, r

8
∗) ,

respectively, where u±
fast(ξ), p

±
fast(ξ) are given by (3.2.7) and (vi

∗, q
i
∗, w

i
∗, r

i
∗) , i ∈

{2, 4, 6, 8} are given by

v2
∗ = −A2

1 − A1A
−1
2 + A1A2 , q2

∗ = v2
∗ + 1 ,

w2
∗ = −A

2
D
1 − A

1
D
1 A

− 1
D

2 + A
1
D
1 A

1
D
2 , r2

∗ = w2
∗ + 1 ,

v4
∗ = A2

2 − A1A
−1
2 − A1A2 , q4

∗ = v4
∗ − 1 + 2A1A

−1
2 ,

w4
∗ = A

2
D
2 − A

1
D
1 A

− 1
D

2 − A
1
D
1 A

1
D
2 , r4

∗ = w4
∗ − 1 + 2A

1
D
1 A

− 1
D

2 ,

v6,8
∗ = v4,2

∗ , q6,8
∗ = −q4,2

∗ , w6,8
∗ = w4,2

∗ , r6,8
∗ = −r4,2

∗ .

(3.2.31)
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In the five slow parts, the orbits γ2p(ξ) are given by (u2p(ξ), p2p(ξ)) = (±1, 0) +
O(ε) and
(v2p(ξ), q2p(ξ), w2p(ξ), r2p(ξ)) are given by

v2p(ξ) =























2eεξ
(

sinh
(

εξ1
∗
)

− sinh
(

εξ2
∗
))

− 1 in I1
s ,

−e−ε(ξ+ξ1
∗) − eε(ξ−ξ1

∗) − 2eεξ(sinh (εξ2
∗)) + 1 in I3

s ,

−e−ε(ξ+ξ1
∗) + e−ε(ξ+ξ2

∗) + eε(ξ−ξ2
∗) − eε(ξ−ξ1

∗) − 1 in I5
s ,

−e−ε(ξ+ξ1
∗) − eε(ξ−ξ1

∗) − 2e−εξ(sinh (εξ2
∗)) + 1 in I7

s ,
2e−εξ

(

sinh (εξ1
∗) − sinh (εξ2

∗)
)

− 1 in I9
s ,

(3.2.32)

and

w2p(ξ) =























2e
ε
D ξ

(

sinh
(

ε
D ξ1

∗
)

− sinh
(

ε
D ξ2

∗
))

− 1 in I1
s ,

−e−
ε
D (ξ+ξ1

∗) − e
ε
D (ξ−ξ1

∗) − 2e
ε
D ξ(sinh ( ε

D ξ2
∗)) + 1 in I3

s ,

−e−
ε
D (ξ+ξ1

∗) + e−
ε
D (ξ+ξ2

∗) + e
ε
D (ξ−ξ2

∗) − e
ε
D (ξ−ξ1

∗) − 1 in I5
s ,

−e−
ε
D (ξ+ξ1

∗) − e
ε
D (ξ−ξ1

∗) − 2e−
ε
D ξ(sinh ( ε

D ξ2
∗)) + 1 in I7

s ,
2e−

ε
D ξ

(

sinh ( ε
D ξ1

∗) − sinh ( ε
D ξ2

∗)
)

− 1 in I9
s .

(3.2.33)

up to O(
√

ε) corrections.

The orbits γ2p(ξ) correspond to standing 2-pulse solutions

(U(ξ, t), V (ξ, t),W (ξ, t)) ≡ (u2p(ξ), v2p(ξ), w2p(ξ))

of (3.1.1). Note that a sufficient condition for K to be zero in the above theorem
is sgn(α) = sgn(β), because then G1(A1, A2) 6= 0 (3.2.30).

Just as for the 1-pulse case (see (3.2.13) and (3.2.18)), we introduce

ψ2,4(ξ) := 1
2

√
2sech2

(

1
2

√
2(ξ + ξ1,2

∗ )
)

,

ψ6,8(ξ) := 1
2

√
2sech2

(

1
2

√
2(ξ − ξ2,1

∗ )
)

.
(3.2.34)

Using the solvability conditions, we find the following integral relations for uj
2p,2(ξ),

the second order term of u2p(ξ) in the j-th fast interval

∫

I2
f

u2
2p,0u

2
2p,2 (ψ2)

2
dξ = − 1

3

(

α (ṽ2p)ξ (−ξ1
∗) + β (w̃2p)ξ (−ξ1

∗)
)

,
∫

I4
f

u4
2p,0u

4
2p,2 (ψ4)

2
dξ = 1

3

(

α (ṽ2p)ξ (−ξ2
∗) + β (w̃2p)ξ (−ξ2

∗)
)

,
∫

I6
f

u6
2p,0u

6
2p,2 (ψ6)

2
dξ = − 1

3

(

α (ṽ2p)ξ (ξ2
∗) + β (w̃2p)ξ (ξ2

∗)
)

,
∫

I8
f

u8
2p,0u

8
2p,2 (ψ8)

2
dξ = 1

3

(

α (ṽ2p)ξ (ξ1
∗) + β (w̃2p)ξ (ξ1

∗)
)

.

(3.2.35)

3.3 The linearized stability problem

In this section, we develop a general approach to the stability of pulse solutions in
the three-component system (3.1.1) with two slow components. In the subsequent
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sections, Sections 3.4, 3.5, and 3.6, we will apply this theory on the constructed
pulse solutions of Section 3.2.

In Section 3.3.1, we linearize the PDE around a homoclinic pulse solution. Next,
in Section 3.3.2, we calculate the essential spectrum associated to the various
pulse solutions. Then, in Section 3.3.3, we determine expressions for the point
spectrum, using the Evans function [1, 59]. Finally, in Section 3.3.4, we exploit
the slow-fast structure of the PDE to further decompose the Evans function into
a fast (analytic) part and a slow (meromorphic) part.

Remark 3.3.1. From linear stability we can immediately conclude nonlinear
stability since the operator associated to the linear problem is sectorial (away
from bifurcations). See [35, 59].

3.3.1 Linearizing around a homoclinic pulse

We start by linearizing the PDE (3.1.1) around a homoclinic pulse solution. We
introduce small perturbations u(ξ), v(ξ), and w(ξ) of the pulse solution

U(ξ, t) = uh(ξ, ε) + u(ξ)eλt , V (ξ, t) = vh(ξ, ε) + v(ξ)eλt ,
W (ξ, t) = wh(ξ, ε) + w(ξ)eλt ,

(3.3.1)

where (uh(ξ), vh(ξ), wh(ξ)) are the homoclinic pulse solutions of the existence
analysis. In this section, we linearize around the standing 1-pulse solutions, see
Theorem 3.2.1. The linearization around the 2-pulse solutions (u2p(ξ), v2p(ξ),
w2p(ξ)) is essentially the same, it has the same behavior ‘at infinity’. The lin-
earization around the traveling pulse solution (utp(ξ), vtp(ξ), wtp(ξ)) induces a
slightly different linear operator, see (3.5.18). The results for the linear operator
can be modified easily for the linear operator obtained in the case of traveling
pulse solutions, see Section 3.5.3.

We substitute (3.3.1) into (3.1.1) and linearize to obtain







uξξ + (1 − 3u2
h − λ)u = ε(αv + βw) ,

vξξ = ε2((1 + τλ)v − u) ,

wξξ = ε2

D2 ((1 + θλ)w − u) .

(3.3.2)

We rewrite this system as a linear system in C
6,

φξ(ξ) = M(ξ;λ, ε)φ(ξ) with φ(ξ) = (u(ξ), p(ξ), v(ξ), q(ξ), w(ξ), r(ξ))
t
, (3.3.3)

where M(ξ;λ, ε) is a 6×6 matrix with Tr(M) ≡ 0, and uξ(ξ) = p(ξ), vξ(ξ) = εq(ξ)
and wξ(ξ) = ε

D r(ξ).

In order to analyze system (3.3.3), we first examine the matrix M(ξ;λ, ε) in
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the limit that ξ → ±∞, where we observe that these limits are equal, since the
pulse is homoclinic. We obtain the matrix M∞(λ, ε):

M∞(λ, ε) =
















0 1 0 0 0 0
λ + 2 + 3ε(γ − α − β) + O(ε2) 0 εα 0 εβ 0

0 0 0 ε 0 0
−ε 0 ε(1 + τλ) 0 0 0
0 0 0 0 0 ε

D
− ε

D 0 0 0 ε
D (1 + θλ) 0

















.
(3.3.4)

The squares of the six eigenvalues, Λ2
i , are given to leading order by

Λ2
1,6 = λ + 2 + 3ε(γ − α − β) , Λ2

2,5 = ε2(1 + τλ) , Λ2
3,4 = ε2

D2 (1 + θλ) . (3.3.5)

Here, and in the remainder of this chapter, the first subscript denotes the square
root with positive real part. The eigenvectors Ei of the matrix M∞ associated
to Λi are given to leading order by

E1,6 =
(

1,±
√

λ + 2,−ε2 1
λ+2 ,∓ε 1√

λ+2
,− ε2

D2
1

λ+2 ,∓ ε
D

1√
λ+2

)t

,

E2,5 =
(

− α
λ+2ε,∓ αε2

λ+2

√
1 + τλ, 1,±

√
1 + τλ,O(ε),O(ε)

)t

,

E3,4 =
(

− β
λ+2ε,∓ 1

D
βε2

λ+2

√
1 + θλ,O(ε),O(ε), 1,±

√
1 + θλ

)t

.

(3.3.6)

Remark 3.3.2. In the above eigenvectors, as well as the eigenvectors showing
up in the forthcoming analysis, see (3.4.12), (3.5.3), (3.5.21), we do not state all
components of the eigenvectors explicitly, since for some we only need to know
their asymptotic magnitude.

3.3.2 The essential spectrum

By general theory [35], the essential spectrum associated to the stability of pulse
solutions is equivalent to the spectrum of the stability problem of the background
states u−

ε (3.2.3) under spatially-periodic perturbations. This is equivalent to

σess := {λ ∈ C : ∃j such that Λj ∈ iR}, (3.3.7)

where Λj are the eigenvalues of the matrix M∞, see (3.3.5). It is computationally
more convenient to determine σess by introducing k ∈ R and u, v, w, ω ∈ C by

(U, V,W ) = (u−
ε , u−

ε , u−
ε ) + (u, v, w)eiεkξ+ωt . (3.3.8)

Substituting the above in (3.1.1), we find to leading order

M1





u
v
w



 =





0
0
0



 ,
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with

M1 =

0

@

−ε2k2 − 2 − ω + 3ε(α + β − γ) −εα −εβ

1 −τω − k2 − 1 0
1 0 −θω − D2k2 − 1

1

A .(3.3.9)

Lemma 3.3.1. Let τ, θ = O(1). Then, for ε sufficiently small, the essential
spectrum of the standing pulse solutions homoclinic to P−

ε , lies in the half plane

Σ := {ω : ℜ(ω) < χ} ,

where max
{

−2,− 1
τ ,− 1

θ

}

< χ < 0 to leading order.

Proof. The characteristic polynomial associated to (3.3.9) is given by

Q(ω, k2) =
(

−ε2k2 − 2 − ω + 3ε(α + β − γ)
) (

τω + k2 + 1
)

(

θω + D2k2 + 1
)

− εα
(

θω + D2k2 + 1
)

−εβ
(

τω + k2 + 1
)

.
(3.3.10)

We analyze to leading order the zeroes of this cubic polynomial in k2. They are

ω
(1)
0 = −2 − ε2k2 ≤ −2 , ω

(2)
0 = − 1+k2

τ ≤ − 1
τ , ω

(3)
0 = − 1+D2k2

θ ≤ − 1
θ .(3.3.11)

For the first correction terms of the zeroes, we need to distinguish two cases. Af-
ter a long and tedious calculation one finds that, if the three zeroes are simple to
leading order, the first correction terms are O(ε). If two or three of the zeroes
coincide, then the first correction terms are at most O(

√
ε). Therefore, in both

cases the zeroes lie in the half plane Σ for ε sufficiently small. 2

It is also of interest to observe that, if two of the eigenvalues coincide to leading
order, they can form a complex pair, and the maximum of the imaginary part can

be computed explicitly. For example, if ω
(1)
0 = ω

(2)
0 to leading order and if α > 0,

then it can be computed that

ℑ(ω1,2
1 ) =

√

−α

τ

√
ε

at its maximum. This agrees with the data shown in Figure 3.2 I.

Stationary 1-pulse solutions may undergo bifurcations if τ and θ are O(ε−2).
Although it, a priori, may seem that the correction term may become of leading
order when two or more zeroes coincide, a more detailed analysis yields that this
is not the case. In particular, in this regime, we have the following lemma:

Lemma 3.3.2. Let τ, θ = O(ε−2). Then, for ε sufficiently small, the essential
spectrum of the standing pulse solutions homoclinic to P−

ε , lies in the half plane
Σ, with Σ as given in Lemma 3.3.1.
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I

Figure 3.2: In frame I, the essential spectrum for the standing pulse with O(1)

parameters is depicted, where (α, β, γ,D, τ, θ, ε) = (3, 1, αA2 +βA
2
D , 5, 1, 1, 0.01),

with A = e−1/2. This picture is typical for all τ, θ = O(1). Note that the heights of

the loops are to leading order
√

−α
τ

√
ε,

√

−β
θ

√
ε, respectively, as predicted by the

analysis. In frame Ia, the branch ω(1) is drawn schematically, the arrows and the
numbering indicate the flow for increasing k. In frame II, the essential spectrum
for a traveling pulse is plotted for (α, β, γ,D, τ̂ , θ̂, ε, c) = (3, 1, 2, 5, 1, 1, 0.1, 2). In
frames III, and IV we zoomed in around the interesting regions of II. The arrows
in III indicate the flow of the zeroes for increasing k. From frame IV we observe
that there is a spectral gap. Hence, we can still conclude nonlinear stability from
the linear stability analysis. See Remark 3.3.1.
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Proof. We introduce τ̂ = ε2τ and θ̂ = ε2θ, so that the characteristic polyno-
mial reads

ε4Q(ω, k2) =
(

−ε2k2 − 2 − ω + 3ε(α + β − γ)
) (

τ̂ω + ε2(k2 + 1)
)

(

θ̂ω + ε2(D2k2 + 1)
)

− ε3α
(

θ̂ω + ε2(D2k2 + 1)
)

−ε3β
(

τ̂ω + ε2(k2 + 1)
)

.

To leading order, the zeroes are given by

ω
(1)
0 = −2 − ε2k2 ≤ −2 , ω

(2)
0 = − ε2

τ̂ (1 + k2) ≤ − 1
τ ,

ω
(3)
0 = − ε2

θ̂
(1 + D2k2) ≤ − 1

θ .
(3.3.12)

When the zeroes are simple, the first correction terms of ω
(2,3)
0 are of O(ε3) with

respect to the scaled variables. If two or more of the zeroes coincide, the first
correction term may be of O(ε

√
ε) size. However, a detailed analysis shows that

this only occurs for |k| ≫ 1. For small k it is found that (3.3.12) is correct up
to O(ε3) terms. Therefore, in all cases the zeroes lie in the half plane Σ for ε
sufficiently small. 2

Finally, we investigate the essential spectrum of the traveling pulse solutions.
Because we work in a co-moving frame, the matrix M1 (3.3.9) possesses some ex-
tra diagonal terms. However, given the asymptotic magnitude of c, these diagonal
terms have no leading order influence on the stability result. Therefore, we find

Lemma 3.3.3. Let τ, θ = O(ε−2). Then, for ε sufficiently small, the essential
spectrum of the traveling pulse solutions homoclinic to P−

ε , with speed εc, lies in
the half plane Σ, with Σ as given in Lemma 3.3.1.

See also Figure 3.2, in which the essential spectrum is plotted for several pa-
rameter combinations.

In conclusion, we have shown that, in all three cases the essential spectrum is
completely contained in the left half plane. Therefore, small perturbations do not
lead to instabilities of the background states. The stability of the pulse solutions
is determined by the discrete eigenvalues.

Remark 3.3.3. The essential spectrum associated to pulse solutions homoclinic
to P+

ε , i.e., linearization around the other background state (u+
ε , u+

ε , u+
ε ), is effec-

tively the same. That is, the eigenvalues are the same to leading order, and the
differences at O(ε) do not structurally affect the main results. This also implies
that we do not have to determine the possible absolute spectrum associated to
the intermediate state uh(ξ) = +1 (ξ ∈ I0

s ) for the pulse solution homoclinic to
P−

ε , because this absolute spectrum is contained in the essential spectrum and it
is thus contained in the left half plane [59].
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3.3.3 The construction of the Evans function

To determine the point spectrum of the linearized operator or, equivalently, of
the matrix M(ξ;λ, ε) (3.3.3) [59], we construct an Evans function.

The matrix M(ξ;λ, ε) converges exponentially to the constant coefficient ma-
trix M∞(λ, ε) as |ξ| → ∞, see (3.3.4). This matrix M∞ has six eigenvalues
Λi(λ, ε) (3.3.5). If we assume that these eigenvalues Λi(λ, ε) are simple and that
λ lies outside a small δ-neighborhood of σess, say

λ ∈ Cδ := C\B(σess, δ), (3.3.13)

for some 0 < δ ≪ 1, then the eigenvectors Ei(λ, ε) are analytic functions in λ.
For simplicity we furthermore assume that the Λi(λ, ε) can be ordered:

ℜ(Λi) > ℜ(Λj) for i < j. (3.3.14)

Note that this is not a restriction for λ ∈ Cδ, since we can always relabel the
eigenvalues in such a fashion that the above holds. See also Section 3.4 in which
ℜ(Λi) > ℜ(Λj) for all i < j (3.4.11), and Section 3.5 in which ℜ(Λ2) and ℜ(Λ3)
can change order.

The set {Ei(λ, ε)eΛi(λ,ε)ξ, i ∈ {1, 2, . . . , 6}} is a basis for the solution space of
the asymptotic equation

φξ(ξ) = M∞(λ, ε)φ(ξ) .

The first, respectively last, three basis-elements span the space of solutions that
go to zero as ξ → −∞, respectively as ξ → ∞.

We know that we can find six solutions φ−
i (ξ) of (3.3.3) which have the asymptotic

behavior

φ−
i (ξ, λ; ε) = Eie

Λiξ , as ξ → −∞ , (3.3.15)

for i ∈ {1, 2, . . . , 6}, and six (different) solutions φ+
i (ξ) such that

φ+
i (ξ, λ; ε) = Eie

Λiξ , as ξ → ∞ , (3.3.16)

for i ∈ {1, 2, . . . , 6} [8]. Note that only φ−
1 (ξ) and φ+

6 (ξ) are determined uniquely,
and that φ−

i (ξ) is bounded at −∞ for i = 1, 2, 3. We define the space Φ−(ξ) by

Φ−(ξ;λ, ε) := span{φ−
1 (ξ), φ−

2 (ξ), φ−
3 (ξ)} . (3.3.17)

Likewise, we define the space of bounded solutions at +∞ by

Φ+(ξ;λ, ε) := span{φ+
4 (ξ), φ+

5 (ξ), φ+
6 (ξ)} , (3.3.18)
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If λ is not an eigenvalue, the space Φ−(ξ)∪Φ+(ξ) spans all bounded solutions of
(3.3.3). Therefore, the Evans function is defined by

D(λ, ε) = e−
R ξ
0

TrM(s;λ,ε)ds det
[

φ−
1 (ξ, λ; ε), . . . , φ−

3 (ξ, λ; ε),

φ+
4 (ξ, λ; ε), . . . , φ+

6 (ξ, λ; ε)
]

.
(3.3.19)

One can prove using Abel’s identity that the Evans function D(λ, ε) is indeed
independent of ξ. Note that TrM(s;λ, ε) ≡ 0 in the case of stationary pulse
solutions. The next theorem follows from the general theory developed in [1].

Theorem 3.3.4. The Evans function D(λ; ε) is an analytic function on Cδ; and
D(λ, ε) = 0 if and only if λ is an eigenvalue of (3.3.3). Moreover, the order of a
zero is equal to the algebraic multiplicity of the eigenvalue.

3.3.4 The slow-fast decomposition of D(λ)

For simplicity, we focus in this section on the stationary 1-pulse solutions. The
theory developed here can be extended directly to the traveling pulse solutions
and the 2-pulse solutions. 1-pulse solutions make two excursions through the fast
fields I±f , with a slow field I0

s in between. In this section, we consider this whole

interval, that is, I−f ∪ I0
s ∪ I+

f , to be the ‘domain of transition’ – in between the
behavior as ξ → −∞ and that as ξ → ∞. In Section 3.4.2, we will address the
dynamics inside I0

s .

By the slow-fast nature of (3.1.1), we expect to be able to decouple the Evans
function into a slow and a fast component D(λ, ε) = Dfast(λ, ε)Dslow(λ, ε) [1, 12,
13, 30].

Lemma 3.3.5. Let λ ∈ Cδ, then there exists a uniquely determined transmission
function t1(λ, ε) that is analytic in λ such that

lim
ξ→∞

φ−
1 (ξ;λ, ε)e−Λ1(λ,ε)ξ = t1(λ, ε)E1(λ, ε) . (3.3.20)

Lemma 3.3.6. Let λ ∈ Cδ be such that t1(λ, ε) 6= 0. There is a 2-dimensional
manifold Φ−

s (ξ;λ, ε) = span{φ−
s,2(ξ;λ, ε), φ−

s,3(ξ;λ, ε)} in which φ−
s,2(ξ;λ, ε) is

uniquely determined, such that

lim
ξ→−∞

φ−
s,i(ξ;λ, ε)e−Λi(λ,ε)ξ = Ei(λ, ε) , i ∈ {2, 3} , (3.3.21)

and

lim
ξ→∞

φ−
s,i(ξ;λ, ε)e−Λ1(λ,ε)ξ = (0, 0, 0, 0, 0, 0)t , i ∈ {2, 3} . (3.3.22)
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The proof of Lemma 3.3.5 is standard, see [1]. The proof of Lemma 3.3.6 is sim-
ilar to the proof of Lemma 3.7 in [12], however, here the system is 6-dimensional
whereas it is only 4-dimensional in [12].

Proof. By (3.3.15) we only need to prove (3.3.22) and the uniqueness. Define
the 5-dimensional space Φ+

s (ξ) of solutions φ(ξ) of (3.3.3) by

lim
ξ→∞

φ(ξ)e−Λ1(λ,ε)ξ = (0, 0, 0, 0, 0, 0)t.

The dimension of Φ+
s (ξ)∩Φ−(ξ;λ, ε) is at least two (and at most three). However,

since φ−
1 (ξ;λ, ε) is an element of Φ−(ξ;λ, ε), but, by assumption, not of Φ+

s (ξ),
the intersection must be transversal, and its dimension is thus two. Moreover,
φ−

s,2(ξ) ∈ Φ−
s (ξ) ∩ Φ−(ξ) is determined uniquely by (3.3.21) and (3.3.22). 2.

We can now introduce the four ‘slow-fast’ transmission functions tij(λ, ε), i, j =
2, 3 by

lim
ξ→∞

φ−
s,i(ξ)e

−Λ2(λ,ε)ξ = ti2(λ, ε)E2(λ, ε) , i = 2, 3 , (3.3.23)

and

lim
ξ→∞

(

φ−
s,i(ξ) − ti2(λ, ε)E2(λ, ε)eΛ2(λ,ε)ξ

)

e−Λ3(λ,ε)ξ = ti3(λ, ε)E3(λ, ε) .(3.3.24)

Note that t2j(λ, ε) are determined uniquely, while t3j(λ, ε) depend on the choice

of φ−
s,3(ξ). However, if t22(λ, ε) 6= 0, φ−

s,3(ξ) can be chosen uniquely by φ̃−
s,3(ξ) :=

φ−
s,3(ξ) − t32

t22
φ−

s,2(ξ), so that

limξ→∞ φ̃−
s,3(ξ)e

−Λ2ξ = (0, 0, 0, 0, 0, 0)t ,

limξ→∞ φ̃−
s,3(ξ)e

−Λ3ξ =
(

t33 − t23t32
t22

)

E3 .
(3.3.25)

Hence, since D(λ, ε) does not depend on ξ,

D(λ, ε) = det
[

φ−
1 (ξ), φ−

s,2(ξ), φ̃
−
s,3(ξ), φ

+
4 (ξ), φ+

5 (ξ), φ+
6 (ξ)

]

= limξ→∞ det
[

φ−
1 e−Λ1ξ, φ−

s,2e
−Λ2ξ, φ̃−

s,3e
−Λ3ξ,

φ+
4 e−Λ4ξ, φ+

5 e−Λ5ξ, φ+
6 e−Λ6ξ

]

= det
[

t1E1, t22E2,
(

t33 − t23t32
t22

)

E3, E4, E5, E6

]

= t1(t22t33 − t23t32) det [E1, E2, E3, E4, E5, E6] .

(3.3.26)

This yields the following corollary:

Corollary 3.3.7. The Evans function can be decomposed into D(λ, ε) = d(λ, ε)
Dfast(λ, ε)Dslow(λ, ε), where d(λ, ε) 6= 0, Dfast = t1, and Dslow = t22t33 − t23t32.
The zeroes of D(λ, ε) are therefore given by the solutions of t1(t22t33−t23t32) = 0.
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Combining this corollary with Theorem 3.3.4 yields that the eigenvalues of
(3.3.3) coincide with the zeroes of the fast transmission function t1 and of the
determinant t22t33 − t23t32 of the slow-fast transmission functions.

Proof. The statement of the corollary holds true in the case t22 6= 0 by the
above calculations. Hence, here, we need only to consider the case t22 = 0, since
the rescaling of φ−

s,3(ξ) is undefined for t22 = 0. However, after interchanging the

role of φ−
s,2(ξ) with φ−

s,3(ξ), no rescaling is necessary anymore and the zeroes of
the Evans function are determined by the zeroes of t1t23t32. This agrees with
(3.3.26). 2

3.4 Stability of the standing 1-pulse solution for
τ, θ = O(1)

In this section, we analyze the linear stability of standing 1-pulse solutions in
the regime in which the bifurcation parameters τ and θ are O(1). We deter-
mine the zeroes of the fast transmission function t1 explicitly. Next, we use the
2-front structure of the pulse to deduce expressions for the slow-fast transmis-
sion functions tij . Although our analysis is restricted to the problem at hand, our
methods can be directly extended to the stability analysis of multi-pulse, or multi-
front patterns in singularly perturbed N -component systems, see also Section 3.6.

The main stability result reads

Theorem 3.4.1. For any τ, θ = O(1), the standing 1-pulse solutions of (3.1.1),
determined by the solution(s) A of (3.2.6) and given by the homoclinic orbits γh(ξ)
(see Theorem 3.2.1) are stable if and only if

αA2 +
β

D
A

2
D > 0 . (3.4.1)

Note that αA2 + β
D A

2
D = 0 and A ∈ (0, 1) if and only if A = Ac (3.2.12), i.e.,

αA2 + β
D A

2
D = 0 is associated to the saddle-node bifurcation of homoclinic orbits

(Theorem 3.2.1).

Theorem 3.4.1 is proved in the following three subsections. A direct consequence
of this theorem and Lemma 2.2.2 is the following corollary, which lists for given
values of the parameters α, β, and γ, the number K of standing 1-pulse solutions,
as well as the stability type of these solutions. In this manner, the corollary is a
convenient user’s guide to the theorem.

Corollary 3.4.2. Let (α, β,D) be such that |αD| > |β|. Then, for ε > 0 small
enough, and γc1,c2, Ac as given in (3.2.11) and (3.2.12), respectively, we have
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(a1a) if sgn(α) = sgn(β) = sgn(γ) = 1, and γ < α + β, then K = 1 and
γ−

h,1(ξ) is stable.

(a1b) if sgn(α) = sgn(β) = sgn(γ) = −1, and γ > α + β, then K = 1 and
γ−

h,1(ξ) is unstable.

(b2) if sgn(α) = −1 = −sgn(β), α+β > 0, and 0 < γ < α+β, then K = 1
and γ−

h,1(ξ) is stable (see Figure 3.3).

(b3) if sgn(α) = −1 = −sgn(β), α + β > 0, and α + β < γ < γc1, then
K = 2 and γ−

h,1(ξ) (0 < A < Ac) is stable, while γ−
h,2(ξ) (Ac < A < 1)

is unstable (see Figure 3.3).

(c2) if sgn(α) = −1 = −sgn(β), α+β < 0, and α+β < γ < 0, then K = 1
and γ−

h,1(ξ) is unstable.

(c3) if sgn(α) = −1 = −sgn(β), α + β < 0, and 0 < γ < γc1, then K = 2
and γ−

h,1(ξ) (0 < A < Ac) is stable, while γ−
h,2(ξ) (Ac < A < 1) is

unstable.

(d2) if sgn(α) = 1 = −sgn(β), α + β > 0, and γc2 < γ < 0, then K = 2
and γ−

h,1(ξ) (0 < A < Ac) is unstable, while γ−
h,2(ξ) (Ac < A < 1) is

stable.
(d3) if sgn(α) = 1 = −sgn(β), α + β > 0, and 0 < γ < α + β, then K = 1

and γ−
h,1(ξ) is stable.

(e2) if sgn(α) = 1 = −sgn(β), α+β < 0, and γc2 < γ < α+β, then K = 2
and γ−

h,1(ξ) (0 < A < Ac) is unstable, while γ−
h,2(ξ) (Ac < A < 1) is

stable.
(e3) if sgn(α) = 1 = −sgn(β), α + β < 0, and α + β < γ < 0, then K = 1

and γ−
h,1(ξ) is unstable.

In the remaining cases we have K = 0 .

Note that the labelling of the different cases corresponds to the labelling of the
same cases in Lemma 2.2.2. Observe that in the cases that K = 2 sometimes the
‘wide’ pulse solutions are stable ((b3),(c3)), while in the other cases ((d2),(e2))
the ‘narrow’ pulse solutions are stable.

3.4.1 The transmission function t1 and the fast eigenvalues

In this section, we determine the zeroes of the fast transmission function t1(λ, ε).
For this purpose, we need to examine the linearized stability problem of the scalar
fast reduced system;

Lu − λhu := uξξ + (1 − 3(uh)2 − λh)u = 0 , (3.4.2)

with uh(ξ) the constructed homoclinic pulse solution, see Theorem 3.2.1. Observe
that this eigenvalue problem, and thus its eigenvalues, still depends on ε.

In Lemma 3.4.3 below we prove that the spectrum of the above problem is to
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0

−λ̂−

Ac

γ

γc1

Ac

α + β

A

A

Figure 3.3: Corollary 3.4.2 cases b2) and b3). The left figure shows −λ̂−, the
dominant eigenvalue, as function of A, see (3.4.20). The right figure shows the
stability of the standing pulse as function of γ. The solid line corresponds to a
stable standing 1-pulse, the dashed-dotted line corresponds to an unstable stand-
ing 1-pulse. Note that at γ = γc1 the system undergoes a saddle-node bifurcation,
in which a stable and unstable standing pulse merge and disappear.

leading order determined by the spectra of the following problems

L±u − λfastu := uξξ + (1 − 3(u±
fast(ξ ∓ ξ∗))

2 − λfast)u = 0 . (3.4.3)

The point spectra coincide, are independent of ε, and consist of the points (λfast)2
= − 3

2 and (λfast)1 = 0, and the essential spectrum consists of the real values of
λfast satisfying λfast ≤ −2. This may be seen by rescaling ξ via the independent
variable η± := ∓ 1

2

√
2(ξ ∓ ξ∗), so that equation (3.4.3) becomes

u(η±η±) +

(

6

cosh2 η± − (2λfast + 4)

)

u = 0 . (3.4.4)

This is a Schrödinger or Sturm-Liouville equation, which has a well-known spec-
trum, see Section 1.3.2 or [12, 14].

Lemma 3.4.3. If max{τ, θ} > 2
3 , then the linearized stability problem (3.3.2) has

eigenvalues O(ε) close to the two eigenvalues (λfast)1,2 = 0,− 3
2 of the linearized

stability problem associated to the fast reduced system (3.4.3). If max{τ, θ} < 2
3 ,

then the linearized stability problem (3.3.2) has only eigenvalues that are O(ε)
close to the eigenvalue (λfast)1 = 0.

The difference between the two cases comes from the location of the essen-
tial spectrum. If one of the two bifurcation parameters is too small, that is, less
than 2

3 , then the stable fast reduced eigenvalue (λfast)2 = − 3
2 lies ‘inside’ the es-

sential spectrum, see Lemma 3.3.1. Note that we do not consider the case where
max{τ, θ} is asymptotically close to 2

3 in which the eigenvalue near − 3
2 disappears

into σess.
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Proof. Without loss of generality, we can assume that u(ξ) = O(1) strictly
in (3.3.2). Furthermore, we can assume that v(ξ), w(ξ) = O(1) or smaller, be-
cause when ‖v(ξ)‖ ≫ 1 or ‖w(ξ)‖ ≫ 1, it follows from the equations for v(ξ)
and w(ξ) in (3.3.2) that the only solutions that are bounded as ξ goes to ±∞ are
v(ξ), w(ξ) ≡ 0. We can solve the first equation of (3.3.2), formally we obtain

u(ξ) = ε(L − λ)−1(αv(ξ) + βw(ξ)) .

If we now assume that |λ − (λfast)1,2| = O(1), then ‖(L − λ)−1‖ = O(1) and
therefore ‖u(ξ)‖ = ε‖(L−λ)−1‖‖(αv(ξ)+βw(ξ))‖ = O(ε). However, we assumed
u(ξ) = O(1). Therefore, we must have |λ − (λfast)1,2| = O(ε). 2

From this proposition, we conclude that also the possible zeroes of the trans-
mission function t1(λ) are asymptotically close to 0 or − 3

2 . Specifically, we have

Lemma 3.4.4. The zeroes of the transmission function t1(λ) are determined up
to O(ε3) corrections by the eigenvalues of (3.4.3).

Since the details of are essentially the same as that of similar statements in
[12, 13], see especially Section 6 of [12], we only state the main arguments.

Proof. It follows from the definition (3.3.20) of t1(λ) and the slow-fast struc-
ture of (3.3.2) that t1(λ) can only be zero if the v, w-components of φ−

1 (ξ) are
O(ε2) for all ξ ∈ R. (Recall that the v, w-components of E1 are O(ε2) (3.3.6)).

Thus the zeroes of t1(λ̂) are determined by the scalar equation (3.4.2) up to O(ε3)
corrections. 2

The zeroes of t1(λ) near − 3
2 correspond to stable eigenvalues. However, we cannot

yet conclude anything about (the signs of) the zeroes near 0. Therefore, we zoom

in around λ = 0. That is, we rescale λ by λ = ε2λ̂. Note that if we rescale λ
with a power of ε less than 2, then it follows by the application of a solvability
condition that the rescaled λ must be zero to leading order.

Lemma 3.4.5. Transmission function t1(λ) has two zeroes λ = ε2λ̂±
f near the

origin that coincide to leading order and are given by

λ̂±
f = λ̂f + O(ε) :=

3

2

√
2

(

α(1 − A2) +
β

D
(1 − A2/D)

)

+ O(ε) . (3.4.5)

Proof. After the rescaling of λ, the stability problem for the fast transmission
function reads

uξξ + (1 − 3u2
h)u = ε2λ̂u ,

see (3.4.2).
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We expand u(ξ) = u0(ξ)+ε2u2(ξ)+O(ε3), and uh(ξ) = uh,0(ξ)+ε2uh,2(ξ)+O(ε3).
To leading order, we obtain in the fast fields

L±u±
0 := (u±

0 )ξξ +
(

1 − 3(u±
h,0)

2
)

u±
0 = 0 , (3.4.6)

where u±
0 (ξ), respectively u±

h,0(ξ), are the leading order terms of u(ξ), respectively

uh(ξ), in the fast fields I±f . It follows by the translation invariance of (3.1.1) that
the solutions of (3.4.6) are given by

u±
0 (ξ) = ∓C±ψ±(ξ) , (3.4.7)

where C± ∈ R denote two, as yet unknown, constants, and ψ±(ξ) denote the
derivatives of u±

h,0(ξ) (3.2.13). In the fast fields I±f the O(ε2) terms read

L±u±
2 = λ̂u±

0 + 6u±
h,0u

±
h,2u

±
0 . (3.4.8)

Next, we substitute (3.4.7) into (3.4.8), and impose the solvability condition on
the resulting inhomogeneous equation, to derive that

∓λ̂C±
∫

I±
f

(ψ±)2dξ ∓ 6C±
∫

I±
f

u±
h,0u

±
h,2(ψ

±)2dξ = 0 .

Finally, we use (3.2.14) and the solvability condition of the derivative of the pulse
solution (3.2.18) to obtain to leading order

λ̂±
f = λ̂f =

−6
R

I
±
f

u±
h,0u±

h,2(ψ
±)2dξ

R

I
±
f

(ψ±)2dξ
= 3

2

√
2

(

α(1 − A2) + β
D (1 − A2/D)

)

. (3.4.9)

This completes the proof. 2

3.4.2 The slow basis functions φ2,3

In this section, we first return to the linearized stability problem (3.3.2). Based

on the above insights, we introduce λ = ε2λ̂, where λ̂ = O(1) with respect to
ε. Also, it will be clear from the analysis that the v- and w-components of the
associated eigenvalues must be O(ε). Hence, we scale these as v(ξ) = εṽ(ξ) and
w(ξ) = εw̃(ξ) (see also Remark 3.4.2). The linear stability problem now reads











uξξ + (1 − 3u2
h)u = ε2(λ̂u + αṽ + βw̃) ,

ṽξξ = −εu + ε2ṽ + ε4τ λ̂ṽ ,

w̃ξξ = − ε
D2 u + ε2

D2 w̃ + ε4

D2 θλ̂w̃ .

(3.4.10)

The matrix M∞ for this problem differs from that in (3.3.4). Therefore, the
leading order terms of the eigenvalues Λi and of the associated eigenvectors Ei of
M∞ have changed. The squares of the eigenvalues are given by

Λ2
1,6 = 2 + O(ε) , Λ2

2,5 = ε2 + O(ε3) , Λ2
3,4 = ε2

D2 + O(ε3) , (3.4.11)
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and the associated eigenvectors by

E1,6 =





















1

±
√

2

− 1
2ε

∓ 1
2

√
2

− 1
2

1
D2 ε

∓ 1
2

√
2 1

D





















, E2,5 =





















−α
2 ε2

O(ε3)

1

±1

O(ε)

O(ε)





















, E3,4 =





















−β
2 ε2

O(ε3)

O(ε)

O(ε)

1

±1





















. (3.4.12)

Despite the changes in the eigenvalues and eigenvectors, the analysis of the pre-
vious sections, which is a leading order analysis, remains valid. For example, in
the fast fields I±f the leading order behavior of the u-component remains given

by u±
0 (ξ) = ∓C±ψ±(ξ), see (3.4.7).

Now, we derive explicit expressions (see (3.4.15) and (3.4.16) below) for the slow
basis functions φ−

s,j (j = 2, 3) in the slow regimes I−s , I0
s , and I+

s , where we also
recall Lemma 3.3.6. The main step in the analysis we present is to show that the
slow basis functions φ−

s,2 and φ−
s,3 do not exhibit fast growth in the intermediate

regime I−f ∪ I0
s ∪ I+

f , and hence in particular not in I0
s .

A priori, these basis functions could have fast growth in this intermediate regime.
In particular, there exist intermediate transmission functions sji such that, in this
regime, the basis functions are in principle, to leading order, given by

φ−
s,j(ξ) =

6
∑

i=1

sjiEie
Λi(ξ+ξ∗) for j ∈ {2, 3} ,

However, as we now show, the fast components (i = 1 and i = 6) are actually
absent. This demonstration is carried out in two steps. First, we study a closely
related problem with a modified uh and show that in the modified system the fast
growing i = 1 component is not present. Then, we use this to show that neither
of the fast components (i = 1, 6) are present in the original problem.

In particular, we modify uh(ξ) in M(ξ) (3.3.3) in such a fashion that the solutions
are identical to the original solutions for ξ ≤ ξ∗ − 1√

ε
, and that the u-components

of the solutions do not jump back to u = −1 (to leading order). The fact that
ûh(ξ) → 1 as ξ → ∞ while uh(ξ) → −1 does not have a leading order effect on the
eigenvalues Λ̂i and eigenvectors Êi of M̂∞, i.e., to leading order Λ̂i = Λi (3.4.11),
and Êi = Ei (3.4.12). The analysis of the preceding section is still applicable to
the linear system governed by the modified matrix M̂, so that, by the equivalent
of Lemma 3.3.6, we obtain

φ̂−
j (ξ) =

6
∑

i=2

ŝjiEie
Λi(ξ+ξ∗) for j ∈ {2, 3} ,
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with φ̂−
j (ξ) the slow basis functions of the modified system. Thus, the modified

system does not have a fast growing component (i = 1).

Since Λ1,6 = O(1) (and Λ2,3,4,5 = O(ε)), E6e
Λ6(ξ+ξ∗) is exponentially small for

ξ ∈ I0
s and ξ = O(1). So, to leading order we have

φ−
s,j(ξ) = sj1E1e

Λ1(ξ+ξ∗)+
∑5

i=2 sjiEie
Λi(ξ+ξ∗) for j ∈ {2, 3} ,

φ̂−
j (ξ) =

∑5
i=2 ŝjiEie

Λi(ξ+ξ∗) for j ∈ {2, 3} .

By construction, we also have that φ̂−
2,3(ξ) = φ−

s,2,3(ξ) for ξ ≤ ξ∗ − 1√
ε
, so that we

deduce that sj1 is exponentially small, and sji = ŝji for i ∈ {2, 3, 4, 5} to leading
order. We conclude that the slow functions φ−

s,2(ξ) and φ−
s,3(ξ) do not exhibit fast

growth in the intermediate slow regime I0
s .

Thus, we may now express the leading order behavior of the ṽ- and w̃-components
of the slow functions φ−

s,2(ξ) and φ−
s,3(ξ) (Lemma 3.3.6) – which we for simplicity

denote by φ2 and φ3 – in the slow fields in terms of the transmission functions
sij(λ) and tij(λ). Based on the above conclusion regarding the absence of fast
growth in the slow regime, we have

φ2(ξ) =



















E2e
Λ2(ξ+ξ∗) in I−s ,

s22E2e
Λ2ξ + s23E3e

Λ3ξ + s24E4e
Λ4ξ + s25E5e

Λ5ξ in I0
s ,

t22E2e
Λ2(ξ−ξ∗) + t23E3e

Λ3(ξ−ξ∗) + t24E4e
Λ4(ξ−ξ∗)

+t25E5e
Λ5(ξ−ξ∗) in I+

s ,

(3.4.13)

and

φ3(ξ) =



















E3e
Λ3(ξ+ξ∗) in I−s ,

s32E2e
Λ2ξ + s33E3e

Λ3ξ + s34E4e
Λ4ξ + s35E5e

Λ5ξ in I0
s ,

t32E2e
Λ2(ξ−ξ∗) + t33E3e

Λ3(ξ−ξ∗) + t34E4e
Λ4(ξ−ξ∗)

+t35E5e
Λ5(ξ−ξ∗) in I+

s .

(3.4.14)

Note that φ2(ξ) = φ−
s,2(ξ) is determined uniquely (Lemma 3.3.6); and φ3(ξ) has

been chosen such that it does not have a component that decays as eΛ2ξ for
ξ ∈ I−s , see Figure 3.4. Finally, we substitute the eigenvalues Λi (3.4.11), and
the components of the eigenvectors Ei (3.4.12) into the ṽ- and w̃-components of
φ2,3(ξ). To leading order, we get

φṽ
2(ξ) =











eε(ξ+ξ∗) in I−s ,

s22e
εξ + s25e

−εξ in I0
s ,

t22e
ε(ξ−ξ∗) + t24E

ṽ
4e−

ε
D (ξ−ξ∗) + t25e

−ε(ξ−ξ∗) in I+
s ,

φw̃
2 (ξ) =











0 in I−s ,

s23e
ε
D ξ + s24e

− ε
D ξ in I0

s ,

t22E
w̃
2 eε(ξ−ξ∗) + t23e

ε
D (ξ−ξ∗) + t24e

− ε
D (ξ−ξ∗) in I+

s ,

(3.4.15)
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Figure 3.4: Examples of the two solutions φ2,3(ξ). We have chosen the parameters
in such a fashion that ξ∗ = 90. Moreover, ε = 0.01 and D = 2. The jumps in the
derivatives, produced by the change of the u-component during the jumps through
the fast fields, are chosen as follows (C−

2 , C+
2 , C−

3 , C+
3 ) = (0.5, 1, 0.8, 5). Note that

by this choice, we have t22 = 4.02, t23 = −0.11, t32 = 0.16, and t33 = 3.98.

and

φṽ
3(ξ) =











0 in I−s ,

s32e
εξ + s35e

−εξ in I0
s ,

t32e
ε(ξ−ξ∗) + t34E

ṽ
4e−

ε
D (ξ−ξ∗) + t35e

−ε(ξ−ξ∗) in I+
s ,

φw̃
3 (ξ) =











e
ε
D (ξ+ξ∗) in I−s ,

s33e
ε
D ξ + s34e

− ε
D ξ in I0

s ,

t32E
w̃
2 eε(ξ−ξ∗) + t33e

ε
D (ξ−ξ∗) + t34e

− ε
D (ξ−ξ∗) in I+

s .

(3.4.16)

These explicit expressions will be used in the next section to calculate the trans-
mission functions sij and tij .

Remark 3.4.1. Note that although Eṽ
4 = O(ε), the term with t24 in φṽ

2(ξ) in
(3.4.15) may dominate the other decaying term (the one with t25) in I+

s since
Λ4 = − ε

D + O(ε2) > Λ5 = −ε + O(ε2). Hence, this term has to be taken into
account. By the same ordering argument it follows that the term with t23E

ṽ
3 is

always of higher order compared to the t22 term and thus cannot have a leading
order effect. Likewise, t22E

w̃
2 = O(ε) appears in φw̃

2 (ξ), while t25E
w̃
5 does not.

The same argument can be applied to φ3(ξ) (3.4.16).

3.4.3 The slow-fast transmission functions tij

In this section, we complete the proof of Theorem 3.4.1. In particular, we first
calculate the slow-fast transmission functions tij(λ̂), showing that they are mero-

morphic, and then compute the zeroes and poles of Dslow(λ̂) (Corollary 3.3.7),

showing that the double eigenvalue λ̂f (3.4.5) is exactly a pole of order two of
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Dslow(λ̂). These results are given in Lemma 3.4.6 below, and then Theorem 3.4.1
follows directly from it.

Lemma 3.4.6. The slow-fast transmission functions tij(λ̂) are to leading order
given by

t22 = 1
R2

(

A−2R2 − 2αA−2R − αS
)

,
t23 = − α

DR2

(

(A−2 + A−2/D)R + S
)

,

t32 = − β
R2

(

(A−2 + A−2/D)R + S
)

,
t33 = 1

DR2

(

DA−2/DR2 − 2βA−2/DR − βS
)

,

(3.4.17)

where

S = α(A2 − A−2) + β
D

(

A2/D − A−2/D
)

,

R = R(λ̂) = α(1 − A2) + β
D (1 − A2/D) − 1

3

√
2λ̂ .

(3.4.18)

Moreover,

Dslow(λ̂) = t22t33 − t23t32 =

A−2A−2/D λ̂(λ̂+3
√

2(αA2+ β
D A2/D))

(λ̂+ 3
2

√
2(α(A2−1)+ β

D (A2/D−1)))
2 .

(3.4.19)

Note that R(λ̂f ) = 0, so that all tij(λ̂)’s have (to leading order) a pole of order

2 at the double zero λ̂ = λ̂f of t1(λ̂) (Lemma 3.4.5). Hence, one would a priori

expect that the determinant Dslow(λ̂) has a pole of order 4 at λ̂f . Nevertheless, it

follows from a careful analysis that Dslow(λ̂) only has a pole of order 2. Of course
this is necessary since the product DfastDslow must be smooth (Corollary 3.3.7,
[1]).

Proof of Theorem 3.4.1. It follows from Lemma 3.4.6 that the zeroes of
Dslow(λ̂) are given to leading order by

λ̂+ = 0 , λ̂− = −3
√

2

(

αA2 +
β

D
A2/D

)

, (3.4.20)

where λ̂+ corresponds to λ ≡ 0, the eigenvalue associated to the translational
invariance. The sign of the dominant eigenvalue λ̂− is determined by the sign of
αA2 + β

DA2/D. 2

The basic strategy for the proof of Lemma 3.4.6 consists of several steps. First, we
impose continuity of ṽ(ξ) and w̃(ξ) to leading order at the boundaries of the slow
fields, as one crosses the fast fields, since ṽ(ξ) and w̃(ξ) do not change to leading
order in I+

f (3.3.2). In addition, we impose that the derivatives of these functions
have jump discontinuities at the edges of the slow fields, which are determined by
the accumulated change in these derivatives as the functions φ2,3(ξ) pass through
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the fast field. This method of matching the jump discontinuities as measured in
the slow and fast fields lies at the heart of the NLEP procedure for singularly
perturbed eigenvalue problems [11–13]. Finally, we consider φ2,3(ξ) in the fast
fields I±f and obtain explicit expressions for the slow-fast transmission functions
tij by imposing the solvability conditions.

Proof of Lemma 3.4.6. We start with the construction of φṽ
2(ξ). Since ṽ(ξ)

remains constant (to leading order) over I−f , we have

φṽ
2(−ξ∗ − 1√

ε
) = φṽ

2(−ξ∗ + 1√
ε
) + O(

√
ε) =⇒

e
ε(− 1√

ε
)

= s22e
ε(−ξ∗+ 1√

ε
)
+ s25e

ε(ξ∗− 1√
ε
)
+ O(

√
ε) =⇒

1 = s22e
−εξ∗ + s25e

εξ∗ + O(
√

ε) ,

(3.4.21)

where we used (3.4.15). Next, we turn to the derivative. Individually, the deriva-
tives of φṽ

2(ξ) at the left and right boundaries of I−f are given by

(φṽ
2)ξ(−ξ∗ − 1√

ε
) = ε + O(ε

√
ε) ,

(φṽ
2)ξ(−ξ∗ + 1√

ε
) = ε

(

s22e
−εξ∗ − s25e

εξ∗
)

+ O(ε
√

ε)

= ε
(

2s22e
−εξ∗ − 1

)

+ O(ε
√

ε) ,

where we used (3.4.21). Thus, the change of the derivative of φṽ
2(ξ) over I−f is

∆−
s (φṽ

2)ξ = (φṽ
2)ξ(−ξ∗ + 1√

ε
) − (φṽ

2)ξ(−ξ∗ − 1√
ε
)

= 2ε
(

s22e
−εξ∗ − 1

)

+ O(ε
√

ε) .
(3.4.22)

This change is due to the accumulated change of the derivative of φṽ
2(ξ) over the

fast field I−f ,

∆−
f (φṽ

2)ξ =

∫

I−
f

ṽξξdξ = −ε

∫

I−
f

u−
0 dξ + O(ε

√
ε) = −2εC−

2 + O(ε
√

ε), (3.4.23)

where we used (3.4.10) and (3.4.7) with constant C−
2 instead of C−, and (3.2.14).

Matching the slow and fast jumps, ∆−
s (φṽ

2)ξ and ∆−
f (φṽ

2)ξ, and recalling (3.4.21),
we obtain

s22 =
(

1 − C−
2

)

eεξ∗ + O(
√

ε) , s25 = C−
2 e−εξ∗ + O(

√
ε) . (3.4.24)

Next, we impose leading order continuity of φṽ
2(ξ) over the second fast field I+

f .
This yields

φṽ
2(ξ∗ − 1√

ε
) = φṽ

2(ξ∗ + 1√
ε
) + O(

√
ε) =⇒

(1 − C−
2 )e2εξ∗ + C−

2 e−2εξ∗ = t22 + t25 + O(
√

ε) .
(3.4.25)
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The jump discontinuity in the derivative of the ṽ-component over I+
f is given by

∆+
s (φṽ

2)ξ = (φṽ
2)ξ(ξ∗ + 1√

ε
) − (φṽ

2)ξ(ξ∗ − 1√
ε
)

= ε (t22 − t25) − ε
((

1 − C−
2

)

e2εξ∗ − C−
2 e−2εξ∗

)

+ O(ε
√

ε)

= 2ε
(

t22 −
(

1 − C−
2

)

e2εξ∗
)

+ O(ε
√

ε) ,

where we used (3.4.24) and (3.4.25). The same jump is given in the fast field by

∆+
f (φṽ

2)ξ =

∫

I+
f

vξξdξ = −ε

∫

I+
f

u+
0 dξ + O(ε

√
ε) = 2εC+

2 + O(ε
√

ε) , (3.4.26)

where C+
2 is a second unknown constant. Matching ∆+

f (φṽ
2)ξ with ∆+

s (φṽ
2)ξ and

using (3.4.25), we find

t22 = C+
2 +

(

1 − C−
2

)

e2εξ∗ + O(
√

ε), t25 = C−
2 e−2εξ∗ − C+

2 + O(
√

ε) .(3.4.27)

In a similar manner, by imposing leading order continuity of φw̃
2 (ξ), φṽ

3(ξ), and
φw̃

3 (ξ) at I±f , as well as the jump discontinuities in their derivatives, we determine

the twelve other slow-fast transmission functions s23, s24, t23, and t24 via φw̃
2 (ξ);

s32, s35, t32, and t35 via φṽ
3(ξ), and s33, s34, t33, and t34 via φw̃

3 (ξ). To leading
order they read,

s23 = − 1
DC−

2 e
ε
D ξ∗ , s24 = 1

DC−
2 e−

ε
D ξ∗ ,

t23 = 1
D

(

C+
2 − C−

2 e2 ε
D ξ∗

)

, t24 = 1
D

(

C−
2 e−2 ε

D ξ∗ − C+
2

)

,

s32 = −C−
3 eεξ∗ , s35 = C−

3 e−εξ∗ ,

t32 = C+
3 − C−

3 e2εξ∗ , t35 = C−
3 e−2εξ∗ − C+

3 ,

s33 = 1
D

(

D − C−
3

)

e
ε
D ξ∗ , s34 = 1

DC−
3 e−

ε
D ξ∗ ,

t33 = 1
D

(

C+
3 +

(

D − C−
3

)

e2 ε
D ξ∗

)

, t34 = 1
D

(

C−
3 e−2 ε

D ξ∗ − C+
3

)

.

(3.4.28)

Here, all the higher order corrections are of O(
√

ε), and C±
3 are the, so far un-

known, constants of the u-component (3.4.7) for φ3(ξ). Substituting these quan-
tities into (3.4.15) and (3.4.16) we find φ2,3(ξ), to leading order,

φṽ
2(ξ) =



























eε(ξ+ξ∗) in I−s ,
(

1 − C−
2

)

eε(ξ+ξ∗) + C−
2 e−ε(ξ+ξ∗) in I0

s ,
(

C+
2 +

(

1 − C−
2

)

e2εξ∗
)

eε(ξ−ξ∗)

+
(

C−
2 e−2εξ∗ − C+

2

)

e−ε(ξ−ξ∗)

+ 1
D

(

C−
2 e−2 ε

D ξ∗ − C+
2

)

Eṽ
4e−

ε
D (ξ−ξ∗) in I+

s ,

φw̃
2 (ξ) =



























0 in I−s ,

− 1
DC−

2 e
ε
D (ξ+ξ∗) + 1

DC−
2 e−

ε
D (ξ+ξ∗) in I0

s ,
1
D

(

C+
2 − C−

2 e2 ε
D ξ∗

)

e
ε
D (ξ−ξ∗)

+ 1
D

(

C−
2 e−2 ε

D ξ∗ − C+
2

)

e−
ε
D (ξ−ξ∗)

+
(

C+
2 +

(

1 − C−
2

)

e2εξ∗
)

Ew̃
2 eε(ξ−ξ∗) in I+

s ,

(3.4.29)
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and

φṽ
3(ξ) =































0 in I−s ,

−C−
3 eε(ξ+ξ∗) + C−

3 e−ε(ξ+ξ∗) in I0
s ,

(

C+
3 − C−

3 e2εξ∗
)

eε(ξ−ξ∗)

+
(

C−
3 e−2εξ∗ − C+

3

)

e−ε(ξ−ξ∗)

+ 1
D

(

C−
3 e−2 ε

D ξ∗ − C+
3

)

Eṽ
4e−

ε
D (ξ−ξ∗) in I+

s ,

φw̃
3 (ξ) =



























e
ε
D (ξ+ξ∗) in I−s ,

1
D

(

D − C−
3

)

e
ε
D (ξ+ξ∗) + 1

DC−
3 e−

ε
D (ξ+ξ∗) in I0

s ,
(

C+
3 − C−

3 e2εξ∗
)

Ew̃
2 eε(ξ−ξ∗)

+ 1
D

(

C+
3 +

(

D − C−
3

)

e2 ε
D ξ∗

)

e
ε
D (ξ−ξ∗)

+ 1
D

(

C−
3 e−2 ε

D ξ∗ − C+
3

)

e−
ε
D (ξ−ξ∗) in I+

s .

(3.4.30)

To determine the constants C±
2,3 we use the solvability condition (3.2.18). The

u-equation in the fast fields I±f (3.4.10) reads

uξξ + (1 − 3u2
h)u = ε2(λ̂u + αṽ + βw̃) .

Observe that, by construction, the leading order term u±
0 (ξ) and the first order

correction term u±
1 (ξ) fulfill the solvability condition. However, the second order

correction term, O(ε2), does not fulfill the solvability condition yet, and it is this
condition which will enable us to calculate the four unknowns C±

2,3.

In the fast fields I±f , the ṽ, w̃-components of the basis functions φ2,3(ξ) (3.4.29,
3.4.30) are constant and given to leading order by (see Remark 3.4.1)

φṽ
2(−ξ∗) = 1 , φṽ

2(ξ∗) = (1 − C−
2 )e2εξ∗ + C−

2 e−2εξ∗ ,
φw̃

2 (−ξ∗) = 0 , φw̃
2 (ξ∗) = − 1

DC−
2 e2 ε

D ξ∗ + 1
D C−

2 e−2 ε
D ξ∗ ,

φṽ
3(−ξ∗) = 0 , φṽ

3(ξ∗) = −C−
3 e2εξ∗ + C−

3 e−2εξ∗ ,
φw̃

3 (−ξ∗) = 1 , φw̃
3 (ξ∗) = 1

D

(

D − C−
3

)

e2 ε
D ξ∗ + 1

D C−
3 e−2 ε

D ξ∗ .

Therefore, at O(ε2), the terms of the u-equation in the fast fields I±f for φ2(ξ)
reduce to

L−u−
2 = λ̂u−

0 + α + 6u−
h,0u

−
h,2u

−
0 ,

L+u+
2 = λ̂u+

0 + α
(

(1 − C−
2 )e2εξ∗ + C−

2 e−2εξ∗
)

+ β
DC−

2

(

−e2 ε
D ξ∗ + e−2 ε

D ξ∗
)

+ 6u+
h,0u

+
h,2u

+
0 .

(3.4.31)

For φu
3 (ξ) in the fast fields I±f we obtain

L−u−
2 = λ̂u−

0 + β + 6u−
h,0u

−
h,2u

−
0 ,

L+u+
2 = λ̂u+

0 + αC−
3

(

−e2εξ∗ + e−2εξ∗
)

+ β
D

(

(D − C−
3 )e2 ε

D ξ∗ + C−
3 e−2 ε

D ξ∗
)

+ 6u+
h,0u

+
h,2u

+
0 .

(3.4.32)



112 Chapter 3. Stability

Next, recalling (3.4.7) and (3.2.14), we obtain from the solvability condition

0 = 2
3

√
2λ̂C−

2 + 2α + 6C−
2

∫

I−
f

u−
h,0u

−
h,2(ψ

−)2dξ ,

0 = − 2
3

√
2λ̂C+

2 + 2α
(

(1 − C−
2 )e2εξ∗ + C−

2 e−2εξ∗
)

+2 β
DC−

2

(

−e2 ε
D ξ∗ + e−2 ε

D ξ∗
)

− 6C+
2

∫

I+
f

u+
h,0u

+
h,2(ψ

+)2dξ ,

0 = 2
3

√
2λ̂C−

3 + 2β + 6C−
3

∫

I−
f

u−
h,0u

−
h,2(ψ

−)2dξ ,

0 = − 2
3

√
2λ̂C+

3 + 2αC−
3

(

−e2εξ∗ + e−2εξ∗
)

+2 β
D

(

(D − C−
3 )e2 ε

D ξ∗ + C−
3 e−2 ε

D ξ∗
)

− 6C+
3

∫

I+
f

u+
h,0u

+
h,2(ψ

+)2dξ .

Now, using the integral relations (3.2.18), and recalling (3.2.8), the above yields

C−
2 = α

R , C+
2 =

−αA−2−SC−
2

R = −α(A−2R+S)
R2 ,

C−
3 = β

R , C+
3 =

−βA−2/D−SC−
3

R = −β(A−2/DR+S)
R2 ,

(3.4.33)

where S and R = R(λ̂) are defined in (3.4.18). Substituting these four constants
into (3.4.27) and (3.4.28) yields the explicit expressions for the four slow-fast
transmission functions t22, t23, t32, and t33 (3.4.17). The leading order approxi-

mation (3.4.19) of the slow component Dslow(λ̂) of the Evans function D(λ̂) (Corol-
lary 3.3.7) now follows by a tedious, but straightforward, calculation. 2

It is also of interest to observe that away from αA2 + β
DA

2
D = 0, we can de-

termine the eigenfunctions Ψ±(ξ) associated to the small eigenvalues λ̂±. A
general nontrivial function φ(ξ) is a superposition of φ2(ξ) and φ3(ξ), that is,

φ(ξ) = µ2φ2(ξ) + µ3φ3(ξ). For the eigenfunction Ψ+(ξ) associated to λ̂+ = 0,
we have µ2 = 1 − A2 and µ3 = 1

D (1 − A2/D). For the other eigenfunction,

Ψ−(ξ), we have µ2 = 1 + A2 and µ3 = 1
D (1 + A2/D). Note that, when we define

C± := µ2C
±
2 + µ3C

±
3 , the first eigenfunction, Ψ+(ξ), yields C− = C+ = 1, while

the second eigenfunction, Ψ−(ξ), yields C− = −C+ = 1. The u-components of
these eigenfunctions are zero to leading order outside the fast fields I±f , and inside
these fields they are given by

Ψ+,u(ξ) =

{

ψ−(ξ) in I−f ,

−ψ+(ξ) in I+
f ,

Ψ−,u(ξ) =

{

ψ−(ξ) in I−f ,

ψ+(ξ) in I+
f .

Observe that Ψ+,u(ξ) is an odd eigenfunction, while Ψ−,u(ξ) is an even func-
tion. Moreover, also the ṽ- and w̃-components are odd, respectively, even, see
Figure 3.5. This suggests that the bifurcation to a traveling pulse, a symmetry
breaking bifurcation, is related to the asymmetric eigenfunction Ψ+(ξ), while a
Hopf bifurcation, which is a symmetry preserving bifurcation, should be related
to the symmetric eigenfunction Ψ−(ξ). This is confirmed in Section 3.5.2.
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ṽ

w̃

u

ṽ
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Figure 3.5: The odd eigenfunction Ψ+(ξ) associated to λ̂+ = 0, and the even

eigenfunction Ψ−(ξ) associated to λ̂−.

Remark 3.4.2. The leading order terms in the integrals (3.4.23) and (3.4.26)
justify the asymptotic magnitude of the rescaling of v and w. That is, it is not
possible to find nontrivial bounded basis functions associated to small eigenvalues
for which the v- and w-components are larger than O(ε), since in that scaling one
finds that the slow-fast transmission functions cannot vanish.

Remark 3.4.3. For D asymptotically large, i.e., in the case in which (3.1.1) ap-
proaches a two-component system (see Remark 3.1.3), the slow-fast transmission
functions tij , i, j = 2, 3 (3.4.17) reduce, to leading order, to

t22 = 1
R2

D

(

A−2
D R2

D − 2αA−2
D − αSD

)

, t23 = 0,

t32 = − β
R2

D

(

(A−2
D + 1)RD + SD

)

, t33 = 1,

where RD = α(1 − A2
D) − 1

3

√
2λ̂ , SD = α(A2

D − A−2
D ), and AD =

√

γ−β
α . Thus,

Dslow reduces to t22 as expected for a two-component system [12, 13]. Moreover,

the zeroes of Dslow are given by λ̂+ = 0 and λ̂− = −3
√

2(γ − β), and Dslow has a
pole of order 2 at 3

2

√
2(α − γ + β).

3.5 1-pulse solutions for τ = O(ε−2)

In the preceding stability analysis of standing 1-pulse solutions, the bifurcation
parameters τ and θ did not play a leading order role. However, we know from
the existence analysis of traveling pulse solutions that for large values of these
bifurcation parameters τ, θ a traveling pulse solution can bifurcate from a standing
1-pulse solution, see Chapter 2 and Theorem 3.2.2. In this section, we therefore
analyze the stability of standing pulse solutions (Section 3.5.1), as well as the
stability of traveling pulse solutions (Sections 3.5.3, 3.5.4, and 3.5.5), for large



114 Chapter 3. Stability

bifurcation parameters τ and θ. Moreover, in Section 3.5.2 we analyze the possible
bifurcations of a standing pulse solution. It turns out that, besides a bifurcation to
a traveling pulse solution, we may also encounter a Hopf bifurcation. In the latter
case, the standing pulse solution bifurcates into a so-called breathing solution, see
the right frame of Figure 3.7.

3.5.1 Stability of the standing 1-pulse solution for τ, θ =
O(ε−2)

We set τ̂ = ε2τ and θ̂ = ε2θ. By arguments similar to those for the case τ, θ =
O(1), we conclude that Lemma 3.4.3 is still valid. Moreover, we also conclude
that we once again need to consider small v(ξ), w(ξ), and λ, i.e., as in Section 3.4

we rescale v(ξ) = εṽ(ξ), w(ξ) = εw̃(ξ), and λ = ε2λ̂. Therefore, the linearized
stability problem reads











uξξ + (1 − 3u2
h)u = ε2(λ̂u + αṽ + βw̃) ,

ṽξξ = −εu + ε2(λ̂τ̂ + 1)ṽ ,

w̃ξξ = − ε
D2 u + ε2

D2 (λ̂θ̂ + 1)w̃ .

(3.5.1)

We determine M∞ and compute its eigenvalues Λi and its eigenvectors Ei (see
section 3.3.1). To leading order, we find

Λ2
1,6 = 2 , Λ2

2,5 = ε2(1 + τ̂ λ̂) =: ε2L2
2 , Λ2

3,4 = ε2

D2 (1 + θ̂λ̂) =: ε2

D2 L2
3 , (3.5.2)

with the corresponding eigenvectors

E1,6 =





















1

±
√

2

− ε
2

∓ 1
2

√
2

− 1
D2

ε
2

∓ 1
2

√
2 1

D





















, E2,5 =





















−α
2 ε2

O(ε3)

1

±L2

O(ε)

O(ε)





















, E3,4 =





















−β
2 ε2

O(ε3)

O(ε)

O(ε)

1

±L3





















. (3.5.3)

Unlike the case τ, θ = O(1), the ordering of the small eigenvalues Λ2,5 and Λ3,4

depends on λ̂, in fact Λ2
2,5 = Λ2

3,4 if λ̂ = − D2−1

D2τ̂−θ̂
. A priori, this may seem to be

problematic since the construction and the decomposition of the Evans function
D(λ) is based on the assumption

ℜ(Λ1) > ℜ(Λ2) > ℜ(Λ3) > 0 > ℜ(Λ4) > ℜ(Λ5) > ℜ(Λ6) . (3.5.4)

However, since the associated eigenvectors E2,5 and E3,4 remain independent as
Λ2

2,5 crosses through Λ2
3,4, it is easy to check that neither the construction nor the

decomposition of D(λ) is affected by this (one can just interchange the roles of
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Λ2 and Λ3 and of Λ4 and Λ5).

In contrast to the case τ, θ = O(1), we cannot exactly compute the eigenval-
ues of the stability problem. However, our methods do yield an explicit relation
that determines the eigenvalues.

Theorem 3.5.1. Let τ, θ = O(ε−2), and let (α, β, γ,D, ε) be such that there exist

homoclinic 1-pulse solutions (Theorem 3.2.1). Then, the eigenvalues λ̂±
j , j = 1, 2,

associated to the stability of the 1-pulse solution, are determined by

1
3

√
2λ̂ = −α

(

1
L2

− 1 + A2
)

− β
D

(

1
L3

− 1 + A2/D
)

±
(

α
L2

A2L2 + β
DL3

A2L3/D
)

,
(3.5.5)

where L2,3 = L2,3(λ̂) are defined in (3.5.2), and A is determined in Theorem 3.2.1.
The normalized fast u-components of the associated eigenfunctions are given by

Ψ±,u
j (ξ) =

{

ψ−(ξ) in I−f ,

∓ψ+(ξ) in I+
f ,

with ψ±(ξ) as defined in (3.2.13). Note that Ψ+
j (ξ) are odd functions, while Ψ−

j (ξ)
are even functions.

In the special case τ̂ = θ̂ = 0, equation (3.5.5) has two zeroes λ̂±
1 , and they

coincide with the eigenvalues λ̂± given by (3.4.20). This is consistent with the

previous section, since τ̂ = θ̂ = 0 to leading order corresponds to τ, θ ≪ ε−2.

The translation invariant eigenvalue λ = 0 coincides with the solution λ̂+
1 = 0

of the + equation in (3.5.5). Moreover, at τ̂(θ̂) = τ̂tp(θ̂) (3.2.26), the zero eigen-

value λ̂+
1 is not a simple solution of the + equation of (3.5.5). To observe this, we

differentiate the + equation with respect to λ̂, and substitute λ̂ = 0 (note that
L2,3(0) = 1)

1
3

√
2 = 1

2ατ̂
(

1 − A2 + A2 log
(

A2
))

+ 1
2

βθ̂
D

(

1 − A
2
D + A

2
D log

(

A
2
D

))

,

which yields (3.2.26), i.e.,

τ̂(θ̂) = τ̂tp(θ̂) =

2
3

√
2 − βθ̂

D

(

1 − A
2
D + A

2
D log

(

A
2
D

))

α (1 − A2 + A2 log (A2))
. (3.5.6)

Thus, the + equation of (3.5.5) has a double eigenvalue at zero at τ̂ = τ̂tp. Hence,
as τ̂ passes through τ̂tp, a real eigenvalue crosses the imaginary axis. Moreover,
the bifurcation into a traveling pulse solution, obtained in the existence analysis
of the previous chapter, is confirmed by the stability analysis. In Sections 3.5.3
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and 3.5.4, we will investigate whether the bifurcating traveling pulse solutions are
stable, and whether this bifurcation is subcritical or supercritical.

First, we will prove Theorem 3.5.1, and in the next section, the evolution of
the eigenvalues λ̂±

j as function of the parameters will be studied. Note that un-
like the case τ, θ = O(1), the number of small eigenvalues, that is, the number of
solutions to (3.5.5), can be more than two. It will be shown that eigenvalues may
‘pop out’ of the essential spectrum and possibly merge to form a pair of complex
conjugate eigenvalues which crosses the imaginary axis. So, the standing pulse
solution can also destabilize through a Hopf bifurcation.

Proof of Theorem 3.5.1. As we know from the previous section(s), a solution
φ(ξ) to the eigenvalue problem (3.5.1) – written as a 6-dimensional dynamical sys-
tem – can be built from the basis {φ2(ξ), φ3(ξ)} with φ2,3(ξ) as given by (3.4.13)
and (3.4.14), see also Figure 3.4.

To facilitate the analysis and to obtain insight directly into the eigenfunctions,
we consider the general function φ(ξ) = µ2φ2(ξ) + µ3φ3(ξ) instead of working
with the basis functions φ2,3(ξ) themselves, as in Section 3.4.2, see also the final
paragraph of Section 3.4.3. By calculations similar to those in Section 3.4.3, we
find for the ṽ- and w̃-components of φ(ξ)

φṽ(ξ) =























































µ2e
εL2(ξ+ξ∗) in I−s ,

(

µ2 − C−

L2

)

eεL2(ξ+ξ∗) + C−

L2
e−εL2(ξ+ξ∗) in I0

s ,
(

C+

L2
+

(

µ2 − C−

L2

)

e2εL2ξ∗
)

eεL2(ξ−ξ∗)

+
(

C−

L2
e−2εL2ξ∗ − C+

L2

)

e−εL2(ξ−ξ∗)

+
(

C+

DL3
+

(

µ3 − C−

DL3

)

e2 ε
D L3ξ∗

)

Eṽ
3e

ε
D L3(ξ−ξ∗)

+ 1
DL3

(

C−e−2 ε
D L3ξ∗ − C+

)

Eṽ
4e−

ε
D L3(ξ−ξ∗) in I+

s ,

(3.5.7)

and

φw̃(ξ) =























































µ3e
ε
D L3(ξ+ξ∗) in I−s ,

(

µ3 − C−

DL3

)

e
ε
D L3(ξ+ξ∗) + C−

DL3
e−

ε
D L3(ξ+ξ∗) in I0

s ,
(

C+

DL3
+

(

µ3 − C−

DL3

)

e2 ε
D L3ξ∗

)

e
ε
D L3(ξ−ξ∗)

+ 1
DL3

(

C−e−2 ε
D L3ξ∗ − C+

)

e−
ε
D L3(ξ−ξ∗)

+
(

C+

L2
+

(

µ2 − C−

L2

)

e2εL2ξ∗
)

Ew̃
2 eεL2(ξ−ξ∗)

+
(

C−

L2
e−2εL2ξ∗ − C+

L2

)

Ew̃
5 e−εL2(ξ−ξ∗) in I+

s ,

(3.5.8)

where L2,3 are defined in (3.5.2), and C± ∈ R are the as yet unknown fac-
tors in front of the leading order behavior of the u-components of φ(ξ), that is,



3.5. 1-pulse solutions for τ = O(ε−2) 117

φu(ξ) = u±
0 (ξ) + O(ε) = ∓C±ψ±(ξ) + O(ε). Note that C± relate to C±

2,3 in

Section 3.4.3 through C± = µ2C
±
2 + µ3C

±
3 . Observe that we have not neglected

all of the O(ε) terms in (3.5.7) or (3.5.8) in the region I+
s , since the ordering of

Λ2
2,5 and Λ2

3,4 may change as λ̂ is varied (see Remark 3.4.1: all O(ε) terms with

Eṽ
3,4 and Ew̃

2,5 may have a dominant effect as ξ → ∞).

The slow growth for ξ → ∞ of φ(ξ) is determined by the slow-fast transmis-

sion functions t2,3(λ̂),

t2(λ̂) := µ2t22(λ̂) + µ3t32(λ̂) = C+

L2
+

(

µ2 − C−

L2

)

e2εL2ξ∗ ,

t3(λ̂) := µ2t23(λ̂) + µ3t33(λ̂) = C+

DL3
+

(

µ3 − C−

DL3

)

e2 ε
D L3ξ∗ .

(3.5.9)

The slow-fast transmission functions t2,3 have a similar meaning as the trans-
mission function t1, see Lemma 3.3.5. The product of t2,3 with eΛ2,3ξ (3.5.2)
determines the growth rate of φ(ξ) for ξ → ∞ in the direction of the eigenvector
E2,3 (3.5.3). Therefore, the solution φ(ξ) is an eigenfunction if t2 = t3 = 0, i.e., if

(

t22 t32
t23 t33

)(

µ2

µ3

)

=

(

0
0

)

, (3.5.10)

for some (µ2, µ3) 6= (0, 0), which implies that t22t33 − t23t32 = 0. This reconfirms

the factorization of the Evans function D(λ̂) (Corollary 3.3.7). Here, we proceed
with a direct calculation of the eigenvalues, which is somewhat more straight-
forward than that of Section 3.4.3 and has the advantage that it simultaneously
gives information on the associated eigenfunctions. Equations (3.5.9) and (3.5.10)
imply that

µ2 =
C−

L2
− C+

L2
e−2εL2ξ∗ , µ3 =

C−

DL3
− C+

DL3
e−2 ε

D L3ξ∗ .

This yields that the leading order behavior of ṽ, w̃-components in the fast fields
I±f is given by

φṽ(−ξ∗) = C−

L2
− C+

L2
e−2εL2ξ∗ , φṽ(ξ∗) = C−

L2
e−2εL2ξ∗ − C+

L2
,

φw̃(−ξ∗) = C−

DL3
− C+

DL3
e−2 ε

D L3ξ∗ , φw̃(ξ∗) = C−

DL3
e−2 ε

D L3ξ∗ − C+

DL3
.

Next, we examine the first equation in system (3.5.1), and we expand uh(ξ) and
u(ξ) in the fast fields in the usual way. The leading order term and the O(ε) term
satisfy the solvability condition by construction. However, at the O(ε2) level, we
find

L−u−
2 = λ̂u−

0 + αC−

L2
− αC+

L2
e−2εL2ξ∗ + β C−

DL3
− β C+

DL3
e−2 ε

D L3ξ∗

+6u−
h,0u

−
h,2u

−
0 ,

L+u+
2 = λ̂u+

0 + αC−

L2
e−2εL2ξ∗ − αC+

L2
+ β C−

DL3
e−2 ε

D L3ξ∗ − β C+

DL3

+6u+
h,0u

+
h,2u

+
0 .

(3.5.11)



118 Chapter 3. Stability

Applying the solvability condition and implementing the integral relations (3.2.18),
which are still valid since their derivation was independent of the magnitude of τ
and θ, we find

(

1
3

√
2λ̂ + H1(λ̂) −H2(λ̂)

H2(λ̂) − 1
3

√
2λ̂ − H1(λ̂)

) (

C−

C+

)

=

(

0
0

)

, (3.5.12)

with

H1(λ̂) := α
(

1
L2

− 1 + A2
)

+ β
D

(

1
L3

− 1 + A2/D
)

,

H2(λ̂) := α
L2

A2L2 + β
DL3

A2L3/D ,
(3.5.13)

where A is defined as in Theorem 3.2.1. Note that both quantities H1,2(λ̂) ex-

plicitly depend on λ̂ through L2,3. There are nontrivial solutions λ̂ of (3.5.12)
if

1

3

√
2λ̂ + H1(λ̂) = ±H2(λ̂) and C− = ±C+ , (3.5.14)

which is equivalent to (3.5.5). The structure and parity of the u-components of
the eigenfunctions Ψ±

j (ξ) follow from the relations between C+ and C− (3.5.14).
2

3.5.2 Bifurcations for τ = O(ε−2) and θ = 1

A complete analysis of equations (3.5.5) is involved and cumbersome. Therefore,
we restrict the analysis to the case where only τ is large and θ is just O(1). Note
that this restriction has also been imposed in Chapter 2 and in [53, 70, 71]. So,

we put τ̂ = ε2τ and θ̂ = 0. Since L3 = 1, the equations for the eigenvalues (3.5.5)
become

1
3

√
2λ̂ = α

(

1 − A2
)

− α
L2

(

1 − A2L2
)

=: f+(λ̂) ,

1
3

√
2λ̂ = α

(

1 − A2
)

− α
L2

(

1 + A2L2
)

− 2 β
D A2/D =: f−(λ̂) .

(3.5.15)

To investigate these equations we introduce T := τ̂ λ̂, such that the functions f±

become functions of T , and do not depend on τ̂ , see (3.5.2). Increasing τ̂ now

influences the slope of the left hand side of (3.5.15), i.e., 1
3

√
2λ̂ is now replaced by

1
3

√
2T

τ̂ =: l(T ; τ̂). The essential spectrum is after this rescaling to leading order
given by the half plane Σ1 := {T : ℜ(T ) < −1}, see Lemma 3.3.2. It immediately
follows that the sign of α has a significant impact on the possible occurrence of
bifurcations.

Corollary 3.5.2. Let τ = τ̂
ε2 = O(ε−2) and θ = O(1), and let (α, β, γ,D, ε) be

such that there exist homoclinic 1-pulse solutions (Theorem 3.2.1). If α < 0, then
the 1-pulse solution does not bifurcate, its stability does not change as function of
τ or τ̂ (and is thus determined by Theorem 3.4.1).
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Figure 3.6: In the left frame we plotted f+(T ) for (α, β, γ,D,A) =
(−3, 2, 0.906, 5, 0.4), and in the right frame we plotted f−(T ) for the same pa-
rameters. The dashed lines represent l(T ; τ̂) for τ̂1 < τ̂2. Note that f−(0) > 0

and f−
∞ = limT→∞ f−(T ) < 0, so that λ̂−

1 (τ̂) → 0 as τ̂ → ∞.

Proof. This result is based on the observation that (f±)′(T ) < 0 and
(f±)′′(T ) > 0 if α < 0, which can be checked by straightforward calculus. This
implies that both f±(T ) have a unique intersection with the line l(T ; τ̂); for

f+(T ) this intersection takes place at λ̂+
1 (τ̂) ≡ 0, for f−(T ) the sign of λ̂−

1 (τ̂) is

determined by the sign of f−(0) = −2
(

αA2 + β
D A2/D

)

, the quantity that also

determines the stability of the 1-pulse solution if τ = O(1) (Theorem 3.4.1). See
Figure 3.6 for two typical cases. 2

Corollary 3.5.3. Let τ = τ̂
ε2 = O(ε−2) and θ = O(1), and let (α, β, γ,D, ε) be

such that there exist homoclinic 1-pulse solutions (Theorem 3.2.1). If α > 0, two
new eigenvalues bifurcate out of the essential spectrum σess as τ increases, the
first one, λ̂−

2 (τ̂), at τ = τe,1 ≪ O(ε−2), i.e., at τ̂ ≪ 1, the second one, λ̂+
2 (τ̂), at

τ̂ = τ̂e,2 := − 1
3

√
2

(

α
(

1 − A2 + log A2
))−1

. If the 1-pulse solution is unstable for

τ = O(1), then it remains unstable for τ ≫ 1. If it is stable then λ̂−
1,2 merge at

τ̂ = τ̂c to form a pair of complex conjugate eigenvalues and we distinguish between
two cases. We define f−

∞ by f−
∞ := α(1 − A2) − 2 β

D A2/D. Then

(i) If f−
∞ < 0, then the 1-pulse solution is destabilized by λ̂+

2 (τ̂) and it bifurcates

into a traveling 1-pulse solution at τ̂ = τ̂tp = 2
3

√
2

(

α
(

1 − A2 + A2 log A2
))−1

>
τ̂e,2.
(ii) If f−

∞ > 0, then depending on the parameter values the 1-pulse solution either

is destabilized by λ̂+
2 (τ̂) at τ̂ = τ̂tp and it bifurcates into a traveling 1-pulse solu-

tion, or it is destabilized by the complex pair λ̂−
1,2(τ̂) at τ̂ = τ̂H and it undergoes

a Hopf bifurcation.

Moreover, if λ̂−
1,2 cross the imaginary axis, they will merge again at τ̂ = τ̂r and

appear as a pair of real, but positive, eigenvalues. The bifurcation values τ̂c and
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Figure 3.7: In the left frame, a numerically obtained stable traveling pulse solu-
tion for (α, β, γ,D, τ, θ, ε) = (6, 3, 4, 2, 110, 1, 0.1) is depicted. The theoretically
predicted values for τ̂tp and τ̂H for these parameter values are to leading order
τ̂tp = 0.588 and τ̂H = 0.907. In the right frame, a stable breathing pulse solu-
tion exists for (α, β, γ,D, τ, θ, ε) = (6, 3, 4, 10, 49.7, 1, 0.1) is plotted. Here, the
predicted bifurcation points are to leading order τ̂tp = 0.369 and τ̂H = 0.243.
Therefore, the observed patterns are in line with the theory.

τ̂r are determined by a tangency condition

1

3

√
2λ̂ = f−(λ̂; τ̂c,r) and

1

3

√
2 =

d

dλ̂
f−(λ̂; τ̂c,r) with λ̂ ∈ R .

The value of τ̂H is (implicitly) given by

1

3

√
2λ̂i = f−(iλ̂; τ̂H) with λ̂ ∈ R . (3.5.16)

The edge bifurcation τe,1 can be determined explicitly by studying D(λ) near the
tip of σess for τ ≪ 1

ε2 , see [14].

In Figure 3.7 an example is given of a traveling pulse solution and of a breathing
pulse solution, obtained by numerical simulation of (3.1.1).

Proof. The proof is based on a careful analysis of the graphs of f±(T ) and
their intersections with the line l(T ; τ̂), parametrized by τ̂ – see Figures 3.8 and
3.9 for two typical cases. We state, without proof, several properties of f±(T ) for
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∞

Figure 3.8: The functions f+(T ) and l(T ; τ̂) for (α, β, γ,D,A) = (3, 2, 1.87, 5, 0.4)
and various values of τ̂ . There are two bifurcations: an edge bifurcation at τ̂ = τ̂e

and a bifurcation to a traveling pulse solution at τ̂ = τ̂tp. The evolution of the

two eigenvalues λ̂+
1,2 as functions of τ̂ is plotted in the lower right corner.

α > 0:

f+(−1) = α(1 − A2 + log A2) < 0 , f−(−1) = −∞ , f+(0) = 0 ,

f−(0) = −2
(

αA2 + β
D A2/D

)

, (f±)′(T ) > 0 , (f±)′′(T ) < 0 ,

limT→∞ f+(T ) := f+
∞ = α(1 − A2) > 0 ,

limT→∞ f−(T ) := f−
∞ = α(1 − A2) − 2 β

DA2/D .

(3.5.17)

We first consider f+(T ). We observe that for τ̂ small, that is, τ̂ < − 1
3

√
2 1

f+(−1) =

τ̂e,2, f+(T ) intersects l(T ; τ̂) only in T = 0 : λ̂+
1 (τ̂) ≡ 0. However, at τ̂e,2 a second

eigenvalue λ̂+
2 = − 1

τ̂e,2
< 0 (T = −1) is created from the essential spectrum by

an edge bifurcation. For increasing τ̂ , this second eigenvalue λ̂+
2 (τ̂) increases. At

τ̂ = τ̂tp the two eigenvalues λ̂+
1,2(τ̂) merge in zero, where τ̂tp can be deduced from

(3.5.6), see Figure 3.8.

Since f−(T ) → −∞ as T ↓ −1, we conclude that f−(T ) ∩ l(T ; τ̂) consists of

two points if τ̂ is small enough, one determined by λ̂−
1 , that corresponds with

λ̂− as given by (3.4.20), the other by λ̂−
2 close to the tip of σess. Since λ̂−

2 does
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not exist for τ = O(1), we conclude that it must have appeared from σess at
τe,1 ≪ O(ε−2). If f−(0) > 0, i.e., if the 1-pulse solution is unstable for τ = O(1)

(Theorem 3.4.1), we observe that λ̂−
1 (τ̂) > 0, and λ̂−

2 (τ̂) < 0 for all τ̂ , i.e., the pulse
solution remains unstable. If f−(0) < 0, i.e., if the 1-pulse solution is stable, the

negative eigenvalues λ̂−
1,2(τ̂) merge at τ̂ = τ̂c, here f−(T ) and l(T ; τ̂) are tangent,

see Figure 3.9. If f−
∞ > 0, i.e., if we are in case (ii), there is a second tangency

at τ̂r > τ̂c for T > 0 and λ̂−
1,2 reappear as positive real eigenvalues. Thus, the

complex pair λ̂−
1,2 travels through the imaginary axis and ℜ(λ̂−

1,2) changes sign at

τ̂H ∈ (τ̂c, τ̂r), see Figure 3.9. If f−
∞ < 0, case (i), λ̂−

1,2 remain complex conjugates.

A somewhat more elaborate analysis shows that ℜ(λ̂−
1,2) < 0 for all τ̂ , and that

λ̂−
1,2 → 3

2

√
2f−

∞ < 0 as τ̂ → ∞, i.e., λ̂−
1,2 approach σess from two sides as τ̂ → ∞.

It thus follows that the pulse is destabilized by λ̂+
2 (τ̂) in case (i). In case (ii), it

depends on the exact values of the parameters whether λ̂+
2 (τ̂) or λ̂−

1,2(τ̂) is the
first to cross through the imaginary axis as τ̂ increases, see Figure 3.10. 2

Although we do have explicit expressions for τ̂tp and τ̂H , it is in general not
possible to obtain explicit analytic control of the relative magnitude of τ̂tp and τ̂H

(in case (ii) of Corollary 3.5.3). Therefore, we plotted in Figure 3.10 the evolution
of τ̂tp and τ̂H as function of α for several values of D (with β = 3, γ = 4 fixed).
We observe that by changing the parameters we have control over the order the
bifurcation points τ̂tp and τ̂H . Moreover, the bifurcation points may coincide and

the three eigenvalues λ̂−
1,2 and λ̂+

2 may cross the imaginary axis simultaneously in
the co-dimension 2 bifurcation point (αtp,H , τ̂tp,H).

Remark 3.5.1. Some analytical insight in the value of the co-dimension two
bifurcation point τ̂tp,H can be obtained by considering the limit D → ∞. This
case may be seen as a two-component system limit of (3.1.1), see Remark 3.1.3.

As a consequence, A2 in (3.2.6) approaches (γ−β)
α (since the constant term in the

U -equation of (3.1.1) is replaced by γ − β), and the 1-pulse solution is stable if

α > γ − β > 0, see Remark 3.4.3. If we define X ∈ (0, 1) by (γ−β)
α , then τ̂tp is

given by F(X)
α , where F(X) = 2

3

√
2 (1 − X + X log X)

−1
. It follows from (3.5.16)

that τ̂tp,H is now determined by the solution of

1
√

1 + iC2F(X)

(

X
√

1+iY F(X) + 1
)

+
1

3

√
2iY + X − 1 = 0 ,

where Y =
λ−

1

α . It follows (by a numerical solver) that X = 0.885... and Y =

0.367..., which implies that, for D → ∞, (αtp,H , τ̂tp,H) =
(

γ−β
0.885 , 122

γ−β

)

. This

agrees very well with the values obtained in Figure 3.10.
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Figure 3.9: The functions f−(T ) and l(T ; τ̂) for (α, β, γ,D,A) = (3, 2, 1.86, 5, 0.4).
At τ̂ = τ̂c = 0.0686 two eigenvalues merge and form a complex pair of eigenvalues
with negative real part. At τ̂ = τ̂H = 0.532 this complex pair crosses through
the imaginary axis, and we observe a Hopf bifurcation. At τ̂ = τ̂r = 3.13 the
complex pair merge again to form two real positive eigenvalues. The evolution
of the real part of the eigenvalues λ̂−

1,2 as functions of τ̂ is plotted in the lower
right corner (note that the axes are interchanged and that the τ̂ -axis is plotted
logarithmically).
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Figure 3.10: The Hopf bifurcation (solid line) and the bifurcation to a travel-
ing pulse (dashed line) as functions of α for various values of D with β = 3,
and γ = 4 fixed. Observe that for larger D the α-region where the Hopf bifur-
cation occurs, that is, τ̂H < τ̂tp, grows. The lines intersect at a co-dimension
2 bifurcation. For D = 2 we have (αtp,H , τ̂tp,H) = (7.32, 0.40). For D = 10
we have (αtp,H , τ̂tp,H) = (2.75, 1.79), and for D = ∞ (see Remark 3.5.1) we have
(αtp,H , τ̂tp,H) = (1.13, 122), i.e., a point outside the frame indicated by the dashed
vertical line. Note that, by changing the values of β and γ, it is also possible that
for larger D the α-region where the Hopf bifurcation occurs shrinks.
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3.5.3 Stability of the traveling 1-pulse solution

In this section, we determine the stability of the traveling pulse solutions. Recall
from Theorem 3.2.2 that we explicitly need large τ and/or θ for the existence
of a traveling pulse solution. As in the previous sections, we put τ̂ = ε2τ and
θ̂ = ε2θ. In the traveling coordinate ξm = ξ−εct, the linearized stability problem
associated to the pulse solution (utp(ξ), vtp(ξ), wtp(ξ)), see Theorem 3.2.2, reads



















uξξ +
(

1 − 3 (utp)
2
)

u = −εcuξ + ε2
(

λ̂u + αṽ + βw̃
)

,

ṽξξ = −ε (u + cτ̂ ṽξ) + ε2ṽ
(

τ̂ λ̂ + 1
)

,

w̃ξξ = − ε
D2

(

u + cθ̂w̃ξ

)

+ ε2

D2 w̃
(

θ̂λ̂ + 1
)

,

(3.5.18)

where we once again scaled v(ξ) = εṽ(ξ), w(ξ) = εw̃(ξ), λ = ε2λ̂, and removed the
subscript m from ξm. Note that for the justification of the scaling of λ we use
Lemma 3.2.3. Since the essential spectrum is still bounded away from the imag-
inary axis (Lemma 3.3.3), the nonlinear stability of a solution is still completely
determined by the eigenvalues of the stability problem (3.5.18) (Remark 3.3.1).

We write system (3.5.18) as a linear system in C
6

φξ(ξ) = Mtp(ξ;λ, ε)φ(ξ) with

φ(ξ) = (u(ξ), p(ξ), ṽ(ξ), q(ξ), w̃(ξ), r(ξ))
t

,
(3.5.19)

where p(ξ) = uξ(ξ), q(ξ) = 1
ε ṽξ(ξ), and r = D

ε w̃ξ(ξ). Observe that the trace of
the matrix Mtp is no longer zero. The eigenvalues of Mtp

∞ := limξ→±∞ Mtp are
given by

Λ1,6 = ±
√

2 , Λ2,5 = εΓ± , Λ3,4 =
ε

D
Θ± ,

where Γ± and Θ± are defined by

Γ± := 1
2

(

−cτ̂ ±√
Gv

)

with Gv := c2τ̂2 + 4
(

λ̂τ̂ + 1
)

,

Θ± := 1
2

(

−c θ̂
D ±√

Gw

)

with Gw := c2 θ̂2

D2 + 4
(

λ̂θ̂ + 1
)

.
(3.5.20)

Note that ℜ(Λ2,5) and ℜ(Λ3,4) can change order, but, as in Section 3.5.1, this has
no influence on the analysis since the eigenvectors E2,5 and E3,4 remain indepen-
dent,

E1,6 =





















1

±
√

2

− ε
2

∓ 1
2

√
2

− ε
2D2

∓ 1
2D

√
2





















, E2,5 =





















−α
2 ε2

O(ε3)

1

Γ±

O(ε)

O(ε)





















, E3,4 =





















−β
2 ε2

O(ε3)

O(ε)

O(ε)

1

Θ±





















. (3.5.21)
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Following the same procedure used in the previous sections, we can determine
the ṽ, w̃-components of a slow function φ(ξ), and, after imposing that the two
slow-fast transmission functions t2,3 should be zero, we obtain

φṽ
tp(ξ) =































2C−
√

Gv
eεΓ+(ξ+ξ∗) − 2C+

√
Gv

eεΓ+(ξ−ξ∗) in I−s ,

2C−
√

Gv
eεΓ−(ξ+ξ∗) − 2C+

√
Gv

eεΓ+(ξ−ξ∗) in I0s ,

2C−
√

Gv
eεΓ−(ξ+ξ∗) − 2C+

√
Gv

eεΓ−(ξ−ξ∗)

+ 1
D Eṽ

4

(

2C−
√

Gw
e

ε
D Θ−(ξ+ξ∗) − 2C+

√
Gw

e
ε
D Θ−(ξ−ξ∗)

)

in I+s ,

(3.5.22)

φw̃
tp(ξ) =































1
D

(

2C−
√

Gw
e

ε
D Θ+(ξ+ξ∗) − 2C+

√
Gw

e
ε
D Θ+(ξ−ξ∗)

)

in I−s ,

1
D

(

2C−
√

Gw
e

ε
D Θ−(ξ+ξ∗) − 2C+

√
Gw

e
ε
D Θ+(ξ−ξ∗)

)

in I0s ,

1
D

(

2C−
√

Gw
e

ε
D Θ−(ξ+ξ∗) − 2C+

√
Gw

e
ε
D Θ−(ξ−ξ∗)

)

+Ew̃
5

(

2C−
√

Gv
eεΓ−(ξ+ξ∗) − 2C+

√
Gv

eεΓ−(ξ−ξ∗)
)

in I+s .

(3.5.23)

In principle, we could now analyze the u-equation in the fast fields by expanding
φu(ξ), utp(ξ), and c in orders of ε, and then impose the solvability condition. This

would lead to an implicit expression for λ̂ similar to, but more complicated than,
(3.5.5) (in the limit c = 0 it reduces to (3.5.5)). However, we refrain from doing
so here.

3.5.4 Small speed c: the weakly nonlinear analysis

Although we do not derive a stability result for a pulse solution with general
speed c, we are interested in the stability of a traveling pulse solution just after
the bifurcation. Therefore, we put c = δ, where 0 < ε ≪ δ ≪ 1. Moreover, for
computational convenience we once again assume that only τ is large, that is,
τ = ε−2 (τ̂tp + O(ε, δ)), and that θ̂ = 0. We know from Lemma 2.4.1, which is in
essence a corollary of Theorem 3.2.2, that such traveling pulse solutions exist for
τ̂ = τ̂tp + δ2τ̂2 + O(δ3) and

τ̂2 = 3
32

√
2ατ̂4

tp

[

1 − A2
0 + A2

0 log A2
0 − 1

3A2
0 log3 A2

0

+
αA4

0 log2 A2
0(log A2

0−1)

αA2
0+

β
D A

2/D
0

]

,
(3.5.24)

where A0 is a solution of αA2 + βA2/D = γ, i.e., A0 is the leading order approxi-

mation of a solution A of (3.2.6), such that αA2
0 + β

D A
2/D
0 > 0. This implies that

the traveling pulse solution bifurcated from a stationary 1-pulse solution that is
stable for τ = O(1). Since we are interested in the possible bifurcation of sta-
ble traveling pulse solutions, we also assume that this stationary 1-pulse solution
is stable up to τ̂ = τ̂tp + O(ε, δ), i.e., α > 0, and the 1-pulse solution is not
destabilized by a Hopf bifurcation (see Corollary 3.5.3).
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Lemma 3.5.4. Under the above assumptions, the dominant eigenvalue of the
bifurcating traveling pulse solution is given by

λ̂+
2 = −δ2C(A0, α)τ̂2 + O(δ3, ε) , (3.5.25)

where τ̂2 is given in (3.5.24), and C(A0, α) = 4
3

√
2 1

τ̂3
tp

1
1
2

√
2− 1

4 αA2
0τ̂tp log2 A2

0

> 0.

The second order correction term τ̂2 can be positive, as well as negative.
Therefore, this lemma confirms the expectation that a subcritical bifurcation
(τ̂2 < 0) yields an unstable traveling pulse solution, while a supercritical bi-
furcation (τ̂2 > 0) yields a stable traveling pulse solution.

Proof. This proof is an elaborate exercise. We only present the main arguments.
By assumption, the stability of the bifurcating traveling pulse solution is deter-
mined by the sign of λ̂+

2 . In order to determine this sign, we expand the two small

eigenvalues in powers of δ, λ̂+
i = λ̂+

i,0 + δλ̂+
i,1 + δ2λ̂+

i,2 + δ3λ̂+
i,3 + δ4λ̂+

i,4 + O(δ5).
Similarly, we expand the other quantities in powers of δ. From Chapter 2, we
recall that ξ∗ = ξ∗,0 + δ2ξ∗,2 + δ4ξ∗,4 + O(δ5), with A0 = e−εξ∗,0 , and

ξ∗,2 =
1

16

1

ε

αA2
0τ̂

2
tp log A2

0(log A2
0 − 1)

αA2
0 + β

DA
2/D
0

.

By using the solvability condition, one can show that the u-components in the
fast fields I±f , u±

1 (ξ) and u±
tp,1(ξ), are of order δ, and by Lemma 3.2.3 that u±

tp,1(ξ)

is even. Moreover, by linearity of the differential operator L± it follows that

u±
1,j = C± (

(u±
tp,1,j)ξ + K±

j ψ±)

, K±
j ∈ R , (3.5.26)

where the first index in the underscore of u±
1,j(ξ) states the order of ε, while the

second index states the order of δ. Looking to the leading order behavior of the u-
components in the fast fields, implementing the behavior of the ṽ, w̃-components,
imposing the solvability conditions, and recalling that we assumed to be close to
the bifurcation, we find

λ̂+
i,0 = 0 and C+ = C−(1 + δC+

1 + δ2C+
2 + δ3C+

3 + δ4C+
4 ) + O(δ5) .

Analyzing the O(δ) term and the O(δ2) term we obtain

C+
1 = C+

2 = 0 and λ̂+
i,1 = 0 .

The O(δ3) term induces twice the following relation between C+
3 and λ̂+

i,2:

0 = −2C+
3 (αA2

0 + β
D A

2
D
0 ) + 1

2αλ̂+
i,2A

2
0(τ̂tp)

2 log A2
0(log A2

0 − 1) .
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This gives a 1-parameter family of solutions, C+
3 as function of λ̂+

i,2. Thus, we

must examine the O(δ4) term. We find, together with a relation between C+
4 and

λ̂+
i,3, another relation between C+

3 and λ̂+
i,2,

0 = 1
2

√
2(λ̂+

i,2)
2τ̂tp + 1

4

√
2λ̂+

i,2τ̂
2
tp − 2

3

√
2λ̂+

i,2
τ̂2

τ̂tp
+ C+

3 αA2
0τ̂tp log A2

0

− 1
4α(λ̂+

i,2)
2A2

0τ̂
2
tp log2 A2

0 − 1
8αλ̂+

i,2A
2
0τ̂

3
tp log3 A2

0 + 2αλ̂+
i,2A

2
0τ̂tpεξ∗,2 log A2

0 .

Combining these two last equalities, together with the expressions for τ̂tp, τ̂2, ξ∗,0

and ξ∗,2, we find, besides the translation invariance eigenvalue λ̂+
1,2 = 0 and

C+
3 = 0, the second small eigenvalue

λ̂+
2,2 = − 4

3

√
2 1

(τ̂tp)3
1

1
2

√
2− 1

4 αA2
0τ̂tp log2 A2

0

τ̂2 ,

which is in the original scaling equal to (3.5.25). The proof is completed by noting
that the denominator is always positive. 2

3.5.5 (In)stability of traveling pulse solutions for asymptot-
ically large τ̂

The complexity of the expressions in the stability calculations reduces significantly
for asymptotically large values of τ̂ . It can be shown that in this limit the stability
of the traveling pulse solutions is determined by the sign of β.

Lemma 3.5.5. Let τ̂ be asymptotically large, that is, τ̂ = δ−1 with 0 < ε ≪ δ ≪
1, and let θ̂ = 0, then the traveling pulse solutions are stable if and only if β > 0.

Note that this lemma is in agreement with Corollary 3.5.3, since β < 0 cor-
responds to case (ii) of that corollary. Thus, the traveling pulse solution may
undergo another bifurcation for increasing τ̂ , most probably of Hopf type (which
would generate a traveling breather).

The results of the local analysis near τ̂ = τ̂tp and the analysis for τ̂ large are
combined in Figure 3.11, where the position of the curves in the (τ̂ , |c|)-plane is
based on (3.2.20) – note that the speed of the traveling pulse solution for asymp-
totically large τ̂ is given by 3

2

√
2(α−γ) (2.3.15). The parameters are chosen such

that, in the right frame, the bifurcating traveling wave is stable at the supercrit-
ical bifurcation (Lemma 3.5.4) and stable for τ̂ ≫ 1 (Lemma 3.5.5). In the left
frame, the bifurcation is subcritical, the bifurcating traveling pulse is unstable
(Lemma 3.5.4); it must undergo a stabilizing saddle-node bifurcation at a certain
critical value τ̂sn < τ̂tp (see also Chapter 2), that is followed by a third, desta-
bilizing (Hopf?) bifurcation (Lemma 3.5.5). In principle, more bifurcations are
possible. Note that the existence of the bifurcation points at which the stability
of the pulses change are deduced from Lemmas 3.5.4 and 3.5.5, in combination
with the existence analysis of the previous chapter. Thus, the position of the
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Figure 3.11: Bifurcation curves of the stationary and traveling pulse solutions
for (α, γ,D, θ, ε) = (5, 1, 4, 1, 0.01); β = −3 in the left frame, so that the trav-
eling pulse bifurcates subcritically from the stationary pulse (Lemma 3.5.4) and
becomes unstable for large τ̂ (Lemma 3.5.5); β = 3 in the right frame: the trav-
eling pulse bifurcates supercritically (Lemma 3.5.4) and remains stable for large
τ̂ (Lemma 3.5.5).

third bifurcation in the left frame of Figure 3.11 is only sketched; it has not been
obtained from a full stability analysis of the traveling pulse solution.

Proof of Lemma 3.5.5. Since the calculations are straightforward, we only
give a sketch of the proof. A detailed analysis of the u-component of the stabil-
ity problem (3.5.18) yields, besides (3.4.7), that u±

1,0 = C± (

(u±
tp,1,0)ξ + K±

0 ψ±)

(where we used the notation from the previous section, see (3.5.26)). By applying
the solvability condition to the second order correction term (with respect to ε)
of the u-component and by using (3.2.28), we obtain

∓1

3

√
2C±λ̂ + αṽ(±ξ∗) + βw̃(±ξ∗) − 1

ε
αC±(vtp)ξ(±ξ∗) − 1

ε
βC±(wtp)ξ(±ξ∗) = 0 .

Now, we compute the leading order behavior of ṽ(±ξ∗), w̃(±ξ∗), (vtp)ξ(±ξ∗), and
(wtp)ξ(±ξ∗) with respect to δ. It is not hard to see that the ṽ(±ξ∗) and (vtp)ξ(±ξ∗)

are zero to leading order, and because θ̂ = 0, the leading order behavior of w̃(±ξ∗)
and (wtp)ξ(±ξ∗) is the same as in the case of standing pulse solutions. Hence,

it follows that λ̂+ = 0 and λ̂1 = −3
√

2 β
D A2/D (3.4.20), so that the sign of β

determines the stability of the traveling pulse solution for asymptotically large
τ̂ . 2

3.6 Standing 2-pulse solutions

In this section, we investigate the stability of standing 2-pulse solutions as con-
structed in Chapter 2 and as reviewed here in Section 3.2.3. The main result
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Figure 3.12: The eigenfunctions Ψj(ξ) associated to the symmetric standing 2-
pulse solution with α = 3, β = −1, γ = 1.22, D = 2, and ε = 0.01. Observe that
Ψ1,2(ξ) are odd eigenfunctions, while Ψ3,4(ξ) are even eigenfunctions.

reads

Theorem 3.6.1. Let (α, β, γ,D, ε) be such that there exist K 2-pulse solutions
(Theorem 3.2.4). Assume that τ, θ = O(1), then the stability of the 2-pulse solu-

tion is governed by four small eigenvalues λj = ε2λ̂j that are given by

λ̂1 = 0 , λ̂2 = 3
√

2E ,

λ̂3,4 = − 3
2

√
2

(

A + D − E ±
√

(A−D)2 + (B + C)2
)

,
(3.6.1)

where A,B, C,D, and E are defined by

A := αA2
1 + β

DA
2/D
1 , B := αA1A2 + β

DA
1/D
1 A

1/D
2 ,

C := αA1A
−1
2 + β

DA
1/D
1 A

−1/D
2 , D := αA2

2 + β
DA

2/D
2 , E := B − C ,

in which A1,2 are determined by (3.2.30).

As in the previous sections, we can also determine the associated eigenfunc-
tions Ψj(ξ), j = 1, . . . , 4, explicitly. In fact, if Cj

i is the amplitude of the fast
u-component of Ψj(ξ) in the fast field Ii

f , i ∈ {2, 4, 6, 8} (3.2.29), i.e., Ψu
j (ξ) =



3.6. Standing 2-pulse solutions 131

(−1)
i
2+1Cj

i ψi(ξ) with ψi(ξ) as in (3.2.34), then we have

Ψ1(ξ) : C1
2 = C1

4 = C1
6 = C1

8 ,
Ψ2(ξ) : C2

2 = −C2
4 = −C2

6 = C2
8 ,

Ψ3(ξ) : C3
2 = B+C

A−D−
√

(A−D)2+(B+C)2
C3

4

= − B+C
A−D−

√
(A−D)2+(B+C)2

C3
6 = −C3

8 ,

Ψ4(ξ) : C4
2 = B+C

A−D+
√

(A−D)2+(B+C)2
C4

4

= − B+C
A−D+

√
(A−D)2+(B+C)2

C4
6 = −C4

8 .

(3.6.2)

The eigenfunctions Ψ1,2(ξ) are odd, while Ψ3,4(ξ) are even. In Figure 3.12, we
plotted all four eigenfunctions for a certain parameter combination.

In Section 3.6.1, we sketch the proof of Theorem 3.6.1, Then, since the formu-
las (3.6.1) for λ̂2,3,4 are complicated, we further investigate these small eigenvalues
in Section 3.6.2, showing that there are regions in parameter space in which the
2-pulse solutions are stable, and showing that for asymptotically large values of
D the 2-pulse solutions are unstable.

3.6.1 Proof of Theorem 3.6.1

The main difference between the construction and the stability analysis of a 1-
pulse solution and a 2-pulse solution is the number of fast and slow intervals. For
a 2-pulse solution, we have four fast and five slow intervals (3.2.29) instead of
two fast and three slow intervals as is the case for 1-pulse solutions. For the con-
struction of the Evans function, we therefore first assume that there is one large
intermediate regime that consists of I2

f ∪ I3
s ∪ I4

f ∪ I5
s ∪ I6

f ∪ I7
s ∪ I8

f . Essentially,
the construction of the Evans functions goes exactly as in Section 3.3.4. Similar
arguments as in Section 3.4.2 show that the slow basis functions φ(ξ) do not have
a fast growing component in each of the intermediate slow regimes, so that we
can define (and determine) the intermediate transmission functions s2k+1

ij (λ̂) in

each of the slow regions I2k+1
s (i = 2, 3, j = 2, 3, 4, 5, and k = 1, 2, 3).

The stability analysis is analogous to that of Section 3.4. For example, the essen-
tial spectrum is given in Lemma 3.3.1, we need the same rescalings for λ, v(ξ), and
w(ξ), the eigenvalues of M2p

∞ are still given by (3.4.11), and its associated eigen-
vectors by (3.4.12). The only real difference is that we have to impose (many!)
more matching conditions. After a tedious calculation, we find that the ṽ, w̃-
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components of the slow basis function φ(ξ) are given by

φṽ
2p(ξ) =



















































C2e
ε(ξ+ξ1

∗) − C4e
ε(ξ+ξ2

∗) + C6e
ε(ξ−ξ2

∗) − C8e
ε(ξ−ξ1

∗) in I1
s ,

C2e
−ε(ξ+ξ1

∗) − C4e
ε(ξ+ξ2

∗) + C6e
ε(ξ−ξ2

∗) − C8e
ε(ξ−ξ1

∗) in I3
s ,

C2e
−ε(ξ+ξ1

∗) − C4e
−ε(ξ+ξ2

∗) + C6e
ε(ξ−ξ2

∗) − C8e
ε(ξ−ξ1

∗) in I5
s ,

C2e
−ε(ξ+ξ1

∗) − C4e
−ε(ξ+ξ2

∗) + C6e
−ε(ξ−ξ2

∗) − C8e
ε(ξ−ξ1

∗) in I7
s ,

C2e
−ε(ξ+ξ1

∗) − C4e
−ε(ξ+ξ2

∗) + C6e
−ε(ξ−ξ2

∗)

−C8e
−ε(ξ−ξ1

∗) + 1
DEṽ

4

(

C2e
− ε

D (ξ+ξ1
∗) − C4e

− ε
D (ξ+ξ2

∗)

+C6e
− ε

D (ξ−ξ2
∗) − C8e

− ε
D (ξ−ξ1

∗)
)

in I9
s ,

(3.6.3)

and

φw̃
2p(ξ) =







































































































1
D

(

C2e
ε
D (ξ+ξ1

∗) − C4e
ε
D (ξ+ξ2

∗) + C6e
ε
D (ξ−ξ2

∗)

−C8e
ε
D (ξ−ξ1

∗)
)

in I1
s ,

1
D

(

C2e
− ε

D (ξ+ξ1
∗) − C4e

ε
D (ξ+ξ2

∗) + C6e
ε
D (ξ−ξ2

∗)

−C8e
ε
D (ξ−ξ1

∗)
)

in I3
s ,

1
D

(

C2e
− ε

D (ξ+ξ1
∗) − C4e

− ε
D (ξ+ξ2

∗) + C6e
ε
D (ξ−ξ2

∗)

−C8e
ε
D (ξ−ξ1

∗)
)

in I5
s ,

1
D

(

C2e
− ε

D (ξ+ξ1
∗) − C4e

− ε
D (ξ+ξ2

∗) + C6e
− ε

D (ξ−ξ2
∗)

−C8e
ε
D (ξ−ξ1

∗)
)

in I7
s ,

1
D

(

C2e
− ε

D (ξ+ξ1
∗) − C4e

− ε
D (ξ+ξ2

∗) + C6e
− ε

D (ξ−ξ2
∗)

−C8e
− ε

D (ξ−ξ1
∗)

)

in I9
s .

(3.6.4)

See Remark 3.4.1, and recall that ±ξ1,2
∗ are to leading order the centers of the

fast fields. Moreover, note that we again constructed the basis function φ(ξ) in
such a fashion that t2,3 = 0 (3.5.9). Thus, we follow the approach of Section 3.5.1
(note the similarities between (3.6.3), (3.6.4) and (3.5.22), (3.5.23)), rather than
that of Section 3.4.3.

Substituting the values for the ṽ, w̃-components into the u-equation in the fast
fields yields four ODEs for the u-component similar to (3.4.31), (3.4.32), and
(3.5.11). In combination with the solvability conditions (3.2.35), the second order
correction term of the u-component in the fast fields gives all the information
about the eigenvalues. Specifically, the eigenvalues λ̂1,2,3,4 are the nontrivial so-
lutions of the matrix equation

M2









C2

C4

C6

C8









=









0
0
0
0









, (3.6.5)
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where M2 is a 4 × 4-matrix given by

M2 :=








1
3

√
2λ̂ + A− E −C B −A

C −1
3

√
2λ̂ −D + E D −B

B −D 1
3

√
2λ̂ + D − E −C

A −B C − 1
3

√
2λ̂ −A + E









,

and A,B, C,D, and E are defined in Theorem 3.6.1. The condition that the de-
terminant of this matrix M2 vanishes yields the four eigenvalues

λ̂1 = 0 , λ̂2 = 3
√

2E , λ̂3,4 = − 3
2

√
2

(

A + D − E ±
√

(A−D)2 + (B + C)2
)

.

This completes the proof. 2

Note that by construction λ̂4 ≥ λ̂3. However, the signs of the eigenvalues λ̂2,4 are
not immediately clear from (3.6.1). Therefore, in order to obtain more explicit
statements about stability and instability of the 2-pulse solutions from formu-
las (3.6.1), we investigate these formulas in the next section.

3.6.2 The small eigenvalues

The main results of this section are that there exist open regions in parame-
ter space in which the 2-pulse solutions are stable (see Lemma 3.6.2), while in
the regime with D asymptotically large the 2-pulse solutions are unstable (see
Lemma 3.6.3).

Lemma 3.6.2. Let (α, β, γ,D, ε, τ, θ) be as in Theorem 3.6.1, and suppose that
α > 0 and 0 > β > −h∗(D)α, where h∗(D) is the unique positive solution of

κ(h,D) := −h
D

D−1 D−2 D
D−1 (D − 1) + 1 − h

D
= 0. (3.6.6)

Then, there exists an open interval of γ-values such that the standing 2-pulse
solution is stable.

In Figure 3.13, we plotted the three small eigenvalues λ̂2,3,4 as functions of A2

for four different combinations of α and β, while the other parameters are kept
fixed. We observe that only in the first frame (upper left) do we find a stable
standing 2-pulse solution, and this is indeed the only frame for which the param-
eters α and β fulfill the conditions of Lemma 3.6.2.

Note that for D = 2 equation (3.6.6) can be solved explicitly, and the unique
solution reads h∗(2) = 4(

√
2 − 1). Moreover, for D large, κ(h,D) is given to

leading order by 1− 2h
D , and hence h∗(D) → D

2 as D ≫ 1. Moreover, in the other
limit, D → 1, the solution is given by h∗(1) = 1.
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Figure 3.13: The small eigenvalues λ̂2 (dotted line), λ̂3 (dashed-dotted

line), and λ̂4 (solid line) as function of A2, where D = 2 and (α, β) =
{(2,−1), (−2, 1), (1,−2), (−1, 2)}, respectively. Note that only for (α, β) = (2,−1)
does there exist a regime in which the 2-pulse solutions are stable. This is also the
only parameter combination of the four for which the hypotheses of Lemma 3.6.2
are satisfied.
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Figure 3.14: In the left frame, we plotted the existence and stability regimes
for a given parameter combination fulfilling the assumptions of Lemma 3.6.2 as
functions of A2 and D ((α, β) = (2,−1)), see (3.6.7). In the right frame, we
plotted γ as a function of A2 for three different values of D = 2, 5, 10. The
solid line represents a stable 2-pulse solution, while the dotted line represents
an unstable 2-pulse solution. We observe a saddle-node bifurcation of 2-pulse
solutions, that is, for decreasing γ a stable and an unstable standing 2-pulse
solution merge and disappear.

The proof of the above lemma is partly based on solving equations (3.2.30). We
observe that the first equation of (3.2.30) is independent of γ. Therefore, for
given A2, the first equation yields A1, and the second equation yields a uniquely
determined γ. However, there is a restriction in the choice of A2, since it has to
lie between A1 and 1. From the previous chapter we know that this restriction
yields (for general D)

(

−αD2

β

)− 1
2

D
D−1

< A2 < min

{

(

−α

β

)− 1
2

D
D−1

, 1

}

. (3.6.7)

In the left frame of Figure 3.14, we plotted (3.6.7) as function of D with α, β
fixed such that the conditions of Lemma 3.6.2 are fulfilled. We also included the
curve where the stability of a 2-pulse solution changes. We indeed observe that
the stability regime for D asymptotically large shrinks to zero, see Lemma 3.6.3.
In the right frame, we plotted γ as function of A2 for several values of D.

Proof of Lemma 3.6.2. The proof is obtained by choosing γ in a special region
such that A,B, C, and D can be determined explicitly by an asymptotic procedure.
We introduce β̃ := −β

α > 0 (by assumption), and we choose γ in such a fashion

that A2 is close to its lower boundary, i.e., A2 = D− D
D−1 β̃

1
2

D
D−1 + δ =: Al

2 + δ,
with 0 < ε ≪ δ ≪ 1, see (3.6.7). Solving the first equation of (3.2.30) yields that
A1 = Al

2 − δ +O(δ2). Now, we can also determine A,B, C, and D in terms of the
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small parameter δ

A
α = (1 − D)

(

Al
2

)2
+ 2D−1

D δ2 + O(δ3) ,

B
α = (1 − D)

(

Al
2

)2
+ O(δ3) ,

C
α =

(

1 − β̃
D

)

− 2
(

(D2 − β̃)D
2−D
D−1 β̃

1
2

D
1−D

)

δ + O(δ2) ,

D
α = (1 − D)

(

Al
2

)2
+ 2D−1

D δ2 + O(δ3) .

Hence, we find that the four eigenvalues λ̂1,2,3,4 are

λ̂1 = 0 , λ̂2 = −3
√

2α
(

1 − β̃
D + (D − 1)(Al

2)
2
)

+ O(δ) ,

λ̂3 =

{

−3
√

2α
(

κ(β̃,D)
)

+ O(δ) for κ(β̃,D) > 0,

−6
√

2D−1
D αδ2 + O(δ3) for κ(β̃,D) < 0,

λ̂4 =







−6
√

2D−1
D αδ2 + O(δ3) for κ(β̃,D) > 0,

−3
√

2α
(

κ(β̃,D)
)

+ O(δ) for κ(β̃,D) < 0.

with κ(β̃,D) as defined in (3.6.6). We note that equation (3.6.6) indeed has
a unique positive solution, since κ(h,D) is, as a function of h, monotonically
decreasing, κ(0,D) = 1, and κ(∞,D) < −∞. Moreover, since κ(D2,D) =
2(1 − D) < 0, we deduce from the monotonicity that D2 > h∗(D), so that β̃ <

h∗(D) < D2 by assumption. Hence, we have that
(

1 − β̃
D + (D − 1)(Al

2)
2
)

> 0,

which implies that λ̂2 < 0 for α > 0. Moreover, it follows that λ̂4 < 0 for
β̃ < h∗(D). Since λ̂3 ≤ λ̂4, we have shown that a 2-pulse solution is stable if
0 < β < −h∗(D)α for γ such that A2 is close to Al

2. 2

Observe that we did not yet obtain a result on the instability of the 2-pulse
solutions if the parameters do not satisfy the conditions of Lemma 3.6.2. Such
results can be obtained, but we refrain from going into the details here. How-
ever, we will prove that 2-pulse solutions are always unstable for large D (see
Figure 3.14).

Lemma 3.6.3. Let 1
D be asymptotically small, then the 2-pulse solution is un-

stable for values of A2 ∈
(

0,
√

−β
α

)

that are strictly O(1) with respect to 1
D .

Proof. From Chapter 2, we know that for 1
D asymptotically small, A1 =

(

1 −
√

−β
αA2

)D

to leading order. In the case that sgn(β) = −1, we now show

that the second small eigenvalue λ̂2 (3.6.1) is positive. In fact,

B − C = αA1(A2 − A−1
2 ) + β

DA
1/D
1 (A

1/D
2 − A

−1/D
2 )

= 2β
D2

(

1 −
√

−β
αA2

)

log A2 + O(D−3) > 0 .
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Therefore, λ̂2 > 0, and the 2-pulse solution is thus unstable.

In the case that sgn(α) = −1, we show that the fourth small eigenvalue, λ̂4,
in (3.6.1) is positive. It is enough to show that A− B + C + D < 0.

A− B + C + D = α
(

(A2 − A1)
2 + A1A2 + A1A

−1
2

)

+ β
D

(

(

A
1/D
2 − A

1/D
1

)2

+ A
1/D
1 A

1/D
2 + A

1/D
1 A

−1/D
2

)

= αA2
2 + O(D−1) < 0 .

Thus, λ̂4 > 0, and the 2-pulse solution is also unstable in this case. 2



138 Chapter 3. Stability



Chapter 4

Interactions

4.1 Introduction

Patterns are ubiquitous in science and engineering. They form when key physical
quantities —for example the concentrations of chemical species— exhibit nontriv-
ial spatial and/or temporal dependence. Stripes, hexagons, spots, fronts, pulses,
spirals, targets, sand ripples, and roll cells, are all examples of patterns, to name
a few.

Patterns may be classified as being near-equilibrium or far-from-equilibrium. In
the former case, the amplitudes of the key physical quantities are close to their
equilibrium values everywhere in the domain. Such patterns arise, for example,
when stable homogeneous (or equilibrium) states are destabilized by diffusion, as
in the classical Turing bifurcation. By contrast, in far-from-equilibrium patterns,
the key physical quantities exhibit large excursions away from equilibrium. Often,
such patterns have a localized character, i.e., they are close to equilibrium on large
parts of the domain and far from equilibrium on relatively small or narrow sub-
domains. Examples include fronts, which connect two different equilibria, pulses
that may be the concatenations of two fronts, spots, and other more-complicated
spatially-localized structures.

In the last decade, the three-component reaction-diffusion equation introduced
in [60] has become a paradigm model to investigate the rich variety of front,
pulse, and spot dynamics. As shown numerically and experimentally in [5, 32,
50, 51, 53, 54, 60, 65, 71], these localized structures can undergo repulsion, anni-
hilation, attraction, breathing, collision, scattering, self-replication, and sponta-
neous generation. This three-component model consists of a well-studied bistable
equation for the activator component, and linear equations for the two inhibitor
components, with bidirectional linear coupling. Hence, it may be interpreted as a
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FitzHugh-Nagumo type equation augmented with a second inhibitor component.
It has become a paradigm problem, among other reasons, because it is simultane-
ously complex enough to support the rich dynamics of these localized structures
and simple enough to permit extensive analysis, as has been shown in one space
dimension in the previous chapters.

A scaled version of this paradigm model in 1-D is, see also Chapter 2,










Ut = Uξξ + U − U3 −ε(αV + βW + γ) ,

τVt = 1
ε2 Vξξ + U − V ,

θWt = D2

ε2 Wξξ + U − W ,

(4.1.1)

where 0 < ε ≪ 1,D > 1, τ, θ > 0, α, β, γ ∈ R and O(1) with respect to ε, and
(ξ, t) ∈ R × R

+. Here, U represents the activator concentration, and V and W
represent the concentrations of the inhibitors. This partial differential equation
(PDE) has homogeneous steady states O(ε) close to (U, V,W ) = (±1,±1,±1)
and to (0, 0, 0), with the former being stable and the latter unstable. Fronts are
solutions that are close to the stable homogeneous steady state near (−1,−1,−1)
on a certain interval and then jump to the other stable homogeneous state near
(1, 1, 1). Backs are the opposites of fronts, and they are related to fronts via the
symmetry (U, V,W, γ) → (−U,−V,−W,−γ) of (4.1.1), so that one may simply
refer to both as fronts. Finally, pulses, which are the concatenation of a front
and a back, are biasymptotic to either the homogeneous state near (−1,−1,−1)
or to that near (1, 1, 1). By symmetry, any result about the former pulse solution
also holds for the latter type, and vice versa. Hence, one may focus on the former
type, without loss of generality.

The third component W was introduced in [60] to stabilize traveling spot solu-
tions in 2-D. In the previous chapters, the relation between the three-component
model and its two-component limit has been investigated in detail (in one spatial
dimension). We have shown that the third component significantly increases the
richness of the dynamics generated by the model. For instance, stationary 2-pulse
(4-front) solutions cannot exist in the two-component limit, see Section 2.6. In the
current chapter, we will also establish that uniformly traveling 3-front solutions
can only exist in the three-component model, see Lemma 4.4.8.

The existence and stability of traveling 1-pulse solutions and standing 1-pulse
and 2-pulse solutions was proved in the previous chapters. We used and extended
classical methods from geometric singular perturbation theory and from Evans
function theory. Moreover, we note that it was critical for the application of these
methods that the localized structures were either constant in time or fixed in a
co-moving frame.

The current chapter may be viewed as the next natural step in the analysis of the
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three-component model (4.1.1). We study dynamically-evolving solutions consist-
ing of N fronts. It is not clear how to use the classical techniques to rigorously
establish the existence of these solutions or their stability, since there is not a
single, global co-moving frame in which all N fronts are constant. Indeed, any
two adjacent fronts may move in opposite directions and/or with different speeds,
see Figures 4.1 and 4.2.

Our objectives in this chapter are to derive and to analyze the system of N coupled
ordinary differential equations (ODEs) that governs the velocities of the fronts in
an N -front solution in the parameter regime τ, θ = O(1) – see Remark 4.1.1. The
derivation is readily carried out formally using matched asymptotic expansions.
However, a rigorous justification of the validity of these ODEs —i.e., of the va-
lidity of reducing the three PDEs in (4.1.1) to a system of N ODEs for the front
velocities— requires significant new analysis. This justification is the primary
result of this chapter. It will be achieved modifying the renormalization group
(RG) method to consider the stability in a bounded variation (BV)-type norm.
The second main result is an analysis of the reduced ODEs. In particular, we
classify the different possible front dynamics for these N -front solutions, as well
as how interacting fronts may pair up into (interacting) pulses.

As a preparatory result, we will show that 1-front solutions travel with veloc-
ity Γ̇(t) = 3

2

√
2εγ, where ξ = Γ(t) denotes the position of the fronts at time t.

Moreover, we show that they are stable (see Lemma 4.2.1). The first substantial
case involves 2-front solutions. We will show that the front velocities are given by

Γ̇1 =
3

2

√
2ε

(

γ − αe−ε(Γ2−Γ1) − βe−
ε
D (Γ2−Γ1)

)

, Γ̇2 = −Γ̇1,

to leading order. Analysis of these ODEs reveals that a 2-front solution asymp-
totes to a standing 1-pulse solution if and only if this 1-pulse solution is stable
and there are no unstable 1-pulse solutions between it and the initial fronts. Oth-
erwise, the fronts may asymptote to ±∞ or annihilate.

The dynamics exhibited by 3-front and 4-front solutions is more varied. We
show, among other things, that 3-front solutions and 4-front solutions for which
one (or more) of the outer fronts travels to ±∞ can be stable. Also, the 4-front
solutions can asymptote to a ground state, a stable 1-pulse solution, or a stable
2-pulse solution.

For general N ≥ 1, we will show that the velocities of the fronts are given to
leading order by (4.2.1). Analyzing these ODEs in the generic case when γ 6= 0,
we show that uniformly traveling solutions are possible when the number of fronts
is odd, but not when the number of fronts is even. Similarly, in the generic case,
we find that stationary N -front solutions can exist when N is even, but not when
N is odd. See Lemma 4.4.2.
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Figure 4.1: These frames show the evolution of respectively the U, V,W -
component for a certain approximate 2-front initial condition with system pa-
rameters (α, β, γ,D, τ, θ, ε) = (6,−5,−2, 5, 1, 1, 0.01). The fronts of the 2-front
solution repel each other and diverge to ±∞. Note that the V , W -components
interact strongly, while the U -component interacts weakly.

In proving the existence and stability of the dynamically-evolving N -front solu-
tions, we focus exclusively on the case N = 2, in order to keep the analysis of the
RG method as transparent as possible. Nevertheless, the ideas and arguments in
the proof also suffice to rigorously justify the ODE reduction for N -front solutions
for general N . There are N eigenvalues near zero, and the spectral splitting holds
uniformly for the N -front solutions as follows from the analysis in Chapter 3. See
also [47] for a detailed study of the stability of N -pulse solutions using the RG
method.

The validity of the ODE system (4.2.1) will be established using an RG method.
Indeed, the method will simultaneously give the existence and stability of the N -
front solutions, as long as no two adjacent fronts get too close. One begins with
the manifold of approximate N -front solutions obtained from a formal deriva-
tion. Initial data ΦN(ξ, t = 0) = (UN(ξ, 0), VN(ξ, 0),WN(ξ, 0)) for the PDE (4.1.1)
that lies close to a point on this manifold may be decomposed into the sum of
an approximating ‘skeleton’ N -front solution on the manifold and a remainder
which lies in the directions transverse to the manifold and whose norm is of the
size of the distance to the manifold. Based on leading order matched asymptotic
expansions, one expects that ΦN (ξ, t) will remain close to the skeleton solution
as it evolves on that manifold, i.e., that the remainder remains small. However,
proving that this is indeed the case requires a stability analysis about the time-
dependent solution on the manifold. With the RG method, we show that there
exists a sequence of times {t∗i }∞i=0, with t∗0 = 0, at which one may freeze the skele-
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Figure 4.2: In this frame, we show the evolution of the U -component for a certain
approximate 4-front initial condition with system parameters (α, β, γ,D, τ, θ, ε) =
(4,−3,−0.5, 10, 1, 1, 0.01). The four fronts asymptote to a stable stationary 2-
pulse solution. Note that the back and the front of a pulse do not necessarily
move with the same speed and/or in the same direction.

ton solution on the manifold and linearize about this frozen solution in order to
approximate the linearization about ΦN (ξ, t) on the interval [t∗i , t

∗
i+1]. Then, at

the end of each time interval, one renormalizes the skeleton solution by taking an
appropriate point on the manifold, and repeats the above procedure. Projection
of the solutions onto the eigenspace associated with the N small O(ε) eigenvalues
of the linearized operator leads to the ODEs for the positions of the fronts, and
projection onto the complementary eigenspace leads to the bounds on the resol-
vent and semi-group, and hence also to the bounds on the remainder.

There are several competing factors, akin to normal hyperbolicity, which deter-
mine whether or not the RG method approach succeeds. On the one hand, the
lengths of the intervals, t∗i+1− t∗i , must be sufficiently long so that the contraction
estimates obtained from the semi-group estimates are sufficient. On the other
hand, the lengths of these intervals must be sufficiently short so that the secular
errors which accumulate in making the frozen linearization approximation do not
become too big.

Front and pulse interactions have been studied using RG methods in [16, 31,
47, 55]. The underlying strategy in applying the method here is similar to that
used in these other studies. The main challenge we face applying the RG method
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to the three-component model (4.1.1) is that we cannot use variants of an H1-
norm, such as used in [16]. These norms are singular when comparing functions
with small differences in their asymptotic states at spatial infinity. To overcome
this, we define the χ-norm, see (4.3.1), which can be seen as a variant of the usual
BV norm.

We observe that the interactions between the fronts and pulses that we study
is classified as semi-strong, see [15, 16, 38, 47, 62]. Semi-strong interaction of
two adjacent fronts means that the interaction is driven essentially by the com-
ponent(s) that are not near equilibrium in the intervals between the fronts. In
the case of (4.1.1), the front interactions are driven by V and W , see Figure 4.1.
Hence, the semi-strong interaction of fronts and pulses in (4.1.1) stems from the
separation of length scales in the PDEs, i.e., from their singularly perturbed
nature. The interaction in the semi-strong regimes is stronger, and hence the
observed front interactions are richer, than that in the weak interaction regime,
[19, 20, 55, 59]. In the weak regime, the pulses are assumed to be ‘sufficiently
far apart’, so that the pulses can be considered as ‘particles’ to leading order.
Semi-strong interacting localized structures change shape and the interaction may
even cause ‘bifurcations’. On the other hand, semi-strong interactions are weaker
than strong interactions, which occur, for example, when fronts collide or when
a pulse self-replicates. For the three-component model (4.1.1), numerical simu-
lations suggest that when two fronts enter the strong interaction regime, where
Γi+1(t)−Γi(t) ≪ ε−1 for some i, the fronts collide and disappear, see Figures 4.7
and 4.10. It is a future challenge to analyze strong interactions and to apply the
RG method to strongly interacting fronts.

This chapter is organized as follows. In Section 4.2, we present the formal deriva-
tion of the ODE (4.2.1). The RG method that rigorously justifies the derivation
of this ODE is presented in Section 4.3. Then, a detailed analysis of the ODEs
for the cases N = 1, 2, 3, 4 is presented in Section 4.4. Moreover, we present some
results for general odd or even N .

Remark 4.1.1. The fact that the parameters τ and θ are O(1) is a key assump-
tion in this chapter. For these values of τ and θ, the terms involving c are to
leading order absent in the slow fields, see Chapter 2 and 3. This is crucial, since
c = c(t) is not even well-defined in the slow fields. It is a fundamental challenge
to adapt the methods used in this chapter for problems where the speeds of the
fronts do have a leading order influence in the slow fields. Here, this occurs if τ, θ
are O(ε−2) large, see also the previous chapters. In this parameter regime, trav-
eling 1-pulse solutions and breathing 1-pulse solutions exist and bifurcate from
stationary 1-pulse solutions. The proof of Section 4.3 breaks down in this regime,
since the essential spectrum asymptotes to the origin in the limit ε → 0.
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4.2 Formal derivation of N-front dynamics

In this section, we formally derive an N -component ODE describing the dynam-
ics of the N different fronts of an N -front solution. A priori, the fronts of an
N -front solution all travel with different speeds. Therefore, it is not possible
to introduce one co-moving frame which travels along with every front. We for-
mally overcome this problem by introducing N co-moving frames, such that every
frame travels along with one of the fronts. This way we obtain N different in-
dependent ‘fast’ ODEs. To leading order, we then solve each of these ODEs by
singular perturbation techniques and obtain N jump conditions (4.2.4). Since the
speeds of the fronts have no leading order influence on any of the intermediate
slow fields, we can formally ‘glue’ the N different fast solutions together in the
slow fields. Formally, we then obtain an N -component ODE (4.2.1) describing
the evolution of the N fronts. The key underlying assumption in this construc-
tion is that the speeds of the various fronts appear at higher order in the slow
fields, see Remark 4.1.1. The perturbation analysis can be summarized as follows:

Assume that all parameters of (4.1.1) are O(1) with respect to ε and let ε be
small enough. Moreover, assume that the speeds of the fronts of an N -front solu-
tion ΦN(ξ, t) to (4.1.1) are all O(ε). Then, to leading order, the i-th front Γi of
this N -front solution formally evolves as

Γ̇i(t) = (−1)i+1 3
2

√
2ε

[

γ + α
(

−eε(Γ1−Γi) + . . . + (−1)i−1eε(Γi−1−Γi)

+(−1)ieε(Γi−Γi+1) + . . . +(−1)N−1eε(Γi−ΓN )
)

+ β
(

−e
ε
D (Γ1−Γi)

+ . . . + (−1)i−1e
ε
D (Γi−1−Γi) + (−1)ie

ε
D (Γi−Γi+1) + . . .

+ (−1)N−1e
ε
D (Γi−ΓN )

)]

for i = 1 . . . N.

(4.2.1)

Here, Γi is the ξ-coordinate of the i-th time the U -component crosses zero and Γ̇
is the time-derivative of Γ.

Note that Γi < Γj if i < j, and therefore all the exponentials in (4.2.1) have
a negative exponent. Moreover, since we use the fast scaling, the distance be-
tween two fronts is of O(ε−1). Thus, the interactions between the fronts are not
exponentially small, as in the case of weak interaction. Also observe that the
influence of the i-th front on the j-th front is independent of the number of fronts
in between.

This formal result is derived as follows. Since the i-th front of an N -front so-
lution is located at Γi, and it moves with speed εci, we have that

Γi(t) = Γi(0) + ε

∫ t

0

ci(s)ds ⇒ Γ̇i(t) = εci(t) . (4.2.2)

Since the various speeds εci of the fronts have no leading order influence on the
slow equations, the PDE (4.1.1) to leading order reduces to the following ODE
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system:






























uξ = p ,
pξ = −u + u3 + ε(αv + βw + γ − cip) ,
vξ = εq ,
qξ = ε(v − u) + O(ε3) ,
wξ = ε

D r ,
rξ = ε

D (w − u) + O(ε3) .

(4.2.3)

In the N fast fields, the regions around the fronts, the solution is governed by the
first two ODEs with different speeds εci and with different fixed v, w-components,
that is, (v, w) = (vi, wi). In the fast fields, the U -component to leading order
jumps from a locally invariant manifold M±

ε to the other M∓
ε , where M±

ε =
{u = ±1 − 1

2ε(αv + βw + γ) + O(ε2), p = O(ε2)}. Therefore, the solution has to
lie in the intersection of their unstable and stable manifold, i.e., it has to lie in
Wu(M±

ε ) ∩ W s(M∓
ε ). The distance between those two manifolds, which has to

be zero to leading order, is measured by a Melnikov integral, see Chapter 2 and
[57]. This integral yields N conditions

ε(αvi + βwi + γ)

∫ ∞

−∞
p0(ξ)dξ + (−1)ici

∫ ∞

−∞
p0(ξ)

2dξ = O(ε
√

ε) , i = 1, . . . , N,

with p0(ξ) the derivative of the leading order integrable flow, that is, p0(ξ) is
the p-solution of the (u, p)-system of (4.2.3) with ε = 0. In particular, p0(ξ) =
1
2

√
2sech2( 1

2

√
2ξ). Integrating gives N jump conditions

αvi + βwi + γ = (−1)i+1 1

3

√
2ci for i = 1, . . . , N . (4.2.4)

In the N +1 slow fields, the regions in between the fronts, the solution is governed
by the last four ODEs of (4.2.3) with u fixed at either +1 or −1. To leading order,
these ODEs can be solved explicitly

v(ξ) = Aje
εξ + Bje

−εξ + (−1)j ,
w(ξ) = Cje

ε
D ξ + Dje

− ε
D ξ + (−1)j , j = 1, . . . , N + 1

(4.2.5)

Note that v(ξ) and w(ξ) would not change in leading order if |ξ| ≪ ε−1 during
the passage of a slow manifold. Since they clearly should change, we assume that
∆Γi = Γi+1 − Γi = O(ε−1), see Remark 4.3.1.

To determine the constants Aj , Bj , Cj ,Dj , vi and wi as function of the front lo-
cations Γi, we implement the boundary conditions and match the slow solutions
(4.2.5) and their derivatives, in the fast regions. This yields

vi = −eε(Γ1−Γi) + . . . + (−1)i−1eε(Γi−1−Γi)

+(−1)ieε(Γi−Γi+1) + . . . + (−1)N−1eε(Γi−ΓN ),

wi = −e
ε
D (Γ1−Γi) + . . . + (−1)i−1e

ε
D (Γi−1−Γi)

+(−1)ie
ε
D (Γi−Γi+1) + . . . + (−1)N−1e

ε
D (Γi−ΓN ) .

(4.2.6)
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Combining (4.2.6) with the jump conditions (4.2.4) and using (4.2.2) gives (4.2.1).

Lemma 4.2.1. Assume that all conditions of the formal construction are met.
Moreover, assume that N = 1, that is, we look at 1-front solutions. Then these
1-front solutions travel with speed

Γ̇(t) = εc =
3

2

√
2εγ . (4.2.7)

Moreover, these 1-front solutions are stable.

Proof. Equation (4.2.7) is a direct consequence of (4.2.1) with N = 1. How-
ever, since we only have to introduce one co-moving frame, this result can also
be made rigorous by the method used in Chapter 2. Likewise, the stability of
these 1-front solutions directly follows from the pulse-stability analysis in Chap-
ter 3: the 1-front solutions can only have one small eigenvalue, the translational
eigenvalue at λ = 0. 2

4.3 A renormalization group method

We reformulate the results of the previous section in a rigorous manner, see The-
orem 4.3.2 in Section 4.3.2, and use the RG method developed in [16, 55] to
rigorously prove this theorem. In order to focus on the essence of the method,
and avoid technical details, we only consider the case N = 2 of (4.2.1) in full
detail. The proof of the general case runs along the same lines modulo certain
technicalities, such as the uniform spectral compatibility, see (4.3.7). In order to
formulate the theorem, we first need to introduce a suitable norm.

4.3.1 The χ-norm

We define the χ-norm by

‖(U, V,W )‖χ := ‖U‖χ + ‖V ‖χ + ‖W‖χ, with ‖.‖χ := ‖χ.‖L1 + ‖∂ξ.‖L1 , (4.3.1)

where χ(ξ) is a positive function with mass 1, that is, χ̄ =
∫ ∞
−∞ χ(ξ)dξ = 1, and it

is exponentially decaying with an O(1) parameter with respect to ε (for example,
χ(ξ) = 1

2e−|ξ|). It is straightforward to check that the χ-norm is indeed a norm;
and, in essence, it is a weighted W 1,1-norm. We also define the normed space X

X := {(U, V,W ) | ‖(U, V,W )‖χ < ∞} . (4.3.2)

The reason for using this particular norm, instead of a more usual one such as the
scaled variant of the H1-norm used in [16], is that this χ-norm is well behaved
with respect to differences in asymptotic behavior at spatial infinity. The need
for this is explained as follows. An N -front solution to (4.1.1) only asymptotes to
leading order to (−1,−1,−1) at ξ = −∞, see Chapter 2. However, the skeleton



148 Chapter 4. Interactions

solution which we use to approximate an N -front solution (see (4.3.6)), asymptotes
exactly to (−1,−1,−1) at −∞. Therefore, although the error is only of O(ε)-size
at spatial infinity, the H1-norm of this error is unbounded. Since the tails of the
N -front solution and the skeleton solution are exponentially flat, the seminorm
‖∂ξ.‖L1 (all constants have norm zero) does not yield an unbounded error. To
make this seminorm ‖∂ξ.‖L1 into a norm, we add the component ‖χ.‖L1 , which,
by the third assumption on χ, also does not penalize errors at infinity. The first
two properties we impose on the weight χ, positivity and mass one, make sure
that the χ-norm uniformly dominates the L∞-norm.

Lemma 4.3.1. Let u, v be integrable functions such that ‖u‖χ, ‖v‖χ < ∞. Then,
the χ-norm has the following three properties:

‖u‖L∞ ≤ ‖u‖χ , (4.3.3)

‖G ∗ u‖χ ≤ 2‖G‖L1‖u‖χ , (4.3.4)

‖uv‖χ ≤ 2‖u‖χ‖v‖χ . (4.3.5)

where G in (4.3.4) is an L1-function (in this chapter typically a Green’s function),
and ∗ the usual convolution.

Proof. The first property, (4.3.3), is established via the following inequalities:

u(x) − u(y) =
∫ x

y
uξdξ =⇒ |u(x)| ≤

∫ ∞
−∞ |uξ|dξ + |u(y)| .

Multiplying by χ(y), integrating over all y in (−∞,∞), and recalling that χ is
positive and has mass one, we find that

|u(x)| ≤ ‖uξ‖L1 +
∫ ∞
−∞ |χ(y)u(y)|dy =⇒ ‖u‖L∞ ≤ ‖u‖χ .

The proofs of the second and third properties, (4.3.4) and (4.3.5), heavily rely on
the first property. To prove the second property (4.3.4), we use Hölder’s inequality,
the fact that (G ∗ u)ξ = G ∗ uξ [36], the inequality ‖G ∗ u‖Lp ≤ ‖G‖L1‖u‖Lp for
1 ≤ p ≤ ∞ [36], and finally the above result (4.3.3),

‖G ∗ u‖χ = ‖χ(G ∗ u)‖L1 + ‖(G ∗ u)ξ‖L1

≤ ‖χ‖L1‖G ∗ u‖L∞ + ‖G ∗ uξ‖L1

≤ ‖G‖L1‖u‖L∞ + ‖G‖L1‖uξ‖L1

≤ 2‖G‖L1‖u‖χ .

To prove the third property (4.3.5) observe that

‖uv‖χ ≤ ‖uχv‖L1 + ‖uvξ‖L1 + ‖vχu‖L1 + ‖vuξ‖L1

≤ ‖u‖L∞‖v‖χ + ‖v‖L∞‖u‖χ

≤ 2‖u‖χ‖v‖χ .

This completes the proof. 2
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4.3.2 The main result

In order to give an accurate formulation of the main result of this chapter, i.e.,
that the dynamics of an N -front solution of (4.1.1) is indeed determined by the
formally derived equations (4.2.1), we first need to introduce some more notation.
We define the stationary skeleton N -front solution ΦΓ(ξ) by

ΦΓ(ξ) =





Φ1(ξ)
Φ2(ξ)
Φ3(ξ)



 =





U0(ξ; Γ)
GV ∗ U0(ξ; Γ)
GW ∗ U0(ξ; Γ)



 , (4.3.6)

in which U0(ξ,Γ) is the leading order approximation of the U -component of a
stationary N -front solution of (4.1.1),

U0(ξ,Γ) = −1 +

N
∑

i=1

(−1)i−1 tanh

(

1

2

√
2(ξ − Γi)

)

. (4.3.7)

Here, Γi determines the location of the i-th front, more precisely, U0(ξ) has its
i-th sign change at ξ = Γi. By definition, we have that Γi < Γi+1, and since the
interaction of the fronts is semi-strong, we may assume that ∆Γi = Γi+1 − Γi =
O(ε−1), see Remark 4.3.1. The functions GV,W (ξ) are the Green’s functions
associated to the stationary V and W -equations of (4.1.1) with U(ξ, t) = U0(ξ).
For example, GV ∗ U0 is the (exact!) solution of

0 =
1

ε2
Vξξ + U0 − V . (4.3.8)

Straightforward computations yield that

GV = −1

2
εe−ε|ξ|, and GW = −1

2

ε

D
e−

ε
D |ξ| , (4.3.9)

which are both L1-functions with norm 1.

The graph of the functions ΦΓ(ξ) forms an N -dimensional manifold MN,0. Note
that MN,0 has a boundary ∂MN,0 consisting of N−1 co-dimension 1 hyperplanes
at which Γi = Γi+1 (i = 1, . . . , N − 1). The evolution within MN,0 is (to leading
order) determined by (4.2.1). The dynamical skeleton N -front solution ΦΓ(t)(ξ)
is defined to be an N -front solution (4.3.6) whose fronts Γi(t) evolve according to
the ODE (4.2.1).

This ODE has been obtained under the assumptions that Γi < Γi+1 and ∆Γi =
O(ε−1) (Remark 4.3.1). However, these properties are not necessarily conserved
by the flow generated by (4.2.1): two components Γi(t) and Γi+1(t) of a solution
of (4.2.1) may in principle cross and thus change order. See Section 4.4, in which
the dynamics generated by (4.2.1) is studied. In other words, the evolution of
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(4.2.1) may drive a solution towards the boundary ∂MN,0. Our methods – and
in fact all methods considered in the literature – break down in the strong in-
teraction regime, i.e., for solutions of the PDE (4.1.1) that have two fronts Γi(t)
and Γi+1(t) that become too close. In fact, we will see in the simulations pre-
sented in Section 4.4 that these fronts will in general annihilate each other in
the PDE, while their approximating counterparts will survive the collision and
move through each other in the ODE simulations – something that is impossible
in the PDE. Therefore, we define tm = tm(Γ(0)) of a solution Γ(t) of (4.2.1) as
the maximal time for which mini ∆Γi(t) > ε−1/2 for all time 0 ≤ t < tm. Thus,
Γ(tm) is O(ε−1/2) close to ∂MN,0 and tm = O(ε−2) since ∆Γi(0) = O(ε−1) by

definition and Γ̇i(t) = O(ε) for all i. Note that our methods in principle allow us
to extend our results into regions in which ∆Γi(t) = O(ε−σ) for any σ ∈ (0, 1), see
Remark 4.3.1. In that sense the choice for the critical distance, σ = 1

2 , is some-
what arbitrary. However, it does provide us with a unique definition of tm(Γ(0)),
and none of the other possible choices for σ appear to give more insight than the
present one. Note also that the fronts do not necessarily collide. In fact, Γ(t)
remains bounded away from ∂MN,0 for many choices of Γ(0). In other words,
tm(Γ(0)) = ∞ for large sets of initial conditions – see Section 4.4.

We can now formulate the main result.

Theorem 4.3.2. Let ε > 0 be sufficiently small and assume that all parameters
of (4.1.1) are O(1) with respect to ε. Let ΦN(ξ, t) = (UN(ξ, t), VN(ξ, t),WN(ξ, t))
be a solution of (4.1.1) which is O(ε) close to the N -front manifold MN,0 at t = 0,
i.e., there is a Γ(0) such that ∆Γi(0) = O(ε−1) and

‖ΦN(·, 0) − ΦΓ(0)‖χ < C̃ε ,

for some C̃ > 0. Then, ΦN(ξ, t) remains O(ε) close to MN,0 for 0 ≤ t < tm and
its evolution is governed by (4.2.1), the leading order dynamics of the fronts of
ΦΓ(t)(ξ). In particular, ΦN(ξ, t) can be decomposed into

ΦN(ξ, t) = ΦΓ(t)(ξ) + Z(ξ, t) (4.3.10)

with

‖Z(·, t)‖χ ≤ Cε for all 0 ≤ t < tm. (4.3.11)

This theorem establishes the validity of the N -front dynamics formally ob-
tained in Section 4.2.

By using an improved skeleton solution Φ̃Γ(ξ) and the same RG procedure as
in this section, it is possible to improve on this result. For instance, we can prove
the existence of an attracting manifold MN,1 with the property that a solution

Φ̃N(ξ, t) with initial conditions Φ̃N(ξ, 0) starting only O(
√

ε) close to MN,1, will
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eventually be O(ε2) close to it. This manifold MN,1 is an O(ε) correction to the

manifold MN,0. To determine the improved skeleton solution Φ̃Γ(ξ) we need the
results of this section (with the normal skeleton solution ΦΓ(ξ) (4.3.6)). There-
fore, this section can be seen as a first step in an iteration procedure to obtain an
attracting N -dimensional set MN,ε with boundary ∂MN,ε in the solution space
associated to (4.1.1). Away from ∂MN,ε the dynamics on MN,ε is to leading or-
der governed by (4.2.1). Note that this analysis is somewhat subtle, for instance
since the speed of the fronts influences the corrections to the shape of the front
solutions in the higher order approximations (and vice versa). Nevertheless, this
iteration procedure can be performed by embedding the geometrical approach of
[15, 16] into the higher order RG method analysis – see [16], where the speed of
the interacting pulses determines the amplitude of the pulses at leading order. We
refrain from going into the details here. It should be observed that an iterated
refinement of the theorem does not yet necessarily establish whether or not MN,ε

is actually a manifold. See also [2, 72].

We emphasize that the dynamics of the skeleton solution ΦΓ(ξ) is only to lead-
ing order determined by (4.2.1). Because of accumulation of error, the predicted
front position could diverge by an O(1) for nonstationary solutions ΦN(ξ, t) after
O(ε−1) time. However, at all points on the manifold the front dynamics are given
to leading order by (4.2.1), particularly for the configuration of steady states and
traveling waves.

The remainder of this section is devoted to the proof of Theorem 4.3.2, using
the RG method, as developed in [16, 55]. As was already stated, we only consider
the case N = 2 in full detail. For clarity, we note that (4.2.1) reduces to

Γ̇1 = 3
2

√
2ε

(

γ − αe−ε(Γ2−Γ1) − βe−
ε
D (Γ2−Γ1)

)

,

Γ̇2 = − 3
2

√
2ε

(

γ − αe−ε(Γ2−Γ1) − βe−
ε
D (Γ2−Γ1)

)

,
(4.3.12)

in this case.

Substituting the decomposition (4.3.10) into the PDE (4.1.1), we find

Zt +
∂ΦΓ

∂Γ
Γ̇ = R(ΦΓ) + LΓZ + N(Z) . (4.3.13)

The residual R(ΦΓ) is defined as the error made by the skeleton solution (4.3.6)
and is determined by plugging (4.3.6) into the right hand side of (4.1.1). Since,
by construction, Φ2,3(ξ) solve the second and third components of the right hand
side of (4.1.1) exactly for given Φ1(ξ) = U0(ξ,Γ) (4.3.8), the second and third
components of the residual are zero. However, the first component R1 6= 0:

R(ΦΓ) =




(U0)ξξ + U0 − (U0)
3 − ε (α(GV ∗ U0) + β(GW ∗ U0) + γ)

0
0



 .
(4.3.14)
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The linear operator reads

LΓ =









∂2
ξ + 1 − 3Φ2

1 −εα −εβ
1
τ

1
τ

(

1
ε2 ∂2

ξ − 1
)

0

1
θ 0 1

θ

(

D2

ε2 ∂2
ξ − 1

)









, (4.3.15)

Finally, the nonlinear term is given by

N(Z) =
(

−3Φ1Z
2
1 − Z3

1 , 0, 0
)t

. (4.3.16)

The proof of the theorem now consists of several steps, which are all essential to
the RG method used [16, 31, 47, 55].

• Step 1: First, we bound the nonlinear growth term N(Z) (4.3.16), see
Lemma 4.3.4, and the residual R(ΦΓ(t)) (4.3.14), see Lemma 4.3.5, that
occur in the PDE (4.3.13). See Section 4.3.3.

• Step 2: In Section 4.3.4, we analyze the linear operator LΓ in Lemmas 4.3.6
– 4.3.9. We determine that LΓ has two small eigenvalues and that the rest
of its spectrum is well into the left-half complex plane. Moreover, we obtain
a bound on the χ-norm of functions which do not have a contribution in
the direction of the eigenvectors Ψ± belonging to the small eigenvectors λ±
associated to LΓ.

• Step 3: Next, we start the RG method. We freeze a basepoint Γ0 := (Γ0
1,Γ

0
2),

that is, we fix the front location, and we rewrite (4.3.13) once more, see
Section 4.3.5. Then, we project onto the eigenspace of the small eigenvalues
λ±, to obtain the motion of the fronts Γ1,2 (4.3.45), see Section 4.3.6. In
Section 4.3.7, we project onto the eigenspace XΓ0 , the space perpendicular to
the eigenspace of the small eigenvalues λ±. The analysis of these projected
equations gives a bound on the size of the remainder Z(ξ, t) in some time
interval [0, t∗], see Lemma 4.3.11.

• Step 4: At time t = t∗, we renormalize by choosing a new basepoint Γ1 :=
(Γ1

1,Γ
1
2), and we show that the χ-norm of the remainder Z(ξ, t) has the

same asymptotic magnitude as before renormalization, see Lemma 4.3.15.
Moreover, we show that the new basepoint Γ1 is near the location of the
fronts from the previous step at time t∗, Γ(t∗). A repetition of Step 3 and the
above observation then bounds the remainder Z(ξ, t) for all time (4.3.11).
See Section 4.3.8.

• Step 5: With this estimate on the remainder Z(ξ, t), we further investigate
the evolution of the two fronts Γ1,2 (4.3.45), see Section 4.3.9. This validates
(4.3.12) and completes the proof.
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Remark 4.3.1. The results established in this chapter are valid under assump-
tion that the fronts Γi+1 and Γi do not interact strongly. To leading order, this
translates into ∆Γi = O(ε−1), the assumption that has been imposed throughout
this chapter. However, the interaction between two neighboring fronts remains
semi-strong as long as ∆Γi = O(ε−σ), for some σ > 0. All results remain valid
under this somewhat weaker assumption. The proofs for the more general results
may become slightly more technical, though, since it may be necessary to incorpo-
rate (straightforward) higher order calculations. Therefore, we refrain from going
into the details here.

Since the notation O(ε−σ), σ > 0, plays a crucial role in this chapter, we re-
call its definition. A quantity Q(ε) is of O(ε−σ) for some σ > 0, if there exists a
C > 0, independent of ε, and an ε0 > 0, such that εσ|Q(ε)| > C for all 0 < ε < ε0.

4.3.3 Nonlinearity and residual

In the section, we bound the norms of the nonlinear term N and the residual R,
but before we do so we compute bounds on Φ1, the first component of ΦΓ (4.3.6),
in several norms.

Lemma 4.3.3. ‖Φ1‖χ = O(1).

Proof. To compute the L1-norm of (Φ1)ξ, observe that

(Φ1)ξ =
1

2

√
2

(

sech2

(

1

2

√
2(ξ − Γ1)

)

− sech2

(

1

2

√
2(ξ − Γ2)

))

.

Since |Γ1 − Γ2| ≥ Cε−σ for some σ > 0, we obtain that

‖(Φ1)ξ‖L1 =

∥

∥

∥

∥

√
2sech2

(

1

2

√
2ξ

)∥

∥

∥

∥

L1

+ exp. small = O(1).

By the assumptions on χ(ξ), we observe that also ‖χΦ1‖L1 = O(1). 2

Now, we establish the following bound on the χ-norm of N(Z):

Lemma 4.3.4. ‖N(Z)‖χ ≤ C
{

‖Z1‖2
χ + ‖Z1‖3

χ

}

, where C is an O(1)-constant.

Proof. This follows immediately from (4.3.16), (4.3.5), and Lemma 4.3.3. 2

Next, we bound the residual R.

Lemma 4.3.5. ‖R‖L∞ = O(ε), and ‖R‖χ = O(ε).

Proof. We only need to prove the second bound on R, since the first bound
then follows from (4.3.3). Moreover, since R2,3 = 0, we only need to consider the
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χ-norm of R1. A short calculation shows that

(U0)ξξ + U0 − (U0)
3 = 3

2

(

e
√

2(Γ1−Γ2) − 1
)

sech2
(

1
2

√
2(ξ − Γ1)

)

sech2
(

1
2

√
2(ξ − Γ2)

)

,

which is exponentially small. Therefore, the leading order behavior of R1 is given
by

R1(ΦΓ) = −ε (α(GV ∗ U0) + β(GW ∗ U0) + γ) . (4.3.17)

Now, by (4.3.4), the fact that ‖GV,W ‖L1 = 1, and Lemma 4.3.3, we obtain the
following bound for the leading order terms in R1:

‖R1‖χ = ε‖α(GV ∗ U0) + β(GW ∗ U0) + γ‖χ

≤ ε (2|α|‖GV ‖L1‖U0‖χ + 2|β|‖GW ‖L1‖U0‖χ + |γ|)
≤ ε (2(|α| + |β|)‖U0‖χ + |γ|) = O(ε) .

2

4.3.4 Resolvent

In this section, we analyze the linear operator LΓ (4.3.15), with Γ fixed. We start
by computing its spectrum σ(LΓ). The spectrum σ(LΓ) can be split in essential
spectrum σess(LΓ) and point spectrum σp(LΓ). The following lemma gives, to
leading order, the location of both parts:

Lemma 4.3.6. The essential spectrum σess(LΓ) of the linear operator is contained
in the left half plane and bounded away from zero in an O(1)-fashion. More
precisely, to leading order,

ℜ(σess(LΓ)) ≤ max

{

−1

τ
,−1

θ
,−2

}

, (4.3.18)

where the inequality is understood pointwise. The point spectrum σp(LΓ) of the
operator has, besides two negative O(1)-eigenvalues in the vicinity of − 3

2 (which
may be contained in the essential spectrum), two small eigenvalues λ±. The eigen-

value λ− is to leading order given by λ− = −3
√

2ε2(αA2 + β
D A

2
D ), where A solves

αA2 +βA
2
D = γ. The eigenvalue λ+ = O(εµ), with µ > 2. The associated ‘small’

eigenvectors Ψ± are

Ψ± =





ψ1 ∓ ψ2

0
0



 + ε





R1

R2

R3



 , (4.3.19)

with

ψ1,2(ξ; Γ1,2) =

∣

∣

∣

∣

∂U0

∂Γ1,2

∣

∣

∣

∣

=
1

2

√
2sech2

(

1

2

√
2(ξ − Γ1,2)

)

, (4.3.20)
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and where a straightforward computation yields that ‖Ri‖L∞ = O(1), ‖R1‖L1 ,
‖R1‖L2 = O(1), and ‖R2,3‖L1 , ‖R2,3‖2

L2 = O(ε−1).

Proof. The operator LΓ is, to leading order, the same as the linear opera-
tor associated to a stationary 2-front solution as studied in Section 3.4. Hence,
its spectrum and its eigenfunctions are to leading order the same. Therefore,
only the statements about the error terms Ri(ξ) do not follow immediately from
the previous chapter. Nevertheless, these estimates follow also directly from the
structure of the linear operator LΓ and its eigenfunctions Ψ±.

Clearly, all the Ri’s must be bounded and integrable (since Ψ± is an eigenfunc-
tion). The structure of R1 is determined by L1, the operator at the (1, 1) entry
of LΓ. Thus R1 must decay exponentially with a O(1) rate, which implies that
‖R1‖L∞,1,2 = O(1).

Since R2,3 are determined by L2,3, the second and third diagonal entries of LΓ,
respectively, they will decay slowly with an exponential rate of O(ε). Therefore,
both ‖R2,3‖L1 and ‖R2,3‖2

L2 are O(ε−1), while ‖R2,3‖L∞ = O(1). 2

Note that ψ1,2(ξ) are strongly localized functions around ξ = Γ1,2. Moreover,
‖ψ1,2‖L1 = 2, see Lemma 4.3.3, and ‖ψ1,2‖2

L2 = 2
3

√
2. Also observe that in the

previous chapter, µ = ∞, which corresponds to the translation invariant eigen-
value λ+ ≡ 0.

Lemma 4.3.7. The adjoint operator L†
Γ of LΓ has the same two small eigenval-

ues λ± as LΓ. Moreover, the small adjoint eigenvectors Ψ†
± associated to these

small eigenvalues λ± are to leading order the same as the small eigenvectors Ψ±
(4.3.19). Although the correction terms to the small adjoint eigenvectors, R†

i ,
may differ from (4.3.19), their norms are of the same order.

Proof. The adjoint operator of LΓ is given by L†
Γ = Lt

Γ, so that L†
Γ has the

same spectrum as LΓ. The associated eigenfunctions can be computed by the
variation of constants formula, combined with the observation that the eigenval-
ues λ± are small. 2

With these small (adjoint) eigenvectors at hand we split the normed space X
(4.3.2) into the eigenspace XC

Γ and its spectral complement XΓ, where the eigen-
space XC

Γ is spanned by the two small eigenvectors Ψ± (4.3.19). To project on
these two spaces, we introduce the spectral projection πΓ, which, in terms of the
small (adjoint) eigenfunctions Ψ±,Ψ†

±, is given by

πΓΦ =
(Φ,Ψ†

−)

(Ψ−,Ψ†
−)

Ψ− +
(Φ,Ψ†

+)

(Ψ+,Ψ†
+)

Ψ+ , (4.3.21)
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where ( , ) denotes the standard L2-inner product. Note that we have, by Lem-
mas 4.3.6 and 4.3.7,

(

Ψ±,Ψ†
±

)

=









ψ1 ∓ ψ2

0
0



 + ε





R1

R2

R3



 ,





ψ1 ∓ ψ2

0
0



 + ε





R†
1

R†
2

R†
3









= (ψ1 ∓ ψ2, ψ1 ∓ ψ2) + ε
(

ψ1 ∓ ψ2,R†
1

)

+ ε (R1, ψ1 ∓ ψ2)

+ε2
∑3

i=1

(

Ri,R†
i

)

= (ψ1 ∓ ψ2, ψ1 ∓ ψ2) + O(ε) .

The complementary projection is defined by π̃Γ = I − πΓ. The spaces XΓ and
XC

Γ are thus determined by

XΓ = {Φ ∈ X | πΓΦ = 0} and XC
Γ = {Φ ∈ X | π̃ΓΦ = 0} . (4.3.22)

Since LΓ is an analytic operator we can generate its semigroup by the Laplace
transform of the resolvent. We define the contour C

C(t) := {t − i | t ∈ (−∞,−ν)} ∪ {−ν + t
ν i | t ∈ (−ν, ν)}

∪{−t + i | t ∈ (ν,∞)} ,
(4.3.23)

with ν := 1
2 min{τ−1, θ−1, 3

2}. The contour C splits the complex plane into two
pieces, one containing the small eigenvalues λ±, while the other piece contains
the rest of the spectrum of LΓ and is bounded away from the origin in an O(1)-
fashion. Moreover, the spectrum σ(LΓ) is an O(1) distance away from contour C
(Lemma 4.3.6 and Chapter 3). See Figure 4.3. Thus, we generate the semigroup
S associated to LΓ restricted to the space XΓ (4.3.22) by the contour integral

S(t)F =
1

2πi

∫

C
eλt(λ − LΓ)−1Fdλ , (4.3.24)

where we assume that F ∈ XΓ.

Lemma 4.3.8. Assume that F ∈ XΓ, then Φ = S(t)F satisfies

‖Φ‖χ ≤ Ce−νt‖F‖χ, (4.3.25)

To prove this semigroup estimate, we first need to prove an intermediate lemma
on the resolvent:

Lemma 4.3.9. There exists a constant C > 0 such that for all λ an O(1) distance
from σ(LΓ), and for all F ∈ XΓ (4.3.22), the solutions G to the inhomogeneous
problem (LΓ − λ)G = F satisfy ‖G‖χ ≤ C‖F‖χ.

Proof. First, we observe by (4.3.4) and (4.3.9) that the solution g̃i to the
inhomogeneous problem (Li − λ)g̃i = f̃i , where Li is the operator in the i-th
element of the diagonal of (4.3.15), obeys

‖g̃i‖χ ≤ C‖f̃i‖χ , (4.3.26)
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σess

−ν

C

ℑ(λ)

ℜ(λ)

λ±

O(
√

ε)

Figure 4.3: The contour C splits the complex plane into two pieces, one containing
the small eigenvalues λ±, while the other piece contains the rest of the spectrum
of LΓ. Moreover, the spectrum σ(LΓ) is an O(1) distance away from contour C.
See Section 3.3.2 for more details on the structure of σess.

as long as λ is at an O(1) distance from the spectrum σ(Li) of Li. Note that this
is automatically satisfied for λ which are O(1) distance away from σ(LΓ).

Next, we write G = (g1, g2, g3)
t and F = (f1, f2, f3)

t. Then,

g2 = (L2 − λ)−1
(

f2 −
g1

τ

)

, g3 = (L3 − λ)−1
(

f3 −
g1

θ

)

.

By the above result (4.3.26), we know

‖g2,3‖χ ≤ C (‖f2,3‖χ + ‖g1‖χ) . (4.3.27)

Next, we define

h(ξ) := f1 + εα(L2 − λ)−1f2 + εβ(L3 − λ)−1f3 .

So that g1 is implicitly determined by

g1 = (L1 − λ)−1

(

h − εα

τ
(L2 − λ)−1g1 −

εβ

θ
(L3 − λ)−1g1

)

.

Hence, solving for g1

g1 =

(

I +
εα

τ
(L1 − λ)−1(L2 − λ)−1 +

εβ

θ
(L1 − λ)−1(L3 − λ)−1

)−1

(L1 − λ)−1h .
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From (4.3.26) we obtain

‖(L1 − λ)−1(L2,3 − λ)−1‖χ→χ = O(1) .

From the Neumann expansion of the inverse we have
∥

∥

∥

∥

∥

(

I +
εα

τ
(L1 − λ)−1(L2 − λ)−1 +

εβ

θ
(L1 − λ)−1(L3 − λ)−1

)−1
∥

∥

∥

∥

∥

χ→χ

= O(1) .

Thus, we find, again by (4.3.26)

‖g1‖χ ≤ C‖(L1 − λ)−1h‖χ ≤ C (‖f1‖χ + ε‖f2‖χ + ε‖f3‖χ) . (4.3.28)

The proof of the lemma follows from the combination of (4.3.27) and (4.3.28). 2

Proof of Lemma 4.3.8. The contour C divides the complex plane into two
pieces, and the spectrum σ(LΓ)\λ± is completely contained in one of these pieces.
Moreover, the spectrum is an O(1) distance away from the contour C. Since by
assumption F ∈ XΓ, the result follows from Lemma 4.3.9. 2

Remark 4.3.2. Because of the specific χ-norm we use, it is possible that we
get extra point spectrum at the tip of the essential spectrum (compared to the
previous chapter). However, the essential spectrum is in the left half plane and
an O(1) distance away from the imaginary axis (4.3.18). Therefore, this ‘new’
point spectrum does not generate instabilities, and we can neglect it.

4.3.5 Initializing the renormalization group method

We use the RG method developed in [55], and adapted to singularly perturbed
problems in [16, 31, 47]. We assume that the initial condition Φ2(ξ, 0) = (U2(ξ, 0),
V2(ξ, 0),W2(ξ, 0)) is close to the skeleton solution ΦΓ∗(ξ),

‖Z∗
0‖χ := ‖Φ2(·, 0) − ΦΓ∗‖χ < δ , (4.3.29)

for some Γ∗, see (4.3.6), and some δ > 0. Then, the following lemma holds:

Lemma 4.3.10. Let 0 < ε ≤ δ ≪ 1 be sufficiently small and let Φ2(ξ, t) and
ΦΓ∗(ξ) satisfy (4.3.29).

a) There exists a unique smooth operator H : X → R
2 such that the function

ΦΓ0(ξ) with Γ0 := Γ∗ + H(Z∗
0 ) satisfies Z0

0 (ξ) := Φ2(ξ, 0) − ΦΓ0(ξ) ∈ XΓ0 .
Moreover, ‖Z0

0‖χ = O(δ).

b) If Z∗
0 (ξ) ∈ XΓ̃, for a ΦΓ̃(ξ) of the form (4.3.6), then there exists a C > 0

such that

|Γ0 − Γ∗| ≤ C‖Z∗
0‖χ|Γ∗ − Γ̃| ≤ Cδ|Γ∗ − Γ̃| . (4.3.30)
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XΓ0

M2,0

Φ2

Z0
0

Γ̃ Γ∗ Γ0 Γ

Φ

Z

XΓ̃
Z∗

0

Figure 4.4: Schematic plot of the geometry of a curve of the 2-front solutions with
initial condition Φ2 in the (Γ,Φ)-plane. It gives a geometrical interpretation of the
spaces XΓ̃ and XΓ0 , and the perturbations Z∗

0 and Z0
0 analyzed in Lemma 4.3.10.

Moreover, it also illustrates the manifold M2,0. The first part of the lemma states
that Z0

0 ∈ XΓ0 is small as long as Z∗
0 is small. According to the second part, if

Z∗ belongs to a XΓ̃, then the distance between Γ0 and Γ∗ is of the asymptotic

magnitude of the distance between Γ∗ and Γ̃ times the asymptotic magnitude of
Z∗

0 .

The first part of the lemma states that if the initial condition Φ2 is close to
a function ΦΓ∗ of the form (4.3.6), then there exists a basepoint Γ0 = (Γ0

1,Γ
0
2)

such that Φ2 −ΦΓ0 is also small, and it is perpendicular to the space spanned by
the small eigenvalues associated to LΓ0 . Moreover, the mapping (Φ2,Γ

∗) → Γ0

given by Γ0 := Γ∗ + H(Z∗
0 ) is smooth. The second part of the lemma concerns

situations in which one wants to shift from one basepoint to another: if the initial
perturbation is already perpendicular to the small eigenvalue space associated
to a LΓ̃, then the distance |Γ0 − Γ∗| between the new basepoint Γ0 and Γ∗ is

small compared to the distance |Γ∗ − Γ̃| between the old basepoint Γ̃ and Γ∗, see
Figure 4.4.

Proof. Consider a Γ0 such that Φ2(ξ, 0) = ΦΓ∗(ξ) + Z∗
0 (ξ) = ΦΓ0(ξ) + Z0

0 (ξ).
The condition Z0

0 (ξ) ∈ XΓ0 is equivalent to

πΓ0(Z0
0 ) = πΓ0 (Z∗

0 + ΦΓ∗ − ΦΓ0) = 0 . (4.3.31)

By (4.3.19) and Lemma 4.3.7, this is equivalent up to O(ε) to

Λ1(Γ
0, Z∗

0 ) :=
(

[Z∗
0 + ΦΓ∗ − ΦΓ0 ]1, ψ1(Γ

0
1)

)

= 0 ,
Λ2(Γ

0, Z∗
0 ) :=

(

[Z∗
0 + ΦΓ∗ − ΦΓ0 ]1, ψ2(Γ

0
2)

)

= 0 ,
(4.3.32)
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where ψ1,2 are defined by (4.3.20) with Γ1,2 = Γ0
1,2, respectively. Note that, since

the adjoint eigenvectors are zero to leading order in the second and third com-
ponents (4.3.19), we do not need to consider the second and third components of
(4.3.31).

Observe that Λi(Γ
∗, 0) = 0. The gradient of the map Λ = (Λ1,Λ2) with respect

to Γ0 at (Γ∗, 0) is given by

∇Γ0Λ|(Γ0=Γ∗,Z∗
0 =0) =

(

‖ψ1‖2
L2 0

0 −‖ψ2‖2
L2

)

+ O(ε) , (4.3.33)

where we have used that ∂
∂Γ0

i
[ΦΓ0 ]1 = ∓ψi to leading order, see (4.3.20). Thus,

the map Γ is uniformly invertible near (Γ∗, 0) Hence, for δ sufficiently small, the
implicit function theorem guarantees the existence of a unique smooth function
H(Z∗

0 ) such that ΦΓ0 with Γ0 := Γ∗ + H(Z∗
0 ) satisfies (4.3.32), i.e., Z0

0 ∈ XΓ0 , as
introduced in the lemma.

To prove the second part of a), we observe that the implicit function theorem
also guarantees that H(Z∗

0 ) is uniformly O(1)-Lipschitz and that H(0) = 0. This
yields

‖Z0
0‖χ = ‖Z∗

0 + ΦΓ∗ − ΦΓ0‖χ ≤ ‖Z∗
0‖χ + ‖ΦΓ∗ − ΦΓ0‖χ ≤ δ + C|Γ∗ − Γ0|

≤ δ + C|H(Z∗
0 )| ≤ δ + C|H(Z∗

0 ) −H(0)| ≤ Cδ .

For part b), we observe that if Z∗
0 ∈ XΓ̃ then ([Z∗

0 ]1, ψi(Γ̃i)) = O(ε). Since δ ≥ ε,
substitution of this into (4.3.32) yields to leading order

∣

∣

∣

(

[ΦΓ0 − ΦΓ∗ ]1 , ψi(Γ̃i)
)∣

∣

∣ =
∣

∣

(

[Z∗
0 ]1, ψi(Γ

0
i )

)∣

∣

≤ M
∣

∣

∣

(

[Z∗
0 ]1,

(

ψi(Γ̃i) − ψi(Γ
0
i )

))∣

∣

∣
.

(4.3.34)

Next, we use the mean value theorem and (4.3.20) to obtain
∣

∣

(

[ΦΓ0 − ΦΓ∗ ]1 , ψi(Γ
0
i )

)∣

∣ = |(ψi(Γ
mvt
i ), ψi(Γ

0
i ))||Γ0 − Γ∗| (4.3.35)

where Γmvt
i ∈ (Γ0

i ,Γ
∗
i ). From part a) we know that |Γ0

i − Γ∗
i | = O(δ), so that to

leading order in δ

|(ψi(Γ
mvt
i ), ψi(Γ

0
i ))| = ||ψi||2L2 = O(1) . (4.3.36)

Combining (4.3.35) with (4.3.36), we find that the left hand side of (4.3.34) is
proportional to |Γ0 − Γ∗|. To bound the right hand side of (4.3.34), we use
property (4.3.3)

∣

∣

∣

(

[Z∗
0 ]1 ,

(

ψi(Γ̃i) − ψi(Γ
0
i )

))∣

∣

∣
≤ ‖[Z∗

0 ]1‖L∞‖ψi(Γ̃i) − ψi(Γ
0
i )‖L1

≤ ‖Z∗
0‖χ‖ψi(Γ̃i) − ψi(Γ

0
i )‖L1 .
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In order to control this L1-norm, we distinguish between two cases. First, assume
that |Γ̃ − Γ0| > 4, then

‖ψi(Γ̃i) − ψi(Γ
0
i )‖L1 ≤ 2

∫ ∞

−∞
|ψi|dξ = 4 ≤ |Γ̃ − Γ0| .

If |Γ̃ − Γ0| < 4, then we once more use the mean value theorem

‖ψi(Γ̃i) − ψi(Γ
0
i )‖L1 ≤ |Γ̃ − Γ0|

∫ ∞
−∞ |ψi(Γ

mvt
i (ξ))|dξ = C|Γ̃ − Γ0| .

Thus, the right hand side of (4.3.34) is bounded by C‖Z∗
0‖χ|Γ̃ − Γ0|. Using the

triangle inequality on |Γ̃ − Γ0|, we obtain the desired result. 2

Before we can initialize the first iteration step of the RG method, we need an
a priori bound on its time step. Let t∗l be the upperbound on the time step such
that the remainder Z stays smaller than

√
ε, that is,

t∗l = inf
t

{

t | ‖Z(·, t)‖χ >
√

ε
}

. (4.3.37)

This time step bound is well defined, and it is positive, by continuity of the
remainder and by the assumption that the remainder is O(ε) small at t = 0,
see Theorem 4.3.2 and Lemma 4.3.10 a) with δ = ε. So, by construction the
remainder Z(ξ, t) stays O(

√
ε) small for all 0 ≤ t ≤ t∗l . A very rough estimate

shows that t∗l is at least O(ε−
1
2 ). The second time step bound, t∗u, is

t∗u :=
1

4ν
| log ε| , (4.3.38)

where we recall the definition of ν from the line under (4.3.23). This second
bound arises naturally from the forthcoming analysis, see Lemma 4.3.11. The
actual time step bound, t∗, is now defined as the minimum of the above two time
step bounds

t∗ := min {t∗l , t∗u} . (4.3.39)

We will show that t∗u < t∗l , so that t∗ = t∗u, see Lemma 4.3.11.

With this definition of the time step bound, we begin the first iteration of the RG
method. We freeze the basepoint Γ = (Γ1,Γ2) = (Γ0

1,Γ
0
2) = Γ0 with Γ0

1 < Γ0
2 and

|Γ0
2 − Γ0

1| ≤ O(ε−1), and we decompose the actual solution Φ2 into

Φ2(ξ, t) = ΦΓ(t)(ξ) + Z0(ξ, t) , such that Z0(ξ, t) ∈ XΓ0 for all t ≤ t∗, (4.3.40)

which can be done by Lemma 4.3.10 a). This decomposition transforms the
nonlinear PDE (4.3.13) into

Z0
t + ∂ΦΓ

∂Γ Γ̇ = R + LΓ0Z0 + ∆LZ0 + N(Z0) ,
Z0(ξ, 0) = Z0

0 ,
(4.3.41)

where ∆L := LΓ−LΓ0 , the secular term which measures the growth of the remain-
der Z0 while Γ slides away from Γ0, and Z0

0 = Z∗
0 −ΦΓ∗−ΦΓ0 (see Lemma 4.3.10).
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4.3.6 Projecting onto the small eigenspace XC
Γ0

In the next section, we project equation (4.3.41) onto the space XΓ0 to derive
estimates on the remainder Z0(ξ, t). Here, we project onto the eigenspace XC

Γ0 ,
the space spanned by the small eigenvectors of the operator LΓ0 , to derive a rough
version of the equation of the motion of the two fronts Γ1,2. Since Z0(ξ, t) ∈ XΓ0

for all t ≤ t∗ (4.3.40) and since the projection πΓ0 commutes with the operator
LΓ0 , we have that πΓ0LΓ0Z0 = LΓ0πΓ0Z0 = 0. We obtain the projected equation

πΓ0

(

∂ΦΓ

∂Γ
Γ̇

)

= πΓ0

(

R + ∆LZ0 + N(Z0)
)

.

By definition of πΓ0 (4.3.21), this is equivalent to
(

∂ΦΓ

∂Γ
Γ̇,Ψ†

±

)

=
(

R + ∆LZ0 + N(Z0),Ψ†
±

)

. (4.3.42)

Observe by (4.3.6), (4.3.7), and (4.3.20) that

∂ΦΓ

∂Γ Γ̇ =









∂Φ1

∂Γ1

∂Φ1

∂Γ2

∂Φ2

∂Γ1

∂Φ2

∂Γ2

∂Φ3

∂Γ1

∂Φ3

∂Γ2









(

Γ̇1

Γ̇2

)

=





−ψ1Γ̇1 + ψ2Γ̇2

−(GV ∗ ψ1)Γ̇1 + (GV ∗ ψ2)Γ̇2

−(GW ∗ ψ1)Γ̇1 + (GW ∗ ψ2)Γ̇2



 .

(4.3.43)

On the other hand

(ψ1, ψ2) = exp. small,
(

ψi,R†
i

)

= O(1), and
(

GV,W ∗ ψi,R†
2,3

)

≤ ‖GV,W ∗ ψi‖L∞‖R†
2,3‖L1 = O(ε)O(ε−1) = O(1) ,

(4.3.44)

where R†
2,3 are defined in the proof of Lemma 4.3.7. Therefore, (4.3.42) reduces

to leading order to

(

−‖ψ1‖2
L2 −‖ψ2‖2

L2

−‖ψ1‖2
L2 ‖ψ2‖2

L2

)

(

Γ̇1

Γ̇2

)

=





(

R + ∆LZ0 + N(Z0),Ψ†
+

)

(

R + ∆LZ0 + N(Z0),Ψ†
−

)



 .

Note that the second and third components of R + ∆LZ + N(Z) are identically
zero. Therefore, inverting the matrix of the left hand side, we obtain

Γ̇1 = − 1
‖ψ1‖2

L2
(R1 + [∆LZ0]1 + [N(Z0)]1, ψ1)(1 + O(ε)) ,

Γ̇2 = 1
‖ψ2‖2

L2
(R1 + [∆LZ0]1 + [N(Z0)]1, ψ2)(1 + O(ε)) .

(4.3.45)

In Section 4.3.9, we will further investigate these two ODEs and we will validate
(4.3.12). However, to do so, we first need a better bound on the remainder Z0(ξ, t).
This bound is obtained by projecting (4.3.41) onto XΓ0 .
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4.3.7 Projecting onto XΓ0

Projection of (4.3.41) onto XΓ0 yields

Z0
t = R̃ + LΓ0Z0 + π̃Γ0

(

∆LZ0 + N(Z0)
)

Z0(ξ, 0) = Z0
0 ,

(4.3.46)

with R̃ = π̃Γ0

(

R − ∂ΦΓ

∂Γ Γ̇
)

. The variation of constants formula applied to (4.3.46)

yields

Z0(ξ, t) = S(t)Z0
0 +

∫ t

0

S(t − s)(R̃ + π̃Γ0

(

∆LZ0 + N(Z0)
)

)ds , (4.3.47)

where S is the semigroup generated by LΓ0 , see (4.3.24). The main result of this
section reads

Lemma 4.3.11. There exists a constant C > 0, independent of ε, such that the
remainder Z0(ξ, t) stays O(ε) small during one time step t∗ = t∗u = 1

4ν | log ε|.
More precisely,

‖Z0(·, t)‖χ ≤ C
(

e−νt‖Z0
0‖χ + ε

)

≤ εC for t ∈ [0, t∗] . (4.3.48)

Before we can prove this lemma, we need some intermediate results, Lemmas
4.3.12–4.3.14. As a preliminary step we define two useful quantities

T0(t) := sup
0≤s≤t

eνs‖Z0(·, s)‖χ . (4.3.49)

T1(t) := sup
0≤s≤t

|Γ(s) − Γ0| . (4.3.50)

The first quantity measures the growth of the remainder Z0 in the weighted χ-
norm, and the latter measures the maximal distance a 2-front solution ΦΓ has
travelled from its basepoint Γ0. Observe that, by the assumptions on the time
step t∗, T0(t) = O(ε1/4). The fact that we have an a priori upperbound on T0

is one of the reasons for imposing the special bounds (4.3.37) and (4.3.38). To
bound T1(t) in terms of T0(t), we need estimates on the nonlinear term N(Z0)
and the secular term ∆LZ0.

Lemma 4.3.12. There exists a constant C > 0 such that ‖N(Z0)‖χ ≤ C‖Z0‖2
χ,

and ‖∆LZ0‖χ ≤ C|Γ − Γ0|‖Z0‖χ for t ≤ t∗.

Proof. The nonlinear term N(Z0) has already been analyzed in Lemma 4.3.4.
However, we now have an extra assumption on the magnitude of the remainder
(4.3.37) and (4.3.39). Therefore, the bound on N(Z0) can be sharpened

‖N(Z0)‖χ ≤ C
(

∥

∥[Z0]1
∥

∥

2

χ
+

∥

∥[Z0]1
∥

∥

3

χ

)

≤ C‖Z0‖2
χ for t ≤ t∗ . (4.3.51)
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The bound on the secular term ∆LZ0 follows from

‖∆LZ0‖χ = ‖3
(

Φ2
1(Γ) − Φ2

1(Γ
0)

)

[Z0]1‖χ

= ‖3
(

Φ2
1(Γ) − Φ2

1(Γ
0)

)

χ[Z0]1‖L1 + ‖3
(

Φ2
1(Γ) − Φ2

1(Γ
0)

)

([Z0]1)ξ‖L1 + ‖3
(

Φ2
1(Γ) − Φ2

1(Γ
0)

)

ξ
[Z0]1‖L1

≤ C
{

‖Φ2
1(Γ) − Φ2

1(Γ
0)‖L∞

∥

∥[Z0]1
∥

∥

χ
+ ‖

(

Φ2
1(Γ)

−Φ2
1(Γ

0)
)

ξ
[Z0]1‖L1

}

≤ C
{

|Γ − Γ0|‖Z0‖χ + ‖
(

Φ2
1(Γ) − Φ2

1(Γ
0)

)

ξ
‖L1

∥

∥[Z0]1
∥

∥

L∞

}

≤ C|Γ − Γ0|‖Z0‖χ ,

(4.3.52)

where we used (4.3.3) and the Lipschitz continuity of Φ2
1 and (Φ2

1)ξ. 2

Using (4.3.45), we can estimate T1(t)

Lemma 4.3.13. T1(t) ≤ C(εt + T0(t)
2) for t ∈ [0, t∗].

Note that this implies that T1(t) is at most O(
√

ε).

Proof.

T1(t) = sup
0≤s≤t

|
∫ s

0

Γsds| ≤
∫ t

0

|Γs|ds

≤ C

{

∫ t

0

2
∑

i=1

(

|(R1, ψi)| + |([∆LZ0]1, ψi)| + |([N(Z0)]1, ψi)|
)

ds

}

≤ C

{∫ t

0

‖ψi‖L1

(

‖R1‖L∞ + ‖∆LZ0‖χ + ‖N(Z0)‖χ

)

ds

}

≤ C
{

εt + T1T0 + T 2
0

}

,

where, besides (4.3.51) and (4.3.52), we used the fact that ψ1,2 ∈ L1, (4.3.3), and
Lemma 4.3.5. By assumption, T0(t) is at most O(ε1/4), this completes the proof.
2.

For a sharper bound on T0, we need estimates on the terms of the integrand
of (4.3.47).

Lemma 4.3.14. The terms of the integrand of (4.3.47) can be estimated by

‖S(t − s)π̃Γ0(∆LZ0)‖χ ≤ Ce−ν(t−s)T1‖Z0‖χ ,

‖S(t − s)π̃Γ0(N(Z0))‖χ ≤ Ce−ν(t−s)‖Z0‖2
χ ,

‖S(t − s)R̃‖χ ≤ εCe−ν(t−s) , for t ∈ [0, t∗] .

(4.3.53)
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Proof. The first two inequalities of (4.3.53) immediately follow from Lemma
4.3.12 combined with the semigroup estimate (4.3.25) and the observation that
projections are bounded in the χ-norm. To prove the last bound, we need to show
that the asymptotic magnitude of R̃ is O(ε). To do so, we observe that (4.3.45)
combined with (4.3.3) gives

Γ̇1,2 ≤ C
(

‖R1‖χ + ‖∆LZ0‖χ + ‖N(Z0)‖χ

)

.

By Lemmas 4.3.5, 4.3.12 and 4.3.13, all three of the above norms are O(ε) for
t ∈ [0, t∗]. Therefore, Γ̇1,2 ≤ εC. Now, the second and third component of

R − ∂ΦΓ

∂Γ Γ̇ can be estimated using the above observation together with (4.3.43)
and (4.3.44)

∥

∥

∥
−

(

∂Φ2,3

∂Γ1
Γ̇1 +

∂Φ2,3

∂Γ2
Γ̇2

)∥

∥

∥

χ
=

∥

∥

∥
−(GV,W ∗ ψ1)Γ̇1 + (GV,W ∗ ψ2)Γ̇2

∥

∥

∥

χ

≤ εC‖GV,W ∗ (ψ1 + ψ2)‖χ

≤ εC .

It is now obvious that the χ-norms of the components R̃2,3 are O(ε). The first

component of R̃ will also be O(ε). To see this, observe that, up to exponentially
small terms,

π̃Γ0(−∂Φ1

∂Γ1
Γ̇1 − ∂Φ1

∂Γ2
Γ̇2 = Γ̇1

[

(ψt
1,ψ0

1)

‖ψ0
1‖2

L2
ψ0

1 − ψt
1

]

+ Γ̇2

[

ψt
2 − (ψt

2,ψ0
2)

‖ψ0
2‖2

L2
ψ0

2

]

, (4.3.54)

where ψ0
i = ψi(ξ; Γ

0
i ), while ψt

i = ψi(ξ; Γi(t)). Since the functions ψi(ξ) are
Lipschitz continuous and in L1, we can bound the χ-norm of (4.3.54) by

∥

∥

∥

∥

π̃Γ0

(

−∂Φ1

∂Γ1
Γ̇1 −

∂Φ1

∂Γ2
Γ̇2

)∥

∥

∥

∥

χ

≤ Cε
√

ε ,

where we again used that Γ̇1,2 ≤ εC and lemma 4.3.13. The χ-norm of π̃Γ0R1

is not larger than the χ-norm of R1, and from Lemma 4.3.5 we recall that
‖R1‖χ = O(ε). Therefore, ‖R̃‖χ = O(ε) for t ∈ [0, t∗]. 2

With the above three lemmas, we can now prove Lemma 4.3.11.

Proof of Lemma 4.3.11. Taking the χ-norm of Z0(ξ, t′) (4.3.47) at t = t′ ∈
[0, t∗], we find

‖Z0(·, t′)‖χ ≤ C
{

e−νt′‖Z0
0‖χ +

∫ t′

0
e−ν(t′−s)

(

ε + T1(s)‖Z0(·, s)‖χ

+ ‖Z0(·, s)‖2
χ

)

ds
}

.

Multiplying the above inequality by eνt′ and taking the supremum over t′ ∈ (0, t),
we find

T0(t) ≤ C
{

T0(0) + ε
∫ t

0
eνsds + T1(t)T0(t)

∫ t

0
ds + (T0(t))

2
∫ t

0
e−νsds

}

=⇒
T0(t) ≤ C

{

T0(0) + εeνt + T1(t)T0(t)t + (T0(t))
2
}

.



166 Chapter 4. Interactions

Next, we eliminate T1(t) from the above inequality by using Lemma 4.3.13,

T0(t)
(

1 − εCt2
)

≤ C
{

T0(0) + εeνt + t(T0(t))
3 + (T0(t))

2
}

. (4.3.55)

Since the time step t∗ ≪ min{(T0(t))
−1, ε−1/2}, we can incorporate the cubic

term into the quadratic term, and we can conservatively underestimate the left

hand side by T0(t)
2 . Thus, we obtain a simple quadratic inequality

T0(t) ≤ C
{

T0(0) + εeνt + (T0(t))
2
}

. (4.3.56)

Plainly, if (4.3.56) is satisfied, then so is (4.3.55). To study the inequality (4.3.56),
we look at the related quadratic equation in T0(t),

(T0(t))
2 − 1

C
T0(t) + T0(0) + εeνt = 0 .

Since T0(0) + εeνt ≤ O(ε3/4) ≪ 1, both roots of the quadratic, r1,2, are real and
positive. To leading order, they have the form

r1 = 2C
(

T0(0) + εeνt
)

and r2 =
1

2C
.

Thus, the values of T0(t) satisfying (4.3.56) lie in the domain 0 < T0(t) < r1 and
T0(t) > r2. Moreover, since T0(0) < r1 and T0(t) is continuous, we know that

T0(t) ≤ r1 = 2C
(

T0(0) + εeνt
)

(4.3.57)

for all t ≤ t∗. Using the definition of T0(t) (4.3.49) we have completed the proof.
2

4.3.8 Iteration

In Sections 4.3.5–4.3.7, we performed one step of the RG procedure. We found
that in the time interval [0, t∗] the remainder Z0(ξ, t) with respect to the decom-
position (4.3.40) stays O(ε) small. The next step of the RG procedure is to choose
at time t = t∗ a different basepoint, Γ1 := (Γ1

1,Γ
1
2), and to decompose the 2-front

solution Φ2 with respect to this new basepoint, as follows:

Φ2(ξ, t) = ΦΓ(t)(ξ) + Z1(ξ, t), where Z1(ξ, t) ∈ XΓ1 for all t ∈ [t∗2t∗] ,(4.3.58)

see Figure 4.4 (with, in notation of this section, Γ̃ → Γ0,Γ∗ → Γ(t∗),Γ0 →
Γ1, Z → Z0

0 , Z∗
0 → Z0(t∗), and Z0

0 → Z1
0 ). The idea of the RG method is

now to restart the procedure of Sections 4.3.5–4.3.7 with the same PDE (4.3.41),
however, with the new basepoint Γ1 and the new initial condition Z1

0 , and to
show that the remainder Z1(ξ, t) stays O(ε) small in the interval [t∗, 2t∗]. Of
course, one first has to prove that this new basepoint Γ1 is not too far away from
the location of the front at the end of the first time step Γ(t∗), more precisely,



4.3. A renormalization group method 167

that the renormalization has no leading order influence on the dynamics of the
fronts, and that the new initial condition Z1

0 (ξ) := Z1(ξ, t∗) is of order O(ε).
This first step will be proved in Lemma 4.3.15. Then, to show that Z1(ξ, t) stays
O(ε) on the time interval [t∗, 2t∗], we note that the analysis on [0, t∗] presented
in Sections 4.3.5–4.3.7 depended only on the asymptotic magnitude of the initial
condition and on the length of the time interval. Hence, because these quantities
are of the same size for this second time interval, the analysis of those sections
may be repeated to directly yield that Z1(ξ, t) stays O(ε) small on [t∗, 2t∗].

Lemma 4.3.15. Let Z1
0 (ξ) denote the initial condition of (4.3.41) on the second

interval [t∗, 2t∗], (4.3.58). Then,

|Γ1 − Γ(t∗)| = O(ε2| log ε|) and ‖Z1
0‖χ = O(ε) .

Proof. Since Z0(ξ, t) ∈ XΓ0 for all t ≤ t∗ (4.3.40), (4.3.30) in Lemma 4.3.10
yields

|Γ1 − Γ(t∗)| ≤ C|Γ(t∗) − Γ0|‖Z0(·, t∗)‖χ .

We use the definition (4.3.49) of T1, and Lemma 4.3.13, together with Lemma 4.3.11,
to further estimate the right hand side of the above inequality

|Γ1 − Γ(t∗)| ≤ C|Γ(t∗) − Γ0|‖Z0(·, t∗)‖χ

≤ C
(

ε| log ε| + T 2
0

)

‖Z0(·, t∗)‖χ

≤ C
(

ε| log ε| +
(

‖Z0
0‖χ + ε3/4

)2
)

‖Z0(·, t∗)‖χ

≤ C
(

ε| log ε| +
(

ε + ε3/4
)2

)

ε

≤ Cε2| log ε| .

By continuity of Φ2(ξ, t) in t = t∗ and Lipschitz continuity of ΦΓ(t)(ξ), we can
now estimate ‖Z1

0‖χ

‖Z1
0‖χ ≤ ‖Z1

0 − Z0(·, t∗)‖χ + ‖Z0(·, t∗)‖χ

≤ ‖Φ2(ξ, t
∗) − ΦΓ(t∗)(ξ) − Φ2(ξ, t

∗) + ΦΓ1(ξ)‖χ + ‖Z0(·, t∗)‖χ

≤ C|Γ1 − Γ(t∗)| + ‖Z0(·, t∗)‖χ

≤ C
(

ε2| log ε| + ε
)

≤ εC.

This proves the lemma. 2

4.3.9 Completion of the proof of Theorem 4.3.2

In this section, we finish the proof of Theorem 4.3.2. In the previous section,
we established that the remainder Z(ξ, t) also stays O(ε) small in the second
time interval. Repeating the same arguments, we can show that by choosing a
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new basepoint Γ2 at 2t∗ the remainder Z2(ξ, t) also stays small in the interval
[2t∗, 3t∗). By this iterative procedure, and since t∗ ≫ 1, we can now conclude
that the remainder Z(ξ, t) stays O(ε) small up till tm, that is, up to the moment
we approach the boundary ∂M2,0. Here, the analysis of the previous sections
breaks down since the fronts approach the strong interaction regime, so that the
inner product (ψ1, ψ2) is no longer exponentially small, i.e., the fast fronts are no
longer strongly localized. For instance, the derivation of (4.3.45) heavily relies on
this fact. This proves (4.3.11).

To prove (4.3.12), we further analyze the expressions for Γ̇1,2 (4.3.45). Since
we know that the χ-norm of the remainder Z(ξ, t) is O(ε) small for all time up
to tm, we conclude from (4.3.52) and (4.3.51) that

([∆LZ]1, ψ1,2) = O(ε2| log ε|) , ([N(Z)]1, ψ1,2) = O(ε2) .

Now, the inner product involving R1 is O(ε). Therefore, the above terms are of
higher order, and we can neglect them in (4.3.45). After neglecting exponentially
small terms, the residual R1 is given by, see (4.3.17),

R1(ΦΓ) = −ε (α(GV ∗ U0) + β(GW ∗ U0) + γ) .

The projections of GV,W ∗ U0 can be explicitly computed using (4.3.7), (4.3.9),
and (4.3.20) – see also the Melnikov integrals of Chapter 2. To leading order, we
obtain

(R1, ψ1,2) = −2ε
(

γ − αe−ε(Γ2−Γ1) − βe−
ε
D (Γ2−Γ1)

)

.

Finally, since ‖ψi‖2
L2 = 2

3

√
2, the evolution of Γ1,2 is to leading order indeed given

by (4.3.12). This completes the proof of Theorem 4.3.2. 2

4.4 The dynamics of N-front solutions

In this section, we analyze the dynamics of the fronts of N -front solutions. The
system of ODEs describing the evolution of these fronts was formally derived in
Section 4.2, and this derivation was made rigorous in the previous section, see
Theorem 4.3.2. In Section 4.4.2, we classify the dynamics of all possible 2-front
solutions, showing that the two fronts move toward a stable 1-pulse solution if
and only if the system parameters are such that the 1-pulse solution is stable (for
these parameters) and such that there is no unstable 1-pulse solution in between
the initial data and the attractor. In Sections 4.4.3 and 4.4.4, we prove similar
results for 3-front and 4-front solutions, respectively. For example, we determine
the stability of front-solutions for which one or more of the fronts travel to infin-
ity. To prove all the statements of these three sections, it is useful first to prove a
statement for general N -front solutions. That is, N -front solutions for N odd are
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not stationary, while N -front solutions for N even do not travel with a uniform
O(ε) speed. This will be proved in the first section.

Note that Theorem 4.3.2 states that the derivation is valid up to time tm, which
can be +∞. After tm, the fronts enter the strong interaction regime. Here, the
system of ODEs no longer describes the dynamics of the fronts. For example, two
components of the system of ODEs can cross, while this is not possible in the
PDE case. The following conjecture is backed up by the numerical simulations,
see Figures 4.7 and 4.10.

Conjecture 4.4.1. A pair of colliding fronts of the PDE (4.1.1) disappears for
O(1) parameters with respect to ε.

This yields that after collision between two of the fronts in the ODE de-
scription, these two fronts should be removed from the system. Therefore, the
N -dimensional system of ODEs reduces to an N -2-dimensional system.

Remark 4.4.1. The trivial dynamics of a 1-front solution is completely captured
by Lemma 4.2.1.

4.4.1 N-front solutions with N even and N odd

In this section, we investigate the differences between odd and even N -front solu-
tions. By studying the total movement of the N fronts, we can prove the following
lemma:

Lemma 4.4.2. Let 0 < ε ≪ 1 be sufficiently small, and assume that all other
parameters in (4.1.1) are O(1) with respect to ε. Moreover, assume that γ 6= 0.
Then, for N odd, there exist no stationary N -front solutions to (4.1.1), and for
N even there exist no uniformly traveling N -front solutions with O(ε) velocity.

Proof. We begin with the case of N odd. The speed of the i-th front is given
by (4.2.1). Summing these front velocities over all N and noting the pairwise
cancellations of terms for adjacent fronts, we find that for N odd,

N
∑

i=1

Γ̇i(t) =
3

2

√
2εγ . (4.4.1)

Thus, there must be a net movement of the fronts in the direction given by the
sign of γ. The assumption that γ 6= 0 now proves the first part of the lemma.

For N even, the sum of N components is to leading order zero, see again (4.2.1).
This yields that, there can be no net movement of the N fronts. Therefore, it is
not possible to have a uniformly traveling N -front solution with an O(ε) speed.
2
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Corollary 4.4.3. For N odd, at least one of the fronts of an N -front solution
has to travel to ±∞, where the sign is determined by the sign of γ. If N is even
and one of the fronts of an N -front solution travels to ±∞, then at least one of
the other fronts has to travel in the opposite direction, i.e., to ∓∞.

It is of interest to observe that the dynamics of an N -front solution for which
one of the fronts is far away from all of the others can be completely understood
from the dynamics of an (N -1)-front solution and those of a single front, inde-
pendently. In this case, to leading order, the system of ODEs for the N -front
solution breaks up into the ODE (4.2.7) for a 1-front solution and a system of
ODEs (4.2.1) for an (N -1)-front solution. Since for N odd always at least one
of the fronts travels to ±∞, this yields that, when looking at a fixed interval,
an N -front solution with N odd will eventually behave like an M -front solution,
with M < N even.

Remark 4.4.2. In the nongeneric case where γ = 0 there do exist stationary odd
N -front solutions.

4.4.2 The 2-front solutions

The dynamics of the fronts of a 2-front solution can be deduced in a straightfor-
ward fashion from (4.3.12). Observe that the fronts travel with opposite velocities.
Therefore, we can rewrite the system of ODEs for the front dynamics as one ODE
for the dynamics of the distance, ∆Γ := Γ2 − Γ1,

∆̇Γ = 3
√

2ε
(

αe−ε∆Γ + βe−
ε
D ∆Γ − γ

)

. (4.4.2)

The fixed points ∆Γi
∗, i ∈ N, of this ODE coincide with the solutions of the

existence condition for standing 1-pulse solutions as derived in Chapter 2. In
particular, there are either zero, one, or two solutions, depending on the signs of
α, β, and on the size of α + β relative to γ, see Lemma 2.2.2 in Chapter 2. The
stability of these particular standing 1-pulse solutions is determined by the sign of

the small eigenvalue λ1 := −3
√

2ε2
(

αe−ε∆Γi
∗ + β

D e−
ε
D ∆Γi

∗
)

, see Chapter 3. On

a case-by-case basis, we draw the following conclusions about solutions ∆Γ(t): If
(4.4.2) has no roots, then ∆Γ(t) tends to ∞ for all initial data ∆Γ(t) if and only
if γ < 0, otherwise it tends to 0. If (4.4.2) has one root ∆Γ1

∗, then if it is stable
∆Γ(t) tends to ∆Γ1

∗, whereas if it is unstable ∆Γ(t) tends to 0 or to ∞, depending
on the sign of ∆Γ(0)−∆Γ1

∗. Finally, if (4.4.2) has two roots, one stable ∆Γ1
∗ and

the other unstable ∆Γ2
∗, then we distinguish two cases: Firstly, if ∆Γ1

∗ > ∆Γ2
∗

then initial conditions larger than the unstable root, that is, ∆Γ(0) > ∆Γ2
∗ tend

to ∆Γ1
∗, while smaller initial conditions tend to 0. Secondly, if ∆Γ1

∗ < ∆Γ2
∗ then

initial conditions smaller than the unstable root, that is, ∆Γ(0) < ∆Γ2
∗ tend to

∆Γ1
∗, while larger initial conditions tend to ∞. This yields the following lemma:

Lemma 4.4.4. The fronts of a 2-front solution ∆Γ(t) asymptote to a standing
1-pulse solution with width ∆Γ = ∆Γ1

∗ if and only if this 1-pulse solution is
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stable and there is no unstable standing 1-pulse solution determined by ∆Γ2
∗ with

∆Γ(0) < ∆Γ2
∗ < ∆Γ1

∗ or ∆Γ(0) > ∆Γ2
∗ > ∆Γ1

∗.

Proof of Lemma 4.4.4. Equation (4.4.2) has at most two fixed points ∆Γ1,2
∗

for a given parameter combination (Lemma 2.2.2). The stability of these fixed
points is determined by

λ1 =
∂∆̇Γ

∂∆Γ
. (4.4.3)

Since (4.4.2) is a 1-dimensional, autonomous ODE, this proves the lemma. 2

See also Figure 4.5, where we plotted ∆̇Γ as function of ∆Γ, as well as the solu-
tions of the ODE (4.4.2) and the PDE (4.1.1) for two different initial conditions.

Due to the symmetry of the PDE (4.1.1), we immediately obtain a result on ‘2-
back solutions’, that is, solutions that asymptote to (+1,+1,+1) at −∞. These
2-back solutions turn out to be relevant for understanding the dynamics of 3- and
4-front solutions, see the next two sections.

Lemma 4.4.5. The ODE

∆̇Γ = 3
√

2ε
(

αe−ε∆Γ + βe−
ε
D ∆Γ + γ

)

. (4.4.4)

describes the evolution of the distance between the fronts of a 2-back solution
∆Γ(t). The fronts approach a standing 1-pulse solution (which asymptotes to
(+1,+1,+1)) with width ∆Γ = ∆Γ1

∗ if and only if this 1-pulse solution is stable
and there is no unstable standing 1-pulse solution (which asymptotes to (+1,+1,
+1)) determined by ∆Γ2

∗ with ∆Γ(0) < ∆Γ2
∗ < ∆Γ1

∗ or ∆Γ(0) > ∆Γ2
∗ > ∆Γ1

∗.

Finally, it is worth noting that for ∆Γ ≫ ε−1, (4.4.2) reduces, to leading order,
to ∆̇Γ = −3

√
2εγ , and the dynamics is, just as in the case of 1-front solutions,

completely determined by the sign of γ. More specifically, the two fronts have a
weak tail-tail interaction (∆Γ ≫ ε−1), and they can be interpreted as two single
1-front solutions, see Lemma 4.2.1.

4.4.3 The 3-front solutions

The dynamics of the fronts in 3-front solutions is quite rich. We deduce condi-
tions under which 3-front solutions for which one of the outer fronts travels to
±∞ are stable, see Corollary 4.4.6 and 4.4.7. Moreover, we prove the existence
of uniformly traveling 3-front solutions, see Lemma 4.4.8. The presence of the
second inhibitor component W is necessary for the validity of this lemma, i.e.,
Lemma 4.4.8 does not hold for a two-component version of (4.1.1).
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Figure 4.5: In these frames the parameters are (α, β, γ,D, τ, θ, ε) =
(6,−5,−2, 5, 1, 1, 0.01). In the upper left frame, we plotted ∆̇Γ (4.4.2) as a func-
tion of ∆Γ. Observe that ∆̇Γ has two zeroes ∆Γ1,2

∗ . The first zero is ∆Γ1
∗ ≈ 109,

and the associated eigenvalue is λ1(∆Γ1
∗) < 0. The second zero is ∆Γ2

∗ ≈ 440,
and the associated eigenvalue is λ1(∆Γ2

∗) > 0. Therefore, the 1-pulse solution
with width ∆Γ1

∗ is stable, while the 1-pulse solution with width ∆Γ2
∗ is unsta-

ble. In the upper right frame, we plotted the evolution of the pulse distance ∆Γ
according to the ODE (4.4.2) for two different initial conditions, one just below
the unstable stationary width ∆Γ2

∗, and one just above this value. In the lower
two frames, we plotted the evolution of the U -component of the PDE (4.1.1) for
(approximately) the same two initial conditions. These plots are obtained from
numerical simulations of (4.1.1). We observe that the dynamics of the two fronts
Γ1,2 agrees to within the error of the asymptotic approximation with the dynamics
of the derived ODE (4.4.2). More specifically, in the lower left frame the distance
between the two fronts, ∆Γ, approaches 115, which is to leading order the same
as ∆Γ1

∗ ≈ 109 (since 115 = 1.09ε−1 +O(1) for ε = 0.01). In the lower right frame
the two fronts diverge, as described by Lemma 4.4.4.
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The system of ODEs describing the leading order behavior of the dynamics of
these three fronts, up to collision, reads

Γ̇1 = 3
2

√
2ε

(

γ + α
(

−eε(Γ1−Γ2) + eε(Γ1−Γ3)
)

+ β
(

−e
ε
D (Γ1−Γ2) + e

ε
D (Γ1−Γ3)

))

,

Γ̇2 = − 3
2

√
2ε

(

γ + α
(

−eε(Γ1−Γ2) + eε(Γ2−Γ3)
)

+ β
(

−e
ε
D (Γ1−Γ2) + e

ε
D (Γ2−Γ3)

))

,

Γ̇3 = 3
2

√
2ε

(

γ + α
(

−eε(Γ1−Γ3) + eε(Γ2−Γ3)
)

+ β
(

−e
ε
D (Γ1−Γ3) + e

ε
D (Γ2−Γ3)

))

.

(4.4.5)

By Lemma 4.4.2 and Corollary 4.4.3, we know that there are no stationary 3-front
solutions, and that at least one front has to travel to ±∞.

To get additional insight in the dynamics of a 3-front solution, we first assume
that (at least) the third front travels to +∞. Another case, in which Γ3 does not
go to +∞ and in which the leftmost pulse travels to −∞, will be discussed later
on. We introduce four new coordinates

Bi = e−
ε
D Γi for i = 1, 2, 3 and t′ =

3

2

√
2
ε2

D
t . (4.4.6)

The rescaling of time absorbs the terms in front of the parentheses of (4.4.5) into
the time-variable. The transformations of Γi are such that the fronts traveling
to +∞ now travel to 0, while fronts which previously travel to −∞ now travel
to +∞. In the new coordinate system, the assumption Γ1 < Γ2 < Γ3 reads
B3 < B2 < B1, and the system of ODEs (4.4.5) transforms into

Ḃ1 = −B1

(

γ + α
(

−BD
2

BD
1

+
BD

3

BD
1

)

+ β
(

−B2

B1
+ B3

B1

))

,

Ḃ2 = B2

(

γ + α
(

−BD
2

BD
1

+
BD

3

BD
2

)

+ β
(

−B2

B1
+ B3

B2

))

,

Ḃ3 = −B3

(

γ + α
(

−BD
3

BD
1

+
BD

3

BD
2

)

+ β
(

−B3

B1
+ B3

B2

))

.

(4.4.7)

This system of ODEs possesses the line(s) of fixed points (B1, B2, B3) = (B1,
B∗B1, 0), where B∗ solves

αBD
∗ + βB∗ = γ. (4.4.8)

We note that this condition is the same as the existence condition of a standing
1-pulse solution of Chapter 2, as well as that of the fixed points of (4.4.2) after
the coordinate transformation. Hence, equation (4.4.8) has, depending on the
parameters, 0, 1 or 2 solutions. Recall that B3 = 0 corresponds with the third
front Γ3 traveling to infinity. Therefore, this coordinate transformation (4.4.6)
enables us to study fixed points at infinity [46].
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Under the assumption that there exists at least one line of fixed points, that
is, that there exists at least one B∗ solving (4.4.8), we determine the stability
of one of these fixed points, which we call Bf = Bf (B1;B∗). The linearization
around Bf yields





−(αDBD
∗ + βB∗) αDBD−1

∗ + β −β
αDBD+1

∗ + βB2
∗ −(αDBD

∗ + βB∗) β
0 0 −γ



 .

This matrix has three eigenvalues: λ1 = 0, λ2 = −2(αDBD
∗ +βB∗), and λ3 = −γ.

The third eigenvalue λ3 implies that the fixed point Bf is stable only if γ > 0,
which is consistent with the fact that γ < 0 implies a net movement to −∞, see
(4.4.1). The sign of the second eigenvalue λ2 is the same as the sign of the small
eigenvalue of a standing 1-pulse solution, see (4.4.3) and Chapter 3. Therefore,
this fixed point Bf is only stable if γ > 0 and the corresponding standing 1-pulse
solution is stable. In this case, the line of fixed points is normally attracting.

The eigenvectors belonging to the eigenvalues read

e1 =





1
B∗
0



 , e2 =





1
−B∗

0



 , e3 =





K1

K2

1



 ,

where K1,2 are some computable constants. We observe that the eigenspace
belonging to the neutral eigenvalue λ1 is, as expected, exactly the line of fixed
points belonging to Bf . Therefore, this eigenvalue can be seen as a translation
invariant eigenvalue, i.e., only the distance between Γ1 and Γ2 (or the ratio of
B1 and B2) is important and not the actual location. Therefore, λ1 generates
no instabilities, and we have shown that a fixed point Bf is stable if and only if
γ > 0 and αDBD

∗ + βB∗ > 0, where B∗ solves (4.4.8). Transforming back to the
original coordinates, we have proved the following corollary:

Corollary 4.4.6. Let B∗ solve (4.4.8). Then, the 3-front solution for which
the third front Γ3 travels to +∞ and the other two fronts Γ1,2 asymptote to a
1-pulse solution with width −D

ε log B∗ is attracting if and only if γ > 0 and
αDBD

∗ + βB∗ > 0.

See also frame III of Figures 4.6 and 4.7 for a plot of the system of ODEs in
the original coordinates and a plot of a numerical simulation of the PDE (4.1.1),
with system parameters satisfying the above corollary.

A similar analysis can be performed for the dynamics of fronts traveling to −∞.
However, we now have to use a slightly different coordinate transformation

Ci = e
ε
D Γi for i = 1, 2, 3 and t′ =

3

2

√
2
ε2

D
t . (4.4.9)
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Figure 4.6: In these six frames, we plotted 6 different types of behavior of the
fronts of a 3-front solution with sgn(α) = sgn(β). The values of (α, β, γ) vary
from frame to frame, (D, ε) are fixed at (5, 0.01). In the first and third frames
the 3-front solution evolves to a stable 1-pulse solution combined with a front
traveling to ±∞. In the other four cases, two of the fronts collide, and the system
of ODEs (4.4.5) no longer describes the dynamics of the fronts of a 3-front solution
to the PDE (4.1.1) after the collision. Compare this figure also with Figure 4.7,
which shows the front locations in the corresponding PDE simulations.

In these new coordinates, the system of ODEs has the line(s) of fixed points
(C1, C2, C3) = (0, C∗C3, C3), where C∗ solves

αCD
∗ + βC∗ = −γ, (4.4.10)

which is the existence condition for a standing 1-pulse solution with (U, V,W )(±∞)
= (1, 1, 1) +O(ε), as well as the condition to have fixed points of (4.4.4), see also
Chapter 2. A linear stability analysis comparable to that of previous paragraph
yields the following corollary:

Corollary 4.4.7. Let C∗ solve (4.4.10). Then, the 3-front solution for which
the first front Γ1 travels to −∞ and the other two fronts Γ2,3 asymptote to a
1-pulse solution with width −D

ε log C∗ is attracting if and only if γ < 0 and
αDCD

∗ + βC∗ > 0.

From lemma 4.4.2, we know that uniformly traveling 3-front solutions may
exist. It turns out from the next lemma that a necessary condition for this type
of solution to exist is that the parameters α and β have different signs. Thus, the
third component of the PDE (4.1.1) is strictly necessary for the system to support
traveling 3-front solutions; the two-component limit of the PDE, i.e., the system
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Figure 4.7: In these six frames, we show simulations of the PDE (4.1.1) for the
same parameter values and the same initial conditions as in Figure 4.6. Thus, the
values of (α, β, γ) vary from frame to frame, while the other parameters (D, ε, τ, θ)
are kept fixed at (5, 0.01, 1, 1). The black regions indicates that the value of
U = −1, while white indicates U = 1. In all the six frames, one of the outer
fronts travel to ±∞, depending on the sign of γ, see Corollary 4.4.3. In frames 1
and 3, the two other fronts form a stable 1-pulse solution. In frames 2, 4, 5 and 6,
the other two fronts collide and disappear, see Conjecture 4.4.1. The dynamics
of the remaining fronts after these collisions is described by (4.2.7). Note that in
all six cases the actual spatial domain of the simulation was [−1000, 1000]. So,
we have zoomed in on the spatial domain where the interesting dynamics takes
place.
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of PDEs without the third component and with β = 0, see the previous chapters,
does not support uniformly traveling 3-front solutions.

Lemma 4.4.8. If the sign of α and β are the same, then there exist no 3-front
solutions traveling with uniform O(ε) speed to ±∞. However, when the assump-
tion is dropped, there exist parameter combinations for which (4.1.1) supports
uniformly traveling 3-front solutions.

Proof. By (4.4.1) each of the fronts of a uniformly traveling 3-front solution
has to travel with speed 1

2

√
2εγ. Plugging this into (4.4.5), we find

−2γ = 3
(

α
(

−eε(Γ1−Γ2) + eε(Γ1−Γ3)
)

+ β
(

−e
ε
D (Γ1−Γ2) + e

ε
D (Γ1−Γ3)

))

,

−4γ = 3
(

α
(

−eε(Γ1−Γ2) + eε(Γ2−Γ3)
)

+ β
(

−e
ε
D (Γ1−Γ2) + e

ε
D (Γ2−Γ3)

))

,

−2γ = 3
(

α
(

−eε(Γ1−Γ3) + eε(Γ2−Γ3)
)

+ β
(

−e
ε
D (Γ1−Γ3) + e

ε
D (Γ2−Γ3)

))

.

(4.4.11)

The third equation is a linear combination of the first two equations. Therefore,
we can neglect the third equation and solve the system of the first two equations.
Moreover, since only the distances between the fronts are important, there are
only two unknowns, Γ1−Γ2 and Γ2−Γ3. So, a priori, system (4.4.11) is solvable.
Rewriting the first two equations, we find the equality

1
2α

(

eε(Γ1−Γ2) + eε(Γ2−Γ3)
)

+ 1
2β

(

e
ε
D (Γ1−Γ2) + e

ε
D (Γ2−Γ3)

)

=
αeε(Γ1−Γ3) + βe

ε
D (Γ1−Γ3) .

(4.4.12)

By construction Γ1 < Γ2 < Γ3, therefore the following two inequalities hold:

eε(Γ1−Γ3) < eε(Γ2−Γ3) , eε(Γ1−Γ3) < eε(Γ1−Γ2) . (4.4.13)

This yields that equality (4.4.12) cannot be fulfilled if sgn(α) = sgn(β). There-
fore, there cannot be uniformly traveling 3-front solutions if α and β have the
same sign.

To show that there are parameter combinations for which (4.4.12) holds if sgn(α) 6=
sgn(β), we prescribe the parameters α 6= 0,D, ε and the front positions Γ1,Γ2,Γ3,
and choose β as solution of (4.4.12), i.e.,

β = −α
1
2

(

eε(Γ1−Γ2) + eε(Γ2−Γ3)
)

− eε(Γ1−Γ3)

1
2

(

e
ε
D (Γ1−Γ2) + e

ε
D (Γ2−Γ3)

)

− e
ε
D (Γ1−Γ3)

.

By (4.4.13) the numerator, as well as the denominator, are positive, and therefore
β is well-defined, nonzero (and sgn(α) 6= sgn(β)). The first equality of (4.4.11)
now determines a value of the last free parameter γ for which (4.4.11) is solved
and a uniformly traveling 3-front solution thus exists. Note that this construction
works for all given initial parameter combinations (α,D, ε,Γ1,Γ2,Γ3). 2
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Figure 4.8: In the left frame, we plotted a uniformly traveling 3-
front solution. The system parameters read (α, β, γ,D, τ, θ, ε) =
(1,−0.430454,−0.00266715, 2, 1, 1, 0.1). Note that β and γ are constructed by the
method described in the proof of Lemma 4.4.8 with (Γ1,Γ2,Γ3) = (−20, 3, 25). In
the right frame, we plotted a uniformly traveling 5-front solution. Here the system
parameters read (α, β, γ,D, τ, θ, ε) = (1,−0.650548,−0.0230866, 2, 1, 1, 0.1).

See Figure 4.8 for a uniformly traveling 3-front solution. In the same figure a
uniformly traveling 5-front solution is shown, the existence of this type of solu-
tions can be proved by similar (but more involved) arguments. This gives rise to
the following conjecture:

Conjecture 4.4.9. For every N odd there exist uniformly traveling N -front so-
lutions. For every N even there exist stationary N -front solutions.

We refer to the previous chapters for the proof of this conjecture for N = 2, 4.

4.4.4 The 4-front solutions

As N increases, the dynamics of the N fronts naturally becomes more and more
complex. A 4-front solution may, for example, evolve toward one of three types
of stationary patterns, the ground state, a 1-pulse solution, or a 2-pulse solution,
see Figures 4.9 and 4.10. The system of ODEs describing the evolution of the
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four fronts, up to collision, is obtained from (4.2.1) with N = 4,

Γ̇1 = 3
2

√
2ε

(

γ + α
(

−eε(Γ1−Γ2) + eε(Γ1−Γ3) − eε(Γ1−Γ4)
)

+ β
(

−e
ε
D (Γ1−Γ2) + e

ε
D (Γ1−Γ3) − e

ε
D (Γ1−Γ4)

))

,

Γ̇2 = − 3
2

√
2ε

(

γ + α
(

−eε(Γ1−Γ2) + eε(Γ2−Γ3) − eε(Γ2−Γ4)
)

+ β
(

−e
ε
D (Γ1−Γ2) + e

ε
D (Γ2−Γ3) − e

ε
D (Γ2−Γ4)

))

,

Γ̇3 = 3
2

√
2ε

(

γ + α
(

−eε(Γ1−Γ3) + eε(Γ2−Γ3) − eε(Γ3−Γ4)
)

+ β
(

−e
ε
D (Γ1−Γ3) + e

ε
D (Γ2−Γ3) − e

ε
D (Γ3−Γ4)

))

,

Γ̇4 = − 3
2

√
2ε

(

γ + α
(

−eε(Γ1−Γ4) + eε(Γ2−Γ4) − eε(Γ3−Γ4)
)

+ β
(

−e
ε
D (Γ1−Γ4) + e

ε
D (Γ2−Γ4) − e

ε
D (Γ3−Γ4)

))

.

(4.4.14)

Of course (4.4.14) has quite some structure, for instance
∑4

i=1 Γ̇i = 0. In fact,
the system has a 2-dimensional invariant manifold

M0 := {(Γ1(t),Γ2(t),Γ3(t),Γ4(t)) |Γ4(t) = −Γ1(t) , Γ3(t) = −Γ2(t)} . (4.4.15)

The manifold M0 can be interpreted as representing the dynamics of symmetric
2-pulse solutions within the larger family of 4-front interactions. Hence, if M0

is attracting then the fronts will organize into two pairs of pulses, i.e., the front
dynamics evolve into pulse dynamics.

Moreover, the fixed points of M0 can be determined by solving Γ̇1,2(t) = 0.
These equations yield



















0 = γ + α
(

−eε(Γ1−Γ2) + eε(Γ1+Γ2) − e2εΓ1
)

+β
(

−e
ε
D (Γ1−Γ2) + e

ε
D (Γ1+Γ2) − e2 ε

D Γ1
)

,

0 = γ + α
(

−eε(Γ1−Γ2) − eε(Γ1+Γ2) + e2εΓ2
)

+β
(

−e
ε
D (Γ1−Γ2) − e

ε
D (Γ1+Γ2) + e2 ε

D Γ2
)

,

which coincides with the existence condition of stationary 2-pulse solutions con-
structed in Theorem 2.5.1 of Chapter 2. The analysis of the previous chapter
establishes the (in)stability of the fixed points of M0, i.e., of the symmetric sta-
tionary 2-pulse solutions.

Lemma 4.4.10. If α > 0 and β > 0, then the manifold M0 (4.4.15) is normally
attracting (linearly stable), while it is normally repelling if α < 0 and β < 0.

Proof. We linearize about points on M0. After a suitable rescaling of the
time, we obtain that the linear evolution of the perturbation v is given by the
matrix equation









v̇1

v̇2

v̇3

v̇4









=









A C −D E
C B F −D
−D F B C
E −D C A

















v1

v2

v3

v4









,
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where

A = −C + D − E ,B = −C + D −F , C = αA1A
−1
2 + βA

1
D
1 A

− 1
D

2 ,

D = αA1A2 + βA
1
D
1 A

1
D
2 , E = αA2

1 + βA
2
D
1 ,F = αA2

2 + βA
2
D
2 , and Ai = eεΓi .

Note that this matrix is singular since adding all the rows yields (0, 0, 0, 0), and
that it is symmetric across both diagonals. The eigenvalues and eigenvectors of
the matrix read

λ1 = 0 , e1 = [1 1 1 1]t ,
λ2 = −2(C − D) , e2 = [1 −1 −1 1]t ,
λ3 = K3 , e3 = [1 L3 −L3 −1]t ,
λ3 = K4 , e4 = [1 L4 −L4 −1]t ,

(4.4.16)

where Ki and Li are known constants. The eigenvalue-eigenvector pair λ1 and e1

correspond to uniform translations of the 4-front solution. Small perturbations in
the direction of e1 cause the positions of the four fronts to shift by the same con-
stant small amount. Hence, the relative distances between pulses stay the same,
and such perturbations do not destabilize the 4-front solution, since linear stabil-
ity is only up to translates. Then, in order to study perturbations in the directions
of the other three eigenvectors, we may mod out the translation invariance and as-
sume, without loss of generality, that the components of these perturbations sum
to zero. The third and fourth eigenvalues, λ3,4 have eigenvectors e3,4 along the
direction of M0. Therefore, these eigenvalues are not important for the stability
result. Thus, the second eigenvalue λ2, whose eigenvector e2 is perpendicular to
M0, yields the stability result. It is given by

λ2 = −2(C − D) = 2αA1(A2 − A−1
2 ) + 2βA

1
D
1

(

A
1
D
2 − A

− 1
D

2

)

.

Note that the eigenvalue λ2 explicitly depends on time via A1,2. By construction
Γ1 < Γ2 < 0, hence 0 < A1 < A2 < 1. This yields that λ2(t) < 0 for all time t if
α > 0 and β > 0, while λ2(t) > 0 for all time t if α < 0 and β < 0. Thus, M0 is
normally attracting if α, β > 0 and normally repelling if α, β < 0 [9]. 2

Recall from Corollary 4.4.3 that if one front escapes to +∞ there is always an-
other front traveling to −∞. For a stability analysis of the fixed points at infinity,
we therefore have to combine the coordinate transformations (4.4.6) and (4.4.9)
of the last section. We introduce the new coordinates

Ci = e
ε
D Γi for i = 1, 2 , Bi = e−

ε
D Γi for i = 3, 4 and t′ =

3

2

√
2
ε2

D
t . (4.4.17)
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In these new coordinates, the system of ODEs (4.4.14) reads

Ċ1 = C1

(

γ + α
(

−CD
1

CD
2

+ CD
1 BD

3 − CD
1 BD

4

)

+β
(

−C1

C2
+ C1B3 − C1B4

))

,

Ċ2 = −C2

(

γ + α
(

−CD
1

CD
2

+ CD
2 BD

3 − CD
2 BD

4

)

+β
(

−C1

C2
+ C2B3 − C2B4

))

,

Ḃ3 = −B3

(

γ + α
(

−CD
1 BD

3 + CD
2 BD

3 − BD
4

BD
3

)

+β
(

−C1B3 + C2B3 − B4

B3

))

,

Ḃ4 = B4

(

γ + α
(

−CD
1 BD

4 + CD
2 BD

4 − BD
4

BD
3

)

+β
(

−C1B4 + C2B4 − B4

B3

))

.

(4.4.18)

This system has the line(s) of fixed points (C1, C2, B3, B4) = (0, C2,
K∗
C2

, 0), where
K∗ solves

αKD
∗ + βK∗ = −γ, (4.4.19)

see (4.4.10). To determine the linear stability of one of these fixed points Kf =
Kf (C2;K∗), we linearize around this point. This yields the matrix











γ 0 0 0
β −(αDKD

∗ + βK∗) −(αDKD−1
∗ C2

2 + βC2
2 ) βC2

2

β
K2

∗
C2

2
−(αD

KD+1
∗
C2

2
+ β

K2
∗

C2
2
) −(αDKD

∗ + βK∗) β

0 0 0 γ











.

The four eigenvalues of this matrix read λ1 = 0, λ2 = −2(αDKD
∗ +βK∗), λ3 = γ,

and λ4 = γ. The third and fourth eigenvalues are stable if γ < 0. The eigen-
vector belonging to the neutral eigenvalue λ1 points in the direction of the line
of fixed points generated by Kf , so it yields no instabilities. The second eigen-
value is stable as long as αDKD

∗ + βK∗ > 0, which is the same condition as
for 3-front solutions (Corollary 4.4.7) and 1-pulse solutions (to (U, V,W )(±∞) =
(−1,−1,−1) + O(ε), see the previous chapters). This proves the following corol-
lary:

Corollary 4.4.11. A 4-front solution for which the outer two fronts Γ1,4 travel to
±∞, respectively, and for which the other two fronts Γ2,3 asymptote to a 1-pulse
solution with width −D

ε log K∗ is stable if and only if γ < 0 and αDKD
∗ +βK∗ > 0,

where K∗ solves (4.4.19).

See also Figure 4.9 frames IV and V , and Figure 4.10 frame 8.
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There is another fixed point at infinity, namely the fixed point where both two
left fronts, Γ1,2, travel to −∞, while the other two fronts, Γ3,4, travel to +∞.
To determine the stability of these fixed points we again need a transformation.
First of all, we define K1, (K4) as the distance between Γ1 and Γ2, (Γ3 and Γ4).
This way, we get a system of ODEs with the variables Γ1,4, K1 and K4. Next, we
use a transformation similar to (4.4.17)

C1 = e
ε
D Γ1 , B4 = e−

ε
D Γ4 , L1,4 = e

ε
D K1,4 and t′ =

3

2

√
2
ε2

D
t ,

to obtain a system of ODEs with the variables C1, B4, L1,4. Analyzing the fixed
points of this system yields the following corollary:

Corollary 4.4.12. A 4-front solution for which the two left fronts Γ1,2 travel to
−∞ with a fixed width −D

ε log L∗
1 and for which the two right fronts Γ3,4 travel to

+∞ with a fixed width −D
ε log L∗

4 is stable if and only if L∗
1 = L∗

4 and αD(L∗
1)

−D+
β(L∗

1)
−1 > 0, where L∗

1 solves (4.4.19).

See also Figure 4.9 frame III, and Figure 4.10 frame 7.

Remark 4.4.3. System (4.4.14) actually possesses a 1-parameter family of in-
variant manifolds by translation invariance of the underlying PDE.

MK := {(Γ1(t),Γ2(t),Γ3(t),Γ4(t)) |Γ4(t) = −Γ1(t) + K , Γ3(t) = −Γ2(t) + K } ,

where K ≫ 2Γ2. Each of these manifolds is normally attracting if α > 0 and
β > 0, while they are normally repelling if α < 0 and β < 0.
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Figure 4.9: In these frames, we plotted five different types behaviors of the fronts
of a 4-front solution according to the ODEs (4.4.14). After collision between two
of the fronts, see frame I and II, the ODE description of a 4-front solution is
no longer valid, and it should be replaced by the ODE description of a 2-front
solution (4.4.2). After collision there are therefore three scenarios possible, the
two remaining fronts merge, they form a stable 1-pulse solution, or they tend
to ±∞. See also frames 1, 2 and 3 of Figure 4.10. In the third frame, two
1-pulse solutions simultaneously travel very slowly to ±∞. In the fourth and
fifth frames, the solutions asymptote to a stable 1-pulse solution homoclinic to
(U, V,W ) = (1, 1, 1)+O(ε), while the other two fronts travel to ±∞. In the sixth
frame, we see a stable 2-pulse solution, see also Sections 2.5 and 3.6.
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Figure 4.10: In these frames, we plot the possible behaviors of a 4-front solution as seen

in numerical simulations of the PDE (4.1.1). The black color indicates that U = −1,

while white indicates U = 1. The first three frames, the upper row, correspond to

the first frame of Figure 4.9. Two of the outer fronts collide and disappear. The two

remaining fronts now behave in three possible ways, they collide and disappear (Frame

1), they form a stable 1-pulse solution (Frame 2), or they diverge (Frame 3), see also

Lemma 4.4.4 and Figure 4.5. The next three frames, the middle row, correspond to the

second frame of Figure 4.9. Here, the inner two fronts collide and disappear, and the

remaining two fronts disappear (Frame 4), stabilize (Frame 5), or diverge (Frame 6), see

again Lemma 4.4.4 and Figure 4.5. The last three frames, the lower row, correspond

to III, IV , and V I, respectively. None of the fronts collide, and we obtain two slowly

diverging 1-pulse solutions (Frame 7), the outer fronts diverging while the inner fronts

form a stable 1-pulse solution (Frame 8), or a stable 2-pulse solution (Frame 9). Note that

for all the nine simulations the actual spatial domain was ξ ∈ [−1000, 1000], τ = θ = 1

and ε = 0.01.
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Summary

Pattern formation is a very lively field of research within the nonlinear sciences,
where the traditional disciplines of mathematics, physics, chemistry, and biol-
ogy merge, interact, and exchange ideas. Reaction-diffusion equations serve as
relevant, often simplified models within several branches of these fields. There-
fore, reaction-diffusion equations can be considered as the key prototype models in
which one can begin to develop a fundamental understanding of complex patterns.
From a mathematical perspective, reaction-diffusion equations are arguably the
most simple nonlinear partial differential equations that exhibit complex patterns.

Localized structures form a special class of solutions to these reaction-diffusion
equations. These structures are solutions remaining close to a trivial background
state (inactive), except in one or more localized spatial regions where the solu-
tions are active. Think for example about a heart. It is not beating constantly
(active): a beat is followed by a period of inactivity before it beats again. Another
example is a stern wave of a boat in still water. At the bow of the boat two stern
waves (active) propagate through the water, while the rest of the water remains
still (inactive).

In recent years, significant progress has been made in our mathematical under-
standing of the simplest localized structures. These being fronts and pulses that
are stationary, so not moving in time, or that are uniformly traveling, so move
with a constant speed, through a one-dimensional domain. In general, the behav-
ior of localized structures is less well-ordered: those structures interact with each
other and thus also move with different velocities. At present, there is a well-
developed theory that describes the interaction of fronts and pulses in the weak
interaction regime. In this regime these fronts or pulses are ‘far away’ from each
other, meaning, all components of the structure interact only through their trivial
background states mentioned above. However, there is no mathematical theory
that explains the interaction of fronts and pulses in the strong interaction regime,
where all the components of the fronts and pulses are close to each other. In that
regime, interesting behavior such as collision, repulsion, annihilation, and self-
replication of fronts and pulses can be observed. In between the weak and strong
interaction regimes lies a third regime, the semi-strong interaction regime, where
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certain components of the fronts or pulses interact via the background state, while
the remaining components interact strongly with each other. Understanding this
regime is a fundamental next step in furthering our understanding of how simple
one-dimensional localized structures interact.

In this thesis, we study the semi-strong interaction of simple localized struc-
tures. We do this by studying a three-component reaction-diffusion equation.
A scaled version of this equation, which is of activator-inhibitor-inhibitor-type,
has been introduced in the mid-nineties to describe the phenomena observed by
gas-discharge experiments. From a mathematical point of view this equation is
particular interesting because of the rich dynamics it exhibits and its relative
simplicity. The equation is singularly perturbed, and therefore it has a slow-fast
nature. The fast component is a well-known and well-studied bistable equation,
which is only weakly coupled to two linear slow equations. In conclusion, this
equation has only one nonlinear term. Localized structures of singular perturbed
problems typically interact with each other in a semi-strong fashion.

Before we can thoroughly study the interaction between multi-fronts and multi-
pulses, we first need to prove that those structures exist. This is shown in the
second chapter. We formally construct stationary one-pulses and two-pulses (also
called two-fronts and four-fronts) using geometric singular perturbation theory.
This construction is made rigorous by a geometric argument, which heavily re-
lies on the intersection of hyper-surfaces in a six-dimensional space. This way,
we show how the width of a one-pulse depends on the system parameters. We
also prove that for the existence of stationary two-pulses it is necessary that the
reaction-diffusion equation has a third component, the second inhibitor. More-
over, we show that the equation possesses uniformly traveling one-pulses. After
that, we analyze several bifurcations, for example the subcritical bifurcation of a
stationary one-pulse to a uniform traveling pulse, but also the saddle-node bifur-
cation of stationary one-pulses. Finally, we show several numerical simulations.
On the one hand these simulations back up the theoretical results, on the other
hand they give examples of the complex dynamics the reaction-diffusion equation
possesses.

We would like to point out that the methods used in this chapter, as well as
the methods used in the next chapter, are all general applicable. Therefore they
can also be used to construct more exotic localized structures of more complex
reaction-diffusion equations. However, in most cases this construction will not
lead to such explicit results as we have seen for the reaction-diffusion equation
at hand here. This is one of the reasons that makes this equation amenable to a
rigorous mathematical analysis.

In the third chapter, we analyze the stability of the localized structures con-
structed in the previous chapter. However, since the present Evans function
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theory is restricted to two-component slow-fast systems, we need to extend it in
such a way that it is also applicable for general slow-fast systems. With this new
theory we then determine the stability of the earlier constructed localized struc-
tures. For instance, the stability of the stationary one-pulses is determined by
its width and a few of the system parameters. Finally, we analyze the stability
of the various types of bifurcations. This way we prove that there is a region in
parameter space where the stationary one-pulse as well as the uniformly travel-
ing one-pulse are stable. Thus, we have a region where we have coexistence of
stationary stable one-pulses and uniformly traveling stable one-pulses. Note that
in this chapter we have to analyze a linear nonautonomous ordinary differential
equation, whereas we had to analyze a nonlinear autonomous ordinary differential
equation in the previous chapter.

In the last chapter, we study the semi-strong interaction regime. Using a renor-
malization group method, we derive a system of ordinary differential equations
describing the motion of the various fronts of a multi-front. Note that details
of this reduction method strongly depend on the problem at hand. In the final
part of this chapter, we analyze the system of ordinary differential equations. For
instance, we show that stationary multi-fronts only exist if they have an even
number of fronts. Likewise, we prove that uniformly traveling multi-fronts do
not exist in the case the solutions have an even number of fronts. Finally, we
study the multi-front dynamics in more detail for solutions with not too many
fronts. For example, we identify several, possibly attracting manifolds. We then
construct a uniformly traveling three-front, and we determine the stability type
of fixed points at infinity.
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Samenvatting:
Frontinteractie in een
driecomponenten systeem

Patroonvorming is een interdisciplinair onderzoeksgebied in de niet-lineaire we-
tenschappen, waar de traditionele wetenschappen zoals natuurkunde, wiskunde,
scheikunde en biologie samenkomen en ideeën uitwisselen. Patroonvorming wordt
vaak aan de hand van (over)gesimplificeerde reactie-diffusie vergelijkingen bestu-
deerd. Deze vergelijkingen kunnen dan ook als de bouwstenen van patroonvor-
ming worden gezien. Puur wiskundig bekeken zijn reactie-diffusie vergelijkingen
misschien wel de makkelijkste niet-lineaire partiële differentiaalvergelijkingen die
complexe patronen vertonen.

Gelokaliseerde structuren vormen een speciale klasse van oplossingen van reactie-
diffusie vergelijkingen. Dit zijn oplossingen die inactief, ook wel in rust, zijn
behalve in een of meer gelokaliseerde intervallen waar de oplossingen actief zijn.
Denk bijvoorbeeld aan een hart. Dit klopt niet constant, het geeft een klop (actief)
en is dan een periode inactief voordat het weer klopt. Een ander voorbeeld is de
boeggolf die een boot maakt als hij door vlak water vaart. Achter de boot zien we
twee boeggolven (actief) zich door het water voortbewegen (in twee gelokaliseerde
intervallen), terwijl de rest van het water gewoon vlak is (inactief).

De afgelopen decennia is er veel progressie geboekt in het wiskundig begrijpen van
de simpelste gelokaliseerde structuren, welteverstaan de stationaire en de uniform-
lopende fronten en pulsen in één ruimtelijke dimensie. Dit zijn dus oplossingen
die niet variëren in de tijd (stationair) en oplossingen die zich met een constante
snelheid voortbewegen (uniform-lopend). Er is echter nog vrijwel niets bekend
over de interactie tussen dit soort simpele gelokaliseerde structuren, waarbij de
verschillende gelokaliseerde structuren zich dus met verschillende snelheden kun-
nen voortbewegen. Alleen wanneer de structuren ver uit elkaar liggen en alle
componenten van de structuur elkaar zodoende slechts zwak bëınvloeden is er een
sluitende wiskundige theorie. De interessante gevallen waarbij de verschillende
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structuren dicht bij elkaar liggen en al de componenten elkaar zodoende sterk
bëınvloeden, denk bijvoorbeeld aan de botsing tussen twee pulsen, zijn wiskundig
nog grotendeels niet begrepen. Er is echter nog een derde vorm van interactie,
de zogenaamde semi-sterke interactie, hierbij bëınvloeden sommige componenten
van de structuren elkaar op een zwakke manier, terwijl de andere componenten
elkaar op een sterke manier bëınvloeden. De semi-sterke interactie ligt dan ook
tussen zwakke en sterke interactie. Daarom kan het begrijpen van deze vorm van
interactie ook beschouwd worden als de volgende noodzakelijke stap richting een
wiskundige theorie over de interactie van simpele, eendimensionale, gelokaliseerde
structuren.

In dit proefschrift bestuderen wij de semi-sterke interactie van simpele geloka-
liseerde structuren. Dit doen wij aan de hand van een driecomponenten reactie-
diffusie vergelijking (vandaar de titel: Frontinteracties in een driecomponenten
systeem). Een variant van deze vergelijking is midden jaren negentig gëıntrodu-
ceerd om de fenomenen waargenomen bij gasontladingen te beschrijven, en zij is
van de vorm activator-inhibitor-inhibitor. Wiskundig gezien is deze vergelijking
vooral interessant vanwege haar rijke dynamica en relatieve eenvoud. De vergelij-
king is singulier gestoord, en wordt daarom ook wel een langzaam-snel vergelijking
genoemd. De snelle component is een bekende bistabiele vergelijking, en zij is
slechts zwak gekoppeld aan twee lineaire langzame vergelijkingen. Al met al heeft
de vergelijking maar één niet-lineaire term. Aangezien de vergelijking singulier
gestoord is bëınvloeden gelokaliseerde multifronten en multipulsen elkaar meestal
op een semi-sterke manier.

Voordat de interactie tussen gelokaliseerde multifronten en multipulsen bestudeerd
kan worden moeten wij (natuurlijk) eerst bewijzen dat deze gelokaliseerde struc-
turen op zichzelf bestaan. Dit doen wij in het tweede hoofdstuk. Met behulp
van geometrische singuliere storingsrekening construeren wij formeel stationaire
eenpulsen en tweepulsen (ook wel tweefronten en vierfronten). Wij maken deze
constructie rigoreus met behulp van een geometrisch argument. Dit argument
berust grotendeels op het doorsnijden van hypervlakken in een zesdimensionale
ruimte. Zo leiden wij bijvoorbeeld af hoe de breedte van een puls afhangt van de
parameters van de vergelijking. Ook bewijzen we dat voor het bestaan van statio-
naire tweepulsen het strikt noodzakelijk is dat de vergelijking een derde component
heeft. Daarnaast laten wij zien dat de vergelijking ook uniform-lopende eenpulsen
ondersteunt. Hierna analyseren wij verschillende soorten bifurcaties, bijvoorbeeld
de subkritische bifurcatie van de stationaire eenpuls naar de uniform-lopende een-
puls, maar ook de zadel-knoop bifurcatie van stationaire eenpulsen. We eindigen
dit hoofdstuk met een aantal numerieke simulaties, enerzijds om de bovenge-
noemde resultaten te staven, anderzijds om enkele voorbeelden te geven van de
complexe dynamica die de vergelijking bezit.

Merk op dat de in dit hoofdstuk gebruikte methodes, alsmede de gebruikte metho-
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des van het aankomende hoofdstuk, allemaal algemeen toepasbaar zijn. Zij kun-
nen daarom dus ook gebruikt worden om meer exotische gelokaliseerde structu-
ren van complexere reactie-diffusie vergelijkingen te construeren. Echter, in vele
gevallen zal deze constructie niet zulke expliciete resultaten opleveren als voor de
vergelijking die hier bestudeerd wordt. Dit maakt deze vergelijking dan ook zo
geschikt voor een grondige wiskundige analyse.

In het derde hoofdstuk onderzoeken wij vervolgens de stabiliteit van de zojuist
geconstrueerde stationaire en uniform-lopende pulsen. Aangezien de bestaande
Evans functie theorie voor langzaam-snel vergelijkingen zich beperkt tot tweecom-
ponenten vergelijkingen, breiden wij deze theorie eerst uit zodat zij ook geschikt is
voor algemenere langzaam-snel vergelijkingen. Met deze theorie leiden wij vervol-
gens voor elk soort geconstrueerde puls een stabiliteitsconditie af. De stabiliteit
van een stationaire eenpuls word bijvoorbeeld bepaald door de breedte van de
eenpuls en door enkele parameters van de vergelijking. Hierna bestuderen wij ook
nog de stabiliteit van de verscheidene bifurcaties en bewijzen bijvoorbeeld dat
er een interval in parameterruimte is waarin zowel de stationaire eenpuls als de
uniform-lopende eenpuls stabiel zijn. Er is dus een interval waarin er sprake is van
coëxistentie van stabiele stationaire en stabiele uniform-lopende eenpulsen. Merk
op dat waar we in het vorige hoofdstuk nog een niet-lineaire autonome gewone
differentiaalvergelijking oplossen, we in dit hoofdstuk een lineaire niet-autonome
gewone differentiaalvergelijking bestuderen.

In het laatste hoofdstuk bestuderen wij de semi-sterke frontinteractie. Gebruik-
makend van een renormalisatie groep methode bewijzen wij dat de verandering van
de positie van een front dat in interactie is met andere fronten beschreven kan wor-
den aan de hand van een gewone differentiaalvergelijking. De frontdynamica van
een N -front kan op deze manier dus beschreven worden met een N -dimensionaal
systeem van gewone differentiaalvergelijkingen. Merk op dat de exacte details van
deze reductiemethode sterk afhangen van de vergelijking die je bestudeert. In het
laatste gedeelte van dit hoofdstuk analyseren we het afgeleide N -dimensionale
systeem van gewone differentiaalvergelijkingen. Zo laten we bijvoorbeeld zien dat
stationaire N -fronten alleen kunnen bestaan voor N even, terwijl uniform-lopende
N -fronten juist niet bestaan voor N even. Uiteindelijk bestuderen we in detail
de N -frontdynamica voor N niet te groot, dat is, voor N < 5. Wij identificeren
enkele eventueel aantrekkende invariante variëteiten, bekijken vaste punten op
oneindig en construeren een uniform-lopende driefront.
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your patience in the early mornings with me! Maciej, thank you for all the good
advice about you know what and introducing me to the better restaurants of Am-
sterdam. Antonios, thank you for everything. You have been a kind of big brother
to me, not only for functional analysis but also for life in general. I especially
liked our two weeks of ‘marriage’ in the small hotel room in Berlin.

Ook wil ik de UvA bedanken. Bedankt dat ik voor jullie college mocht geven
en eerstejaars studenten mocht begeleiden. Het was een leerzame en aangename
onderbreking van de week, maar vooral erg leuk.

Maar er is natuurlijk een leven naast wiskunde. Het leeuwendeel hiervan bracht
ik door op mijn geliefde roeivereniging Skøll, dan wel in de boot, dan wel met
een toeter langs het water, dan wel met een biertje aan de bar. Skøll, je was een
meer dan welkome afwisseling, bedankt! Veel van mijn huidige vrienden heb ik
dan ook op Skøll leren kennen: Rik, Ramon, Aart, Gabriël, Anne-Dienke, Wendy,
Marlies en Lisa, ik hou van jullie allemaal ... maar toch net ietsje heel veel meer
van Klaske. Liefje, bedankt dat je de laatste paar maanden mijn vriendinnetje
wilde zijn, en mij gesteund hebt tijdens de laatste zware loodjes van het schrijven
van dit proefschrift.

Michel en Steven, als ik het even had gehad met de grote boze stad, kon ik
altijd bij een van jullie terecht in mijn hometown Heerhugowaard, en na de vele
geweldige vakanties met jullie startte ik altijd weer vrolijk met rekenen. Dit is
mijn proefschrift zeker ten goede gekomen, bedankt!

Als laatste bedank ik natuurlijke de belangrijkste mensen in mijn leven, mijn
vader, moeder, zus, Mark, Lars, Sven en Tess. Bedankt voor al jullie vertrouwen,
steun, aanmoedigingen en opbeurende woorden, zonder jullie had dit proefschrift
mij veel meer hoofdpijn bezorgd.



Curriculum Vitae

Peter van Heijster werd op 10 september 1981 geboren in Heerhugowaard. Zijn
middelbareschoolopleiding genoot hij aan het Han Fortmann College, waar hij in
1999 met succes zijn eindexamen afrondde. Vervolgens is hij aan de Universiteit
van Amsterdam wiskunde gaan studeren. Aan het eind van het eerste jaar haalde
hij cum laude zijn propedeuse. Bovendien kreeg hij de aanmoedigingsprijs voor de
beste eerste jaars student wiskunde. In April 2005 rondde hij zijn studie wiskunde
cum laude af, met als specialisatie richting partiële differentiaalvergelijkingen en
dynamische systemen. Direct hierna begon hij aan zijn promotie bij het Centrum
Wiskunde & Informatica. Dit mondde uit in het voor u liggende proefschrift, wat
bijna vier jaar na het beginnen van het promotietraject zal worden verdedigd.
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