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Chapter 1

Introduction

Mathematical modelling of real-life systems is widely used in different applied
fields of science. Models are often based on certain known laws (rules) for the pro-
cesses under consideration. Depending on those rules, a deterministic model can
be a set of (non)linear differential equations, such as Ordinary Differential Equa-
tions (ODEs), Partial Differential Equations (PDEs), Delay Differential Equations
(DDEs), etc., or combinations of these. Additionally, algebraic relations can be
coupled to differential equations resulting in a system of Differential Algebraic
Equations (DAEs). The analytical solution of the model can be found very rarely
and therefore, one often needs to compute a numerical solution by using various
numerical techniques.

A mathematical model, to be meaningful, is expected to describe the phe-
nomenon in a sufficiently accurate way. In addition to that, it is desirable for a
model to be an analytical and predictive tool. Analytical means that the model
can be used for a better understanding of the underlying mechanism of a system.
So, understanding a model leads to understanding the real system. Predictive
implies that the model is able to simulate experiments before actually performing
them or to predict the system behaviour in the situations that cannot be dealt
with experimentally.

Mathematical models usually have a number of parameters. Some parame-
ters are known from the literature or can be directly obtained from experiments.
However, in many cases parameters are not known and cannot be measured. On
the other hand, other quantities (observables) involved in the model, such as state
variables or combinations thereof, can be quantified in experiments. Then, the
unknown parameters can be estimated by fitting model outputs to the data.

Parameter estimation or data fitting typically starts with a guess about param-
eter values and then changes those values to minimize the discrepancy between
model and data using a particular metric which is called a cost function (or fitness
function). This inverse problem has a number of pitfalls. The first question is
whether the parameters for the mathematical model can be identified uniquely
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assuming that for all observables continuous and error-free data are available.
This is the subject of a priori identifiability or structural identifiability analysis
of the mathematical model [1].

When the mathematical models are nonlinear in the parameters, the fitness
function may have many local minima that do not correspond to its lowest value.
Although local search methods, like gradient-based algorithms, are efficient op-
timizers [2] for nonlinear least-squares problems once a sufficiently good initial
guess for the parameter values is available, they can get trapped in one of the lo-
cal minima rather than finding the global minimum. On the contrary, global search
methods, like Simulated Annealing (SA) [3] explore the whole search space but
have slow convergence. The latter is very crucial for large-scale problems. Sequen-
tial application by using a global search method followed by a local gradient-based
technique allows to find the global minimum precisely and fast [4].

Finally, given a particular set of experimental data, and one particular ac-
ceptable model parameterization obtained by a parameter estimation procedure,
does not mean that all obtained parameters can be trusted. After the minimum
has been found, an a posteriori or practical identifiability study can show how
well the parameter vector has been determined given a data set that is possibly
sparse and noisy. That this part of model fitting should not be underestimated
is shown by Gutenkunst et al. [5]. For all 17 systems biology models that they
considered, the obtained parameters are sloppy, meaning not well-defined. It is
shown that the sloppiness is an intrinsic property of such models and cannot be
removed by using more comprehensive and more accurate data. On the other
hand, one could argue that often the precise value of a parameter is not required
to draw qualitative conclusions [6].

The main application field for the mathematical models studied in this disser-
tation lies in developmental biology. Genetic regulation plays a fundamental role
in the developmental processes, such as the body plan formation of an organism.
The insect body plan consists of repeating units called segments. Segment deter-
mination happens at the early developmental stages. The main focus here is on the
fruit fly Drosophila melanogaster for which the boundaries of segments are deter-
mined during the blastoderm stage of development [7]. Segment determination is
controlled by a relatively small set of segmentation genes. The whole segmentation
gene network has a hierarchical structure whose levels consist of gap, pair-rule,
and segment-polarity genes [8, 9]. In such a regulatory cascade, genes from the
upstream layer are involved in the regulation of the genes from the downstream
layer; additionally, genes from the same level are regulating each other as well.
The gap gene system is of a particular interest in this hierarchy. It constitutes the
first zygotic step in the segmentation gene network. The expression of gap gene
domains are initially established by maternal input. These spatial domains fur-
ther change dynamically due to the influence from the terminal maternal system
and most importantly due to the regulatory interactions between gap genes. In
turn, gap genes are involved in the regulation of pair-rule and segment-polarity
genes from downstream layers. The latter establish a segmental pre-pattern of
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gene expression by the onset of gastrulation. Although the gap gene system has
been studied extensively using genetic and molecular approaches [10] (and refer-
ences therein), still understanding of the underlying mechanism of formation of
gap gene expression patterns remains incomplete. This is not an unusual situ-
ation; not all questions can be answered experimentally. In some cases, genetic
evidences result in ambiguities for interactions between the genes in a regulatory
network. These remaining blanks can be filled by using mathematical models of
regulatory networks.

Mathematical modelling has been proven to be a powerful tool to study reg-
ulatory networks. Among many different approaches, we restrict ourselves to the
case where a model is given by a system of nonlinear ODEs (lattice-differential
equations), a so-called ‘connectionist’ model of development proposed in [11]. The
time evolution of gene products is described with a sigmoid function to model ge-
netic regulation, a decay term, and a simple difference formula to model diffusion.
A connection matrix consisting of numbers (‘weights’) is used to model the regula-
tory influences in the input of the sigmoid regulation function. Extensive research
has been done using this model to study the gap gene system in the early devel-
opment of the Drosophila [10, 12-15]. Some analytical results on the behaviour
of this model are presented in [16]. This model is also studied in the continuous
version, as a reaction-diffusion PDE system [17]. With the connectionist model
and available quantitative expression data for all relevant genes involved in the
gap gene network [18, 19], regulatory interactions between gap genes have been
successfully inferred using different optimization methods. Obtained results have
given significant insight into the functioning of the gap gene system, i.e. the un-
derlying mechanism of spatio-temporal pattern formation of gap gene products.
However, conclusions in all previous works have been based on the values of es-
timated parameters only and the important link, the identifiability analysis of
inferred regulatory parameters, is missing. This has a serious implication as all
conclusions can be unreliable.

We note that the derivation of the connectionist model [11] for modelling
regulatory networks is based on a number of assumptions (simplifications) and
therefore, such a model has limitations because it cannot capture many important
details of development. In order to overcome this, the model has to be extended.
Undoubtedly, there will be a price to pay. More detailed models will have larger
complexity and their numerical integration as well as the parameter estimation
procedure may give rise to real numerical challenges.

An important limitation of the connectionist model is that cells are modelled
as static discrete lattice sites on a grid. In a developmental process gene expression
patterns in space and time are leading to various biomechanical responses of the
cells, like cell migration, adhesion, growth, death, etc. The responses, in turn,
can influence the gene expression pattern. For example, a migrating cell may
change the spatial gene expression pattern or in cell division the components of
the mother cell may be unequally distributed over the daughter cells which can
also affect the gene expression pattern. In many cases a simple connectionist
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model will not be sufficient to explain the development of a spatio-temporal gene
expression pattern in an aggregate of migrating cells and a more elaborate, cell-
based, model is required to capture the coupling between gene expression patterns
and moving cells.

The protein synthesis in the connectionist model is assumed to be instanta-
neous. This is clearly a simplification of the biological system as the transcription
of genes and the translation of mRNA into proteins take some time. Neglecting
these details has resulted in an artificially high level of gene products in the model
outputs at early stages of time integration when the standard connectionist model
has been applied for the gap gene system in Drosophila [10, 12]. Time delays in
the production of proteins have to be incorporated in order to have a more real-
istic model to correctly describe early gap gene expression and regulation. This
will change the connectionist model into a system of DDEs. For parameter es-
timation and the practical identifiability analysis in the resulting DDE models a
detailed investigation is needed as the model solution can be nonsmooth in the
model parameters [20].

1.1 Parameter Estimation

In this section!) we shall briefly present different aspects of parameter estimation
which will be used throughout the thesis (for a detailed description see Chapter 2).
The methodology is illustrated on the basis of a simple enzymatic reaction.

1.1.1 Problem definition

For ease of presentation, we consider a model given by the system of ODEs of the
general form 2):

dyfitt’ ) tty(t.0),u().0), 0<t<T, (1.1.1)
y(t,0) = yo(0), £=0,

where ¢ denotes time, the m-dimensional vector 6 contains all unknown parame-
ters, y is an n-dimensional vector containing the state variables (e.g. concentra-
tion values), u are the externally input signals, and f is a given vector function,
differentiable with respect to ¢, y and #. When components of the initial state
vector yo are not known, they are considered as unknown parameters, so yo may
depend on 0. Assume that the parameter vector 6 should satisfy (non)linear
constraints:

c(t,y(t,0),u(t),0) >0, 0<t<T. (1.1.2)

1) Part of this section is based on the journal publication [21].
2) The presented material is also applicable to systems of DAEs, discretized PDEs and DDEs.
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Let us assume that N measurements for the state variables 3) in (1.1.1) are
available. Each measurement, which we denote by ¥;, is specified by the time ¢;
when the ¢;-th component of the vector y is measured. The corresponding model
value for a specific parameter vector 6 is denoted by y.,(t;,60). We assume that
a true solution 6* exists for which (1.1.1) is a sufficiently accurate mathemati-
cal description approximating reality. In this case, the difference |y, (¢;,0*) — ¥
is solely due to experimental errors. The vector of weighted discrepancies be-
tween the model values and the experimental values is denoted by Y(6). The
m-dimensional optimization problem is given by the task to minimize some mea-
sure, S(0), for the weighted discrepancy Y (). By far the most used measure is
the Euclidean norm or the sum of weighted squares:

N .
(yCi (tiv 0) - ,%)2
SO =3 "

i=1

=Y%(0)Y(9), (1.1.3)

see [22]. This measure results from the maximum likelihood estimator (MLE)
theory under the assumption that the experimental errors are independent and
normally distributed with standard deviation o; and zero mean. When these as-
sumptions do not hold, other measures might be used like the sum of the absolute
values. The MLE theory then does not apply and the statistical analysis in the
Section 1.1.2 does not hold.

1.1.2 Identifiability and Determinability

Whether the parameters for the mathematical model can be found is dependent
on (a) the mathematical model; (b) the significance of the data; and (c¢) the
experimental errors. In the following, we assume that the model is properly scaled
such that both the parameter values and the state variables are of the same order
of magnitude. Otherwise, a proper scaling should be applied to the model.

A priori identifiability

A parameter is globally identifiable if it can be uniquely determined given the
input profile u(t) and assuming continuous and error-free data for the observables
of the model. If there is a countable number of solutions the parameter is locally
identifiable; it is unidentifiable if there exist uncountable many solutions. A model
is structurally globally/locally identifiable if all its parameters are globally /locally
identifiable.

It is advisable to always perform an a priori analysis to determine a priori
global identifiability of the model. However, for realistic situations (i.e. nonlin-
ear models of a large size) it is very difficult to obtain any results with known
techniques.

3) The problem can be formulated in the same way when other quantities, such as the
combinations of state variables in (1.1.1), are measured.
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A posteriori identifiability

Practical or a posteriori identifiability analysis studies whether the parameters
can be determined with the available, noisy, experimental data. The difficulty
in estimating the parameters in a quantitative mathematical model is not so
much how to compute them, but more how to assess the quality of the obtained
parameters because this not only depends on how well the model describes the
phenomenon studied and on the existence of a unique set of parameters, but also
on whether the experimental data are sufficient in number, sufficiently significant
and sufficiently accurate. With respect to the first two requirements, a sufficient
and significant amount of data, it is clear that, whatever method one uses to fit
a model with experimental data: to estimate m unknown parameters, one needs
at least m experimental values. On the other hand, it is not necessary to have
experimental data for all state variables involved in the model at all possible time
points, often only a few measurements for the right observable at significant times
are needed. The last question, sufficiently accurate data, is related to the fact
that measurement errors imply that we do not have precise data points to fit our
model with, but that each point represents a whole cloud of possible data values,
implying also that the inferred parameters are not point-values but are contained
in a cloud. Depending on the model, the cloud of possible parameter values varies
in size and shape and can be much larger than the original uncertainty in the data.

The most applied method [23, 24] to study the uncertainty in the parameters is
to compute the sensitivity matrix .J (é) = a\gée)’ where 0 is the parameter estimate
obtained by minimizing (1.1.3). This can be done either by finite differencing or
by solving the variational equations *). How close the estimate 0 is to the true
parameter vector 8 is expressed by the (1 — «v)-confidence region for 6*, given by:

(0" =) (J70)7)) (0" —0) < 75, (1.1.4)
with 7, = NTmS(é)Fa(m, N —m), where F,(m, N —m) is the upper « part of
Fishers distribution with m and N —m degrees of freedom. The (1 —«a)-confidence
region implies that there is a probability of 1—a that the true parameter vector *
lies in this ellipsoid that is centered at 6 and has its principal axes directed along
the eigenvectors of J T(é)J (é) The length of the principal axes is proportional to
the reciprocal of the corresponding singular values of J7(0).J(f). Note that this
is a linear analysis, and local both with respect to € and to the given data points.

Now, the practical identifiability of parameters can be assessed in different
ways. First, if the model has only two or three parameters it can be done by
visual inspection of the ellipsoidal region. For high-dimensional problems this is
not possible. But inspecting the eigenvectors and the singular values of the Fisher
information matrix J7(6).J(A) can reveal the identifiability or unidentifiability of

4) Variational equations are obtained by taking the derivative of the system (1.1.1) with

respect to the parameters. This results in m ODE systems in the variables 85('9(;6) ,t=1,...,m.
k2
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the parameters or linear combinations of them (for a detailed description see
Chapter 2). Finally, there are a number of easy-to-compute indicators. Assuming
that all other parameters are exact, a confidence interval for a specific parameter
is the intersection of the ellipsoidal region with the parameter axis. This is the
dependent confidence interval:

Jomoa),

The independent confidence interval is given by the projection of the ellipsoidal
region onto the parameter axis:

NG = rg\/<(JT(é)J(é))_l> (1.1.6)

If dependent and independent confidence intervals are similar and small, 0, is well-
determined. In case of a strong correlation between parameters, the dependent
confidence intervals underestimate the confidence region, whereas the indepen-
dent confidence intervals overestimate it. Another way to obtain information
about the correlations between parameters is to look at the covariance matrix
cov = (JTJ)7L. The correlation coefficient of the i-th and j-th parameter is
given by:

APg; = (1.1.5)

COVjj

= B (1.1.7)
\/cov”covn

Pij

Determinability

Practical unidentifiability, i.e. parameter sloppiness, indicated for instance by
large confidence intervals, is a serious problem when the models are used to extract
certain information from the solution of the inverse problem and the precise values
of parameter estimates are important for that. However, in the models of gene
networks, which will be discussed in the next section, the regulatory influences
are represented by regulatory weights. Although these parameters are in principle
allowed to take any real value, the sign of the weight has a specific biological
implication. It indicates how a certain gene regulates another gene in the network.
Therefore, the precise values of those parameters are not always important as long
as they have certain characteristics, like being positive or negative.

If a posterior: identifiability analysis results in a parameter uncertainty range
which lies in the characteristic range we call this parameter (qualitatively) deter-
minable. Note that for those parameters which have to be determined quantita-
tively, i.e. having no specific characteristics, determinability refers to a posteriori
identifiability.



8 Chapter 1. Introduction

1.1.3 Example

On the basis of a very simple artificial example [25] we show the influence of the
experimental data on the parameter determinability. Consider the mathematical
model for the simple enzymatic reaction:

d[s]

g = REIS]+ k2[C]
dizf] = k[ E][S] = k2[C] — k3 [C] (1.1.8)

[E] + [C] = [Eo] + [Co]

with as state variables the concentrations of the substrate [S], the enzyme [E],
and complex [C]. Suppose the initial concentration of the state variables, [Sy],
[Ep] and [Cy] is known, and the concentration of [C] is measured rather precisely
at regular time points ¢ = 1,...,20. For this example, the measurements are
generated artificially by adding an independent, normally distributed perturbance
with zero expectation and a fixed variance to the model results (red +-marks in
Figure 1.1). The initial parameter values are § = (ky, k2, k3) = (6,0.8,1.2). With
these parameter values, the model results are given by the solid lines in the left
plot in Figure 1.1. Fitting the model to these measurements with the Levenberg-
Marquardt method [26] results in the parameter vector 0 = (0.683,0.312,0.212)
(for the model results, see Figure 1.1, right).

1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0 5 10 15 20 0 5 10 15 20

Figure 1.1: Model results for initial (left) and final (right) parameter vector, black:
[S], red: [C], green: [E]; and measurements of [C]: red +.

We define the discrepancy of the model with respect to the data:

e(0) = (c(ti, 0) — Ei)i:l,...,N (1.1.9)

the vector of the differences between the ith data value, ¢;, which is the measured
concentration of [C] at time ¢;, and the corresponding value from the model,
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c(t;, 0). In the present example, the sensitivity matrix J is an N x 3 matrix, with
N = 20. For this simple three-parameter problem, one can easily visualize the
confidence region (1.1.4) and we can see from the left plot in Figure 1.2 that the
true parameter vector lies in a small disc around é, implying that we can estimate
all three parameters with a reasonable accuracy by measuring only the complex
(or any of the two other concentrations in this case). With 95% confidence, all
parameters can be estimated with one digit accuracy and k3 even with two digits.
Using only three well-chosen time-points for measuring (¢t = 1,2,20), the axes-
length of the ellipsoid increases with a factor of about 4, but still all parameters
can be determined reasonably well. Suppose now that it is not possible to measure
before time ¢ = 6 but that we take 20 samples of the complex at regular times
from ¢t = 6,...,20. Suppose also that the same parameter vector 6 results from
minimizing the least squares error e”e. In this case, the confidence region gives
much more reason for distrusting the result. As can be seen in Figure 1.2 (right),
the true parameter vector now lies in a long elongated cigar and especially for
k1 and ks we can not even trust the order of magnitude. It is clear that it is
not easy to a prior: give an indication whether experimental data are sufficient
in number and sufficiently significant. With three lucky data points, one can
estimate three parameters, but 20 data points in a region where nothing happens
are not sufficient.

3

0.06-

0.02

Ak,

-0.02

-0.04-

-0.06

005 el . L P e
N 0.05 [ T S T T 1 2

005 U g5 O 4T 4o

Ak, ak, Ak, Ak,

Figure 1.2: Confidence region Ak (cf. (1.1.4)) in parameter space around com-
puted parameter vector (origin in the plots) and its projection on the parameter
planes. The region contains the true parameter vector with a 95% probability.
Left: 20 measurements at ¢ = 1,...,20; right: 20 measurements at time points
distributed uniformly over [6,20].

Next, we examine the influence of experimental noise, (i.e. whether the exper-
imental data are sufficiently accurate). Because r,, is proportional to the variance
of the measurement error distribution, the principal axes of the ellipsoidal con-
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fidence region are proportional to the standard deviation. Roughly speaking:
reducing the (standard deviation of the) error by a factor of two, implies that a
parameter, or combination of parameters, can be determined more accurately by
a factor of two. This means that to shrink the ellipsoidal confidence region for
the ¢t > 6 experiment (Figure 1.2, right) such that it results in the same accuracy
as the experiment with measurements between 1 and 20, one has to reduce the
variance of the experimental error beyond reasonable experimental accuracy. Fi-
nally, if we just look at the computable information from the Fisher matrix we
get for the confidence intervals (1.1.5)-(1.1.6):

Exp.  AP(k)  AP(k)  AP(ks)  Al(k)  Al(ks)  Al(ks)

[1,20] 0.033 0.028 0.005 0.076 0.067 0.005
[6,20] 0.074 0.047 0.004 2.217 1.267 0.060

The correlation matrices for the two cases are:

1 09 —0.37 1 0.999 —0.997
Ryp=| —09 1 —045 Rg=| —0999 1  —0.996
—0.37 —045 1 —0.997 —0.996 1
(1.1.10)

This simple to compute information shows that, for the second case, the param-
eters are strongly correlated and the model is not identifiable.

1.2 Modelling of Developmental Regulatory Net-
works

Different formalisms have been used to describe genetic regulatory networks.
Among them are directed graphs, Bayesian networks, ODEs, PDEs, stochastic
equations, qualitative equations, Boolean networks, etc. For a review of various
models and simulation aspects we refer to [27]. Here we restrict ourselves to some
models using differential equations.

1.2.1 Connectionist model of development

Assume that N, cells are arranged in a row equally distanced from each other.
Consider the gene network consisting of N, genes which regulate each other.
Assume that these genes are additionally regulated by N, external inputs, like
maternal protein. Denote the time-varying concentration of the product of gene
a and the concentration of the external protein e in cell ¢ by ¢ and g, respec-
tively. The connectionist model describes the change in concentrations of each
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gene product in each cell over time by the following system of ODEs [11]:

N, N
dg? : :
jtz Ra®q Z Whg! + Z ESgf +h, | (genetic regulation)
! - (1.2.1)
—Aagi (decay)
+Da (9841 — 298 + 9i-1) (diffusion)

As can be seen from the model, the change in gene product concentration is
supposed to depend on three factors.

The first term describes the genetic regulation. W and E are the matrices of
genetic regulatory coefficients whose elements characterize the influence of gene
product b and external protein e on gene product a, respectively. Regulatory
parameters represent repression (if < 0), activation (if > 0) or no interaction (if
~ 0). It is important to note that the regulatory parameters are independent of
the cell number ¢, so the “machinery” for the genetic regulation is the same in
every individual cell. h, summarizes the effect of general transcription factors on
gene a, and R, is the maximum rate of synthesis from gene a. ® is the sigmoid

function
<I>(x)—1< N +1) (1.2.2)
2 (e is . 2.

Its aim is to prohibit negative influence by inhibitors and to provide saturation
for activators. The second term describes the decay of gene products, and the
third term the exchange of gene products between neighboring cells (diffusion).
The connectionist model (1.2.1) has been used to simulate the gap gene net-
work in the early development of the Drosophila [10, 12-15]. For this system also
the continuous version of (1.2.1), given by the reaction-diffusion PDE system

Be (1) Yo N
c’\x
’ = R,P, § Wgcb(x,t)+§ E¢g¢(x,t) + hq
ot = g (1.2.3)
u 0?c?(w,t)
—AaoC*(xz,t) + Dy, PYCERE

has been used [17].

Model (1.2.1), despite of its simplicity, has been proven to be a suitable tool
to study the gap gene system. This is apparently due to an exceptional prop-
erty of the Drosophila blastoderm. At the early developmental stages when the
segment determination occurs the blastoderm is a syncytium, so that nuclei are
not yet surrounded by membranes and therefore, the cell-cell signaling can be ne-
glected [12]. Cellularization of the syncytial embryo occurs at later stages when
the segments are determined. Therefore, the simple connectionist model (1.2.1)
is sufficient to describe such a biological system in a consistent way.
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Finally, we note that the model (1.2.1) is formulated for the case when cells are
arranged in a row, i.e. when the gene expression pattern is a function of position
along one spatial axis. However, this is not a severe restriction. The model can
be easily extended to higher-dimensional spatial domains.

1.2.2 Cell-based model

Here, we propose a cell-based model for simulating regulatory networks that is ca-
pable of quantitatively reproducing spatial and temporal gene expression patterns
in developmental processes. This model is a generalization of (1.2.1). Tt distin-
guishes between the genetic regulation which takes place inside the cells (species g)
and the diffusion of gene products (species ¢) through the organism. Mathemat-
ically speaking this amounts to a continuum-discrete hybrid model where dis-
crete objects exchange species with the surrounding environment modelled as a
continuum. Inside the cells one has genetic regulation and decay (biochemical
reactions). We assume that the concentration inside these cells is homogeneous
(no diffusion). Outside the cells species only diffuse and decay. The exchange
of gene products between the cells and the extracellular matrix is described by a
secretion/absorption function. The complete model reads:

Intracellular For the gene products g in all cells i =1,..., N,
N
dg; (t) S b : .
dt = R,?, Z Whet + Z Efg; + (genetic regulation)
—Aag? (decay)
1

Sa (g3, ¢*(x(S),t))dS,  (secretion/absorption)
(1.2.4)

Vil Jay,

where 0V} denotes the surface of the cell 7.
Extracellular matrix For the gene products ¢ in the domain 2

Oc(x,t)

9t V- (D,Vc*) (diffusion)

~Aac” (decay)
Ne oy
+; |8‘2|(5((9‘/1',X)Sa(gf,ca(x,t)) (secretion/absorption)
(1.2.5)

where V; denotes the volume of the cell 4, 6(I', x) is a delta function with support
on I':

5(F x) f(x)dx = / fX X(S) eT.
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The secretion/absorption function S, models membrane processes. It can take
a simple linear form, such as S,(¢%, c*(x,t) = a(g¥ — c*(x,t)) with a being a
constant, or it can be represented in some nonlinear form.

This model additionally can be coupled with a biomechanical model of cell
aggregates, so that spatial and temporal morphogen gradients stemming from the
genetic regulation simulation can influence the states of the cells within the cell
aggregate, and/or lead to: cell migration, cell-layer-contraction, adhesion, growth,
secretion of skeletal elements, and programmed cell death.

The numerical approximation of model (1.2.4)-(1.2.5) is not trivial. A sub-
stantial difficulty for the numerical integration of the coupled system lies in the
computation of the solution of the PDE system (1.2.5). This is caused by the sin-
gular reaction source terms, singular in the sense that within the spatial domain
the source is defined by a Dirac delta function expression on a lower dimensional
surface.

1.2.3 Model with delays

In the derivation of model (1.2.1) it is assumed that protein synthesis occurs
instantaneously. However, it is known that it takes time from the start of the
transcription to the final moment when the protein is produced. In order to have
a more realistic description of this procedure, time delay in protein production
has to be incorporated in (1.2.1).

The following DDE model has been proposed in [28]:

df = R, 0(t—7,) Zwb ZEagZ a) + ha

Nl (1) + Da (9841 (1) — 262(8) + 92, (1))

(1.2.6)
where 7, is the time lag representing delay in the protein production corresponding
to gene a, 6(t) = 0 during mitosis (no synthesis) and 6(¢) = 1 otherwise. Using
this model for the gap gene network in the Drosophila embryo, fitting the gap
gene data has not given satisfactory results. It is not clear, whether that failure
is due to the model itself which is still missing important steps in the protein
production process or due to identifiability issues.

A new model has been developed [29], which distinguishes between time delays
for transcription and translation. Additionally, this model includes the mRNA
concentrations as state variables. The change in mRNA concentrations g¢ is
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prescribed by the DDEs:

dg;

Ny N
_ « b b o e e «
g = Ba0(t—70) @ S WGt —T) + Y ELGH(t— 1) + ha

b=1 e=1

_/\agg(t)v
(1.2.7)
where G§ denotes the concentration of the product of gene a in nucleus 7 and 7
accounts for transcriptional delay. The change in protein concentrations is given
by:

dGe

o= gl (t = 70) = MGE(E) + Da (Gl (1) = 2G3(1) + Gy (1), (128)

where 77 accounts for translational delay.

Both delay models (1.2.6) and (1.2.7)-(1.2.8) have a discontinuous right-hand
side. As a consequence, their solutions are nonsmooth in parameters and therefore
they need special attention, especially regarding the validity of the determinability
analysis.

1.3 Outline of the thesis

This thesis is the compilation of four articles. These articles are self-contained and
the corresponding chapters can be read separately. As we already emphasized,
modelling and inferring regulatory networks is the central study subject in this
thesis.

Chapter 2: Parameter estimation and determinability analysis applied to
Drosophila gap gene circuits, M. Ashyraliyev, J. Jaeger, J.G. Blom, BMC Systems
Biology 2:83 (2008).

In this chapter, we present the methodology for parameter estimation and the
determinability analysis. We apply that to study determinability of regulatory
interactions in the gap gene network in early Drosophila embryos using a standard
connectionist model (see Section 1.2.1 of this chapter).

Chapter 3: Parameter estimation for a model of gap gene circuits with time-
variable external inputs in Drosophila, M. Ashyraliyev, CWI Report, MAS-E0904
(2009). This report contains background for the paper Gene circuit analysis of
the terminal gap gene huckebein by M. Ashyraliyev, K. Siggens, H. Janssens,
J.G. Blom, M. Akam, J. Jaeger accepted for publication in PLoS Computational
Biology.

In this chapter, we further investigate the gap gene system by reformulating
the network. In contrast to the gap gene network considered in Chapter 2, we
implement the products of upstream genes as time-variable external inputs, in-
cluding a protein Huckebein which has been missing in the network in all previous
studies of the gap gene system. We show that with the reformulated network the
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determinability of the regulatory parameters significantly improves. Addition-
ally, we illustrate that for data fitting the Weighted Least Squares (WLS) sum is
a more suitable measure than the Ordinary Least Squares (OLS) sum which has
been used in all previous studies.

Chapter 4: On the numerical solution of diffusion-reaction equations with sin-
gular source terms, M. Ashyraliyev, J.G. Blom, J.G. Verwer, J. Comp. Appl.
Math 216, pp. 20-38 (2008).

In this chapter, we present a numerical study for reaction-diffusion problems
having singular reaction source terms. These type of problems arise when the
cell-based model is used for simulating regulatory networks (see Section 1.2.2 of
this chapter). We emphasize that the focus of Chapter 4 is entirely numerical and
that in this chapter no genuine biological model is used.

Chapter 5: On parameter estimation for delay models with discontinuous right-
hand sides, M. Ashyraliyev, CWI Report, MAS-E0908 (2009).

In the final Chapter 5, we study delay models with discontinuous right-hand
side. These type of problems arise when the model of regulatory networks incor-
porates a delay in the protein production (see Section 1.2.3 of this chapter).
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Chapter 2

Parameter estimation and
determinability analysis
applied to Drosophila gap
gene circuits

Abstract

Background: Mathematical modeling of real-life processes often requires the
estimation of unknown parameters. Once the parameters are found by means
of optimization, it is important to assess the quality of the parameter estimates,
especially if parameter values are used to draw biological conclusions from the
model.

Results: In this paper we describe how the quality of parameter estimates
can be analyzed. We apply our methodology to assess parameter determinability
for gene circuit models of the gap gene network in early Drosophila embryos.

Conclusions: Our analysis shows that none of the parameters of the con-
sidered model can be determined individually with reasonable accuracy due to
correlations between parameters. Therefore, the model cannot be used as a tool
to infer quantitative regulatory weights. On the other hand, our results show
that it is still possible to draw reliable qualitative conclusions on the regulatory
topology of the gene network. Moreover, it improves previous analyses of the
same model by allowing us to identify those interactions for which qualitative
conclusions are reliable, and those for which they are ambiguous.

17
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2.1 Background

Many real-life processes can be modeled by non-linear Ordinary Differential Equa-
tions (ODEs) or Partial Differential Equations (PDEs). In developmental biology,
for instance, systems of reaction-diffusion equations are used to model spatio-
temporal patterns of gene expression [30]. A common difficulty is that the model
equations usually have a large number of unknown parameters, such as weights
for regulatory interactions, diffusion coeflicients, decay and reaction rates, etc.
Sometimes, it is feasible to determine the missing parameters experimentally, but
in most cases this is difficult or even impossible. However, one can usually mea-
sure other quantities involved in the model. For instance, experimentalists can
quantify mRNA or protein concentrations using microarrays, quantitative PCR,
in situ hybridization or immunofluorescence. Unknown model parameters can
then be found by parameter estimation techniques based on fitting the model
solution to the measured gene expression data.

Once the parameter estimates have been computed, it is very important to
know how reliable they are. For this, confidence regions can be determined, which
allow us to assess the quality of the parameter estimates. Whether the parameters
for the mathematical model can be found assuming that sufficient and error-free
data is available is the subject of a priori identification or structural identifiability
analysis. Once the parameter estimates have been computed, an a posteriori or
practical identifiability study can show how well the parameters have been de-
termined given a data set that is possibly sparse and noisy. For the subject of
structural and practical identifiability we refer to [1, 21, 23] and references therein.
Ideally, one would wish to determine all parameters accurately enough. In prac-
tice, however, this is usually not possible and one has to face an uncertainty in
the parameter values. This can be due to several reasons: First, the model could
be ‘wrong’. In this paper, we do not focus on this possibility assuming that the
‘right” model is available (i.e. a model which represents the underlying mecha-
nism of the modeled process accurately and correctly). Second, the data used for
fitting could be insufficient or too noisy. Finally, a recent study by Gutenkunst
et al. [5] revealed that even if a correct model is used with a comprehensive set
of data, many models used in systems biology still exhibit parameter ‘sloppiness’.
This means that some model parameters can be determined with great certainty
(‘stiff” parameters), while estimates of other (‘sloppy’) parameters can vary by
orders of magnitude without significantly influencing the quality of the fit. Iden-
tifiability is a mathematical notion. For biological implications the precise values
of parameters are not always important as long as they have certain characteris-
tics, like being (roughly) positive, negative or zero. If a posteriori analysis results
in a parameter uncertainty range which lies in the characteristic range we call
this parameter determinable. Note that for those parameters which have to be
determined quantitatively, i.e. having no specific characteristics, determinability
refers to a posteriori identifiability.

Parameter sloppiness implies that very different sets of estimated parameters
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can lead to accurate model predictions. Therefore, it is not a serious problem if
the main purpose of a model is to predict the dynamical behavior of the system,
and little significance is attributed to parameter values. This is the case for
all models considered by Gutenkunst et al. [5]. Parameter sloppiness becomes
much more problematic, however, when models are used explicitly to extract
biological information from estimated parameter values. In particular, this affects
attempts at reverse engineering gene regulatory networks underlying cellular or
developmental processes, where models are used to infer regulatory interactions—
and hence regulatory network topology—from quantitative gene expression data.

As a case study, we consider the gap gene system of the vinegar fly Drosophila
melanogaster. Gap genes constitute the first step in a regulatory cascade that
leads to the determination of body segment positions along the major (or anterior-
posterior, A-P) body axis during early Drosophila development [8]. The biological
function of the gap gene system is to interpret long-range protein gradients im-
plemented by the products of the maternal co-ordinate genes (e.g. bicoid (bed),
hunchback (hb) and caudal (cad); see [10, 12, 31] and references therein). Zygotic
gap genes, such as hb, Krippel (Kr), knirps (kni) and giant (gt), are activated or
repressed by these maternal gradients, which establishes their expression in broad,
overlapping regions of the embryo. These spatial domains of gap gene expression
are stabilized and refined by gap-gap cross-repression. In turn, gap genes are
involved in regulation of pair-rule and segment-polarity genes, the latter of which
establish a segmental pre-pattern of gene expression by the onset of gastrulation.

The gap gene system is one of the best characterized developmental gene net-
works available today. It has been studied extensively using genetic and molecular
approaches (see [10] and references therein). More importantly for our purposes,
quantitative expression data are available for all relevant maternal co-ordinate and
gap genes [18, 19], and those data have been used to infer regulatory interactions
between gap genes using different global and local optimization strategies [10, 12—
14]. In this study, we use parameter values from these earlier studies as starting
points for local optimization to obtain a large set of parameter estimates. We
then apply analysis of confidence regions to those parameter sets to establish how
well these estimates can be determined based on the available experimental data.
We discuss the implications our results have for modeling of the gap gene system
and for the biological interpretation of estimated parameter values. Finally, we
note that the analysis can easily be adapted to other systems, and we strongly
recommend its use to systems biology models in which large emphasis is put on
the biological interpretation of estimated parameter values.
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2.2 Methods

We consider a model given by the system of ODEs of the general form:

dy
=f(t,y,0), 0<t<T,
ar = H6y:0) (2.2.1)

y(t.0) =yo(8), t=0.

Here the m-dimensional vector 6 contains all unknown parameters, y is an n-
dimensional state vector, and f is a given vector function, differentiable with
respect to t, y and #. When components of the initial state vector yg are not
known, they are considered as unknown parameters. Thus, yo may depend on 6.

As mentioned above, we assume that (2.2.1) is the ‘right’ model for the problem
we are interested in, implying that (2.2.1) is a sufficiently accurate mathematical
description approximating reality. This means that all relevant knowledge about
the modeled processes is incorporated correctly in the vector function f. Thus,
the only uncertainty in (2.2.1) is the vector of unknown parameters 6. Further-
more, it means that there exists a ‘true’ value 6* for the parameters 6 such that
(2.2.1) represents reality. Therefore, in principle, all unknown parameters can be
determined if sufficient and accurate enough data are available.

Quantities that can be experimentally measured are called observables. The
theory of identifiability holds in general for observables being a combination of
state variables. However, for the sake of simplicity we consider here a particular
case when only the components of state vector are measured. Let us assume
that for fitting (2.2.1) there are N measurements available. Each measurement,
which we denote by g;, is specified by the time ¢; when the ¢;-th component of
the state vector y is measured. The corresponding model value obtained from
(2.2.1) is denoted by yq, (t;,0). The assumptions outlined above imply that the
difference |§; — ye, (t;,0%)] is solely due to experimental error. We denote the
vector of discrepancies between the theoretical values and the measured values by
Y(0). Then the least squares estimate 6 of the parameters is the value of 0 that
minimizes the sum of squares [22, 32]

N
SO0) = (ye, (t:,0) — 5:)* = YT (0)Y(0). (2.2.2)

i=1

We note that (2.2.2) is an appropriate measure under certain assumptions only,
which we will discuss below. Other measures might be used when these assump-
tions do not hold.

2.2.1 Parameter Estimation by the Levenberg-Marquardt
Method

There exist a number of different optimization techniques for parameter estima-
tion. The choice of technique usually depends on the type of model equations
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(deterministic or stochastic), on the number of unknown parameters (moderate
or large), as well as on the dependence of model solutions on parameters (linear
or nonlinear, continuous or discontinuous). A model (2.2.1), being nonlinear in
0, leads in general to a least squares problem (2.2.2) that has several minima.
Firstly, because the problem has more than one solution. And secondly, because
the fitness function (2.2.2) can have several minima that are not corresponding
to the lowest value of the fitness landscape, so-called local minima. Local search
methods, like Levenberg-Marquardt (LM), can get easily trapped in one of the
local minima rather than finding a global minimum. To explore the whole search
space one needs global search methods, like the Evolutionary algorithm used in [14].
Unfortunately, these methods converge very slow once near a minimum. For non-
linear least-squares problems gradient-based methods are efficient optimizers [2]
once a sufficiently good initial guess for the parameter values is available. In this
paper we use as initial guesses the solutions from the global search in [14] and
the LM method [26] for the local optimization. In this way, we believe that the
chance of missing the global minimum is small and the determination of all the
minima is precise and fast. For a survey on optimization methods in biochemical
models we refer to [21, 33].

In general, any gradient-based optimization procedure seeks a correction §6
for the parameter vector, such that S(6 4 00) < S(0) holds. The LM method [26]
determines the correction as the solution of the equations

(JT(0)J(0) + Al,,) 60 = —JT ()Y (0), (2.2.3)

where A > 0 is a control parameter (see below), I, is the identity matrix of
size m and the Jacobian J(0) = agé@) is the so-called ‘sensitivity’ matrix of size
N x m. The entry J; ; in J(#) shows how sensitive the model response is at the
i-th data point for a change in the j-th parameter. The LM method can be seen as
the combination of two gradient-based approaches: Gauss-Newton and steepest
descent [2]. If A = 0 in (2.2.3), it coincides with the Gauss-Newton method.
However, when the matrix J7(0).J () is (almost) singular, to solve (2.2.3), A has
to be positive and for large A the LM method approaches the steepest descent
method. During the optimization A is adapted such that the algorithm strives
to exploit the fast convergence of the Gauss-Newton method whenever this is
possible [26, 34].

In order to solve (2.2.3), the singular value decomposition (SVD) [35] of the
matrix J(6) can be used, i.e.

J(6) =U(9) 2(6) VI (9), (2.2.4)

where U (6) is an orthogonal matrix of size N xm, such that UT (0)U () = I,,,, V()
is an orthogonal matrix of size m x m, such that VZ(0)V(0) = V(0)VT(0) = I,
and 3(0) is a diagonal matrix of size m x m which contains all singular values o;
in non-increasing order. Then the correction §6 can be found as

56 = —V(0) (Z2(6) + ML)~ %(6) UT(6) Y(b). (2.2.5)



Chapter 2. Parameter estimation and determinability analysis applied to
22 Drosophila gap gene circuits

Later, when we study the reliability of the parameters computed, the SVD will
play an important role again.

In order to execute an LM optimization step, the vector of discrepancies Y(6),
the matrix J(6) and its SVD have to be evaluated for each new estimate of 6.
For this purpose, for Y and the entries of J one needs to resolve (2.2.1) and the

additional system of variational equations (i = 1,2,...,m)
00y Of Of Oy
— <T
otoo, ~ o0, "oy, CtST 226)
dy(t,0) _ dyo(0) f—0 B

00; 00;

respectively. We note that the costs for performing the SVD and computing the
correction (2.2.5) are negligible in comparison with the computational costs for
solving (2.2.1) and (2.2.6).

Thus, a single LM step requires the numerical solution of m + 1 coupled
systems, each one consisting of n ODEs. Fortunately, these systems are coupled

in a special way, namely, for each i = 1,2,...,m, system (2.2.6) is a system of
linear ODEs for gg, coupled only with (2.2.1). The system of equations (2.2.6)

has the same stiffness as (2.2.1), so for numerical stability the same step size can
be used for the time integration of (2.2.1) and (2.2.6) (note that ODE stiffness
is determined by the eigenvalues of the Jacobian matrix g; and is not related to
parameter stiffness as described above). Therefore, the one-way coupling can be
used to solve (2.2.1) and (2.2.6) efficiently.

Numerical integration of (2.2.1) and (2.2.6) requires a fast and reliable ODE
solver. Search in the parameter space may lead to some values of 6 such that the
systems of ODEs become stiff [36]. It is well known that for stiff ODE systems
explicit schemes can give rise to numerical instability or alternatively require
extremely small time steps. Therefore, an implicit scheme is the best choice for
time integration for stability reasons. Using an implicit scheme allows us to exploit
the specific coupling between (2.2.1) and (2.2.6) in an efficient way. At each time
step 7 integrating first (2.2.1) provides the solution vector y. This requires the
LU decomposition of the Jacobian matrix I,,, — Tg:,. Using this LU decomposition

the calculation of gg’i from (2.2.6) reduces to a simple forward substitution and
backsubstitution. In our simulations we used tailor-made code [25] based on the
implicit multistep Backward Differentiation Formulas (BDF) [37].

When the unknown parameters have to obey certain constraints—linear or
non-linear—some additional work is needed. If the correction 66 found by (2.2.5)
leads to violation of some constraints, then by the introduction of Lagrange mul-
tipliers a modified correction can be found, which fits all constraints. For the
constrained minimization problem we refer the reader to [25].

For additional modeling and numerical aspects of this method we refer the
reader to Appendix.
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2.2.2 Statistical Analysis of Parameter Estimates

Above we used 6* to denote the ‘true’ parameter vector, for which (2.2.1) describes
reality with sufficient accuracy, and by 6 we denote the parameter vector which
minimizes (2.2.2). Even having a ‘right’ model and an estimate 6 for the parameter
vector which fits the data well, does not mean that the whole modeling problem is
resolved successfully. It is important to know how reliable the obtained estimate
is. This is the subject of a posteriori identifiability analysis [1, 23, 24]. One way to
look at this is inspecting the fitness landscape S(6) in the neighbourhood of . If
it is a sharp trough then the true parameter vector #* and the obtained minimum
6 are close. If it is flat in one or more directions, like the surface for a 2-parameter
case in Figure 2.1(a), then the minimum found can be far apart from the true
parameter vector. Near the minimum, where the gradient of S(0) vanishes, this
surface is approximated by the second derivative or Hessian of S(6). If the model
is linear in the parameters the Hessian is equal to J7.J. This linearity assumption
and some statistical analysis underlie the following [22, 32, 36].

We assume that the measurement errors in ¢; are independent of each other
and normally distributed and that the error distributions have zero mean and
constant standard deviation o. Then, 6 is a maximum likelihood estimate [22, 32].
By assumption the model with the ‘true’ solution #* describes reality, thus

gi%yci(tiae*)+€ia i:172a"'aNa

where ¢; are the measurement errors, for which
. a1
6— 6" ~N,, (0, o (JT(e)J(a)) ) (2.2.7)

holds approximately [22]. Here N,,(-,-) denotes the m-dimensional multivariate
normal distribution. Notice that (2.2.7) holds exactly when y is linear in 6. Next
we can define a region around 6 in which the ‘true’ parameter vector 0% lies with
a certain probability 1 — .. This (1 — a)-confidence region is determined by the
inequality

0" — 6)T (JT(é)J(é)) 0" — ) < N’fmS(é)Fa(m, N —m), (2.2.8)
where F,(m, N — m) is the upper a part of Fisher’s distribution with m and
N —m degrees of freedom. Geometrically these confidence regions are given by
the contours of S(6) (for linear models), cf. Figure 2.1(a).

The ellipsoid defined by (2.2.8), is centered at 6 and has its principal axes
directed along the eigenvectors of J7(0)J(#). Using the SVD (2.2.4) for J (), we
get o . . .

JE0)J(0) = V(0)=*()VT(0),
and the eigenvectors of JT(A)J(0) are the columns of the matrix V(). So, the
ellipsoid has its principal axes directed along the column vectors of the matrix
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Figure 2.1: A graphical representation of the confidence region in the 2-
dimensional case. a) Example of a fitness landscape S(f) for a linear model
and the contours corresponding to different confidence regions. b) Example of an
ellipsoidal confidence region and an accuracy sphere, where principal axes of the
ellipsoid, z1 and z2, define the new coordinate system which is a rotation of actual
parameter space (61;62). Clearly, 21 is well-determined, while 25 is not.

V(0). Moreover, the radii along these principal axes are inversely proportional to

the corresponding singular values o;, the diagonal elements of ¥(6). This all can
be seen by using the following transformation (rotation)

z=VT(0)(6* - 0), (2.2.9)

yielding

0* — )T (V(é)EQ(é)VT(é)) (0" —0) = 2" (0 = > 0?22 (2:2.10)
i=1

On the other hand, since S(0)/(N —m) is an unbiased estimator of o2, the equation

for the ellipsoid can be rewritten as

> otz =12, (2.2.11)

where 72 ~ mo?F, (m, N —m) is proportional to the variance in the measurement
errors. This form is more convenient to deal with because z can be considered
as a set of uncorrelated variables, and once the conclusion has been drawn for
the determinability of z, the problem can be transformed back, revealing us the
quality of 0.

Now, we assume that the model (2.2.1) is properly scaled, such that all pa-
rameter values are of the same order of magnitudes, and that we are interested
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only in the first few digits of the parameter values. Let us introduce the sphere
given by

m
§ 2 __ .2

Zi = Tes
i=1

where r. defines the level of accuracy one desires for the parameter estimates. For
instance, if the parameters are of order O(1) and one is interested only in the first
two digits to the right of the decimal point, then . = 0.01. In order to be able
to determine z; accurately enough, the radius along the ellipsoid’s ¢-th principal
axis shouldn’t exceed the radius of the sphere, which leads us to the following
inequality

o> (2.2.12)

Te

A graphical representation of the ellipsoid and the sphere for the 2-dimensional
case is given in Figure 2.1(b).

If only the first k& largest singular values satisfy (2.2.12), then only the first &
entries of z are estimated with the required accuracy and no sufficient informa-
tion is available for the remaining components of z. Each of the first k entries
of z defines a parameter or a linear combination of parameters which is well-
determined. If a principal axis of the ellipsoid makes a significant angle with the
axes in parameter space (i.e., there exists more than one significant entry in the
eigenvector), this implies correlation between parameters in 6.

To summarize, the level of noise in the data in combination with the accu-
racy requirement for the parameter estimates, defines the threshold for signifi-
cant singular values in the matrix ¥. The number of singular values exceeding
this threshold determines the number of parameter relations that can be derived
from the experiment. How these relations relate to the individual parameters is
described by the corresponding columns in the matrix V. The largest entries in
these columns indicate the well-determined parameters. This method is illustrated
on the basis of a simple enzymatic reaction in [21].

Finally, (2.2.11) indicates that having, for instance, two times more accurate
data so that the standard deviation o is halved, will decrease the radii along the
ellipsoid’s principal axis by a factor of 2. Therefore, in case of very small singular
values o; (i.e. strongly elongated ellipsoids) more accurate data obtained by
the experimentalist will not improve the quality of the corresponding parameter
estimates by much. In such a case, one certainly needs additional measurements
of a different type (e.g. different components, different time points, or in the case
of PDEs different spatial points).

Another way of assessing the information from the confidence region is by
looking at confidence intervals of the parameter estimates éi (i =1,2,...,m).
From (2.2.8) one can derive dependent and independent confidence intervals. The
dependent confidence interval is the intersection of the ellipsoidal region with the
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i-th parameter axis

To

0;: 0; — 0] <
J(vosovT®),

: (2.2.13)

i.e. one assumes that all other parameters are exactly determined. The indepen-
dent confidence interval is the projection of the ellipsoidal region onto the i-th
parameter axis

{oi 10, — 6| < rg\/(V(é)E—Q(é)VT(é))ii} . (2.2.14)

Clearly, small independent confidence intervals for 0; indicate that it is well-
determined. However, in some cases considering only individual confidence in-
tervals can be misleading. For instance, in the presence of strong correlations
between parameters, the dependent confidence intervals underestimate the confi-
dence region while the independent confidence intervals overestimate it.

From (2.2.7), the covariance matrix of  is given by

-1

o2 (JT(é)J(é)) = 2V(0)S2(H) VT (). (2.2.15)

Then, by denoting B(A) = V(0)2-2()VT (), the correlation coefficient between
0; and 0; can be computed by

V/BiiBj;
We note that by computing individual confidence intervals and correlations
between parameters, one is not able to assess the determinability of linear com-

binations of parameters. This can be seen only by using the first approach, i.e.
by inspection of the V' and ¥ matrix.

Pij (2216)

2.2.3 The Biological Test Problem: Gap Gene Circuits

We apply the methodology described above to assess parameter determinability
of gene circuit models for the gap gene network in early Drosophila development.
Here, we provide a brief outline of gap gene circuit models. More detailed infor-
mation can be found in [10, 12, 38].

Segment determination occurs during the blastoderm stage of Drosophila de-
velopment, between 1.5 and 3 hours after egg laying [7]. During this stage, the
embryo consists of a syncytium; there are no cell membranes between nuclei.
These nuclei constitute the basic objects of the model. They are arranged in a
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row along the A-P axis. Nuclei divide rapidly and synchronously [39]. Periods
between mitotic divisions are called cleavage cycles, where cycle n occurs between
mitoses n — 1 and n. The models considered here run from early cycle 13 (¢ = 0.0
min) to the onset of gastrulation at the end of cycle 14A (¢ = 71.1 min). Mitosis
occurs at the end of cycle 13, between ¢t = 16.0 min and ¢ = 21.1 min [39)].

Gene circuit models describe the change in concentrations of each gap gene
product in each nucleus over time by the following system of ODEs

N,

dge :

5/; = Ra® [ Y W29l +magl™ + ha | = Xagi + Da (911 — 205 + 9{-1) -
b=1

(2.2.17)
a and b denote regulated genes and regulators, respectively. a and b are integer
indices representing cad, hb, Kr, kni, gt as well as the terminal gap gene tailless
(tll). g¢ denotes the concentration of the product of gene a in nucleus i. The Bed
gradient remains constant over time, and is not regulated by the other genes in
the model. gZBCd denotes the concentration of Bed protein in nucleus i. Ny = 6 is
the number of genes in the model (excluding Bed), and the function

1 T
D(x) 5 (\/x2 +1 + 1) (2.2.18)
is a sigmoid regulation-expression function.

During mitosis, protein production is shut down. Nuclei divide instantaneously
at the end of mitosis and the distance between them is halved. Gap gene circuits
cover the region from 35% to 92% A-P position, which includes 30 (cycle 13) and
58 (14A) nuclei. Therefore, system (2.2.17) consists of 180 and 348 ODEs during
cycles 13 and 14A, respectively. Initial conditions are prescribed by maternal
gradients of Bed, Cad and Hb, and zero levels for all other gene products. We
use no-flux boundary conditions at ¢ = 0 and ¢ = 4y .

In system (2.2.17) there are m = 66 unknown parameters. These include the
genetic interconnection or regulatory weight matrix W of size N, x N, where the
matrix elements W” represent the regulation of gene a by gene b, while mater-
nal coefficients m, represent the regulatory effect of Bed on gene a. Regulatory
parameters represent repression (if < 0), activation (if > 0) or no interaction (if
~ 0). Other parameters include promoter thresholds h,, promoter strengths R,,
diffusion coeflicients D,, and decay rates \,. Estimates for these parameters have
been obtained in previous studies by fits to quantitative expression data [19] using
global search methods such as parallelized Lam Simulated Annealing [10, 12] or
the Stochastic Ranking Evolution Strategy (followed by downhill simplex direct
search) [14] and using a first-improvement local search method with randomized
order of examination [13]. In the latter the initial parameter estimates are ob-
tained by using a splitting strategy: parameters A\, and D, are estimated by
assuming that the protein production is constant within certain spatio-temporal
domains which reduces (2.2.17) to a system of linear equations uncoupled for each
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gene (the boundaries of production domains are obtained from data); parameters
in the nonlinear part of the model are estimated by fitting the production term in
(2.2.17) with the data given as input, as closely as possible, to the quadrilateral
production regions.

The data set used for model fitting consists of N = 2702 measurements of
protein concentrations at nuclear resolution (using multi-channel immunofluores-
cent antibody assays; available online [19]). Measurements were taken at one time
point during cycle 13 (Tp), and eight time points T; (1 <4 < 8) during cycle 14A
(Figure 2.2a). Measurements for the concentrations of all gene products repre-
sented in the model at all time points are available, except for Cad at T7 and
Ty, and T before T5. The level of measurement error in the data is less than
5%, see [40]. Each data point represents concentration values which have been
averaged across 9-62 embryos. Therefore, from the Central Limit Theorem (CLT)
we assume that the experimental errors are approximately normally distributed.

The quality of the parameter estimates is measured by the root mean square
(RMS) of the discrepancy vector

NQ N¢ Nc

RMS(O0) = \| S50 08 (02 (T Omodct — 6 (T, (22.19)

a=1 j=0 i=1

where N; = 8 is the number of time classes, N. is the number of nuclei and a‘}
is equal to zero for TIl at j = 0,1,2 and for Cad at j = 7,8, and is equal to one
otherwise. A solution is considered to be ‘good’ if RM S < 12.0 and if there are
no visible pattern defects in the model response [10, 12-14]. It is important to
note that the RM S only shows the quality of the fit of the model to the data but
does not give any information about the quality of the parameter estimates. Our
aim is to find the parameter estimates that give a good fit and to apply statistical
analysis in order to investigate how reliable these estimates are.
The search space for parameters is defined by the linear constraints

In(2
10.0 < R, <30.0, 0.0< D, <03, 50< n(2) <200, a=1,...,Ny,
‘ (2.2.20)
and by the nonlinear constraints
Ng
(Wogbue) + (magBe)? + (ha)? <104, a=1,...,N,, (2.2.21)
b=1

where g% . and g2 are the maximum values in the data set for proteins b and

Bed, respectively. Note that in [10, 12, 13] threshold parameters h, for genes
Kr, Kni, gt, and hb are fixed to negative values representing a constitutively
repressed state for the corresponding genes [10, 12]. Fixing some parameters to
specific values may severely restrict the search space leaving some solutions out of
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Cycle 13 Mitosis Cycle 14A
‘ T0 T1 T2 T3 T4 T5 T6 T7 TS
0.0 10.550 24.225 30.475 36.725 42.975 49.225 55.475 61.725 67.975
Time(mins)

200
150
100 |-

50

250

200
150
R

100
50

250
200 |-
150 |-

Relative Protein Concentration

100
50

A-P Position

Figure 2.2: Data. a) Time axis and the points when measurements were taken:
one in cycle 13 and eight in cycle 14A; the duration of mitosis is also indicated. b)
Quantitative gene expression data at different time points. Graphs show relative
protein concentration (with a range from 0 to 255 fluorescence units) plotted
against position on the A-P axis (the trunk region of the embryo, from 35% to
92% A-P position is scaled to relative co-ordinates [0, 1]).
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consideration. Contrary to their approach, we include threshold parameters for
these genes in the search by putting the constraints —10.0 < h, < 0.0.

In order to make the analysis of parameter estimation easier, we scale all
parameters used in (2.2.17) in the following way:

Ry, =0.1R,, D, =10D,, Ay = 10\s, W2 =10°W?, g = 10*ma, ha = ha,

for all genes a and b. Note that the choice of the scaling factors for R,, D,, and
Aq is based on the search ranges of the corresponding parameters. The choice
of the scaling factors for regulatory weights W? and maternal coefficients m, is
based on the fact that the maximum level of protein concentration for all genes
in the data set is of order O(10%). Thus, all scaled parameters are of order O(1).

2.3 Results and Discussion

We use 80 different parameter sets, obtained by global search [14], as initial guess
for the parameter values and apply the LM method to estimate all 66 unknown
parameters of the gap gene circuit model (2.2.17), such that the state variables
fit the given data (see Figure 2.2b), subject to (non)linear constraints (2.2.20)-
(2.2.21). Once the parameters are estimated we apply our statistical analysis to
asses the quality of the parameter estimates.

2.3.1 Optimization Results

Least squares estimation of the 66 parameters of the gap gene circuit model (full
search case) using the LM method yields a significant decrease of the RM S (2.2.19)
in all simulations (see Table 2.1). There are only 5 (out of 80) initial parameter
sets with RM S < 10.0 (best fit: RMS = 9.56). After using the LM method there
are 71 final parameter sets with RM S < 10.0, among which there are 64 with their
RM S evenly distributed between 8.37 and 9.43. None of these low-scoring param-
eter sets show any visible patterning defects (see Figure 2.1 in Suppl. Mat. [6]),
while most solutions with larger RM S do. As it is difficult to make a distinction
between these 64 parameter sets based on RM S values and expression patterns
only, we take all of them into account for our analysis. We note that there is no
guarantee that a better solution might not have been missed by our parameter
estimation procedure. However, since the initial points for LM search were found
by a global search method [14], it is likely that the search space for unknown
parameters is explored sufficiently enough.

Parameter estimates found by the LM method significantly improve solution
fits found in previous studies (see Figure 2.3) [10, 12-14]. However, there are two
problems, mentioned in [10, 12], that remain unsolved with the new parameter
estimates. The first one concerns the artificially high level of gap gene expression
during early cycle 13. The model responses are much larger than the data values
yielding large positive discrepancies (Figure 2.1 in Suppl. Mat. [6]). This is
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RMS<10.0  10.0<RMS<12.0  12.0<RMS<14.0 RMS>14.0

o 5 36 21 18
0 funt 71 3 1 5
Ofived 63 7 2 8

Table 2.1: RMS distribution for parameter estimates. Entries in the table show
the number of parameter estimates with corresponding ranges for RM .S, where
0™ correspond to initial parameter estimate; 0 fun and Hde correspond to the
parameter estimates after using the LM method in the full search case and the
case of fixed promoter thresholds, respectively.

probably due to the lack of protein production delays in the model [10]. The
second one concerns the incorrect shift of the posterior Hb domain (data not
shown), which is due to the absence of the terminal gap gene huckebein (hkb)
from our current models [10, 12].

Many parameters have a broad range of possible values, meaning that they
are not uniquely determined (Figures 2.2-2.3 in Suppl. Mat. [6]). Classification of
all parameter estimates for regulatory weights into ‘activating’, ‘repressing’ or ‘no
interaction’ categories is shown in Figure 2.4(a). The resulting network topology
is in very good agreement with the results obtained in [10, 12-14]. Specifically,

(A1) Cad and Bed activate gap genes hb, Kr, kni, and gt;
(A2) gap genes hb, Kr, kni, and gt show auto-activation;
(A3) TII represses gap genes Kr, kni, and gt;

(A4) gap genes with mutually exclusive expression domains strongly repress
each other; these correspond to weights Wg{f " Wf(tr, Wl and W)b..
Previous results also suggested that pairs of overlapping gap genes (hb and gt,
gt and kni, kni and Kr, as well as Kr and hb) either show no or weak repressive
interactions among each other. Note that some of these weights differ slightly
from earlier analyses [10, 14]. In all of these cases the difference is extremely slight
and depends on the threshold chosen to categorize an interaction as ‘very weak
repression’ or ‘no interaction’ (for example WA or WE in Figure 2.4(a); see also
scatter plots in Figure 2.2 in Suppl. Mat. [6]). It is therefore unlikely that such
differences are biologically significant. The only activation between overlapping
gap genes is predicted for the effect of Gt on hb. In addition, we find that Kni
activates gt in a majority of solutions. In both of these cases, the significance of the
interactions does not lie in their weak activating effect (which has no discernible
biological function), but rather in the absence of repression [10, 12].
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Figure 2.3: Model responses vs Data. Comparison between data (red lines),
patterns obtained by a parameter set from [10] (blue lines) and patterns with a
parameter set yielded from the LM search (green lines) for the expression of gap
genes Kr, Kni, gt, and hb at early (¢t = 24.225 min, 77, first row) mid- (¢ = 42.975
min, T}, second row) and late (t = 67.975 min, Ty, last row) cycle 14A. Axes are
as in Figure 2.2.
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bed cad hb Kr gt kni tll

cad | 56/5/3 ] 64/0/0 | 64/0/0 | 64/0/0 | 64/0/0 | 64/0/0 | 64/ 0/ 0
hb 0/0/64 | 0/1/63 0/ 0/64 0/56/ 8 | 1/26/37 | 64/0/0 | 3/37/24
Kr 0/0/64 | 0/0/64 | 20/44/ 0 0/4/60 | 64/0/0 | 38/26/ 0 | 64/ 0/ 0
gt 0/0/64 | 0/0/64 7/43/14 | 64/0/0 | 0/0/64 | 0/10/54 | 41/23/ 0
kni 5/ 4/55 0/6/58 | 64/0/0 | 33/31/0 | 46/18/ 0| 0/0/64 | 64/ 0/ 0
tll 39/ 7/18 | 10/ 6/48 | 38/15/11 | 60/ 2/ 2 | 57/ 3/ 4 | 62/ 2/ 0 | 0/10/54

bed cad hb Kr gt kni tll

cad | 47/8/5 | 60/ 0/0 ] 60/0/0 | 60/0/0 | 60/0/0 ] 60/0/0 | 59/1/0
hb 0/ 0/60 | o/0/60 ) 0/0/60 | 0/60/0 | 2/23/35 | 60/ 0/ 0 3/57/ 0
Kr 0/0/60 | 0o/0/60 | 18/42/0 | 0/1/59 | 60/ 0/0 | 28/32/0 | 60/ 0/ O
gt 0/0/60 | 0/0/60 | 26/32/2 | 60/0/0 | 0/0/60 | 0/38/22 | 35/25/ O
kni 3/1/56 | 0/0/60 | 60/0/0 | 23/33/ 4] 33/27/0] 0/0/60 | 58/ 2/ 0
tl 40/ 4/16 | 5/3/52 | 29/ 8/23 | 55/ 1/ 4 | 52/ 4/ 4 ] 60/ 0/ 0 | 0/11/49

Figure 2.4: Regulatory topology of the gap gene network. Maternal coefficients
and regulatory weight matrix for the gap gene system based on parameter sets
found by the LM method: a) 64 solutions in the full search case; b) 60 sets in
the case of fixed promoter thresholds. Triplets show the number of parameter
sets in which a regulatory weight falls into one of the following categories: re-
pression (values < —0.005)/ no interaction (values between —0.005 and 0.005)/
activation (values > 0.005). Based on the highest value in the triplets, the ta-
ble is coloured such that the background colours represent activation (green), no
interaction (light-blue), or repression (pink).
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2.3.2 Parameter Determinability

We applied the statistical analysis introduced in the Methods section to the 64
parameter sets obtained by the LM method to asses the quality of our estimates.
Ellipsoidal confidence regions corresponding to parameter estimates are given by
(2.2.10). None of the parameter estimates lies in the ellipsoidal confidence regions
of all other parameter sets. This does not necessarily imply that there is no unique
‘true’ solution for the parameter vector, since the ellipsoidal confidence regions—
or at least some of them—may still have a non-empty intersection.

For cach parameter set 0, the SVD (2.2.4) of the Jacobian J(0) yields the
matrices V(0) and £(f). In order to find the number of singular values in (f)
satisfying the accuracy inequality (2.2.12), i.e. to determine how many (combi-
nations of) parameters are determinable, we need to quantify r. and r,. We are
interested only in the first decimal digit of the scaled parameters, and therefore
we take r. = 0.1. For v = 0.05 we obtain r, ~ 9.4 RMS(6) (the choice of o does
not make much difference here due to the large value of N).

Investigation of all parameter sets shows that on average, 15 singular values
satisfy (2.2.12) meaning that at most 15 parameters or linear combinations of
them can be determined with one digit accuracy. There is a set of parameters
which have significant entries in the first 15 columns of all V' matrices. It includes
regulatory weights Wgad, Weed Weed Wied W promoter thresholds hic,., hgt,
hui, decay rate A\.qq, and promoter strength Ry ,. However, inspection of the first
15 columns of the V matrices shows that there is not a single parameter which
can be determined individually with the chosen accuracy. Thus, each column has
a number of significant entries implying that the principal axis of the confidence
ellipsoid is at an angle with the corresponding axes in parameter space. This
indicates the presence of correlations between parameters.

Dependent and independent confidence intervals for each parameter set can
be computed by (2.2.13) and (2.2.14), respectively. We check if the corresponding
confidence intervals for regulatory weights fall entirely into the ‘repression’, ‘no in-
teraction’, or ‘activation’ categories. Results in Figure 2.4(a) do not change when
only dependent confidence intervals are taken into account. However, including
independent confidence intervals one can no longer make correct qualitative con-
clusions about many of the entries in the regulatory weight matrix.

The sizes of the independent confidence intervals give an indication about
the determinability of the corresponding regulatory weights. There is a set of
eight regulatory weights which have relatively small confidence intervals for all 64
parameter sets (Figure 2.4 in Suppl. Mat. [6]). It includes WA, WL Wt WwKr
WI]’“(T, Wghtb, ngtt , and W]’””. For instance, Figure 2.5(a) shows the confidence
intervals for W . This regulatory weight is well determined qualitatively, i.e.
the independent conﬁdence intervals fall entirely into one category and therefore
the type of the regulation can be concluded. The model predicts that Kr does not
regulate hb. Note that the confidence intervals for these eight parameters in the
scaled case are of order O(10~1) and therefore they are not determinable with the
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chosen accuracy level r. = 0.1. In fact, they are determinable only if we choose
re = 1.0.

The remaining regulatory weights have larger independent confidence intervals
(Figure 2.4 in Suppl. Mat. [6]) and therefore they are not determined quantita-
tively. Among them are some regulatory weights for which qualitative conclusions
can be deduced from the results. For example, panels (d) and (e) of Figure 2.5
show the confidence intervals for regulatory weights W,?fl’l and Wg{f ", respectively.
Although these two regulatory weights are not determinable quantitatively, there
is a qualitative difference between them. The independent confidence intervals for
ngt( " do not extend significantly into the positive part of the plane. Therefore, one
can make a qualitative conclusion for this weight: the model predicts that Kr does
not activate gt. Note that this is a weaker conclusion than predicting repression
for this weight from Figure 2.4(a). In contrast, we cannot draw any qualitative
conclusions about W}*.. Thus, our analysis does not confirm the repression of
kni by Hb inferred from Figure 2.4(a) (but does not contradict it either). To
demonstrate that repression of kni by Hb is not strictly necessary to fit the data
correctly, we fix this weight to zero while performing parameter estimation. The
obtained parameter set has a RM S = 9.24 and produces patterns with no visible
defects (Figure 2.7 in Suppl. Mat. [6]).

Based on the confidence intervals, we summarize the qualitative conclusions
for the most important regulatory weights in the gap gene system:

(B1) Cad and Bed do not repress gap genes hb, Kr, and gt; no conclusions
can be made for regulation of kni by Cad and Bed;

(B2) gap genes hb, Kr, kni, and gt do not show auto-repression;

(B3) Tl does not activate gap gene gt; no conclusions can be made for
regulation of Kr and kni by T1I;

(B4) gap genes with mutually exclusive expression domains gt and Kr do
not activate each other; no conclusions can be made for regulatory
interactions between hb and kni.

Interactions between overlapping gap genes are mostly weakly repressive or ab-
sent, and are largely consistent with Figure 2.4(a): confidence intervals for W/",
W Wi Wghtb, and W;“t"i indicate no interaction, while confidence intervals for
W,f:n, and WE" suggest the absence of activation. Finally, confidence intervals
for W,fg indicate the absence of repression.

Obviously, our qualitative conclusions (B1)-(B4) are weaker than the con-
clusions (A1)-(A4) made from Figure 2.4(a) by considering only the values of
parameter estimates. Note that for all genes, promoter thresholds h, promoter
strengths R, diffusion coefficients D, and decay rates A have extremely large in-
dependent confidence intervals (Figure 2.5 in Suppl. Mat. [6]) meaning that all
these parameters are not determinable.
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Figure 2.5: Confidence intervals for parameter estimates. Dependent (green lines)
and independent (red lines) confidence intervals for regulatory weights WA" (a),
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(d), and Wq{f " (e) in the full search case and for regulatory weights

Weed (¢) and ngtﬁ (f) in the case of fixed promoter thresholds. Confidence
intervals are plotted along the vertical axis for all 64 parameter sets in the full
search case and 60 parameter sets in the case of fixed promoter thresholds.
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Figure 2.6: Correlations between parameters. Diagonal blocks corresponding to
gap genes hb (ae), Kr (b,(f), gt (c,g), and kni (d;h) from the mean correlation
matrix in the full search case (a,b,c,d) and the mean correlation matrix in the

case of fixed promoter thresholds (e,f,gh).
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The large difference between dependent and independent confidence intervals
indicates the presence of correlations between parameters. Individual confidence
intervals are not informative for understanding the reason of poor determinability
of parameters when their estimates are correlated. Using (2.2.16), we find the cor-
relation matrix for each parameter set. To detect the most significant correlations
between parameters present in all correlation matrices, we calculate an averaged
matrix—which we call the mean correlation matrix—whose entries are the mean
values of the corresponding correlation coefficients in the individual correlation
matrices. The obtained mean correlation matrix has a block diagonal structure
such that each block corresponds to a given gene and contains the correlation
coefficients between parameters for the same gene (Figure 2.6 in Suppl. Mat. [6]).
Panels (a),(b),(c), and (d) of Figure 2.6 show the blocks corresponding to gap
genes hb, Kr, gt, and kni, respectively. Note that the correlations corresponding
to the most significant entries in the mean correlation matrix (with absolute val-
ues greater than 0.5) are statistically present in all individual correlation matrices
because corresponding standard deviations are relatively small (less than 0.2).

2.3.3 Parameter Estimation with Fixed Promoter Thresh-
olds

The main insight from the mean correlation matrix is that we observe strong
correlations of regulatory parameters with promoter thresholds. For instance,
regulation of hb, Kr, gt, and kni by Bed and Cad, and auto-regulation are all
strongly correlated with their corresponding h, (see panels (a),(b),(c), and (d) of
Figure 2.6). This may explain the poor determinability for these interactions. We
checked this hypothesis by fixing promoter thresholds A, for gap genes hb, Kr, gt,
and kni in (2.2.17) to a value of —3.5, similar to the approach used in [10, 12, 14].
We find that also in this case, least squares estimation using the LM method yields
a significant decrease of the RM S (see Table 2.1). There are 63 parameter sets
with RM S < 10.0 (best fit: RMS = 8.66). Among these, there are 60 parameter
sets which have no visible patterning defects (Figure 3.1 in Suppl. Mat. [6]) and
these were taken into account in the following analysis.

The resulting regulatory network topology (see Figure 2.4(b)) largely corre-
sponds to that obtained without fixing threshold parameters (full search case)
with a few minor exceptions. WE" Wk and W;“t"i now all fall into the ‘no
interaction’ category while the full search found mutual repression between Kr
and kni, and activation of gt by Kni (compare panels (a) and (b) of Figure 2.4).
As discussed above, these changes represent very small quantitative changes in
the parameter values and depend on the (somewhat arbitrary) choice of cut-off
between regulatory categories (compare scatter plots in Figures 2.2 and 3.2 in
Suppl. Mat. [6]). Therefore, they are unlikely to be biologically significant, while
all our main qualitative conclusions (A1)-(A4) on gap gene network topology are
fully consistent with our results using fixed threshold parameters.

On the other hand, we observe significant improvement in determinability
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of some regulatory weights when we compute dependent and independent confi-
dence intervals for each parameter set by (2.2.13) and (2.2.14), respectively (see
Figure 3.4 in Suppl. Mat. [6]). As an example, Figure 2.5(c) shows the confi-
dence intervals for the regulatory weight W,fgd with fixed promoter thresholds.
There is a quantitative improvement in the determinability of this parameter in-
dicated by smaller independent confidence intervals in the case of fixed threshold
parameters (compare panels (b) and (c¢) of Figure 2.5). But there are also qual-
itative changes. The model now predicts the activation of hb by Cad. Similarly,
Figure 2.5(f) shows the confidence intervals for the regulatory weight ngt“’ with
fixed promoter thresholds. Comparison of the panels (e) and (f) of Figure 2.5
shows that there is no quantitative difference between the two approaches for this
weight. However, we see a qualitative improvement for the case of fixed threshold
parameters. The independent confidence intervals in Figure 2.5(f) lie in the nega-
tive part of the plane for almost all parameter estimates and therefore, repression
is now predicted for this weight while the plot in Figure 2.5(e) corresponding to
full search case predicts only the absence of activation.

Based on the confidence intervals, we summarize the qualitative conclusions
for the essential regulatory weights in the gap gene model in the case of fixed
promoter thresholds:

(C1) Cad activates gap genes hb, Kr, kni, and gt;

(C2) Bed does not repress gap genes hb, Kr, and gt; no conclusions can be
made for regulation of kni by Bed;

(C3) gap genes hb, Kr, and gt have auto-activation; gap gene kni does not
have auto-repression;

(C4) Tl does not activate gap gene gt; no conclusions can be made for the
regulation of Kr and kni by TII;

(C5) mutually exclusive gap genes gt and Kr repress each other; no conclu-
sions can be made for regulations between hb and kni.

For interaction among overlapping gap genes, the confidence intervals in the case
of fixed promoter thresholds are fully consistent with those for the full search case,
even though three of these interactions fall into different categories in the analysis
based on parameter values only (compare panels (a) and (b) of Figure 2.4). This
shows that confidence intervals can be used to check the significance of ambigu-
ities in predicted interactions based on parameter classification alone. However,
although conclusions (C1)-(C5) show qualitative improvement for some regula-
tions in comparison with (B1)-(B4), they are still weaker than those drawn from
classifying parameter values only (Al)-(A4).

Similar to the full search case, we compute the mean correlation matrix to
detect the significant correlations between parameters (see Figure 3.6 in Suppl.
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Mat. [6]). The obtained mean correlation matrix also has a block diagonal struc-
ture. However, there is a number of significant entries in off-diagonal blocks.
Panels (e),(f),(g), and (h) of Figure 2.6 show the diagonal blocks corresponding
to gap genes hb, Kr, gt, and kni, respectively. In the absence of dominating
correlations between regulatory parameters and thresholds h, we can now iden-
tify biologically significant parameter correlations. Here we restrict ourselves to
describe some correlations which can be interpreted in biological terms with the
emphasis on those for which at least one parameter is ’sloppy’:

e Strong negative correlation is present between W}*, and my,;. That is,
strong repression of kni by Hb needs to be overcome through increased
activation by Bed. Note that both parameters are poorly determined. In
the circuit with Wb, set to zero, Bed actually represses kni (see Table 2.1 in
Suppl. Mat. [6]). This contradicts genetic and molecular evidence indicating
that both repression of kni by Hb and its activation by Bed are present in

the embryo[41, 42].

e There are complex correlations between the (very small, or absent) repres-
sive effects of Hb on Kr and gt, and the activation of those two genes by
Bed. This confirms earlier results indicating that the balance between ac-
tivation and repression from maternal genes is crucial for correct gap gene
expression [43].

e The importance of the balance between activation and repression is high-
lighted by the following: repression of kni and gt by TIl can be compensated
through increased activation by Cad, repression of kni by Kr can be com-
pensated through increased activation by Bed, while repression of kni by
Gt can be overcome by increased kni auto-activation in the posterior of the
embryo.

e Increased hb auto-activation is compensated through decreased activation
of hb by Bed indicating that broad maternal activation and auto-regulation
are somewhat redundant.

e There is a strong positive correlation present between mpg, and mg:. This
correlation is most likely indirect, due to repressive interaction between gt
and Kr. Increased activation of Kr by Bcd must be balanced by increased
activation of gt by Bed to maintain balance of mutual repression between
Kr and gt.

e There are correlations between activation of Kr and gt by Bed and their
respective promoter strengths and decay rates. Such correlations are to be
expected as stronger expression or increased protein stability can compen-
sate for weaker activation by Bed.

We note that some of the ‘sloppy’ parameters, such as ngtﬁ, W}qfr, W,fg”, and

WL are not (strongly) correlated to any of other parameters and their sloppiness
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remains unclear. The last is completely uncorrelated parameter. Posteriorly Kr
is strongly repressed by Gt and somewhat weaker by Hb and Kni. Apparently,
due to these interactions repression of Kr by TIl is somewhat redundant in the
model.

In summary, the above suggests that complex correlations between regulatory
weights as well as correlations between those weights and promoter strength or
protein decay rates are an unavoidable property of complex biological networks,
as some interactions or changes in expression rate can always compensate for
changes in others.

2.3.4 Parameter Correlations: Data vs Model

Poor determinability of most of the parameters in the gap gene model is due to
correlations between parameters. Here we investigate whether these correlations
are caused by shortcomings of the data or the model.

At first glance, it seems that insufficient accuracy of the data cannot be the
reason for correlations. More accurate data would simply make the ellipsoid con-
fidence region shrink but not rotate. Therefore, it cannot significantly improve
the determinability of the parameters (see also [5]). We checked this by assuming
that a larger data set was available: Say we had measurements for all gene prod-
ucts, in all nuclei, at 71 uniformly distributed time points (instead of 9). With
these choices the total number of measurements would be N = 21180. Suppose
that we have found that one of our parameter estimates 6 minimizes the sum
of squares (2.2.2). Since the Jacobian depends only on the model responses and
not on the values of the data, we can generate a new Jacobian .J (é) including all
‘chost’ data points. From the SVD of the corresponding J(6) we get the matrices
V() and () which define new ellipsoidal regions. The ellipsoids are slightly
rotated in comparison with the initial ones but not enough to make the principal
axes of the ellipsoid get closer to the parameter axes, i.e. the correlations between
parameters are not removed.

Each data point is actually a sample mean, obtained by averaging gene concen-
trations from individual embryos. Therefore, measurement errors most likely have
a normal distribution with zero mean. However, their standard deviations may
vary for different data points. Assume that for the i-th data point K; measure-
ments from individual embryos are used and assume that the standard deviation
of this sample s; is known. Then the normal distribution of the sample mean has

a standard deviation which can be estimated by o; = \/517{ For the dataset we

used, both s; and K; are available from the FlyEx databasle [19]. Once all o; are
found, we can use a weighted least squares estimation such that § minimizes the
sum

N
S(0) = wi(ye, (t:, 0) — i)
=1
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instead of (2.2.2). We take the weights w; inversely proportional to ¢; such
that the weighted least squares yields the maximum likelihood estimate. Also in
this case, we find that the obtained parameter estimates have the same type of
correlations as those obtained with an ordinary least squares fit (data not shown).

Correlations between parameters can be due to hidden dependencies in the
data set. To investigate whether this is the case, we conduct an inverse exper-
iment. We choose one of the parameter sets obtained by the LM search, with
an RMS = 8.38, and we denote it by #*. By integrating the model equations
with 6" we generate an exact data set at the same data points as the initial data
set. To the exact data values we add errors drawn from the normal distribution
with zero mean and standard deviation equal to 8.5. From the exact and the
perturbed data set, we compute RM S(6*) = 8.17. The perturbed dataset is used
for the parameter estimation by means of the LM search. By constructing this
inverse problem, we make sure that the assumption about the independence of the
measurement errors is correct. With 40 different initial values of 6 from [14] we
obtain 34 parameter estimates having RM.S between 7.95 and 8.25. Inspection
of the corresponding V' matrices shows that parameters are not determinable due
to the correlations, similar to the original problem.

We conclude that the observed correlations between parameters are a prop-
erty of the model, not of the data. Since an explicit form of the dependence
of the state vector on the parameters is not known, the use of reparametriza-
tion techniques is not feasible. Note that the majority of parameters in (2.2.17)
appear in the argument of the sigmoid regulation-expression function ®. If the
model (2.2.17) is used to obtain only qualitative information, such as the signs
of regulatory weights, then the particular mathematical form of this function is
of no importance [38]. However, it has to be studied if the choice of the sigmoid
function affects the determinability of parameters.

2.4 Conclusions

In this paper we have applied the Levenberg-Marquardt (LM) optimization method
to obtain a set of parameter estimates for gap gene circuit models. We then used
statistical analysis to study the quality of these estimates, i.e. how well the pa-
rameters are determined with the available experimental data. Our analysis shows
that none of the model parameters can be determined individually with reason-
able accuracy due to correlations between parameters. Therefore, current gene
circuit models cannot be used as a tool to infer quantitative regulatory weights
for the gap gene network.

With this caveat in mind, however, it is still possible to draw qualitative
conclusions on the regulatory topology of the gap gene network. These conclusions
are weaker than, but entirely consistent with those made by only considering
the values of parameter estimates [10, 12-14]. Therefore, they are also fully
consistent with genetic and molecular evidence on gap gene regulation (see [10],
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and references therein).

Our analysis allows us to determine exactly which interactions predicted by
gene circuit analysis remain ambiguous. If considered in isolation, this ambiguity
poses a serious problem for inferring regulatory interactions from expression data
as it leaves important aspects of gap gene regulation unresolved. We show that
more and better data will not necessarily improve parameter estimates. On the
other hand, our results using fixed threshold parameters indicate that at least
some of these ambiguous aspects can be resolved by reducing parameter correla-
tions through fixing some parameters in the optimization. Others may disappear if
more realistic models are used: for instance, models incorporating protein produc-
tion delays, or reduced models incorporating cad and tll as time-variable external
inputs as these genes are not regulated by gap genes themselves. Further research
into parameter correlations within complex network models will be required to
explore what kind of improved models or optimization constraints lead to better
parameter determinability.

Still it remains doubtful whether an approach can be found which leads to
complete parameter determinability. The study by Gutenkunst et al. [5] indicates
that parameter sloppiness is a very common phenomenon among models used
in systems biology. Our results corroborate this as it is difficult to see how,
for example, correlations between regulatory weights could be eliminated from a
network model.

The situation is not hopeless, however, as genetic evidence can help us clarify
these remaining ambiguous interactions. Such evidence is itself ambiguous in
many cases, as it is often difficult to interpret mutant phenotypes. But it is
also complementary to and completely independent of the evidence gained by
reverse engineering approaches such as the one used here [10]. This means that
its ambiguities are often complementary to the ones described in this study. For
instance, while cross-repressive feedback between hb and kni is not supported
(but also not contradicted) by our current models, it is very strongly supported by
genetic evidence [42]. Based on this, we conclude that systems biology approaches
are most successful if they combine experimental and theoretical insights in a
consistent and powerful manner.

Other biological interpretations of parameter sloppiness are possible. Our
results on the interactions between hb and kni indicate that although present in
the Drosophila embryo, they are not strictly necessary to maintain correct gap
gene expression, and may be at least partially redundant with or replaceable by
other regulatory interactions in the system. It is interesting to think about this
from an evolutionary point of view, as such redundancy or replaceability allows
the network to be re-wired while maintaining correct gap gene expression.
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2.5 Appendix: Technical aspects

Here, we outline some general remarks one should be aware of to apply the
methodology in practice.

Remark 2.5.1. If the model is given by a system of Partial Differential Equations
(PDEs), then by applying a spatial discretization, it can be reduced to the system
of Ordinary Differential Equations (ODEs) (2.2.1). However, in such a case one
has to be careful with the choice of the grid size of the spatial discretization.
On the one hand, the grid should be fine enough, so that the numerical errors
introduced by spatial discretization are negligible in comparison with the level
of noise in the data. On the other hand, requiring an extremely fine grid would
increase the size of the system (2.2.1). The latter may be crucial in terms of
computational complexity.

Remark 2.5.2. When the model includes algebraic equations, the systems of
ODEs (2.2.1) and (2.2.6) change to Differential Algebraic Equations (DAEs).
Since we use an implicit solver for the time integration, the method we have
described is readily applicable for that type of models.

of o
Remark 2.5.3. Given f and y( in (2.2.1), the partial derivatives y’ 00, 8};;
(i=1,...,m)in (2.2.6) can be, in principle, found analytically. However, for large

scale problems when f has a complicated nonlinear form, this can be a tedious
work to do. In such cases, these derivative functions can be generated automat-
ically by using a symbolic mathematics package, like Maple [44] or Mathematica
(Wolfram Research, Inc).

Remark 2.5.4. Numerically solving (2.2.6) has limitations for large scale prob-
lems due to computational costs. Another approach to approximate the matrix
J(0) could be by means of divided differences. The j-th column of J(6) is then
given by

Y (0) _ Y(07) —Y(6)

893‘ - 59} ’

where the vector 7 is obtained by a small perturbation 5§j in the j-th entry of
6. In this case, for one Levenberg-Marquardt (LM) step system (2.2.1) has to be
numerically integrated m+1 times. With regard to the computational costs, when
f is non-linear, it is more expensive than the approach where the linear systems
of variational equations are solved. Another drawback of the divided difference
method is that the numerical approximations introduce additional errors.

Remark 2.5.5. For large scale problems computation on a single processor can
become unfeasible and one needs to use a parallel machine. Parallelization of
the computational work when (2.2.1) and (2.2.6) are solved numerically is only
possible at the level of the time step of the integrator. Therefore, it will be
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inefficient due to heavy communication. The advantage of the divided difference
approach is that in this case (2.2.1) is solved for m + 1 different values of 6
independently of each other. Therefore, parallelization of the computational work
by divided difference method is trivial and can be very efficient.

Remark 2.5.6. Variational equations (2.2.6) coupled with (2.2.1) result in a
system consisting of m + 1 subsystems of the size n. The Jacobian of the coupled
system has the following form:

of
P 0 ... 0

Yy
o0t o0’f oy  Of

o0,0y T oy2 o0, oy OV
: 0o .0
oot oy L of
00,0y = 0y2 00,, 0y

The structure of the Jacobian reveals the one-way coupling of the system. Using
an implicit scheme we can exploit this specific coupling between (2.2.1) and (2.2.6)
in an efficient way. At each time step 7 integrating first (2.2.1) provides the
solution vector y. This requires the LU decomposition of I,,, — Tg:,. Using this

LU decomposition the calculation of g

substitution and backsubstitution.

o from (2.2.6) reduces to a simple forward
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Chapter 3

Parameter estimation for a
Model of Gap Gene Circuits
with Time-Variable External
Inputs in Drosophila

Abstract

We study a model for spatio-temporal pattern formation of gap gene products
in the early development of Drosophila. In contrast to previous studies of gap
gene circuits, our model incorporates a number of proteins as time-variable ex-
ternal inputs, including a protein Huckebein which is necessary for setting up the
correct posterior domain boundary and its shift in time for the gap gene hunch-
back. Unknown model parameters are inferred by fitting the model outputs to
the gap gene data and statistical analysis is applied to investigate the quality of
the parameter estimates.

Our results, while being consistent with previous findings, at the same time
provide a number of improvements. Firstly, it takes into account correct regu-
lation of hunchback at the posterior part of the embryo. Secondly, confidence
interval analysis shows that the regulatory topology of the gene network in our
model which consists of parameters representing the regulation between genes is
more consistent with experimental evidence.

Our results also reveal that for data fitting the Weighted Least Squares sum
is a more suitable measure than the Ordinary Least Squares sum which has been
used in all previous studies. This is confirmed by a better fit of the boundaries
of the gap gene expression domains and an absence of patterning defects in the
model outputs, as well as by a correct prediction of mutant phenotypes.
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3.1 Introduction

Gap genes constitute the first step in a regulatory cascade that leads to the
determination of body segment positions along the major (or anterior-posterior,
A-P) body axis during early Drosophila development [8]. They are involved in the
regulation of pair-rule and segment-polarity genes, the latter of which establish a
segmental pre-pattern of gene expression by the onset of gastrulation.

The gap gene system in the early Drosophila melanogaster is a well studied
developmental gene network (see [10] and references therein). Initially the system
is set up by spatial gradients of maternal proteins Bicoid (Bed), Hunchback (Hb),
and Caudal (Cad). Zygotic gap genes, such as hunchback (hb), Krippel (Kr),
knirps (kni), and giant (gt), are regulated by these maternal gradients, which
establishes their expression in broad, overlapping regions of the embryo. These
spatial domains of gap gene expression are stabilized and refined by gap-gap cross-
repression and regulation by zygotic terminal gap genes tailless (tll) and huckebein
(hkb).

The gap gene system has been studied extensively using a model of genetic
regulatory networks described by a system of reaction-diffusion equations [10].
Quantitative expression data available for all relevant maternal coordinate and
gap genes [18, 19] (except for hkb) have been used to infer regulatory interactions
between gap genes using different global and local optimization strategies [6, 10,
12-14]. The gap gene system has been modeled by a 6-gene network, including hb,
Kr, kni, gt, tll, and caudal (cad). The maternal protein Bed has been incorporated
as an external input constant in time. Although the obtained results have given
significant insight into the underlying mechanism of the gap gene system, further
investigation is needed for some important issues.

Results for the 6-gene model revealed a major patterning defect for the ex-
pression of gap gene hb. The posterior boundary of the posterior hb domain was
not established correctly. Moreover, anterior shift of this boundary as well as the
shift of the domain peak found in data was not reproduced by model outputs.
This was explained by the absence of the terminal gap gene hkb in the 6-gene
model. Huckebein (Hkb) is the main repressor of hb in that region of the em-
bryo [45]. The missing hkb gene was also predicted to have an influence on the
regulatory topology inferred from data. The model wrongly predicted that hb is
not regulated by Tailless (T1l), while it is known that hb is activated by TIl [45].
This contradiction was explained by the ambiguous role of T1l in the regulation
of hb. On the one hand, in the absence of the repressor Hkb, T1l has to take over
its repressing function. On the other hand, T1l is an activator of hb. This dual
role yields a cancellation effect and the model predicts that hb is not regulated by
T1l.

Results of a parameter determinability analysis for the 6-gene model in [6] show
that the parameter estimates corresponding to the regulation of cad and tll by gap
genes are highly unreliable. The observed uncertainty was explained by the fact
that the products of maternal genes (such as cad) and terminal gap genes (such as
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tll) regulate gap genes, but not vice versa. Despite the reasonable fit obtained for
the expression of cad and ¢l in the 6-gene model, the unrealistic assumption that
their dynamics is prescribed by the regulation by gap genes increases the level of
uncertainty in the gap gene model. Due to the correlations between parameters
in the model, this influences the determinability of other, biologically relevant,
regulatory weights.

In this work we consider a reduced 4-gene model, including only gap genes hb,
Kr, gt, and kni. In contrast to the 6-gene model, we now incorporate cad and tll
as time-variable external inputs. Thereby, in our model the expression of cad and
tll is obtained directly from data rather than being computed as state variables.
A second important change is that data for gene hkb have become available [46].
Similar to tll, the terminal gap gene hkb is not regulated by other gap genes and
therefore, it is also included in the model as time-variable external input. Finally,
we incorporate the maternal gradient Bed in our new model as external input,
similar to previous studies. However, the data suggest that the protein Bed varies
with time rather than being constant. Therefore, contrary to the 6-gene model,
we allow Bed to be time-variable input.

Thus, we replace the previously studied 6-gene network by a more realistic,
reduced 4-gene network with four external time-variable inputs. This significantly
decreases the size of the problem, both with regard to the number of equations in
the model to be solved and the number of unknown parameters to be estimated.
We will infer the regulatory topology and we will investigate the parameter de-
terminability for the reduced model. Most importantly, we will show that despite
the simplifications we made, the reduced model not only gives comparable results
as the 6-gene model but also overcomes the above mentioned shortcomings. Note
that the reduced gap gene network has also been recently investigated in [15], but
in that study Bed has been kept constant in time and hkb has not been used in
the model.

Inference of the parameters is done by fitting model outputs to experimental
data, i.e., by minimizing a cost function which measures the difference between
them. The choice of the cost function is important for obtaining unbiased esti-
mates and the computation of statistical quantities for parameter estimates (such
as confidence intervals and correlations coefficients). It greatly depends on the
nature of errors in the data. In all previous works [6, 10, 12-15], the Ordinary
Least Squares (OLS) measure has been used for the optimization and the statis-
tical analysis. It is well known that OLS is suitable if the measurement errors
are independent of each other and normally distributed with a constant standard
deviation. However, the data for the gap genes suggest that the level of noise in
the measurements varies both in space and in time. In such case, the Maximum
Likelihood Estimates (MLE) can be obtained only if the Weighted Least Squares
(WLS) sum is used as a distance measure with the weights chosen to be inversely
proportional to standard deviations [22]. Since the standard deviations are avail-
able from [19], there is no additional computational work needed when the WLS
sum is minimized in comparison with the OLS case. In this work we will obtain
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parameter estimates and study the parameter determinability using both the OLS
and the WLS measures, and we will provide a detailed comparison between both
results. We will demonstrate that for the problem under consideration, WLS gives
indeed a more suitable measure than OLS.

The chapter is organized as follows. In Section 3.2 we describe the necessary
materials and methods that are used. In Section 3.3 we give the results of our
simulations. We conclude this chapter with a discussion in Section 3.4. In the
Appendix we include all additional plots.

3.2 Materials and Methods

3.2.1 Gap Gene Circuits

Segment determination occurs during the blastoderm stage of Drosophila devel-
opment, between 1.5 and 3 hours after egg laying [7]. During this stage, the
embryo consists of a syncytium: there are no cell membranes between the nuclei.
These nuclei constitute the basic objects of the model. They are arranged in a
row along the A-P axis. Nuclei divide rapidly and synchronously [39]. Periods
between mitotic divisions are called cleavage cycles, where cycle n occurs between
mitoses n — 1 and n. The models considered here run from early cycle 13 (¢ = 0.0
min) to the onset of gastrulation at the end of cycle 14A (¢ = 71.1 min). Mitosis
occurs at the end of cycle 13, between ¢t = 16.0 min and ¢ = 21.1 min [39].

Gene circuit models describe the change in concentrations of each gap gene
product in each nucleus over time by the following system of ODEs

N, N

dg? g .

5; =Ra® | > Wlgl+> Eigf +ha | — Aagi + Da (981 — 207 + g81) ,
b=1 e=1

(3.2.1)
where a and b refer to regulated gap genes and regulators, respectively, and e
refers to external regulators. Here, a and b are integer indices representing hb,
Kr, kni, and gt; e is an integer representing the regulators Bed, Cad, T1l, and Hkb.
The independent variable g{ denotes the concentration of the product of gene a in
nucleus ¢; the input variable g denotes the concentration of the external protein
e in nucleus i. N, = 4 is the number of gap genes and N, = 4 is the number of
external proteins in the model. The function

1 x
D(x) 5 (\/x2 +1 + 1) (3.2.2)
is a sigmoid regulation-expression function. The first term in the right hand side of
(3.2.1) models the protein synthesis, while the second and third terms correspond
to protein decay and protein diffusion, respectively.

During mitosis, protein synthesis is shut down. Nuclei divide instantaneously
at the end of mitosis and the protein concentrations from each mother nucleus
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Figure 3.1: Quantitative gene expression for Hb, Bed, and Cad at ¢t = 0. Lines
show the relative protein concentration (RPC) plotted against the position on
the A-P axis (the trunk region of the embryo, from 35% to 92% A—P position is
scaled to relative co-ordinates [0, 1]).

are copied to its daughter nuclei. The distance between nuclei is halved which
is implemented in the model by reducing the diffusion coefficients D, by the
factor of 4. Gap gene circuits cover the region from 35% to 92% of the A-P axis,
which includes N, = 30 and N, = 58 nuclei at cycles 13 and 14A, respectively.
Therefore, system (3.2.1) consists of 120 and 232 ODEs during cycles 13 and 14A,
respectively. At the boundary points i = 1 and i = N, we replace the diffusion
term in right hand side of (3.2.1) by D, (g¢,, —g{) and Dy (g{_, —g{"), respectively.
This way we mimic the homogeneous Neumann (no flux) boundary conditions.

Gap genes Kr, kni, and gt are not expressed in the embryo before cycle 13.
Therefore, zero initial conditions are taken for these. The initial condition for hb
is prescribed by the maternal gradient of Hb shown in Figure 3.1. It is obtained by
averaging the measurements from 18 individual embryos at cycle 12 (t = —6.2)
and then using linear interpolation between this averaged pattern and hb data
at cycle 13 (¢t = 10.55). Measurements for hb from individual embryos at cycle
12 (data without background) and the averaged hb pattern at cycle 13 are all
available from [19].

In system (3.2.1) there are m = 48 unknown parameters. These include the
genetic interconnection or regulatory weight matrices W and E of size N, X
Ny and Ny x N, respectively. The matrix elements WP and E¢ represent the
regulation of gap gene a by gene b and gene e, respectively. Regulatory parameters
represent repression (if < 0), activation (if > 0) or no interaction (if ~ 0). The
other parameters are promoter thresholds h,, promoter strengths R,, diffusion
coefficients D,, and decay rates \,.

Data The data set used for model fitting consists of N = 1976 measurements
of protein concentrations (available from [19]). Measurements were taken at one
time point during cycle 13 (7}), and eight time points 7; (1 < i < 8) during
cycle 14A (Figure 3.2). Measurements for the concentrations of all gap gene
products represented in the model at all time points are available. Each data point
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Cycle 13 Mitosis Cycle 14A
T0 Tl T2 T3 T4 T5 T6 T7 TS
0.0 10.550 24225 30.475 36.725 42.975 49.225 55.475 61.725 67.975
Time (min)

Figure 3.2: Time axis and the points when measurements were taken: one in cycle
13 and eight in cycle 14A; the duration of mitosis is also indicated.

represents concentration values which have been averaged over the bin (volume)
from the measurements taken in individual embryos [18]. The number of embryos
varies from 9 to 62 for different genes and different time points (with exception
for kni at Ty where only measurements from 4 embryos are available). Since
from each embryo a few values per bin are available, the number of individual
measurements used in the computation of the averaged value (sample mean) is
much larger than the number of embryos. Using the Central Limit Theorem
(CLT) we may assume that the experimental errors are approximately normally
distributed [47]. Figure 3.3 shows the gap gene data at all time points (solid lines)
and the standard deviations of the experimental errors (shaded areas).

To our knowledge, the presence of any hidden dependencies in the available
dataset has not been investigated in literature. Although the measurements from
different embryos are most likely to be uncorrelated (assuming that there was no
systematic error in experiments), it is not known whether the gene expression data
in the same embryo are correlated. In this work, we assume that the experimental
errors are independent of each other.

External Inputs To solve (3.2.1), one needs the level of gene expression for
external inputs at all ¢ € [0, T], where T' = 71.1. Measurements for Bed, Cad, and
TIl at all time points T; (0 < i < 8) are available from [19] except for Bed and
Cad at T7 and Ts. We obtain the patterns for Cad at those missing time points
by integrating measurements from individual embryos (from [19]), 13 at T; and
12 at Tg. A similar procedure for Bed however leads to an artificially high level of
gene expression for Bed at 77 and Ty and therefore they are not used here. Data
for Hkb at all time points T; are obtained from [46]. Figure 3.4 shows the relative
protein concentration of external genes at all time points.

Genes TIl and Hkb are not expressed before cycle 13 and therefore we use a
zero level for them at ¢ = 0. Bed and Cad at ¢ = 0 have initial maternal gradients
shown in Figure 3.1. We obtain them in the same way as the initial data for hb,
i.e., by averaging the data from individual embryos at cycle 12 and then using
linear interpolation between the patterns at cycles 12 and 13.

Now, the values of the external genes at any t € [0, T3] can be linearly inter-
polated from the data at t = 0,7y, T1,...Ts. The expression of Bed for t > Tj is
linearly extrapolated from the values at Ts and Ty, while the expression of other
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external inputs for ¢ > Ty is linearly extrapolated from corresponding values at T
and Tg. If the extrapolated value is negative then we replace it with zero. Finally,
we note that higher order interpolations give rise to artifacts from experimental
noise [15] and therefore they are not used here.

Parameter inference We denote each measurement by ¢¢ (1) data, specified by
the time 7); when the concentration of the gene product a in nucleus 7 is measured.
The corresponding model value obtained from (3.2.1) is denoted by ¢¢(T;)model-
The estimation of unknown parameters in (3.2.1) amounts to minimizing the cost

function
Ng N. N,

CF=3 > > v (48 (T))modet — 65 (T})data)” (3.2.3)
a=1i=1 j=0

where v, are positive weights, N, = 4 is the number of gap genes, N, is the
number of nuclei (30 and 58 during cycles 13 and 14A, respectively), and N; = 8
is the number of time classes. When all weights are equal to one, (3.2.3) is the
OLS sum. Note that previously in the studies of gap gene circuits, only OLS is
used as cost function to minimize. The quality of the fit of the model to the data
is measured by the root mean square (RMS) given by

NQ N¢ Nc

RMS = ,Zi/v Z Z Z (gg(Tj)model - g?(Tj)data)27 (324)

a=1 j=0 i=1

where N = 1976 is the total number of all measurements. A solution is considered
to be ‘good’ if RM S < 12.0 and if there are no visible pattern defects in the model
response [10, 12-14].

We note that OLS is an appropriate measure under certain assumptions only.
Namely, all measurement errors have to be independent of each other and be from
a normal distribution with zero mean and constant standard deviation. The latter
does not hold for our dataset [19]. The shaded areas in Figure 3.3 show how the
standard deviation varies per gene and both in space and time. Note that the
standard deviation (the level of noise) becomes smaller at late time points. Also
important is that the standard deviation at the domain boundaries is relatively
small and the level of noise in the non-expressing regions is almost negligible
indicating that the stripe locations at the end of cycle 14A are determined with
little variation [40].

When the weights vf; in (3.2.3) are taken inversely proportional to the corre-
sponding standard deviations, the cost function becomes the WLS distance. We
emphasize here that this is a theoretically more justified measure than the OLS
measure due to the variation in the experimental errors. Since the standard de-
viations are available in [19], minimization of the WLS sum has no additional
computational expenses compared to the corresponding procedure for the OLS
sum.
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Figure 3.3: Quantitative gap gene expression data (solid lines) at the different
time points. The shaded areas give the range of one standard deviation of the
experimental error. Axes are as in Figure 3.1.



3.2. Materials and Methods 55

RPC

0 0.2 0.4 0.6 0.8 1

A-P Position

Figure 3.4: Quantitative data for external inputs at different time points. Note
that Bed at T7 and Ty is not available. Axes are as in Figure 3.1.
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In this work we use both the OLS sum and the WLS sum as the cost function
to minimize. Our aim is to demonstrate that WLS is a more suitable measure
than OLS not only in theory but also in practice. Throughout this chapter we
will use the notations OLS search and WLS search meaning that the OLS and
WLS sums, respectively, are minimized. Similarly, OLS results and WLS results
indicate the parameter estimates obtained by minimizing OLS and WLS sums,
respectively.

For practical reasons it is better to constrain the parameter space, especially
for the global search optimization methods. Similar to previous studies of the gap
gene system [6, 10, 12-14], we define the search space for the parameters by the
linear constraints

In(2
10.0< R, £30.0, 0.0<D,<0.3, 50< Tf\( ) <200, a=1,...,Ng,
‘ (3.2.5)
and by the nonlinear constraints
NQ 2 Ne
Z (Wzi) gfnar) + Z (Eg grenar)Q =+ (ha)2 S 1043 a = 1a ceey Ngv (326)
b=1 e=1

where g2, ... and g, are the maximum values in the data set for proteins b and
e, respectively. Note that in [10, 12, 13] the threshold parameters h, for genes
Kr, Kni, gt, and hb are fixed to negative values representing a constitutively
repressed state for the corresponding genes [10, 12]. In [6] it is shown that fixing
promoter thresholds improves the parameter determinability in comparison to the
case when they are estimated along with other parameters. Therefore, we take
he = =2.5, a = 1,..., Ny in all simulations, which leaves us with 44 unknown
parameters in (3.2.1) to be estimated.

Mutation analysis The regulation of gene b on gene a is studied experimentally
in the following way, called mutation: gene b is knocked out in the embryo and
from the change in the expression of gene a the possible type of regulation is
deduced. If the expression of gene a decreases (increases), then it is assumed
that b is activator (repressor). If the mutation does not affect the expression
of gene a then it means that b does not regulate gene a. Experiments with
double mutants (when two different genes are knocked out) are also widely used.
Similarly, mutation can also be done by over-expressing a certain gene to study
its effect on the expression of the other genes. Although the conclusions based on
mutant analysis can be ambiguous in some cases, such as indirect influence, still
this method is a commonly applied approach in genetics.

Once the regulatory weights in the gap gene model (3.2.1) are estimated
based on wild type data, mutation analysis can be easily conducted in silico [48].
Namely, b mutants can be modelled simply by setting W (or E?) for all gap genes
a to zero and leaving all other parameter estimates unchanged. It is an important
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issue whether the model with parameter estimates found using only wild type
data can predict correct mutant phenotypes. Although the quantitative mutant
data is not available, qualitative behaviour for mutant phenotypes of gap gene
products in Drosophila is well studied. For instance, the posterior hb domain
fails to retract from the posterior pole of the embryo in hkb mutant embryos [45],
indicating that Hkb represses hb. The posterior hb domain is absent in ¢// mutant
embryos [45], indicating that TIl activates hb.

3.2.2 Methods

We consider a model given by the system of ODEs of the general form:

dy
=f(t,y,0), 0<t<T,
a ~H6y.0) (3.2.7)

y(t, 0) = yo, t=0.

Here the m-dimensional vector 6 contains all unknown parameters, y is an n-
dimensional state vector, and f is a given vector function, differentiable with
respect to t, y and 6.

Let us assume that for fitting (3.2.7) there are N measurements available.
Each measurement, which we denote by y;, is specified by the time ¢; when the
c;-th component of the state vector y is measured. The corresponding model
value obtained from (3.2.7) is denoted by vy, (¢;,0). We denote the vector of
weighted discrepancies between the theoretical values and the measured values
by Y(6). Then the least squares estimate 0 of the parameters is the value of 6
that minimizes the sum of squares

N
S(O) = 3wl (e (1,0) = 5)* = YT (O)Y (), (3.2.8)

where w; are positive weights. If the measurement errors in g; are independent of
each other, normally distributecjl with standard deviations o;, and the weights w;
are proportional to 1/0;, then 6 is a maximum likelihood estimate [22].

Parameter Estimation

In general, model (3.2.7)—being nonlinear in f—leads to a least squares problem
(3.2.8) that has several minima, first because the problem has more than one so-
lution, and second because the fitness function (3.2.8) can have several stationary
points that do not correspond to the lowest value of the cost function (so-called
local minima). Local search methods, like Levenberg-Marquardt (LM) [26], easily
get trapped in one of the local minima rather than finding the global minimum.
To explore the whole search space one needs global search methods, like Evolu-
tion Strategy (ES) or Simulated Annealing (SA). Unfortunately, these methods
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converge very slowly once near a minimum. In contrast, gradient-based methods
are efficient optimizers [2] for nonlinear least-squares problems once a sufficiently
good initial guess for the parameter values is available. Therefore, for large scale
problems, such as a gap gene system, it is efficient to use a global search method
followed by a local gradient-based technique. In this way, the chance of missing
the global minimum is reduced and the determination of the minima is precise
and fast.

In this chapter we use the LM method for local optimization. For the initial
parameter values we use the parameter estimates obtained by Johannes Jaeger
(EMBL/CRG, Barcelona) with SA global search.

Levenberg-Marquardt Method In general, any gradient-based optimization
procedure seeks a correction 66 for the parameter vector, such that S(6 + 06) <
S(#) holds. The LM method [26] determines the correction as the solution of the
equations

(JT(0)J(0) + Al,) 60 = —JT ()Y (0), (3.2.9)
where A > 0 is a control parameter (see below), I, is the identity matrix of size m
and the Jacobian J(0) = a\gée) is the so-called ‘sensitivity’ matrix of size N X m.
The entry J; ; in J(#) shows how sensitive the model response is at the i-th data
point for a change in the j-th parameter. The entries of J can be found by solving
the system of variational equations

o ay ot  of gy

= <T
otad;  00;  dy 90;’ vetsh (3.2.10)
O (10)=0 t=0 B
o9, 0 =0 o

where i = 1,2,...,m, coupled to (3.2.7).

The LM method can be seen as the combination of two gradient-based ap-
proaches: Gauss-Newton and steepest descent [2]. If A = 0 in (3.2.9), it coincides
with the Gauss-Newton method. However, when the matrix J7 (6).J(6) is (almost)
singular, to solve (3.2.9), A has to be positive and for large A the LM method ap-
proaches the steepest descent method. During the optimization A is adapted such
that the algorithm strives to exploit the fast convergence of the Gauss-Newton
method whenever this is possible [26, 34].

In order to solve (3.2.9), the singular value decomposition (SVD) [35] of the
matrix J(6) can be used, i.e.

J(6) =U(9) 2(0) VT (8), (3.2.11)

where U(#) is an orthogonal matrix of size N xm, such that UT (0)U () = I,,,, V()
is an orthogonal matrix of size m x m, such that VZ(0)V(0) = V(0)VT(0) = L.,
and X(6) is a diagonal matrix of size m x m which contains all singular values in
non-increasing order. Then the correction §6 can be found as

56 = —V(0) (Z2(6) + ML)~ %(6) UT(6) Y(b). (3.2.12)



3.3. Materials and Methods 59

Numerical integration of (3.2.7) and (3.2.10) requires a fast and reliable ODE
solver. Searching in the parameter space may lead to some values of 8 such that
the systems of ODEs become stiff. It is well known that for stiff ODE systems
explicit schemes can give rise to numerical instability or, alternatively, extremely
small time steps. Therefore, an implicit scheme is the best choice for time integra-
tion for stability reasons. In our simulations we use implicit multistep Backward
Differentiation Formulas (BDF) [37]. For numerical and implementational aspects
of this method we refer the reader to [37] and [6] and references therein.

Statistical Analysis of Parameter Estimates

Once the parameter vector 0 minimizing (3.2.8) is found, it is important to know
how reliable the obtained estimate is. This is the subject of a posteriori identi-
fiability analysis [1, 23, 24]. The ellipsoidal region around 6 in which the ‘true’
parameter vector 6* lies with a certain probability 1 — « is defined by

mmS(é)Fa(m,N—m), (3.2.13)

" =07 (J70)10)) (0" =) <
where F,,(m, N —m) is the upper « part of Fisher’s distribution with m and N —m
degrees of freedom. To remind the reader, here m and N are the number of pa-
rameters and measurements, respectively. From (3.2.13) one can derive dependent
and independent confidence intervals for parameter estimates éi (i=1,2,...,m).
These are, respectively,

To

0;:10; — 0;] <
J(vosovT®),

(3.2.14)

and

{oi 16, — 65| < rg\/(V(é)E—Q(é)VT(é)) } . (3.2.15)

k22

Here V() and %(0) are obtained from (3.2.11), r2 = N’fmS(é)Fa(m, N —m).
Clearly, small confidence intervals for 0; indicate that it is well-determined.
However, in some cases considering only individual confidence intervals can be
misleading. For instance, in the presence of strong correlations between parame-
ters, the dependent confidence intervals underestimate the confidence region while
the independent confidence intervals overestimate it. For this reason, in addition
to confidence intervals, it is essential to compute correlations between parameters.

The correlation coefficient between 6; and 6; is given by
_ By
 /BiBj;’

where B(6) = V(8)X72()VT(A). For detailed explanations of these statistical
quantities and their derivations we refer the reader to [6] and references therein.
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3.3 Results

We estimated all 44 unknown parameters of the gap gene circuit model (3.2.1),
such that the state variables fit the given data (Figure 3.3), subject to the con-
straints (3.2.5)-(3.2.6). We applied statistical analysis for the final parameter sets
to assess the quality of the parameter estimates. Both OLS and WLS were used
as a cost function in the data fitting procedure and the statistical analysis. We
present here both results and give a detailed comparison between them.

3.3.1 OLS results

Selection of OLS gene circuits

The search with the OLS cost function leads to 740 parameter sets. About 80% of
them have good-scoring RMS values, i.e., RM S < 12.0, which is below the level of
experimental errors. However, a closer look at the model outputs for good-scoring
sets reveals that most of them have a common patterning defect. Figure 3.5 shows
the patterns obtained with one of those parameter sets (with RM .S = 9.21) for the
expression of gap gene Kr at time points T5 and Ty (green lines) compared to data
(red lines). The model outputs have an artificial Kr hump in the region where no
expression is detected for this gene in the data. This hump arises at the beginning
of cycle 14A and remains there until the end of cycle 14A. It is noteworthy that
the gap gene network topology, i.e., the signs of regulatory weights in (3.2.1),
in the parameter sets possessing such a patterning defect is in contradiction with
known experimental evidence. In other words, despite the overall reasonable fit to
the data, model (3.2.1) predicts wrong regulations between genes. For instance, in
the parameter set for which the patterns in Figure 3.5 are shown, hb is repressed
by TI1l and activated by Hkb, while it is known that Tl activates hb and Hkb
represses it. We have found that the inferred network topology in good-scoring
parameter sets producing an artificial Kr hump has some other artifacts as well
(not shown here). Therefore, we exclude those parameter sets.

Although many good-scoring parameter sets obtained from the OLS search
have the artificial Kr hump, there are still 39 parameter sets left which do not
have that patterning defect. Their RMS values vary between 8.71 and 10.11. None
of these parameter sets show any significant patterning defects (see Figure 3.15
in the Appendix). As we shall see, their network topology is in agreement with
experimental evidence. We consider only these 39 parameter sets in our analysis.

In conclusion, our selection of OLS parameter sets has been based on two cri-
teria. Firstly, only parameter sets with low RMS values are taken into account.
Secondly, only those sets which do not have the artificial K7 hump are manually
selected. Importantly, both conditions are necessary and one does not imply the
other. Many of the obtained low-scoring parameter sets give overall a reason-
able fit but do possess the patterning defect for Kr. This underlines the main
drawback of using the OLS measure. Extensive amounts of runs and additionally
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Figure 3.5: Comparison between data (red lines) and patterns obtained with
a low-scoring parameter set yielded from the OLS search (green lines) for the
expression of gap gene Kr at two different time points. Axes are as in Figure 3.1.

exhaustive manual work of inspection of patterns were needed in order to obtain
the parameter sets which correctly describe the gap gene system.

Analysis of OLS gene circuits

Posterior hb domain Model outputs for the selected OLS parameter sets reveal
the correct set up of the posterior boundary of the posterior hb domain by the
end of cycle 14A (see Figure 3.15). Figure 3.6a shows the pattern generated
with one of those parameter sets compared to the result obtained with the 6-gene
gap system from [6]. Clearly, the result for the 4-gene model has a significantly
improved fit of the posterior hb boundary. As we will see, this is solely due to
the inclusion of Hkb in the 4-gene model which is a main repressor of hb in that
region.

Gap gene domains are established during cycle 13 and the beginning of cycle
14A. Afterwards, there is an anterior shift in the position of these domains. This
shift mechanism has been investigated and well understood by using the 6-gene
model [12]. Tt has been noticed that the domain shifts are based only on regulatory
interactions between genes and diffusion plays no role in it. The model for the
6-gene network was able to reproduce most of the domain shifts observed in the
data. However, for the posterior hb domain the shift of its peak and posterior
boundary was not present in model outputs [12].

The model outputs with the selected OLS parameter sets for the 4-gene model
show the shift in the peak of the posterior hb domain. We illustrate it in Fig-
ure 3.6b for one of the parameter sets, where the position of the peak on the A—P
axis is plotted against time. Despite the slight difference with the corresponding
shift in the data, the overall shift in the model output is visible.

Additionally, our results reveal the shift of the posterior boundary of the poste-
rior hb domain. Similar to the approach in [12], we performed a graphical analysis
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Figure 3.6: a) Comparison between data (red line), the pattern obtained by the
parameter set for the 6-gene gap system from [6] (blue line), and the pattern
obtained by one of the selected OLS parameter sets for our 4-gene network (green
line) for the expression of gap gene hb at Tg. Axes are as in Figure 3.1. b) Anterior
shift of the peak of the posterior hb domain during cycle 14A. Plot shows the A-P
position of the peak in the model outputs for one of the selected OLS parameter
sets (green line) compared to the corresponding shift observed in the data (+).

of the hb regulation over time (cycle 14A) at three different nuclei which lie in the
shift zone. Panels a-c of Figure 3.7 show a switch from protein synthesis (positive
dgh®/dt) to decay (negative dgi®/dt) of hb at the end of cycle 14A. As we can see,
diffusion plays no role in it. In fact, diffusion counteracts the boundary shift with
an influx of protein into the region where hb decays. Note that a lack of smooth-
ness in the protein synthesis term is a consequence of using linear interpolations
for time-variable external inputs in the model. Panels d-f of Figure 3.7 reveal that
the shift is solely driven by the temporal behaviour of the regulatory input for hb
production (solid black lines). By plotting the individual contributions (coloured
areas) we can analyse in detail the regulatory mechanism which underlines the
shift. The areas below and above the black line represent the regulatory input
from activators (Tll, Cad, Hb, and Gt) and repressors (Kni and Hkb) of hb, re-
spectively. Since the regulatory inputs from Kr and Bced are negligible, they are
not plotted here. As we can see, the activating contribution is mainly from TII
and less from Cad and autoactivation of hb. Note that insignificant activation by
Gt is an artefact of the model. The repressing input from Kni is relatively small
because of the low expression of kni in that region of the embryo. So, the shift is
based on the regulatory input from Hkb, the main repressor of hb. This repression
increases both in space (posteriorly) and in time.

In conclusions, our model predicts that hb in the posterior part of the embryo
is mainly activated by TIl. However, this activation is suppressed by increasing
repression of hb by Hkb yielding eventually the shift of the boundary domain.
Contrary to the shifts of other boundaries of gap gene domains, this shift happens
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at late stages of cycle 14A.

Network topology A classification of all estimates of the regulatory weights
for all 39 parameter sets into ‘activating’, ‘repressing’ or ‘no interaction’ categories
is shown in Figure 3.8. The topology is mainly in agreement with the previous
findings for the 6-gene model [6]. However, some ambiguities in the network
are removed with these results. Namely, the repressive regulations of Hb on
Kr and gt, Gt on kni, and Kni on Kr are present in all parameter sets, while
previous results for the 6-gene case showed no regulation for these weights in
many solutions. Importantly, the activation of hb by TII is correctly predicted
by our model in almost all sets. Note that previously it was found that there
exists no regulation for this weight. Repression of gt by TIl is present in almost
all parameter sets, while previously many circuits were found with no regulation
for this weight. Another remarkable difference is that autoactivation of gt is
much weaker than in the 6-gene case. To be more precise, its autoregulation is
not required in most of the parameter sets. Finally, we note that the colours
in Figure 3.8 do not change if we choose the threshold 0.01 instead of 0.005 for
the classification of regulations, except in two regulatory weights. Specifically,
the activation of hb by Cad and TIl changes to no regulation category, meaning
that these activations in the network topology predicted by the model are weak
(almost negligible).

Confidence intervals The network topology shown in Figure 3.8 is based solely
on the values of estimated parameters. To assess the quality of the parameter es-
timates, we computed dependent and independent confidence intervals for each
parameter set using (3.2.14) and (3.2.15), respectively (see Figure 3.17 in the
Appendix). We checked if the corresponding confidence intervals for regulatory
weights fall entirely into the ‘repression’, ‘no interaction’, or ‘activation’ cate-
gories. Results in Figure 3.8 do not change when only dependent confidence
intervals are taken into account. However, when including independent confi-
dence intervals, one can no longer make similar qualitative conclusions about
some entries in the regulatory weight matrix. For example, Figure 3.9 shows the
confidence intervals for regulatory weights W (a), EZ (b), and EL% (c). The
independent confidence intervals for W lie in the negative part of the plane for
almost all parameter estimates and therefore, repression predicted for this weight
in Figure 3.8 is confirmed by statistical analysis. The independent confidence
intervals for E5¢? slightly extend into the negative part of the plane. Therefore,
one can make a qualitative conclusion for this weight: the model predicts that
Bed does not repress hb. Note that this is a weaker conclusion than predicting
activation for this weight from Figure 3.8. In contrast, we cannot draw any qual-
itative conclusions about E,ﬂé Thus, statistical analysis does not confirm the

repression of kni by Tl inferred from Figure 3.8.
Based on the independent confidence intervals, Table 3.1 summarizes the qual-
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Figure 3.7: Graphical analysis of the shift of the posterior boundary of the pos-
terior hb domain in the model outputs for one of the selected OLS parameter
sets. Dynamic behaviour is illustrated at thee different nuclei within the shift
zone over time (cycle 14A). Plots a-c show the rate of change in concentration
of hb (dgl®/dt), as well as individual contributions to it from diffusion and syn-
thesis/decay terms in the right-hand side of (3.2.1). Plots d-f show the tempo-
ral behaviour of the regulatory input for kb production (solid black lines), i.e.,
uhb = SNo Wb gb 4+ 52N EgLg¢ + by, Upper and lower dashed lines indicate
90% and 10% of the maximum rate of protein synthesis, respectively. The sigmoid
function (3.2.2) at those values is equal to 0.9 and 0.1, respectively. Coloured ar-
eas represent individual contributions to u?* from repressors (above black lines)
and activators (below black lines) of hb. The height of each coloured area is given
by [Whylg? or |Eg,gt.

hb Kr gt kni Bed Cad Tl Hb

hb  0/0/39 2/37/0 0/1/38 39/0/0 0/0/39 0/2/37 1/0/38 37/2/0
Kr 39/0/0 0/1/38 39/0/0 39/0/0 0/0/39 0/0/39 39/0/0 39/0/0
gt 39/0/0 39/0/0 0/35/4 0/0/39 0/0/39 0/0/39 38/1/0 2/2/35
kni 39/0/0 3/36/0 39/0/0 0/1/38 1/0/38 0/0/39 37/0/2 26/9/4

Figure 3.8: Gap gene network topology based on 39 selected OLS parameter sets.
Each entry in the table corresponds to regulation of a gap gene given on a row by
a gene given in a column. Triplets show the number of parameter sets in which a
regulatory weight falls into one of the following categories: repression (values <
—0.005)/ no interaction (values between —0.005 and 0.005)/ activation (values >
0.005). Colours: activation (green), no interaction (light-blue), repression (pink).
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Figure 3.9: Dependent (green lines) and independent (red lines) confidence inter-
vals for regulatory weights Wi (a), EP¢d (b), and EL" (c). Confidence intervals

are plotted along the vertical axis for the 39 selected OLS parameter sets.

itative conclusions for the regulatory weights in the gap gene model. These con-
clusions are weaker than those drawn from classifying the parameter values only.
Only for 17 regulatory weights out of 32, the confidence intervals confirm the type
of the regulation deduced from the network topology in Figure 3.8. For other 4
weights the conclusions in Figure 3.8 are confirmed weakly. Regulations for the
remaining 11 weights cannot be qualitatively verified by the confidence interval
analysis. However, the conclusions in Table 3.1 show qualitative improvement
for a number of regulations in comparison with the corresponding results for the
6-gene gap model [6], where only for 9 regulatory weights the confidence intervals
confirmed and for other 5 weights confirmed weakly the type of the regulation
deduced from the corresponding network topology.

Note that for all gap genes, promoter strengths R, diffusion coefficients D, and
decay rates A have extremely large independent confidence intervals (not shown
here) meaning that all these parameters are not determinable.

tll/hkb mutants The terminal gap genes ¢ll and hkb, being expressed in the
posterior region of the embryo, are responsible for setting up the posterior bound-
aries of the gap gene domains. In ¢/l mutants the expression of Kris normal, the
kni domain expands posteriorly, the posterior gt domain does not retract from
the posterior pole, and the posterior hb domain is absent (see [10] and references
therein). In hkb mutants the posterior hb domain fails to retract from the pos-
terior pole [45]. We shall investigate here if the gap gene model is capable of
reproducing such behaviour in #l/hkb mutants.

We obtain the model outputs for ¢/l mutants by setting EX" = 0 for all gap
genes and leaving all other parameter estimates unchanged. Figure 3.10 shows the
model outputs for ¢/l mutants (first row) for the expression of gap genes at time
point Ty compared to wild type data. As we can see, OLS parameter sets mainly
fail to produce correct mutant phenotypes. Most of the parameter sets have
over-expression of the posterior hb domain which contradicts the experimental
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hb Kr gt  kni  Bed Cad Tl HEb

hb + —-= X X + = + + = X
Kr — + — — + + X X
gt - X X X + + - X
kni — -—= - + + + X X

Table 3.1: Gap gene network topology based on independent confidence intervals
of 39 selected OLS parameter sets. Each entry in the table corresponds to regula-
tion of a gap gene indicated on a row by a gene indicated on a column. '+’ ('—’)
indicates activation (repression) when the confidence intervals for the correspond-
ing regulatory weight fall entirely into the positive (negative) part of the plane for
a majority of parameter sets. Similarly, '+ =’ ("— =’) indicates no repression (no
activation) when the confidence intervals for the corresponding regulatory weight
fall into the positive (negative) part of the plane and slightly extend to negative
(positive) part within 'no regulation’ threshold range, i.e., > —0.005 (< 0.005).
If the confidence intervals significantly extend to both sides of the plane, then no
conclusion can be made (denoted by 'x’).

evidence. In most of the cases the posterior gt domain is expanded and only a
few model outputs have the correct behaviour when the domain does not retract
from the posterior pole. The expression of kni has not changed in some sets and
an additional domain appears in others, failing to predict the expansion of the
posterior boundary. The only consistent result can be stated for Kr which has a
normal expression in all model outputs.

Similarly, model outputs for hkb mutants are obtained by setting EXk* = 0
for all gap genes. Figure 3.10 (second row) shows the expression of gap genes
at time point Ty in hkb mutants. The posterior hb domain almost disappears in
some circuits in contradiction to the experimental evidence. Additional expression
domains appear for the gap genes gt and kni, while the expression of Kr has not
altered.

In conclusion, OLS parameter sets fail to predict the correct behaviour when
terminal genes ¢/l and hkb are knocked out. Model outputs show both ambiguity
and inconsistency, the only exception is the gap gene Kr.

3.3.2 WLS results

The LM search with the WLS cost function has been performed using as initial
points the 39 selected OLS parameter estimates and also the 90 OLS sets with
lowest RMS values possessing an artificial Kr hump. Additionally, we performed
80 runs starting with parameter estimates obtained from global WLS search (SA).
From the obtained results we selected 117 parameter sets with WLS values vary-
ing uniformly between 1.08 x 10% and 1.13 x 103. For the comparison with the
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Figure 3.10: Comparison between data (red lines) and model outputs (green
lines) with ¢/l mutants (first row) and hkb mutants (second row) produced by 39
selected OLS parameter sets for the expression of gap genes at Tg. Axes are as in
Figure 3.1.

OLS results, we note that these WLS parameter sets have RMS values uniformly
varying between 10.41 and 10.67. It suggests that the WLS search leads to less
over-fitting compared to OLS search. None of these low-scoring parameter sets
show any visible patterning defects (see Figure 3.16 in the Appendix), while the
sets with larger WLS values do. As it is difficult to make a distinction between
these 117 parameter sets based on WLS values and expression patterns only, we
take all of them into consideration. We emphasize that with a significantly less
number of WLS runs (209) compared to the OLS case (740) we have obtained
three times more WLS parameter estimates than OLS ones. It is also important
that the selection of WLS sets is only based on cost function values and the man-
ual inspection of model outputs for patterning defects, as in the OLS case, is not
required.

The most important difference between the model outputs generated by the
OLS and WLS parameter sets is that the latter do not have a patterning defect
for gap gene Kr (hump). This can be expected because the standard deviations in
that region of the embryo are small and subsequently the corresponding weights
in WLS are relatively large which prevents the rising of the Kr hump. We note
that the model outputs generated by WLS parameter sets have one slight problem
which does not show up in the OLS case. Model outputs for gap gene Kr at T}
have a slight cavity next to the anterior boundary. However, this declination does
not exceed the experimental error range and therefore is not considered to be
significant.

Patterns for WLS parameter sets (Figure 3.16) at cycle 13 and late time points
of cycle 14A show a better fit than the corresponding OLS patterns (Figure 3.15).
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Especially, the improvement can be seen at the boundaries of gap gene domains
at the end of cycle 14A. This can be explained by a relatively small standard
deviation of the experimental error at the domain boundaries at late time points
(Figure 3.3).

Additionally, WLS model outputs have less variation than those produced by
OLS parameter sets. Thereby, WLS model outputs are more consistent with each
other while OLS model outputs reveal discrepancies.

Posterior hb domain Similar to OLS results, the posterior boundary of the
posterior hb domain is set correctly (see Figure 3.16) and the anterior shift in
the peak of the posterior hb domain can be detected in the model outputs (not
shown here). The shift of the posterior boundary of the posterior hb domain
is illustrated in Figure 3.11 by graphical analysis of the hb regulation over time
(cycle 14A) at three different nuclei which lie in the shift zone. Similar to the
OLS case (Figure 3.7), there is a switch from protein synthesis (positive dg®/dt)
to decay (negative dgh®/dt) of hb at the end of cycle 14A and the shift is solely
based on the regulatory mechanism rather than being driven by diffusion. Panels
d-f of Figure 3.11 show that two major contributions to the regulatory input of
hb are from the activator T1l and the repressor Hkb. Contrary to the OLS case,
these inputs are more stronger than the inputs from other regulators. So, in WLS
results hb in the posterior region of the embryo is predominantly regulated by
terminal genes Tl and Hkb.

Network topology Classification of all parameter estimates for regulatory
weights for 117 selected WLS parameter sets into ‘activating’, ‘repressing’ or ‘no
interaction’ categories is given in Figure 3.12. There are only two differences in
this topology in comparison with the OLS results in Figure 3.8. Hkb represses
gt and activates kni, while in the OLS case it is the other way around. For
other regulatory weights all conclusions agree. At the same time, numbers in Fig-
ure 3.12 indicate that WLS parameters estimates are more consistent than those
obtained by OLS search. For instance, although activation is concluded for regu-
latory weights Ef! and EE°? in Figure 3.8, still in each case there is one circuit
showing repression. Those ambiguities are completely cleared in Figure 3.12 (the

only exception is EkD).

Confidence intervals To assess the quality of the parameter estimates, we
computed dependent and independent confidence intervals for each parameter set
using (3.2.14) and (3.2.15), respectively (see Figure 3.18 in the Appendix). We
checked if the corresponding confidence intervals for the regulatory weights fall
entirely into the ‘repression’, ‘no interaction’, or ‘activation’ categories. Similar
to the OLS case, dependent confidence intervals are small and cannot be trusted.
Based on the independent confidence intervals, Table 3.2 summarizes the qualita-
tive conclusions for the regulatory weights in the gap gene model. The qualitative
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Figure 3.11: Graphical analysis of the shift of the posterior boundary of the
posterior hb domain in the model outputs for one of the selected WLS parameter
sets. Axes, lines, and coloured areas are as in Figure 3.7.

hb Kr gt kni Bed Cad Tl Hkb
hb  0/0/117 o0/117/0 0/0/117 117/0/0 0/0/117 0/0/117 0/0/117 117/0/0
Kr 117/0/0 0/0/117 117/0/0 117/0/0 ©0/0/117 0/0/117 117/0/0 117/0/0
gt 117/0/0 117/0/0 0/117/0 0/0/117 0/0/117 0/0/117 117/0/0 117/0/0
kni 117/0/0 0/117/0 117/0/0 0/0/117 0/0/117 0/0/117 117/0/0 2/0/115

Figure 3.12: Gap gene network topology based on 117 selected WLS parameter
sets. Numbers and colours are as in Figure 3.8.
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conclusions in Table 3.2 show no significant difference from the corresponding OLS
results given in Table 3.1. For 17 regulatory weights the confidence intervals con-
firm and for another 3 weights they confirm weakly the type of the regulation
deduced from the network topology in Figure 3.12.

hb Kr gt kni  Bed  Cad TI  Hkb

hb + X + = X X + = + X
Kr X + — — + + X X
gt — - X + + + — X
kni — — = — + X + X X

Table 3.2: Gap gene network topology based on independent confidence intervals
of 117 selected WLS parameter sets. Notations are as in Table 3.1.

In contrast to the OLS case, the confidence interval analysis for WLS solutions
suggests that the number of unknown parameters can be reduced in the model.
The dependent confidence intervals for all diffusion parameters in the WLS results
have a non-empty intersection. This means that for practical reasons they can
be fixed to any value in those intersections without giving a difference in the
WLS sums. Since the main interest of the gap gene model lies in the inference
of the regulatory network topology, the exact value of the diffusion parameters
is not important. Correlation analysis shows that the diffusion coefficients are
not strongly correlated to other parameters. Therefore, removing them from the
parameter space will not change significantly the determinability of the remaining
parameters but it will reduce the size of the problem.

tll/hkb mutants The model outputs for ¢/l mutants are shown in Figure 3.13
(first row). The expression of posterior hb decreases compared to wild type data.
Although it is not completely in agreement with experimental evidence (there is no
posterior Ab domain in such embryos), there is still an improvement in comparison
with OLS results (Figure 3.10) where over-expression of hb is detected. Similar to
OLS results, Kr has a normal expression which is in agreement with experiments.
Expression of gt and kni at the posterior part of the embryo appears somewhat
abnormal as in OLS outputs but they do not produce the behaviour observed in
the experiments.

The model outputs for hkb mutants are shown in Figure 3.13 (second row).
Contrary to the corresponding OLS results (Figure 3.10), they are more consis-
tent with each other. The posterior hb domain in all cases fails to retract from
the posterior pole of the embryo which is in agreement with the experimental
evidence [45]. This confirms again that Hkb is the main repressor of hb at the
posterior part of the embryo. The expression of gap genes Kr, gt, and kni is not af-
fected in hkb mutants. It suggests that Hkb does not regulate these genes exposing
an unreliability of corresponding regulations in network topology in Figure 3.12.
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Figure 3.13: Comparison between data (red lines) and model outputs (green
lines) with ¢/l mutants (first row) and hkb mutants (second row) produced by 117
selected WLS parameter sets for the expression of gap genes at Tg. Axes are as
in Figure 3.1.

Thereby, we can conclude that in the WLS search the 3 regulatory weights corre-
sponding to the regulation of gap genes Kr, gt, and kni by Hkb can be eliminated
from the parameter search by setting up Ef}* = EI* = E[I¥ = 0. This is
also confirmed by the statistical analysis, as their dependent confidence intervals

include zero (see Figure 3.18).

WLS results with fixed parameters

We have found that for the WLS search it is possible to reduce the size of the
parameter space by fixing all diffusion parameters and the regulatory weights
corresponding to the regulation of gap genes Kr, gt, and kni by Hkb. For the
diffusion coefficients we computed the averaged values based on the previously
found estimates, Dpp = 0.237, Dy = Dpp; = 0.3, and Dy = 0.115. Note that
these averaged values belong to the non-empty intersections of the dependent
confidence intervals. So, it leaves us with 37 parameters in the model to be re-
estimated. We used LM search with 60 initial parameter sets arbitrarily chosen
from previously found 117 WLS parameter sets. Additionally, we performed 20
runs with initial parameter values obtained from global WLS search (SA) with
those parameters fixed. From re-estimated parameter sets we select 66 circuits
which have low WLS values (about 1.08 x 10%). None of them reveals any visible
patterning defects (not shown here). The network topology in Figure 3.12 remains
unchanged with the new estimates except for the regulations of Kr, gt, and kni by
Hkb which are set to zero. Table 3.3 presents the qualitative conclusions for the
regulatory weights in the gap gene model based on the independent confidence



Chapter 3. Parameter estimation for a Model of Gap Gene Circuits with
72 Time-Variable External Inputs in Drosophila

Kr Gt Kni

..::.. K\

0 02 04 06 08 10 02 04 06 08 10 02 04 06 08 1 0 02 04 06 08 1

A-P Position

RPC

Figure 3.14: Comparison between data (red lines) and model outputs with ¢l
mutants (green lines) produced by re-estimated WLS parameter sets for the ex-
pression of gap genes at Tg. Axes are as in Figure 3.1.

intervals (Figure 3.19 in the Appendix). These results show an improvement in
comparison with Table 3.2. For 20 regulatory weights the confidence intervals
confirm and for another 5 weights they confirm weakly the type of the regulation
in the network topology and only 4 regulations still remain unclear.

hb Kr gt  kni  Bed Cad T  Hkb

hb + X + — X 4+ = —+ =
Kr - = + — - + + x 0
gt — — X + + + — 0
kni — - = — + + = + — 0

Table 3.3: Gap gene network topology based on independent confidence intervals
of re-estimated 66 WLS parameter sets. Notations are as in Table 3.1.

tll mutants The model outputs for ¢/l mutants are shown in Figure 3.14. As
we can see, there is a significant improvement in comparison with the OLS results
(Figure 3.10) and preceding WLS results (Figure 3.13). Now, WLS circuits predict
correct mutant phenotypes for all gap genes. Namely, the posterior hb domain
is absent, the expression of Kr is normal, there is expansion of the posterior
boundary of the kni domain, and the posterior gt domain does not retract from
the posterior pole.

Correlations The qualitative conclusions from Table 3.3 are not completely
consistent with the network topology obtained by only considering the value of
the parameter estimates. The sizes of the independent confidence intervals (see
Figure 3.19) give an indication about the determinability of the corresponding
regulatory weights. Note the big difference between the size of the independent
confidence intervals for the different regulatory weights indicating a different de-
gree of determinability. The lack of determinability is due to the presence of
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correlations between parameter estimates indicated by the large difference be-
tween dependent and independent confidence intervals. Individual confidence in-
tervals are not informative for understanding the reason of poor determinability
of parameters when their estimates are correlated. Using (3.2.16), we find the
correlation matrix for each parameter set. To detect the most significant cor-
relations between parameters present in all correlation matrices, we calculated
an averaged matrix—which we call the mean correlation matrix—whose entries
are the mean values of the corresponding correlation coefficients in the individual
correlation matrices. The obtained mean correlation matrix has a block diagonal
structure such that each block corresponds to a given gene and contains the cor-
relation coefficients between parameters for the same gene (not shown here). This
is mainly due to the nature of function (3.2.2) used in (3.2.1). The positive and
negative inputs in its argument can compensate or complement each other. We
identify the most significant parameter correlations which can be interpreted in
biological terms with the emphasis on those for which the qualitative conclusions
in Table 3.3 are weak or cannot be made at all:

e Activations of hb by Bed and Cad are correlated;

e Activation of hb by Bed is also correlated to its repression by Kni;

e Repression of hb by Hkb is correlated to activation by TII;

e Repression of Kr by Hb is correlated to its activation by Bed;

e Activation of kni by Bed is strongly correlated to its repression by Hb;

The regulatory weights W,{gr, Wéqtt, and kaflz have relatively small independent
confidence intervals. Results for these weights in Table 3.3 are based on the thresh-
old 0.005 for classification of regulations. With a larger threshold, such as 0.01,
for all 3 weights 'no regulation’ type can be concluded confirming the correspond-
ing predictions from Figure 3.12. Finally, we note that EZL! is not correlated to
any other weight. Posterior Kr is strongly repressed by Gt and somewhat weaker
by Hb and Kni. Apparently, due to these interactions, repression of Kr by TII is

somewhat redundant in the model.

3.4 Conclusions

In this chapter we have investigated the model for spatio-temporal pattern forma-
tion of gap gene products (hb, Kr, gt, and kni) in early development of Drosophila.
Previous studies of the gap gene system [6, 10, 12-14] along with these gap genes
also included in the model the products of genes cad and tll as state variables. In
our model we have included cad and t/l as time-variable external inputs. This is a
more natural way to model that they regulate gap genes, but not vice versa. Con-
trary to previous studies where protein Bed was used as external input constant
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in time, we have incorporated its temporal behaviour in our model. Finally, new
data for hkb [46] has allowed us to supplement the gap gene network by including
hkb as time-variable external input. Note that hkb, which is absolutely necessary
for correct regulation of posterior hb domain, was missing in previous studies of
the gap gene system. Thereby, our model describes the spatio-temporal dynamics
of 4 gap genes and includes 4 external inputs. It is noteworthy that with our
model the complexity of the problem is reduced both with regard to the num-
ber of equations and the number of unknown parameters compared to previous
models.

The model has a number of unknown parameters among which the most in-
teresting are the regulatory weights, each one representing quantitatively the reg-
ulation of one gene by another gene. Following the common way, we have inferred
the unknown parameters by fitting model outputs to gap gene data [18, 19]. As
cost function to minimize in the parameter estimation procedure we have used
both the Ordinary Least Squares (OLS) sum, similar to all previous studies, and
the Weighted Least Squares (WLS) sum with weights taken inversely proportional
to the corresponding standard deviations of the experimental error distributions.
Since the standard deviations are available from [19], the WLS method does not
require additional computational work compared to the OLS search.

We have used the gradient-based Levenberg-Marquardt (LM) method in the
optimization with the initial parameter values obtained from global search runs
using Simulated Annealing (SA). A large amount of runs has been performed to
obtain the parameter estimates, 740 and 209 with OLS and WLS search, respec-
tively. From the obtained parameter sets we first selected the low-scoring sets
based on the values of OLS and WLS sums only. It gave us 117 WLS and 589
OLS parameter sets. While the network topology based on the values of the es-
timated regulatory weights in the WLS case (Figure 3.12) shows an agreement
with the known genetic evidence, corresponding OLS results reveal a number of
contradictions. Interestingly, all those OLS sets which have disagreements with
the theory, despite having an overall reasonable fit to the data, do possess one
patterning defect (hump) in the expression of Kr in the region where this gene
is not expressed in the data. By manual inspection of model outputs we have
selected 39 OLS parameter sets which do not have that artefact. The network
topology based on these sets (Figure 3.8) is in agreement with genetic evidence.
Thus, the selection of parameter sets reveals the first drawback of using the OLS
rather than the WLS measure. While the selection criterion based on the cost
function value is sufficient for the WLS case, an additional check for patterning
defects in the OLS model outputs has to be performed. Moreover, with WLS
search we have done less estimation runs and still obtained more parameter sets
than with OLS search.

The model outputs produced with the selected WLS parameter sets reveal a
better fit at the boundaries of the gap gene domains at late stages of cycle 14A
than the corresponding OLS patterns. Additionally, WLS patterns are more con-
sistent with each other which is indicated by less variation in the model outputs.
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Our results, both OLS and WLS, show a significant improvement in the reg-
ulation of the posterior hb domain compared to previous results. Namely, the
posterior boundary of this domain is set up correctly and the anterior shift in the
peak of the domain is present in the model outputs while previous models failed
to reproduce such a shift. More importantly, with our network also the shift in
time of the posterior boundary of the posterior hb domain is detected. We have
shown that this shift is solely based on the regulatory mechanism rather than
being forced by diffusion (Figures 3.7 and 3.11). Namely, the boundary shift is
due to the suppressive repression of hb by Hkb. In previous studies, gap gene
models failed to show this shift because hkb was missing in the network.

Confidence interval analysis for the selected OLS and WLS parameter es-
timates show no significant difference from each other in terms of their deter-
minability. In both cases qualitative conclusions can be made only for 17 (out of
32) regulatory weights (Tables 3.1 and 3.2). Thus, the network topology based
only on the values of parameter estimates is not entirely confirmed by confidence
interval analysis. However, there is a significant improvement in comparison with
the corresponding results in [6] where qualitative conclusions were deduced only
for 9 weights. This improvement is most likely due to the change of genes cad and
tll from state variables to external inputs in our model and decreasing by that the
level of uncertainty in the model parameters.

We have used our OLS and WLS parameter sets for qualitative prediction of
gap gene expression in ¢/l and hkb mutants (Figures 3.10 and 3.13). In ¢l mutants
both OLS and WLS sets fail to predict correctly the expression of gap genes,
except for Kr which is not altered. In hkb mutants the posterior hb domain in
WLS outputs does not retract from the posterior pole in agreement with the ex-
periments [45], while OLS results fail to reproduce such behaviour. Additionally,
expression of other gap genes in WLS outputs is not changed suggesting that Hkb
does not regulate those genes. In OLS results this is observed only for Kr.

The confidence intervals for WLS parameter sets show that all diffusion pa-
rameters and the regulatory weights corresponding to regulation of Kr, gt, and
kni by Hkb can be eliminated from parameter space, i.e., they can be fixed dur-
ing the search. We have performed additional WLS runs with those parameters
fixed and selected 66 low-scoring sets from the obtained results. With the new
parameter estimates, firstly, we have achieved an improvement in the qualitative
conclusions for some of the regulatory weights (Table 3.3). Secondly, Il mutants
with those sets give correct qualitative predictions for the expression of all gap
genes (Figure 3.14).

To sum up, based on the results of our analysis, we conclude that the WLS sum
is a more suitable measure for inferring a gap gene circuit from the experimental
data than the OLS sum.

3.5 Appendix: Additional plots
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Figure 3.15: Model outputs for the 39 selected OLS parameter sets (green lines)
vs data (red lines) for gap genes at all time points. Axes are as in Figure 3.1.
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Figure 3.16: Model outputs for the 117 selected WLS parameter
vs data (red lines) for gap genes at all time points. Axes are as
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Figure 3.17: Dependent (green lines) and independent (red lines) confidence inter-
vals for all regulatory weights in the gap gene model are plotted along the vertical
axis for the 39 selected OLS parameter sets.
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Figure 3.18: Dependent (green lines) and independent (red lines) confidence in-
tervals for all regulatory weights in the gap gene model are plotted along the
vertical axis for the 117 selected WLS parameter sets. Note the different scale in
y-axis for some of the regulatory weights compared to the corresponding plot in
Figure 3.17.
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Figure 3.19: Dependent (green lines) and independent (red lines) confidence inter-
vals for all regulatory weights in the gap gene model are plotted along the vertical
axis for the 66 selected WLS parameter sets obtained with diffusion parameters
and the regulatory weights corresponding to the regulation of gap genes Kr, gt,
and kni by Hkb being fixed during the search.



Chapter 4

On the Numerical Solution
of Diffusion-Reaction
Equations with Singular
Source Terms

Abstract

A numerical study is presented of reaction-diffusion problems having singular
reaction source terms, singular in the sense that within the spatial domain the
source is defined by a Dirac delta function expression on a lower dimensional
surface. A consequence is that solutions will be continuous, but not continuously
differentiable. This lack of smoothness and the lower dimensional surface form an
obstacle for numerical discretization, including amongst others order reduction.
In this paper the standard finite volume approach is studied for which reduction
from order two to order one occurs. A local grid refinement technique is discussed
which overcomes the reduction.

4.1 Introduction
In this paper we discuss the numerical solution of diffusion-reaction problems
ug = L(u) + f (4.1.1)

with a singular reaction source term f. Singular means here that within the do-
main Q C R? of L the source f is defined by a Dirac delta function expression on
a lower dimensional surface I' C €2 rather than on the whole of 2. A consequence
is that the solution u is not a solution on {2 in the classical sense because across
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I' the solution u will be continuous, but not continuously differentiable. This
lack of smoothness and the lower dimension of I' form an obstacle for numerical
discretization. With any numerical method one has the obvious question how
to represent I' and how to discretize f on a common grid. For finite-difference
methods this question is studied in detail in [49] using regularization ideas. Reg-
ularization in the sense that the Dirac delta function expression is approximated
by a source giving a small but regular support allowing standard finite difference
schemes for L. In a close vicinity of I' the lack of smoothness of u will still be
felt with regularization, in the sense that in general the convergence order in the
maximum norm is at best equal to one [49].

In this paper we follow the finite volume approach based on the integral form
of (4.1.1). We consider this approach more natural than the finite difference one
directly based on the differential form, since for the integral form the treatment of
the Dirac delta function expression is mathematically clear. However, also with
the finite volume approach on the uniform grid the problem of lack of smoothness
remains, causing order reduction from two to one for the standard second-order
spatial discretization scheme. To reobtain second order convergence we examine
the finite volume approach on special locally refined grids.

The paper is organized as follows. In Section 4.2 we study the standard finite
volume discretization on a uniform grid for linear and nonlinear test models. We
start with linear 1D and 2D test models where the emphasis lies on boundary
value problems. These test models are simple but yet significant enough to reveal
the essence of a singular source. Further, we turn our attention to initial-boundary
value problems having nonlinear source terms. In Section 4.3 we study the finite
volume approach on a locally refined grid for 1D and 2D linear test models. The
paper is concluded with remarks in Section 4.4.

4.2 The finite volume approach on the uniform
grid
4.2.1 The 1D boundary value problem

We begin with the boundary value problem for the 1D equation
—Uyy = ¢(2), 0<x<1, (4.2.1)

provided with the homogeneous Dirichlet conditions w(0) = 0,u(1) = 0. This
simple 1D problem provides a nice test model. In spite of its simplicity it al-
ready reveals essential numerical properties for the Dirac delta function source
¢(x) =0(x—=x), T € (0,1). For this ¢ the solution u of (4.2.1) is no longer a clas-
sical solution in the sense that it can be explicitly substituted in the differential
equation. It can be determined however by the Green’s function expression [50]

) = [ Glay)edy.  Glay) = {

y(l—2z), y<z<1. (4.2.2)
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Using the delta function property fol f(x)d(x — T) = f(Z), insertion of ¢(x) =
0(x — ) gives

wo-{ 2078 05250 a2

Note that u is continuous but not continuously differentiable over [0, 1].

In this section we will analyze the standard cell-centered discretization scheme
for (4.2.1) obtained through the finite volume approach. For u smooth (sufficiently
differentiable) this scheme converges with second order in the maximum norm.
However, for the solution defined by the Dirac delta function the scheme becomes
locally inconsistent near Z resulting in a maximum norm order reduction from two
to one for the global error. For the sake of insight we will analyze this reduction
phenomenon from two points of view, viz. by introducing modified equations
as in backward error analysis and by examining the local truncation error as in
common (forward) error analysis.

Let h = 1/N where N is the number of uniform grid cells ; = [(i — 1)h, ih]
fori =1,...,N covering [0,1]. Let 2; = (i — 1/2)h denote the cell center of ;.
The finite volume approach for (4.2.1) amounts to first integrating (4.2.1) over €;
and dividing by the cell volume,

fQi —Ugg(T)dz _ fQ o(z)dx
fQi dx fQI de

followed by applying the divergence (Gauss) theorem '),

_Um($i+1/2) Um(ﬁCi—l/Q) . fgi ¢(x)dx
fm dx fm de fm dz

followed by choosing a difference approximation for u, and computing the inte-
grals, either exact or by a quadrature rule. After incorporating the boundary
conditions this procedure then results in the aimed discretization scheme.

Correct application of the divergence theorem generally requires existence and
integrability of u,, which does not hold with a Dirac delta function for ¢.2) To
circumvent this problem we will assume, for the sake of analysis only, that we
are solving a modified equation defined by a modified source term associated to
0(x — x). More specifically, we will associate §(z — Z) with a class of source
functions ¢(x) leading to twice continuously differentiable solutions v and which
are equivalent with §(x — Z) in the sense that

i=1,...,N, (4.2.4)

/Qi ¢’($)d$=/ﬂi §(z —@)dr, i=1,...,N. (4.2.5)

1) The divergence theorem in 1D is called the fundamental theorem of calculus.
2) Solution (4.2.3) forms an exception. For this solution the divergence theorem appears to
hold over the cell 2; containing Z.
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The divergence theorem is then applicable for these twice continuously differen-
tiable solutions and, furthermore, assuming exact integration or a proper quadra-
ture rule, the ¢-integrals in (4.2.4) are computed as if the source is the Dirac delta
function. Hence the resulting difference scheme remains unaltered.

In addition to (4.2.5) we will further assume that any ¢ considered converges
uniformly in 2 to the Dirac delta function with O(h) in the sense that

1
/O Gle,y) ($ly) — 6y — 7)) dy = O(R).. (4.2.6)

We will show that there exist a function ¢ that satisfies (4.2.5)-(4.2.6). Due to
(4.2.2) requirement (4.2.6) immediately leads to first-order convergence of the
exact modified solution u to the sought exact solution. This in turn implies first-
order convergence of the numerical solution to the sought solution if we have first-
order h-convergence of the numerical solution to the assumed modified solution.
Below we will illustrate this line of thinking which is reminiscent of backward error
analysis as used in numerical linear algebra or numerical differential equations,
see e.g. [51].

To set up the difference scheme let us assume that T € (2;_1/2,2;41/2) for
a certain j = j(h) at a distance ch of the cell center z;, i.e., T = z; + ch with
—1/2 < ¢ < 1/2. Then due to (4.2.5), (4.2.4) becomes

_Uz($i+1/2) n Ug(Tiz172) Oy

h h B’
where §;; is the Kronecker delta symbol. Next, let w;,s = 1,..., N, denote the
numerical solution for u(z;) resulting from approximating u.(w;11/2) in (4.2.7)
by (u(x;y+1) — u(x;)) /h, etc. The Dirichlet boundary values are accounted for by
extrapolation to auxiliary values wy = 2u(0) — w1, wy+1 = 2u(l) — wy and by
insertion of wy and wy 41 for ¢ =1 and ¢ = N, respectively. If we then assemble
the w; in the grid function w = (wy,...,wx)?, we get as numerical scheme the
N x N symmetric linear system )

i=1,...,N, (4.2.7)

-3 1 0
1 -2 1 .
—Aw=0» _ ! . : : b—1 1 (4.2.8)
- I _hQ oL T t. 9 _h ) .
1 -2 1 )
1 -3 0

where b has zero entries except at entry j. The inverse of the difference matrix
is bounded uniformly in A = 1/N, defining w = A~'b uniquely as the aimed
numerical solution.

3) The values -3 at the corner entries are due to the fact that we have chosen a cell-centered
grid and have Dirichlet boundary values. With a vertex-centered grid (boundary points as cell

centers) the common stencil would result with -2 at the corner entries. See Section 1.5.3 in [52]
for accuracy aspects.
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Let up, = (u(z1),...,u(zyn))T denote the restriction of u(z) to the grid. As
discussed above, the numerical solution w can be interpreted as an approximation
to uy, for a twice differentiable modified solution u defined by an appropriate source
function ¢ satisfying (4.2.5). Likewise, once constructed, w may also be directly
compared to the actually sought solution lying at a maximum norm distance O(h)
to any appropriate modified solution.

Error analysis through modified solutions Associating a uniquely deter-
mined numerical solution with different exact modified solutions for the sake of
analysis is the central idea of backward error analysis. This line of thinking may
enhance insight in the numerical discretization procedure or, as in our case, even
justify the discretization procedure. Here we are in the special situation of being
able to find the numerical solution and exact modified solutions in closed form.
One can easily check that

zi(l—z;), 1=1,...,7,
w; = ( ) o J (4.2.9)
$j(1—2131'), 1=7+1,...,N,

solves (4.2.8). This numerical solution differs from solution (4.2.3) only in that
Z is replaced by z;, revealing a small shift in the peak and an error at all grid
points. In terms of Z and ch, with —1/2 < ¢ < 1/2, we have
ri(1—2)+cx;h, i=1,...,7,
T o (4.2.10)
T(1l—z;)—c(l—a)h, i=j+1,...,N,

immediately showing O(h) maximum norm convergence. For ¢ = 0, i.e., with the
singular point Z located in the center of cell €2;, the scheme returns the sought
solution exactly.

Next consider by way of example the continuous source function

0, 0<z<z;—h/2,
o(2) m@—x;+nh/2), z;—h/2<z<ay, (4.2.11)
x) = 2.
a(@j—x+h/2), z;<z<z;+h/2,
0, $j+h/2§213§1,

which satisfies (4.2.5)-(4.2.6) and results in the twice continuously differentiable
modified solution

w(l—xj), 0<az<az;—h/2,
xl—;v»—Qx—x»+h23, zi —h/2<zxz<ax;,

u(x) = (= =5) 3’;2( ! /)3 s h ’ (4.2.12)
r;(1—x) — gia(xj —x+h/2)°, x; <z <x;+h/2,
zi(1— ), zi+h/2<z<1.
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On the grid this modified solution is closer to the numerical solution (4.2.9) than
the sought one as it should be. The uj; and w coincide at all grid points except
at x; where the difference is h/12. Observe that (4.2.11) can be interpreted as a
regularized form of the singular Dirac delta function as discussed in [49]. Contrary
to the approach followed here, in [49] such regularized forms are explicitly used
and implemented in the used difference schemes.

Error analysis through the truncation error Following the common ap-
proach of (forward) error analysis we will next examine the convergence of (4.2.8)
to the sought solution u by analyzing the local truncation error o and global error
e defined by

o=—Auy — b, e=1up—w.

There holds —Ae = o so that ||e]|c < |[|[A7! |00 ||0]|o- Hence if ||o]|oe = O(h?) we
immediately have second-order convergence in view of the uniform boundedness
of [|[A7!||o. However, for the current solution (4.2.3) we find

T
—c c
cr—((),...,(), h,h,(),...,()) , (4.2.13)
with nonzero entries for cell 7 and j + 1, respectively. Here it is assumed that
z lies at the right of z; so that 0 < ¢ < 1/2. With Z at the left the nonzero
entries shift to cells 7 — 1,j. For ¢ = 0, i.e., with the singular point located in
the center of cell {2, a zero truncation error results and hence in this special case
the scheme returns the exact solution (4.2.3). In all other cases ||o]|o = O(h™1)
so that convergence cannot be concluded when the standard argument sketched
above is followed.

Through a more subtle local truncation error analysis the correct maximum
norm O(h) convergence can be proven however, gaining two powers of h. A
similar situation generally occurs with Dirichlet boundary conditions due to the
cell-centered location of x; and z,, half a distance h away from the boundary.
For a general smooth solution we then would have oy = O(1),0n = O(1). In [52],
Section 1.5.3, it is shown that we then still can expect second-order convergence
(with a sufficiently smooth source) due to a favourable local error cancellation and
we adopt here the method of proof of [52] to show first-order convergence with
o given by (4.2.13) using the following ansatz: the local truncation error can be
decomposed as 0 = —Ar + £ such that the grid functions r, £ are componentwise
O(h). This would immediately prove first-order convergence since the global
error then satisfies e = » — A~'¢. The ansatz is verified as follows. Put ¢ = 0 and
r = ha. We then have to verify that such a grid function « exists and satisfies
a = O(1) componentwise. The result is

=2ie i=1,...,7,
ai:{ N (4.2.14)

2N —2i+1 S
Nle, i=j+1,...,N,
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which completes the proof. Observe that since £ = 0 we have e = ha connecting
this expression with (4.2.9) through w = wuy, — ha.

Example 4.2.1. As a second illustration of the O(h) convergence of the cell-
centered scheme we consider a slight extension of the 1D test model (4.2.1), viz.,

—Ugy +u=08(x —T), 0<z<1, (4.2.15)

again with homogeneous Dirichlet boundary conditions. This problem does have

as solution
sinh (1—z) sinh (x) 0

U(Q?) _ sinh (1) ’ STr<7T,
o sinh (1—=z) sinh (z) =
sinh (1) » X S x S 1

Figure 4.1 shows u (left plot, solid line) for Z = 1/3 along with the cell-centered so-
lution for h = 1/20 (o-marks). The plot at the right nicely reveals the anticipated
first-order convergence (||up, — w||oo versus h in log-log scale).

0.1
02|
015 | 0.01
01 1 0.001 ¢
0.05 1 le-04 ¢
0 ‘ ‘ ‘ ‘ 1e-05 ‘ ‘ :
0 0.2 0.4 0.6 0.8 1 le-04  0.001  0.01 0.1 1

Figure 4.1: Numerical illustration for problem (4.2.15) with # = 1/3 on the
uniform grid.

4.2.2 The 2D boundary value problem

An interesting 2D test model used in [49] is the Poisson equation
—Au =T, 2,y) . (4.2.16)

Here the source denotes the Dirac delta function along a curve I' defined by

o, z,y) dacdy:/d'y, (4.2.17)
R? r

with co-ordinate v on T'.
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As in the 1D test model case, the solution u is continuous but not continuously
differentiable across I' so that the divergence theorem cannot be correctly applied.
However, by arguing with assumptions similar to (4.2.5), (4.2.6), the divergence
theorem is correctly applied for twice differentiable modified solutions.

Assuming (4.2.16) on a square, and using a uniform N x N grid the 2D coun-
terpart of (4.2.8) reads

—(A@IN-I—IN@A)’UJ:b, (4.2.18)

where Iy is the identity matrix of size N and ® is the direct matrix (Kronecker)
product. The entries by, of the vector b € RV*Y are associated to grid cells ;;
with values emanating from the boundary conditions and the source 6(T, z,y).
Considering the source contribution, let I';; = I'NQ;; and |T';;| the length of T';;.
Then, assuming exact integration of the integral along I', from (4.2.17) and the
finite volume approach follows that either

b = |Ti;]/h? (4.2.19)

or by, = 0 (considering only the source term contribution). Because upon intersec-
tion |I';;| is proportional to h, assuming h sufficiently small, by, is then proportional
to 1/h or equal to zero, similar as in the 1D case.

For the circle I' = {(z,9) : (z — z.)?> + (y — y.)? = r*} problem (4.2.16) has
the radial symmetric solution [49]

ur, (r —xe)? + (y —ye)® <12,
W) =N o (\/<w—wc>j+<y—yc>2) gz (y—pe)? > 12,
(4.2.20)

where ur is a given constant value on I'. For ur = 1, r = 1/4 and (z¢,y.) =
(1/2,1/2) we have applied scheme (4.2.18) on the unit square 0 < z,y < 1 with
Dirichlet boundary values prescribed from (4.2.20). Like in the 1D case this results
in order reduction from two to one. Figure 4.2 shows the corresponding u and
nicely illustrates the first-order convergence of (4.2.18). The right figure plots
|lup, — w||loo versus h in log-log scale. We have used exact integration along I' (for
the circle t