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Numerical integration of Maxwell’s equations is often based on

explicit methods accepting a stability step size restriction. In liter-

ature evidence is given that there is also a need for unconditionally

stable methods, as exemplified by the successful alternating direc-

tion implicit – finite difference time domain scheme. In this paper,

we discuss unconditionally stable integration for a general semi-

discrete Maxwell system allowing non-Cartesian space grids as

encountered in finite-element discretizations. Such grids exclude

the alternating direction implicit approach. Particular attention

is given to the second-order trapezoidal rule implemented with

preconditioned conjugate gradient iteration and to second-order

exponential integration using Krylov subspace iteration for eval-

uating the arising ϕ-functions. A three-space dimensional test

problem is used for numerical assessment and comparison with

an economical second-order implicit–explicit integrator.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Maxwell’s equations from electromagnetism model interrelations between electric and magnetic

fields. The equations form a time-dependent system of six first-order partial differential equations

(PDEs). The equations appear in different forms, such as in the compact curl notation
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∂tB = −∇ × E,

ε∂tE = ∇ × (μ−1)B − σE − JE . (1.1)

Here B and E represent the magnetic and electric field, respectively. JE is a given source term rep-

resenting electric current density and ε,μ and σ are (tensor) coefficients representing, respectively,

dielectric permittivity, magnetic permeability and conductivity. The equations are posed in a three-

dimensional spatial domain and provided with appropriate boundary conditions. If the equations are

posed in domains without conductors, the damping term −σE is absent. If in addition the source JE is

taken zero, we have a prime example of a conservative wave equation system.

Numerical methods for time-dependent PDEs are often derived in two stages (the method of lines

approach). First, the spatial operators are discretized on an appropriate grid covering the spatial

domain, together with the accompanying boundary conditions. This leads to a time-continuous, semi-

discrete problem in the form of an initial-value problem for a system of ordinary differential equations

(ODEs). Second, a numerical integration method for this ODE system is chosen, which turns the semi-

discrete solution into the desired fully discrete solution on the chosen space–time grid. In this paper

we focus on the second numerical integration stage, as in [7]. While in [7] the focus was on methods

treating the curl terms explicitly, here we address the question whether fully implicit and exponential

time integration eliminating any temporal step size stability restriction can be feasible and efficient.

As in [7] we start from the general space-discretized Maxwell problem(
Mu 0

0 Mv

)(
u′
v′
)

=
(

0 −K

KT −S

)(
u

v

)
+
(
ju
jv

)
, (1.2)

where u = u(t) and v = v(t) are the unknown vector (grid) functions approximating the values of

the magnetic flux B and electric field E, respectively. The matrices K and KT approximate the curl

operator and the matrix S is associated with the dissipative conduction term. Throughout S can be

assumed symmetric positive semi-definite.Mu andMv are symmetric positive definite mass matrices

possibly arising from a spatial finite element or compact finite difference discretization. The func-

tions ju(t) and jv(t) are source terms. Typically, jv represents the given source current JE , but ju and

jv may also contain boundary data. We do allow u and v to have different dimensions which can

occur with certain finite-element methods, see e.g. [40], and assume u ∈ Rm
, v ∈ Rn

with n � m and

Mu ∈ Rm×m
,Mv ∈ Rn×n

,K ∈ Rm×n
, S ∈ Rn×n

. The ODE system (1.2) is generic in the sense that spatial

discretization of (H, E)-formulations of the Maxwell equations also lead to this form, see Section 4 of

[7].

Weallow the space gridsunderlying (1.2) tobenon-Cartesian. This has an important consequence in

that it excludes the well-known unconditionally stable alternating direction implicit-finite difference

timedomainmethodattributed to [50,51], seealso [13,17,20,35] andreferences therein.Wewill instead

focus on conventional fully implicit integration (Section 3) and on exponential integration (Section

4). This means that we need efficient solvers from the field of numerical linear algebra. For solving

the systems of linear algebraic equations arising with implicit integrators we will use the conjugate

gradient (CG) iterative method with preconditioning (Section 3). For exponential integration we will

consider Krylov subspace iteration (Section 4). Both for the theory behind CG and Krylov iteration we

refer to the text books [43,48]. Seminal papers on Krylov subspace iteration for matrix functions are

[14,15,22,23,29,41,47].

2. Stability and conservation properties

To begin with, we recall from [7] some stability and conservation properties of the semi-discrete

system (1.2). Letw ∈ Rn+m
denote the solution vector composed by u ∈ Rm

and v ∈ Rn
. A natural norm

for establishing stability and conservation is the inner-product norm

‖w‖2 = ‖u‖2Mu
+ ‖v‖2Mv

, ‖u‖2Mu
= 〈Muu,u〉, ‖v‖2Mv

= 〈Mvv, v〉, (2.1)

where 〈· , ·〉denotes the L2 innerproduct.As S is symmetricpositive semi-definite, for thehomogeneous

part of (1.2) follows:
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d

dt
‖w‖2 = −2〈Sv, v〉 � 0 (2.2)

showing stability in the L2 sense and (energy) conservation for a zero matrix S. It is desirable that

integration methods respect these properties, either exactly or to sufficiently high accuracy.

For the purpose of analysis a formulation without mass matrices equivalent to (1.2) is obtained as

follows. Introduce the Cholesky factorizations LMu
LTMu

= Mu and LMv
LTMv

= Mv. Then(
ũ′
ṽ′
)

=
(

0 −K̃

K̃T −S̃

)(
ũ

ṽ

)
+
(
j̃u

j̃v

)
, (2.3)

where ũ = LTMu
u, ṽ = LTMv

v and

K̃ = L−1
Mu

KL−T
Mv

, S̃ = L−1
Mv

SL−T
Mv

, j̃u = L−1
Mu

ju, j̃v = L−1
Mv

jv . (2.4)

Next introduce the transformed inner-product norm

‖w̃‖22 = ‖ũ‖22 + ‖ṽ‖22, ‖ũ‖22 = 〈ũ, ũ〉, ‖ṽ‖22 = 〈ṽ, ṽ〉 (2.5)

for the vector w̃ composed of ũ and ṽ. For the homogeneous part of (2.3) then follows immediately:

d

dt
‖w̃‖22 = −2〈̃Sṽ, ṽ〉 � 0, (2.6)

while the norm is preserved under the transformation, that is, ‖w̃‖2 = ‖w‖ and 〈̃Sṽ, ṽ〉 = 〈Sv, v〉. We

note that the transformed system is introduced for analysis purposes only and that our numerical

methods will be applied to system (1.2).

If in (1.1) the conductivity coefficient σ and the permittivity coefficient ε are constant scalars instead

of space-dependent tensors (3 × 3 matrices), then the matrices Mv and S from (1.2) can be assumed

identical up to a constant, implying that thematrix S̃ introduced in (2.3) becomes the constant diagonal

matrix

S̃ = αI, α = σ

ε
. (2.7)

This enables the derivation of a two-by-two system for the sake of further analysis. Introduce the

singular-value decomposition K̃ = U�VT where U ∈ Rm×m
and V ∈ Rn×n

are orthogonal and � is a

diagonal m × nmatrix with nonnegative diagonal entries s1, . . ., sm satisfying

s1 � s2 � · · · � sr > sr+1 = · · · = sm = 0. (2.8)

Here r � m is the (row) rank of K̃ and the si are the singular values of the matrix K̃ (the square roots

of the eigenvalues of K̃ K̃T ). The transformed variables and source terms

ū(t) = UT ũ(t), v̄(t) = VT ṽ(t), j̄u(t) = UT j̃u(t), j̄v(t) = VT j̃v(t) (2.9)

satisfy the equivalent ODE system(
ū′
v̄′
)

=
(

0 −�
�T −αI

)(
ū

v̄

)
+
(
j̄u
j̄v

)
, (2.10)

where I is the n × n identitymatrix. Note that thematrix transformation induced by (2.9) is a similarity

transformation, so that the matrices of systems (2.3) and (2.10) have the same eigenvalues. Further,

‖w̃‖2
2

= ‖ū‖2
2

+ ‖v̄‖2
2
due to the orthogonality of U and V . Thus, if (2.7) applies, the stability of a time

integration method may be studied for the homogeneous part of (2.10), provided also the method is

invariant under the transformations leading to (2.10).

Since thematrix� is diagonal, the homogeneous part of (2.10) decouples into r two-by-two systems(
û′
v̂′
)

=
(
0 −s

s −α
)(

û

v̂

)
, s = sk > 0, k = 1, . . ., r, (2.11)

m − r scalar equations û′ = 0, and n − r scalar equations v̂′ = −αv̂. From the viewpoint of time integra-

tion stability, these equations are canonical for Maxwell equation systems of which the conductivity
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coefficient σ and the permittivity coefficient ε are constant scalars. For stability analysis we thus arrive

at the two-by-two test model(
û′
v̂′
)

=
(
0 −s

s −α
)(

û

v̂

)
, s � 0, α � 0. (2.12)

Stability for this test model is equivalent to stability for (2.10), which in turn is equivalent to stabil-

ity for the original semi-discrete Maxwell system (1.2), provided the conductivity coefficient σ and

the permittivity coefficient ε are constant scalars. The eigenvalues of (2.12) are (−α ±
√
α2 − 4s2)/2.

Assuming sufficiently small and large singular values sk in (2.8), the spectra of (2.3) and (2.10) thus are

cross-shaped with real eigenvalues between −α and 0 and complex eigenvalues with real part −α/2
and imaginary parts ±

√
4s2

k
− α2/2.

3. Implicit integration

We will examine fully implicit time stepping for (1.2) for the second-order implicit trapezoidal

rule (ITR). This method has the right stability and conservation properties for Maxwell’s equations

and shares the numerical algebra challenge with many other implicit methods, such as diagonally-

implicit Runge–Kuttamethods. Sonumerical algebra conclusionsdrawn for ITRarealsovalid for related

higher-order methods. In this paper, we focus on second-order methods because the order of the

spatial discretization scheme for the 3D example problem used for testing is also limited to two.

Before discussing ITR we first recall an economical second-order implicit–explicit method called CO2

(COmposition 2nd-order) in [7] which serves as a reference method.

3.1. The implicit–explicit method CO2

Method CO2 is given by

Mu
un+1/2 − un

τ
= −1

2
Kvn + 1

2
ju(tn),

Mv
vn+1 − vn

τ
= KTun+1/2 − 1

2
S(vn + vn+1)+ 1

2
(jv(tn)+ jv(tn+1)),

Mu
un+1 − un+1/2

τ
= −1

2
Kvn+1 + 1

2
ju(tn+1). (3.1)

Like ITR this method is a one-step method stepping from (un, vn) to (un+1, vn+1)with step size τ . Here

un denotes the approximation to the exact solution u(tn), etc., and τ = tn+1 − tn. The subindex n should

not be confused with the length of the vector v in (1.2). CO2 is symmetric and treats the curl terms

explicitly and the conduction term implicitly. Of practical importance is that the third-stage derivative

computation can be copied to the first stage at the next time step to save computational work. Per

time step this method thus is very economical. Apart from the mass matrices (see Remark 3.1), the

method requires a single explicit evaluation of the full derivative per integration stepwhich is the least

possible.

In contrast to ITR,method (3.1) is not unconditionally stable and a sharp step size bound for stability

for the general system (1.2) is not known up to now. However, for Maxwell problems for which (2.7)

holds stability can be concluded from the 2 × 2-model (2.11). Let zs = τsmax. The resulting step size

bound is then valid for (1.2) and is given by

zs < 2 if α = 0 and otherwise zs � 2. (3.2)

Hence the conduction puts no limit on τ . Recall that α = 0 in the absence of conduction and that smax

here is to be taken as the maximal square root of the eigenvalues of K̃ K̃T . Because K approximates

the first-order curl operator these eigenvalues are proportional to h−2 where h represents a minimal

spatial grid size. So for time stepping stability, a relation τ ∼ h for h → 0 is required. On fine space

grids and long time intervals this may lead to large amounts of time steps.



Author's personal copy

304 J.G. Verwer, M.A. Botchev / Linear Algebra and its Applications 431 (2009) 300–317

It is this observation which underlies the question whether implicit or exponential integration

is feasible and competitive so as to enhance time stepping efficiency. For the derivation and further

discussion of this method we refer to [7] where it was called CO2 as it is of second order and based

on COmposition of a certain partitioned Euler rule. One of the results in [7] states that the second-

order behavior is maintained in the presence of time-dependent boundary conditions (stiff source

terms). A similar result will be proven in the appendix (Section 5) for the exponential integrator EK2

derived in Section 4. Finally, with regard to time stepping CO2 bears a close resemblance to the popular

time-staggered Yee-scheme [49] and as such is a natural candidate for a reference method.

Remark 3.1. The mass matrices naturally give rise to implicitness such that we encounter at each

integration step one linear system solution with Mu and Mv + 1
2
τS. Systems with mass matrices can

be (approximately) solved in an efficient way. This can be achieved either by fast solvers (sparse direct

or preconditioned iterative) or by special mass lumping techniques. For mass lumping of the finite-

element discretization used in Section 3.5, see e.g. [2,19]. For keeping our assessments as general

as possible we will use the original non-lumped form. Throughout this paper (so also for the other

integration methods) we will use sparse Cholesky factorization to realize the mass matrix inversions.

For constant τ the factorization should only be carried out once at the start of the integration leaving

only sparse forward–backward substitutions during the time stepping.

3.2. The implicit trapezoidal rule ITR

Denote (1.2) by

Mw′ = Aw + g(t), (3.3)

where

w =
(
u

v

)
, M =

(
Mu 0

0 Mv

)
, A =

(
0 −K

KT −S

)
, g(t) =

(
ju
jv

)
. (3.4)

ITR then reads

M
wn+1 − wn

τ/2
= Awn+1 + Awn + g(tn)+ g(tn+1). (3.5)

This classical implicit method mimics the stability and conservation property (2.2). That is, for zero

sources,

‖wn+1‖2 − ‖wn‖2
τ

= −2

〈
S
vn+1 + vn

2
,
vn+1 + vn

2

〉
∀τ > 0. (3.6)

Hence (3.5) is unconditionally stable (and conservative for zero S). Like for CO2 the method is second-

order consistent, also for stiff source terms emanating from time-dependent boundary functions. From

that perspective the method is ideal, however, at the costs of solving each time step the linear system(
M − 1

2
τA

)
wn+1 =

(
M + 1

2
τA

)
wn + 1

2
τg(tn)+ 1

2
τg(tn+1) (3.7)

for the matrix

M − 1

2
τA =

(
Mu

1
2
τK

− 1
2
τKT Mv + 1

2
τS

)
. (3.8)

Sparse LU-decomposition will become too costly inmemory for large-scale 3D simulations. We there-

fore focus on iterationwherebywe rewrite (Schur complement) the linear system (3.7) to an equivalent

formwhich is significantlymoreamenable for iterative solution.Note that (3.7) and (3.8) canbebrought

to the saddle point form by changing the sign of the second block row in (3.8). The Schur complement

approach for solving saddle point systems, possibly in combination with CG, is well known (see e.g.

[3]).
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Let ru, rv denote the right-hand sides of (3.7) belonging to u, v. Suppressing the time index n + 1 in

un+1, vn+1 this system then reads

Muu + 1

2
τKv = ru,

−1

2
τKTu + Mvv + 1

2
τSv = rv. (3.9)

Since the mass matrix Mu is symmetric positive definite, we can multiply the first equation from left

by 1
2
τKTM−1

u . Then adding the two equations yields the equivalent system

Muu + 1

2
τKv = ru,

Mv = rv + 1

2
τKTM−1

u ru, (3.10)

wherein u has been eliminated from the second equation. The n × n-matrixM is given by

M = Mv + 1

2
τS + 1

4
τ2KTM−1

u K . (3.11)

So we can first solve v from the second equation and subsequently u from the first. Hereby we assume

that the three inversions for Mu are carried out through sparse Cholesky decomposition, entirely

similar as for method CO2. Of main interest is that M is symmetric positive definite which calls for

the iterative conjugate gradient (CG) method.

3.3. CG convergence

Let usfirst assess the convergenceof theCGmethod. For this purposeweemploy the transformation

underlying system(2.3)which canbe showntobeequivalent toCholesky factorizationpreconditioning

with the mass matrixMv, see also Section 3.4. The counterpart of (3.10) then reads

ũ + 1

2
τ K̃ ṽ = r̃u,

M̃ṽ = r̃v + 1

2
τ K̃T r̃u (3.12)

with the straightforward definition of r̃u, r̃v and

M̃ = I + 1

2
τ S̃ + 1

4
τ2K̃T K̃ . (3.13)

CG is a natural choice as it optimal in the following sense [48]: for any initial guess ṽ0 it computes

iterants ṽi which satisfy the polynomial relation1

ṽi − ṽ = Pi(M̃)(ṽ0 − ṽ) (3.14)

such that in the M̃-norm the iteration error ‖ṽi − ṽ‖M̃ is minimal over the set of all polynomials Pi of

degree i satisfying Pi(0) = 1. This iteration error satisfies the well-known bound

‖ṽi − ṽ‖M̃ � 2

(√
κ − 1√
κ + 1

)i

‖ṽ0 − ṽ‖M̃ , (3.15)

where κ is the spectral condition number of M̃, that is, κ = λmax/λmin being the quotient of the

maximal and minimal eigenvalue of M̃. This upper bound does not reflect the celebrated superlinear

convergence [45] of CG which makes it a truly successful solver. However, the bound does provide a

rough assessment of the potential of the combination ITR–CG in relation to CO2. Hereby it is noted that

in good approximation a single CG iteration with matrixM is cost wise equal to a single CO2 step.

1 The subindex i should not be confused with the subindex n used to denote a time level tn .
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Would S̃ and K̃T K̃ commute, the condition number can be derived directly from the spectra of S̃

and K̃T K̃ . In the general case commutation will be rare. Therefore, we next assume that we do have a

Maxwell problem for which condition (2.7) holds. Then we have commutation and the eigenvalues λ

of M̃ are given by

λ = 1 + 1

2
τα + 1

4
τ2s2, (3.16)

where s2 is an eigenvalue of K̃T K̃ the square root of which also features in (2.11). Hence

λmin = 1 + 1

2
τα + 1

4
τ2s2min, λmax = 1 + 1

2
τα + 1

4
τ2s2max. (3.17)

Regarding ITRweareonly interested in step sizes τ such that zs = τsmax  2becauseotherwisemethod

CO2will bemoreefficient, see the step sizebound (3.2). Since smax is proportional tohwhich represents

the minimal spatial grid size, we then may neglect the contribution τα and approximate κ by

κ ≈ 1 + 1

4
z2s (3.18)

showing that one CG iteration reduces the initial iteration error in the M̃-norm by

ν(zs) ≈
√
1 + 1

4
z2s − 1√

1 + 1
4
z2s + 1

∼ 1 − 4

zs
∼ e− 4

zs , zs → ∞. (3.19)

Unfortunately, this reduction factor is by far too low for ITR implemented with CG to become a

competitivemethod. To see this the followingargument suffices. For zs  2 thenumberof CG iterations

for an overall reduction factor ε is approximately j = − 1
4
zsln(ε). Because each iteration is in good

approximation as expensive as a single integration step with method CO2, we can afford j steps with

CO2 with step size τ/j (provided we have stability of CO2), that is, if zs/j � 2. Inserting j this appears

to hold for all ε � e−2 ≈ 10−1. When iterating with CG an error reduction of the initial error by a

factor 10 is of course quite poor and we can conclude that the computational effort is better spent in

applying CO2with a step size τ/j. Thiswill lead to a notable smaller time stepping error for comparable

effort since ITR and CO2 are both of second order. Clearly, ITR will not be competitive to CO2 unless

superlinear CG convergence, not reflected by (3.15), takes place and/or CG is applied with a more

efficient preconditioner.

3.4. CG implementation

CG was implemented for the following reformulation of the ITR scheme (3.7):(
Mu

τ
2
K

− τ
2
KT Mv + τ

2
S

)(
�u

�v

)
=
(
bu
bv

)
, (3.20)

where(
bu
bv

)
=
(

0 −τK
τKT −τS

)(
un
vn

)
+ τ

2

(
ju(tn)+ ju(tn+1)

jv(tn)+ jv(tn+1)

)
(3.21)

andun+1 = un +�u, vn+1 = vn +�v. Hereby the linear systemwas treatedwith the Schur complement

as described above. Writing (3.7) in this form is beneficious since this makes the zero vector a natural

initial guess for the iteration process and saves one matrix–vector multiplication which is otherwise

needed for the initial residual.2

For anefficientusage it is important to chooseaproper stoppingcriterion forCG.Toomany iterations

would mean a waste of effort, whereas too few might cause loss of stability.3 Using, for convenience,

2 Other initial vectors can be considered to assure that each Krylov iterate has truly second-order temporal consistency [5].
3 Analternative approach for the iterative linear systemsolution in implicit time integration is touseafixednumberof iterations

per time step and to control stability of the approximate implicit scheme by adjusting the time step size [5,6].
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the same notation for �u and �v, solving system (3.7) approximately with residual rcg effectively

means that the found �v is a solution of the perturbed linear system

M�v = τ

2
KTM−1

u bu + bv + rcg , (3.22)

whereM is defined in (3.11) and the approximate solution �u,�v of (3.20) satisfies(
Mu

τ
2
K

− τ
2
KT Mv + τ

2
S

)(
�u

�v

)
=
(
bu
bv

)
+
(

0

rcg

)
. (3.23)

We stop CG as soon as for a certain constant δ4

‖rcg‖2 � τ

∥∥∥ τ
2
KTM−1

u bu + bv

∥∥∥
2
δ, (3.24)

which means that the inexact ITR–CG scheme (3.23) can be seen as a perturbed form of the exact ITR

scheme (3.20) where the perturbations are kept bounded. The purpose of this inequality is to enforce

rcg to be a fraction of the local truncation error of ITR for component v which we aim by means of an

educated guess for δ. Note that rcg just becomes the local truncation error upon substitution of the

exact ODE solution. Choosing δ too large implies of course loss of ITR accuracy, whereas a too small δ

wastes matvecs. We will give actual values of δ when we report our test results.

For the CG solution of the Schur complement systemwith thematrixMwe have used two precon-

ditioners. The first one is the sparse Cholesky factorization of the mass matrix Mv, the second is the

incomplete-Cholesky (IC) factorization with the drop tolerance ε = 10−6 [32,42] applied to the matrix

Mv + τ

2
S + τ2

4
KTK (3.25)

obtained fromM by deletingM−1
u . The mass matrix preconditioner is readily available and as argued

earlier, for ITR the costs of one mass matrix preconditioned CG iteration are roughly the same as the

costs of one time step with CO2. This is because one CG iteration requires just one matvec with the

preconditioned matrix (and several vector updates).

The IC(ε)preconditioner requires significant set up time. For example, for the fourth grid of Table 3.1

given in Section 3.5 the preparation cost required a CPU time sufficient for performing 90–100matvecs

with the preconditioned matrix M. An attractive property of the IC(ε) preconditioner compared to

the mass matrix preconditioner is a higher level of sparsity. For example, for ε = 10−6 the sparsity

is at least twice as large as for the Cholesky factors of the mass matrix. During integration the IC(ε)

preconditioner therefore is slightly cheaper due to the higher level of sparsity. In our experiments, we

found little differences between numbers of iterations for the mass matrix and IC(ε) preconditioner.

We thereforewill report only iteration numbers for the first one. Note that the eigenvalues of themass

matrix preconditioned M are given by (3.16) if we do have a Maxwell problem for which condition

(2.7) holds.

3.5. Comparing ITR and CO2

In this section, we compare the fully implicit integrator ITR, equipped with the above described

preconditioned CG implementation, to method CO2.

3.5.1. A 3D Maxwell test problem

The comparison is based on tests with a three-dimensional (3D) Maxwell problemwe earlier used

in [7]. This problem is given in the (H, E) formulation

μ∂tH = −∇ × E,

ε∂tE = ∇ × H − σE − J (3.26)

with independent variables (x, y, z) ∈ � ⊂ R3
, t ∈ [0, T ], and initial and boundary conditions

4 Here and in the remainder ‖ · ‖2 denotes the discrete inner-product (L2) norm.
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Table 3.1

Grid parameters and time step size information for CO2. Shortest edge hmin on grid 5 is larger than on grid 4 because grid 5 is

more uniform.

Grid Number of edges Longest edge hmax Shortest edge hmin CO2 time step restriction CO2 time step used

1 105 0.828 0.375 0.47 0.2

2 660 0.661 0.142 0.18 0.1

3 4632 0.359 0.0709 0.079 0.05

4 34608 0.250 0.0063 0.028 0.025

5 85308 0.118 0.0139 0.014 0.0125

E|t=0 = E0(x, y, z), H|t=0 = H0(x, y, z), (3.27a)

(�n × E)|∂� = Ebc, (�n × H)|∂� = Hbc. (3.27b)

The coefficientsμ, ε and σ are taken constant in time and space and �n denotes the outward unit normal

vector to the boundary ∂�. The boundary functions Ebc and Hbc vary in space and time. Specifically,

� = [0, 1]3 and T = 10 and we choose the source current J = J(x, y, z, t) such that the Maxwell system

(3.26) allows a specific exact solution

E(x, y, z, t) = α(t)Estat(x, y, z), H(x, y, z, t) = β(t)Hstat(x, y, z), (3.28)

where the scalar functions α,β and the vector functions Estat,Hstat satisfy μβ
′(t) = −α(t) and Hstat =

∇ × Estat. The source function J is then defined as

J(x, y, z, t) = −(εα′(t)+ σα(t))Estat(x, y, z)+ β(t)∇ × Hstat(x, y, z) (3.29)

with

Estat(x, y, z) =
⎛⎝sinπy sinπz

sinπx sinπz

sinπx sinπy

⎞⎠ , Hstat(x, y, z) =
⎛⎝π sinπx(cosπy − cosπz)

π sinπy(cosπz − cosπx)

π sinπz(cosπx − cosπy)

⎞⎠ ,

α(t) =
3∑

k=1

cosωkt, β(t) = − 1

μ

3∑
k=1

sinωkt

ωk
(3.30)

and ω1 = 1,ω2 = 1/2,ω3 = 1/3. Further, we take μ = 1, ε = 1 and either σ = 0 or σ = 60π (this corre-

sponds with values encountered in real applications).

This 3D Maxwell problem is spatially discretized with first-order, first-type Nédélec edge finite

elements on tetrahedral unstructured grids [34,36,37]. Although it is formulated with H and E as

primary variables, the resulting semi-discrete system belongs to class (1.2). In [7], we observed first-

order spatial convergence for E and second order forH. We have used the grids numbered four and five

listed in Table 3.1 which displays grid parameters and step size information for CO2. To save space we

refer to [7] and references therein for a more complete description of this test problem and its spatial

discretization.

3.5.2. Test results

Table 3.2 reports computational costs in terms of matvecs for CO2 and ITR–CG for the fourth and

fifth grid mentioned in Table 3.1. Two cases are distinguished, the zero conduction coefficient σ = 0

and the nonzero conduction coefficient σ = 60π , see Section 3.5.1. For both cases we have chosen

δ = 0.05 in the stopping criterion (3.24) and step sizes τ for ITR–CG much larger than the limit step

size of CO2. For the chosen values the temporal errors remain smaller than the spatial ones, justifying

the use of ITR–CG with respect to the full discretization error.

Our first observation is that the number of CG iterations per ITR time step grows only sublinearly

with the time step size τ , in particular for σ = 60π . For this reason ITR can become faster than CO2 for
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Table 3.2

Computational costs of CO2 (applied with maximal τ ) versus the costs of ITR–CG (applied with different τ ); stopping criterion

parameter δ = 0.05.

τ σ = 0 # matvecs σ = 0 total σ = 60π # matvecs σ = 60π total

per t.step # matvecs per t.step # matvecs

Grid 4 CO2 0.025 1 400 1 400

ITR/mass 0.0625 4.94 790 2.00 320

ITR/mass 0.125 8.99 719 2.01 161

ITR/mass 0.25 15.95 638 2.98 119

ITR/mass 0.5 25.4 508 3.85 77

ITR/mass 1.0 29.6 296 4.60 46

Grid 5 CO2 0.0125 1 800 1 800

ITR/mass 0.25 31.52 1261 5.3 212

ITR/mass 0.5 47.5 950 6.65 133

ITR/mass 1.0 57.8 578 7.6 76
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Fig. 3.1. The full L2 error (left E-field, right H-field) versus time for CO2 and ITR on the fourth grid, σ = 0, δ = 0.05. ITR uses the

mass matrix preconditioner. The costs for these runs are 400 matvecs for CO2, 638 for ITR with τ = 0.25 and 296 for ITR with

τ = 1.0 (see Table 3.2).

sufficiently large τ if δ is chosenproperly (which appears to hold for δ = 0.05). Taking δ 10 times smaller

results for the fourth grid and σ = 0 in the matvec sequence (1088, 1020, 945, 827, 668), showing a

greater expense than CO2 for the larger step sizes. Likewise, for σ = 60π we find the sequence (345,

250, 158, 117, 69), showing only a small expense growth for δ 10 times smaller. As anticipated, the

numbers increase as the grid gets finer. However, as the grid gets finer, the maximum allowable time

step for CO2 does decrease too. This is also the case on the finest fifth grid even though it is more

uniform than the fourth one, see Table 3.1.

Our second observation concerning Table 3.2 is that the number of CG iterations per time step

for σ = 60π is significantly smaller than for σ = 0. The reason is that for the current test problem

Mv and S are identical up to a constant, see Section 2. Hence, for growing σ , the eigenvalues of the

mass-preconditionedmatrixM given by (3.16) get more clustered around 1 + ατ/2 and the condition

number λmax/λmin decreases.

Note that in the ITR scheme one needs to repeatedly solve the linear system (3.20)where thematrix

remains the sameandonly the right-hand side changes per time step. This suggests that computational

effort can be saved by reusing the information generated by CG. One possible way of doing this is

Method 2 of [18] which essentially consists of storing an orthonormal basis spanning the successive

CG solutions and starting every newCGprocesswith a projection on the stored subspace. As evidenced

in [18], Method 2 can lead to a significant saving in the total number of iterations. We have tested the

method for this problem but have not observed any improvement. This is because the right-hand
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side of (3.20) changes quite significantly from one time step to another, thus making the projection

procedure futile.

For δ = 0.05, σ = 0 and the fourth grid, Fig. 3.1 shows the time evolution of full (space and time)

errors in ‖ · ‖2 for CO2 and ITR. We see that the errors are comparable and more or less independent

of τ which illustrates that the spatial error dominates. This is the sort of situation where implicit time

stepping can be competitive. Our test with σ = 0 (undamped case) shows no distinct advantage when

counting numbers of matvecs. On the other hand, the test with σ = 60π is no doubt promising and

warrants further investigation with a more sophisticated CG implementation, finer space grids and

more test examples including variable conduction.

4. Exponential integration

The implicit trapezoidal rule ITR is a conventional method in the sense that it is a representative of

the Runge–Kutta and linear multistep methods. The so-called exponential integration methods form

another class being built on linearization and direct use of accurate, unconditionally stable approx-

imations to the exponential operator. For this reason they are of potential interest to the Maxwell

equations. Exponential integrators do have a long history [10,21,22,27,30,31,38,46] and have under-

gone a revival during the last decade, see e.g. [4,9,11,24,26,33]. An important reason for this revival

is renewed attention for the Krylov subspace iteration technique for approximating the exponen-

tial and the so-called derived ϕ-functions. In this section, we will also use Krylov subspace itera-

tion.

4.1. The exponential integrator EK2

For formulating our exponential integrator we rewrite the semi-discrete system (1.2) as

w′ = F(t,w), F(t,w) = Jw + f (t), (4.1)

where J = M−1A and f (t) = M−1g(t) and w,M,A and g(t) are defined as in (3.4). For this ODE system

we consider the second-order exponential integrator

wn+1 = wn + τϕ1(τ J)F(tn,wn)+ τϕ2(τ J)(f (tn+1)− f (tn)), (4.2)

where ϕ1(z) = (ez − 1)/z and ϕ2(z) = (ϕ1(z)− 1)/z. This second-order method follows from linearly

interpolating f over [tn, tn+1] in the variation of constants formula

w(tn+1) = eτ Jw(tn)+
∫ τ

0
e(τ−s)J f (tn + s)ds (4.3)

and subsequently computing the resulting integrals analytically. The first paperwe knowofwhere this

interpolating approach with exact, analytic computation of integrals has been used is [10]. Formula

(4.2) can be found there. A closely related, somewhat later contribution, is [31]. In the recent literature

this approach is sometimes called exponential time differencing, see e.g. [11,39]. In [39], exponential

integration has been applied to the Maxwell equations. Note that (4.2) becomes ITR for zero J and f is

allowed to depend on w. A second-order method closely related to (4.2) where f ′ is used reads

wn+1 = wn + τϕ1(τ J)F(tn,wn)+ τ2ϕ2(τ J)f
′(tn). (4.4)

This method belongs to a class of exponential Runge–Kutta–Rosenbrock methods [8,26].

In the literaturemany formulas of higher order are proposed. Herewe restrict ourselves to using the

second-ordermethod (4.2) becausewewish to compare to the second-ordermethod CO2 and the spa-

tial discretizationof our test exampledoesnot exceedorder twoeither. Per integration step thismethod

requires the approximation of two vectors ϕ(τ J)b representing ϕ1(τ J)F(tn,wn) and ϕ2(τ J)(f (tn+1)−
f (tn)) forwhichwe use Krylov subspace iteration, similar as in [24,26] and in relatedwork on exponen-

tial integration. In the remainder of the paper wewill refer to (4.2) asmethod EK2 (Exponential Krylov

2nd-order). More background information on EK2 supporting its choice in the current investigation is

given in the Appendix of this paper.
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4.2. Krylov subspace iteration

Let e1 be the first unit vector in Rn+m
(n + m is the dimension of the matrix J). Krylov subspace

iteration for ϕ(τ J)b computes an approximation d ≈ ϕ(τ J)b through

d = Vk ϕ(τHk) e1 · ‖b‖, (4.5)

where Vk = [v1, . . . , vk] is the (n + m)× k matrix containing the Arnoldi (or Lanczos) basis of the kth

Krylov subspace with respect to τ J and b and Hk is an k × k upper Hessenberg matrix. So ϕ(τHk)

replaces ϕ(τ J) which explains the success of this method as long as k � n + m, because then ϕ(τHk)

is relatively cheap to compute, e.g. through the Schur decomposition. The costs of building d mainly

consists of k matrix–vector multiplications with τ J within the Arnoldi process. Hereby it is noted that

one suchmultiplication costs about the same as one single integration stepwithmethod CO2. Sowhen

comparing EK2 to CO2 with regard to CPU time, the latter can be applied with a k times smaller step

size.

A practical drawback is that matrix Vk must be kept in storage before d can be formed. Hence if

n + m is large as is the case in large-scale 3D simulations, the storage requirement for k vectors of

dimension n + m can be substantial. For example, a worst-case estimate for skew-symmetric matrices

with uniformly distributed eigenvalues says that k can get as large as ‖τ J‖ before the iteration error

starts to decay [23]. It is obvious that this may require too much storage if we allow ‖τ J‖  1 which

after all is themainpurposeof using anexponential integrator like EK2. Fortunately, in applications one

often obtains convergence for k substantially smaller than ‖τ J‖. If not one can split the time interval in

subintervals and use restarts, although at the expense of additional work (the software package from

[44] does this automatically). For the theory behind Krylov subspace iteration for matrix functions

we refer to the research monograph [48] and to the seminal papers [14,15,23,29,41,47] and references

therein.

4.3. Krylov implementation

Like for CGwe need a proper stopping criterion for the Arnoldi process. Consider the stepwith (4.2)

from tn to tn+1 starting in wn and write in short

wn+1 = wn + τ�1 + τ�2. (4.6)

We stop after k1, k2 iterations for �1,�2 approximating wn+1 by

ŵn+1 = wn + τ�(k1)
1

+ τ�(k2)
2

. (4.7)

Ideally, ‖wn+1 − ŵn+1‖ is smaller than theunknown local truncation error forwn+1 whichwe represent

by the quantity τ‖wn‖δ for a certain constant δ. So we require

‖wn+1 − ŵn+1‖ � τ‖wn‖δ, (4.8)

which holds if

‖�i − �(ki)

i
‖ � 1

2
‖wn‖δ, i = 1, 2. (4.9)

The number of iterations ki, i = 1, 2, is now chosen as follows. We assume for i = 1, 2 separately that

(4.9) is satisfied if, in the L2 norm, pδ times in succession

‖�(ki)

i
− �(ki−1)

i
‖2 � 1

2
‖wn‖2δ, (4.10)

where pδ is an integer we can choose. Like for ITR we use constant τ and have not implemented a local

error estimator. So also here we make an educated guess for δ and assume that (4.10) works properly.

In our experiments this turned out to be the case, even with pδ = 1 which we have chosen henceforth.

In our tests all occurring matrix functions ϕ(τHk) have been computed exactly using the exponential

operator. Finally, we note that �2 = O(τ ) because of the difference f (tn+1)− f (tn). This means that

normally this term will require less Krylov subspace iterations than the first one which is confirmed

in the experiments.
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Table 4.1

Computational costs of CO2 (applied with maximal τ ) versus the costs of EK2 (applied with different τ ); stopping criterion

parameters δ = 10−3, pδ = 1.

τ σ = 0 # matvecs σ = 0 total # matvecs σ = 60π # matvecs σ = 60π total # matvecs

per t.step per t.step

Grid 4 CO2 0.025 1 400 1 400

EK2 0.0625 14.93 2388 11.48 1836

EK2 0.125 21.96 1757 13.7 1096

EK2 0.25 35.45 1418 16.35 654

EK2 0.5 62.2 1252 21.55 431

EK2 1.0 116 1160 29.6 296

Grid 5 CO2 0.0125 1 800 1 800

EK2 0.25 61.88 2475 25.88 1035

EK2 0.5 116.5 2330 37.10 742

EK2 1.0 196.8 1968 53 530

4.4. Comparing EK2 and CO2

We have repeated the experiments of Section 3.5.2 with ITR replaced by EK2, again focusing on the

comparison to method CO2 in terms of workload expressed in matvecs. For the chosen step size range

the spatial error again dominates (so Fig. 3.1 also applies to EK2) justifying our focus on workload

without referring to the temporal errors. Workload is found in Table 4.1 for δ = 10−3 and pδ = 1, see

(4.10). The σ = 0 test indicates that for problems without damping EK2 will be more costly in matvecs

when compared to CO2, let alone the much larger memory demand. Lowering or increasing δ will

not change much for the larger step sizes. For example, for σ = 0 and grid 4 we find for δ = 10−2

and δ = 10−4 the total matvec sequences (1900, 1457, 1222, 1132, 1075) and (2942, 2043, 1592, 1363,

1230).

The σ = 60π test ismuchmore favorable for EK2.We see that for step sizes far away from the critical

CO2 limitmethod EK2 becomes competitive in terms ofmatvecs, similar towhatwe have observed for

ITR. For EK2, however, the gain is less substantial and given the largememory demand thismethodwill

likely not to be of great practical interest when it comes to truly large-scale computations. A positive

point of EK2 is that for the range of step sizes used its temporal error behavior turned out to be very

good. Of course, would the temporal error dominate, method CO2will be hard to beat as it is optimally

efficient (just one matvec per time step).

5. Concluding remarks

Maxwell’s equations (1.1) provide a prime example of a dampedwave equation system. After spatial

discretization such systems are commonly integrated in time by implicit–explicit methods, such as

method CO2 defined by (3.1) which is prototypical for Maxwell’s equations. CO2 is symmetric and

thus of second order and requires just one derivative evaluation per time step which makes it very

economical. However, the step size is limited by stability which may turn out restrictive, for example

when the spatial error dominates for step sizes larger than the incurred step size limit. In such cases

implicit time stepping, for which no such limit exists, may come into sight.

In the setting of the generic semi-discrete system (1.2) we have examined the feasibility of implicit

time stepping for two different techniques:

(i) The conventional integrator ITR (Implicit TrapezoidalRule, seeSection3) combinedwithprecon-

ditioned CG (Conjugate Gradient) iteration. Experiments with the 3D problem posed in Section

3.5.1 indicate that in the absence of conduction (no damping) our ITR–CG implementation based
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on either Schur-complement mass matrix or incomplete-Cholesky preconditioning falls short.

To truly become competitive with CO2 for problems without conduction, more effective pre-

conditioners are needed. Whether these exist for the linear systems we are facing, is an open

question. On the other hand, for our test problem with conduction the experiments were no

doubt promising for the ITR–CG implementation. This warrants further investigation to the

effectiveness of implicit time stepping for problems with conduction.

(ii) The exponential integrator EK2 (Exponential Krylov 2nd order, see Section 4) combined with

Arnoldi-based Krylov subspace iteration to deal with the ϕ functions. For this combination

we have reached similar conclusions as for ITR–CG. For conduction free problems CO2 re-

mains the method of choice, whereas with conduction EK2 can become competitive, but most

likely not more efficient than a well-designed ITR–CG implementation. Given, in addition, the

substantial memory demand, we consider this method less promising for truly large-scale

Maxwell computations. Subsequent tests with an implementation based on the equivalent EK2

formulation

wn+1 = wn + τF(tn,wn)+ τϕ2(τ J)(τ JF(tn,wn)+ f (tn+1)− f (tn)) (5.1)

are in line with this conclusion. Due to the fact that (5.1) requires Krylov subspace iteration

for ϕ2 only, we were able to reduce the number of iterations on average by about 45%. This

substantial reduction, however, is still insufficient for EK2 to become truly competitive to ITR–

CG, as can be concluded by comparing Table 3.2 with Table 4.1 after accounting for the 45%

reduction.
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A. Appendix on the exponential integrator EK2

A.1. Connection with the Adams–Moulton method

EK2, that ismethod (4.2), can also be seen to belong to the class of (k + 1)st ordermultistepmethods

wn+1 = R(τnJn)wn +
k∑

l=0

τnβl(τnJn) [w′
n+1−l − Jnwn+1−l], (A.1)

where F may be nonlinear in w, Jn is an arbitrary matrix, R(z) = ez +O(zk+2), z → 0 and

k∑
l=0

q
j−1
l−1
βl(z) = ϕj(z), j = 1, . . . , k + 1,

ϕ1(z) = (R(z)− 1)/z, ϕj+1(z) = (jϕj(z)− 1)/z, j = 1, . . . , k,

ql = (tn−l − tn)/τn, τn = tn+1 − tn, l = −1, 0, . . . , k − 1. (A.2)

Putting k = 1,R(z) = ez , τn = τ and Jn = J, a simple calculation leads us to EK2. Method (A.1) is a gen-

eralization of the classical, variable step size, Adams–Moulton method. The precise formulation (A.1)

and (A.2) stems from [27,46]. An earlier closely related Adams–Bashforth paper is [38]. As a further

example we give the fixed-step fourth-order method from class (A.1) which for system (4.1) can be

written as

wn+1 = wn + τϕ1(τ J)F(tn,wn)+ τϕ2(τ J)Dn,2

+ τϕ3(τ J)Dn,3 + τϕ4(τ J)Dn,4 . (A.3)
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Evaluating derivatives of f at t = tn, the Dn,j satisfy

Dn,2 = 1

3
fn+1 + 1

2
fn − fn−1 + 1

6
fn−2 = τ f (1) + 1

12
τ4f (4) +O(τ5),

Dn,3 = 1

2
fn+1 − fn + 1

2
fn−1 = 1

2
τ2f (2) + 1

24
τ4f (4) +O(τ6),

Dn,4 = 1

6
fn+1 − 1

2
fn + 1

2
fn−1 − 1

6
fn−2 = 1

6
τ3f (3) − 1

12
τ4f (4) +O(τ5). (A.4)

So the Dn,j act as correction terms of decreasing sizeO(τ j−1)which can be exploited in computing the

vectors ϕj(τ J)Dn,j by means of the Krylov method.

A.2. Stiff source terms

The source function f (t) of (4.1) may grow without bound if the spatial grid is refined due to

contributions from time-dependent boundary functions (stiff source term). For Maxwell’s equations

these contributions are proportional to h−1 for h → 0where h is the spatial grid size. Stiff source terms

may cause order reduction, that is, the actual order observed under simultaneous space–time grid

refinement can be smaller than the ODE order observed on a fixed space grid. Assuming sufficient

differentiability of the exact solutionw(t)wewill prove that method EK2 is free from order reduction

for any f (t) and any stable J with its spectrum in C−
(so not necessarily emanating from Maxwell’s

equations).

First we expand the right-hand side of EK2 at t = tn forwn = w(tn). By eliminating f (tn) and f (tn+1)

through the relation f (t) = w′(t)− Jw(t) this yields

ŵn+1 = w + τϕ1w
′ + τϕ2

∑
j=1

1

j! τ
j
(
w(j+1) − Jw(j)

)
, (A.5)

wherew = w(tn), etc., and ϕk = ϕk(τ J). Using the definition of ϕ2 we next eliminate the Jacobian J from

this expansion and reorder some terms. This yields

ŵn+1 = w + τw′ +
(
1

2
+ ψ

)
τ2w

′′ + S , (A.6)

where ψ = ϕ2 − 1
2
ϕ1 and

S =
∑
j=3

(
1

j! (I − ϕ1)+ 1

(j − 1)!ϕ2
)
τ jw(j). (A.7)

In what follows remainder terms O(τp) are assumed independent of J and f implying proportionality

to only τp for τ → 0 and ‖J‖, ‖f ‖ → ∞. The local truncation error δn = w(tn+1)− ŵn+1 thus can be

expressed as

δn = −ψτ2w′′ − S +O(τ3) , (A.8)

where the termO(τ3) is fully determinedby solutionderivatives. Further, because J is stable, thematrix

functions ϕk featuring in S are bounded. This means that S = O(τ3) so that

δn = −ψτ2w′′ +O(τ3). (A.9)

The matrix function ψ is also bounded implying δn = O(τ2). Consequently, when adding up all

preceding local errors towards the global error εn+1 = w(tn+1)− ŵn+1 in the standard way through

the recursion

εn+1 = eτ Jεn + δn, (A.10)

we will loose one power of τ and predict first-order instead of second-order convergence. We can

come around this non-optimal result by adopting the approach of Lemma II.2.3 from [28]. Write
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Fig. A.1. Maximum absolute errors at t = 1 for EK2 (left plot) and (A.13) (right plot). The dashed line is the exact order two line,

+ -marks refer to s fixed and o-marks to increasing s.

δn = (I − eτ J)ξn +O(τ3), ξn = −(I − eτ J)−1ψ(τ J)τ2w
′′
(tn) . (A.11)

Introducing ε̂n = εn − ξn we can write

ε̂n+1 = eτ J ε̂n + δ̂n, δ̂n = −(ξn+1 − ξn)+O(τ3). (A.12)

Since J is a stable Jacobian, thematrix function featuring in ξn is boundedwhich implies that ξn = O(τ2)
and ξn+1 − ξn = O(τ3) giving δ̂n = O(τ3). Nowwe can add up all preceding local errors in the standard

way toconclude second-order convergence formethodEK2.Wehere tacitly assumed that ε0 = 0so that

ε̂0 = −ξ0 = O(τ2). This convergence result holds for any stable Jacobian J and any source function f (t)

eliminating the possibility of order reduction due to contributions from time-dependent boundaries.

With a slight change the proof is also valid for the alternative method (4.4).

Example. Wewill illustrate the above convergence result for EK2with a simple yet instructive numer-

ical example. By way of contrast so as to emphasize that when it occurs order reductionmay work out

badly, we will also apply the method

wn+1 = eτ J
(
wn + 1

2
τ f (tn)

)
+ 1

2
τ f (tn+1). (A.13)

This exponential integration method is obtained from the variation of constants formula (4.3) by

directly approximating the integral term with the quadrature trapezoidal rule, rather than first inter-

polatingand integrating theobtained termsanalytically. Themethodcanalsobeobtained through time

splitting. As anODEmethod it is second-order consistent and even symmetric. However, it suffers from

order reduction. In fact, for τ → 0 and ‖J‖, ‖f ‖ → ∞ it is not even convergent which we will illustrate

numerically. Also, unlike EK2, the method is not exact for constant f .

We have integrated the 2 × 2-system (Prothero–Robinson type model from stiff ODEs [12])

w′ =
(
0 −s

s 0

)
w + f (t), f (t) = g′(t)−

(
0 −s

s 0

)
g(t), g(t) = et

(
1

1

)
. (A.14)

Putting w(0) = [1, 1]T yields for any J the solution w(t) = [et , et ]T , t � 0. So we can take s as large

as we wish to illustrate the order reduction phenomenon. Fig. A.1 shows convergence results for

s = 10, τ = 1
52

−j and s = 5 · 2j , τ = 1
52

−j where j = 1, . . . , 10. So in the first case ‖τ J‖ → 0 and ‖τ f ‖ → 0

whereas in the second case ‖τ J‖ and ‖τ f ‖ are fixed and thus ‖J‖ and ‖f ‖ are increasing. With the first

case we test normal ODE convergence and with the second case order reduction. We plot maximum

absolute errors at t = 1 versus τ for EK2 (left plot) and (A.13) (right plot). The dashed line is the exact

order two line, +-marks refer to s fixed and o-marks to increasing s. EK2 is shown to converge in the

rightmanner for both caseswhereas in both cases (A.13) ismuch less accurate and in particular suffers

from severe order reduction in the second case even resulting in lack of convergence.
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