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1. INTRODUCTION 
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Parallel to the interest in semiconducter device simulation, the number of papers on this subject has 
shown an explosive growth during the last decades. Due to the never-ending demand for more speed 
in technical environments, the nowadays computers have made a tremendous progress and, conse­
quently, allow for a rather sophisticated numerical simulation of semiconductors. Even the treatment 
of (transient) three-dimensional problems has started recently. 

However, in these solution processes, not all the elements are completely understood and for some 
elements it is not clear in advance which solution technique is to be preferred. 

On the basis of a concrete ID stationary example problem (as commissioned by Philips) we aim to 
provide insight into choosing a proper algorithm for the various elements in the solution process. 

Although the real (3D) situation is drastically simplified in this ID model, it still possesses many of 
the characteristic difficulties, usually encountered in the numerical simulation of semiconductor dev­
ices. 

After discretizing the elliptic PDE, the solution of the resulting nonlinear system of equations will 
be discussed. Here, our starting point is Newton's method. In spite of its quadratically convergence 
behaviour for sufficiently close starting guesses, this method has the disadvantage of being not glo­
bally convergent. It is this last property which will obtain special attention in this report; in other 
words, we will investigate techniques to provide 'sufficiently accurate' initial approximations to let the 
Newton process converge. Hereby, we note that these techniques are tailored to the particular semi­
conductor problem at hand. 

Finally, it is emphasized that much of the material presented in this report is already known, and 
extensively discussed in the expository paper by POLAK et al. [8]. New aspects can be found in Section 
4.1 (Continuation type of methods) and in Section 4.2 (Multiple grid methods). 
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2. THE BASIC EQUATIONS 

The basic mathematical model describing the behaviour of a semiconductor is given by [6,9] 
- div(E Vo/)= q(p-n+D), 

divJP = -qR, 

divJn = qR. 

(2.la) 

(2.lb) 

(2.lc) 
In (2.la) (Poisson's equation), 1/; represents the electrostatic potential, E denotes the permittivity, 

which is assumed to be a scalar constant, q is the elementary charge and p and n represent the con­
centration of holes and electrons, respectively. The (doping) function D will be specified in the next 
subsection. 

The continuity equations (2.lb) and (2.lc) describe the relations between the current densities JP 
(for holes) and Jn (for electrons) and a function R =R(p,n) which is called the recombination­
generation rate. 

The current densities JP and Jn are defined by the so-called current relations 
1 

JP = -q17(-Vp +p Vo/), (2.2a) a 

1 Jn = qµ,,(- V n -n V 1/;), 
a 

where a is a constant and /Lp and µ,, are the mobilities of holes and electrons. 

(2.2b) 

In the set of equations (2.1)-(2.2), the quantities E,q,D,R,a are prescribed and p,n and 1/; represent 
the unknowns. 

2.1. A ID model problem 
We will confine our numerical study to the one-dimensional version of {(2.1), (2.2)}. The specification 
of the problem is based on a note which we received from Dr. W.H.A. Schilders, Philips; June 3, 
1986. 

The data used are given by 

E = 1.03591810- 12 , q = 1.602110- 19 ; 

/Lp = µ,, = 500; (2.3) 
a = qlkT. k = 1 38054 - 23 T = 300· ' . 10 ' ' 

pn - nf _ _
6 _ 10 

R = T(p+n+2n;)' T - 10 ' n; - 1.2210. 

The doping function D is specified by 

D(x) = 61J5 + 61J9 exp {-(x/7.1 10- 5)2} 

- 2.151J8 exp {-(x/l.1510- 4)2} (2.4) 

+ 1.11J9 exp { -((x -810-4)/ 1.310-4)2} , 
where xe/=[0,8 10-

4], the interval on which the problem is defined. In the following figure the 
strongly varying behaviour of the doping function D (x) is shown. 
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D(x) 

0 

-1010 

x 
Doping profile (2.4) 

2.2. Boundary conditions 
In general, we have three contacts to a semiconductor device, called the emitter (E), the basis (B) and 
the collector (C) (see Figure 1). In our case, the boundary conditions are given by 

E B 

x=O 

n-region p-region n-region 

FIGURE I. Definition of the contacts in a ID transistor problem; A p-region (n­
region) is a domain with a high concentration of holes (electrons) (see 
also the figure of the dope function). 

Emitter: vanishing space charge, i.e. p - n + D = 0, 
Jp = 0, 
<fin = VE; 

Basis: <Pp = O; 

Collector: vanishing space charge, i.e. p - n + D = 0, 
</>p = Ve, 
<Pn = Ve, 
" 

c 

(2.Sa) 

(2.5b) 

(2.5c) 
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where VE and Ve are given voltages, respectively applied at the emitter and collector, and the func­
tions c/>p and c/>n are defined by 

1 
cf>p = if; + -ln(p!ni), 

a 

1 <Pn = if; - -ln(n!ni). 
a 

(2.6) 

The functions c/>p and <Pn are usually termed 'the hole and electron quasi-Fermi potentials'. These func­
tions play an important role in the numerical solution of the problem. 

2.3. Change of variables 
For the problem {(2.1), (2.2)} it is well known, that the dependent variables p and n assume values in 
a very wide range (e.g. po- 1,1019]) and possess a strongly exponential behaviour. In numerical 
simulation, this may cause serious problems. 

Therefore, we decided to perform our investigations in terms of the variables {l/;,c/>p,c/>n }, the latter 
being defined in (2.6). This has the additional advantage that the applied voltages VE and Ve are sim­
ple Dirichlet conditions for the cp-variables (cf. (2.5)). 

The range of values assumed by these new variables depends on VE and Ve, but is rather modest 
in a typical case, e.g. [-1,1]. 

However, it should be observed that, by the change of variables, the nonlinearity of the problem to 
be solved is strongly increased. 

Fortunately, it will turn out that the advantages of the (p,n)-variables (viz. a mildly nonlinear 
operator) and those of the cp-variables (viz. a modest range of values) can be combined (see [8] and 
also Section 4.1.3, Correction transformation). 

2.4. Summary of the problem definition 
In terms of the variables 1/;,c/>p and c/>n, our ID test model is given by 

t:l/;" + qni(ea(<J>p-i/J) _ea(if-<J>.)) + qD = 0, (2.7i) 

1Lpn;(%ea(<J>,-if>y - R = 0, (2.7ii) 

µ,,n;( -«zea(if-<1>.>y - R = 0 . (2.7iii) 

Apart from the boundary condition JP =O (at the emitter), which is replaced by cft, =O, all other boun­
dary conditions are straightforwardly adapted. 

3. THE SPATIAL DISCRETIZATION 

To discretize the equations (2.7), we define the nonequidistant grid 

dh : = {x/ x 0 = 0, x1 = x1_ 1 +h1, j = l, ... ,N -1, xN = 810-
4 }. 

Xt-1 Xt Xt+l 

Furthermore, we introduce the abbreviations i[;1, cpf and <PT, respectively denoting approximations to 
i[;(x1), cf>p(x1) and <Pn(x1). 

Now, we can setup the system of nonlinear equations, henceforth shortly written as 

F(U) = 0, (3.1) 
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with F=(F1,j ,F2,j,F3)J and U=(1h,c/>f ,cJ>j)J, where j runs through the grid points (i.e., 

j =O, l, ... ,N) and the F;,j{i = 1,2,3) correspond to the equations (2.7i), (2.7ii) and (2.7iii), respectively. 

The discretization of Poisson's equation (2.7i) is standard and will be performed by the usual 

three-point difference formula. This results in 

F . ·= (1/Jj+i -1/Jj _ lf!j-1/Jj-I) + 
1,j • f h h 

j+I j 

h · + h · + J ( + ->¥) a(>f - -) 
q. Z / (n;eact>; ;_n;e i <l>J +D(xj))=O, j=l, ... ,N-1. 

For the Poisson equation the boundary conditions are converted into 

F l,j : = n;e a<ct>; ->¥1> - n;e a(>f1 -<1>;-) + D (xj) = 0 , j = O,N. 

(3.2a) 

(3.2b) 

The discretization of the continuity equations (2.7ii) and (2.7iii) needs special care. As pointed out in 

[6, p. 141] the standard finite difference approximation does not provide reasonable approximations, 

unless the mesh sizes are very severely restricted. 
To circumvent this undesirable situation, we applied a nowadays common discretization technique, 

introduced by Scharfetter and Gummel, which is based on exponential fitting. For a detailed discus­

sion of this method, we refer to [9, p. 158] or [6, p. 148]. 

Using this technique we arrive at 

F2. := ..!iea<<1>;->¥1> [B(a(o/j+1-o/j))E(a(cJ>/+1-cJ>/)) 
,J a hj+I 

B(-a(l[lj-o/j-1))E(-a(cJ>f -cJ>/-1)) l 
+ h· z 

hj+I +hi ea(<1>;-<1>1_> _ 1 . 
c<1>•->¥> <>¥-et>-> , 1=1, ... ,/-1,/+l, ... ,N-l. (3.3a) 

2T ea J J + ea J J +2 

The Neumann condition at the emitter is simply discretized as 

F2,o := q,(j - q,( = 0 

and the Dirichlet conditions at the basis and collector yield 

F2,1 := cJ>t = 0 and F2,N := cJ>it - Ve= 0. 

The function B, occurring in (3.3a), is the Bernoulli function defined by 

B(z) := _z_ 
ez-1 

and the function E is given by 

E (z) : = ez - 1. 

(3.3b) 

(3.3c) 

(3.4) 

(3.5) 

It should be remarked that, for small values of z, a straightforward evaluation of B and E may yield 

cancellation or even zero-division. Therefore, in our implementation, we set 

z z z2 

B(z) = 1-2(1-6(1-
60 

)) (3.4') 
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and 

z z z 
E(z) = z(I +2(1 +3(1 +4))) (3.5') 

if JzJ<I0-4
• 

Finally, the discretization of the second continuity equation (2.7iii) is very similar to (3.3a), with the 
exception that now the point x1 (i.e. the basis) is not excluded from the general formula. Hence, we 
find 

(3.6a) 

and 

F3,o :=<Po - VE= 0 F3,N := cpjV-Vc = 0. (3.6b) 

The system (3.1) is now completely defined by assembling the equations (3.2)-(3.6). 

4. NUMERICAL ALGORITHMS 

In this section we will discuss several possible ways to solve the system (3.1) numerically. First, we 
remark that due to the nonlinearity of the problem, any applicable method must be of the iterative 
type [7]. This leads us directly to the most famous iterative scheme, i.e. Newton's method, defined by 

un+I = un - [F'(Un)r 1F(Un), n=O,l, ... , (4.1) 

with u° given. Note that vector symbols are omitted, as no ambiguity has to be feared. 
Usually, the problem (3.1) has to be solved for several sets of applied voltages; let us say, for 

{VE,, V c). j = 0, 1, .... A straightforward approach then is to start up Newton's method for solving the 
problem for {VE,, Ve). with the solution obtained for {VE,_,, Ve,_.}. Unfortunately, the nature of 
semiconductor problems is such that a small change in {VE, Ve} may result in a dramatic change in 
the solution. As a consequence, the approach often results in a divergent process, as Newton's method 
is not globally convergent. Therefore, the main part of this section is devoted to finding close enough 
initial approximations. 

4.1. Continuation type of methods 
Suppose we have a solution u° of (3.1) corresponding to the set of boundary conditions { ~. 0c} 
and we want to find the solution u* corresponding to { ~. Vc }. For that purpose, we introduce the 
continuation parameter t and define the family of problems 

F(U(t),t) = 0, tE[O,l] (4.2) 

where it is assumed that (4.2) has a unique solution for each tE[O,l]. The parameter t should hereby 
be interpreted as a continuation of the discrete boundary values. We shall take U(t) to be the solution 
of (3.1) with boundary conditions {(1-t)~+t~,(l-t)0c+tVc}, so that U(O)=u° and 
U(l)= u•. In this way we have defined a solution curve which gradually leads to u•. 

REMARK.. In this connection we remark that the continuation parameter t is not necessarily restricted 
to the boundary values. It can also be associated with other problem-parameters. For example, 
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quantities which are responsible for (the location of) the sharp gradients in the solution. These possi­
bilities are not considered in this report but may be subject of further research. Here we restrict our 
attention to the continuation of the boundary values. 

4.1.1. Davidenko's method 
One possible way to define the solution curve is to transform ( 4.2) into an initial value problem by 
differentiating to t, yielding 

F,(U(t),t) + Fu(U(t),t)U(t) = 0, t E[O, l] 

U(O) = U°. (4.3) 

If we assume that Fu is invertible, then (4.3) can be written as an explicit ODE which can be 
integrated by standard ODE methods. It should be observed, that in our example - where t is only 
involved in the boundary conditions - this approach results in an F1-vector with nonvanishing ele­
ments in the first and last component only. 

If the ODE (4.3) is exactly solved, then we do find the exact solution u•. However, a numerical 
integration to obtain a solution of sufficiently high accuracy, would result in a very time-consuming 
process. Therefore, we approximately solve this ODE and regard the numerical solution at t = 1 as a 
-hopefully- better initial approximation for the Newton process (4.1). 

We actually implemented this approach for a simplified set of equations and applied various stan­
dard ODE codes based on explicit time integration techniques, using several tolerances to control the 
local errors. The result of these experiments were not very promising, in the sense that a more 
stringent local error criterion did not systematically yield an initial approximation which resulted in a 
better convergence behaviour for Newton's method. 

On the basis of these experiments we decided to reject this type of continuation methods. 

4.1.2. Discrete imbedding 
A different way to find u*(= U(l)) is successively approximate the solutions of 

F(U(tj),tj) = 0, j = 0, 1,2, ... (4.2') 

for a sequence of points t 0 =O,t 1,ti , ... , 1. This type of continuation methods is usually called discrete 
imbedding. For each of the problems in (4.2'), in principle, any iterative method can be used. We will 
consider Newton's method for this purpose. 

In this subsection we will describe a strategy which automatically selects the sequence of points 
tjCj> 1) for each of which the Newton process converges, starting with the result of the previous 
point. Thus, the crucial task is to select stepsizes fit such that the strategy performs best in terms of 
total number of iterations. A theoretical discussion on this topic can be found in [4]. For the develop­
ment of such a strategy, we introduce a few criteria: 
A. divergence criterion: first, we need a robust mechanism which immediately signals divergence in 

the iteration process; this is absolutely necessary, since iterating with unrealistic values - for 
example, obtained from a too large Newton-correction - will very quickly result in overflow. 
To avoid this situation, we decided to introduce an allowed range for each of th~ variables 
i/J,<f>+(=<f>p) and <f>-(=<f>n). That is, we provide minimal and maximal values for these variables 
and the algorithm ensures to keep all iterates within these ranges. As an indication, a reasonable 
range is provided by twice the extreme values the variables are expected to assume. (However, we 
have experienced that the performance of the algorithm does not critically depend on these 
values). 
Henceforth, these ranges will be called the bandwidth. 

B. stopping criterion: in any iterative process, we continuously have to answer the question: "have we 
ground to a halt?". It is an essential part of our algorithm to specify different "grounds", depend­
ing•on the value of t. Only for t = 1, i.e. when (4.2) coincides with the original problem, we 
impose a stringent stopping criterion; for t < 1, we are iterating on artificially introduced 
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problems, the "solution" of which merely serves to obtain a close enough initial approximation 
for the next problem. Therefore, at these intermediate points we use a stopping criterion which 
is far less stringent, thus saving iterations. The actual stopping criterion, we implemented, reads 

where 

II absolute difference between two successive iteratesll 00 < TOL(t) (4.4a) 

{

10-2 if t<I 
TOL(t) = 10_ 11 if t =I. (4.4b) 

We remark that it is not necessary to perform a relative test on the difference of the iterates since 
they are e(l) in our example and that testing on the residue (i.e., llF(un+I)ll 00 small enough) 
would need an appropriate scaling of the equations. We have successfully employed the stopping 
criterion ( 4.4). 

C. fitting criterion: a consequence of our stepsize strategy may be that the t-parameter assumes 
values very close to 1. Obviously, this is not efficient. To avoid this situation we require, in each 
step, that the remaining t-interval is an integer multiple of the current stepsize. 

The stepsize strategy we have implemented can be formulated by the following rules: 

(i) first, we set flt= 1, i.e. we directly try to solve (4.2) for the endpoint t =I. 
(ii) after each iteration, we test on criterion A; if this criterion is not satisfied, we abandon the itera­

tion process, halve the stepsize and restart. 
(iii) if the iteration passes this test, we apply criterion B, i.e. we test on "convergence" ( cf. ( 4.4). 
(iv) if the process has "converged", we increase the stepsize by a factory (subject to criterion C) and 

try to solve the next (sub)problem. 

In Appendix B we give a flowchart which may elucidate the above strategy. 

4.1.3. Correction transformation 
As already mentioned in Section 2.3, this numerical study is performed in terms of the variables 
(1/;,<f>+(=<i>p),</>-(=<f>n)}. This choice is motivated by our wish to avoid complications due to the 
extremely wide value range of p and n. However, the price we have to pay is that the system to be 
solved is strongly nonlinear, whereas the system in terms of { 1/J,p,n} is mildly nonlinear. 

As pointed out in [8], it is possible to take advantage of the benefits of both approaches. Here, we 
shortly reproduce this technique: 

Let U=(uj) with uj=(1/Jj,</>f,<f>Tl, wherej=O,l, ... ,N, the number of grid points (cf. (3.1)); simi­
larly, let V=(vj), vj =(1/Jj,pj,nj)T, where the relation between <f>f ,<f>T and pj,nj is defined in (2.6). 

Let us write the transformation Vi-+U as U=D(V)=(w(v0},w(v 1}, ••• ,w(vN)l with w:R3~R3 • Using 
(2.6) it is readily verified that 

0 0 

w'(vj)= 0 
apj (4.5) 

1 0 

Furthermore, let 
anj 

G(V) : = F(D(V)) = 0 (4.6) 
denote the system for the original variables V, so that both systems are identical. 
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Now, the idea of the correction transformation is to employ the operator G, which is much less 
nonlinear than the operator F, but still performing the calculations in terms of U. Applying Newton's 
methods to ( 4.6) we obtain 

yn+I - yn = - [G'(Vn)r 1G(Vn). (4.7) 

Substituting 

G'(V) = F'(U).O'(V) 

= F'(U). Diag(w'(v0),w'(v 1), ... ,w'(vN )) 

into ( 4. 7) yields 

O'(Vn)[Vn+l _ Vn] = - [F'(Un)rlF(Un). (4.8) 

The final step is to express the left-hand side of ( 4.8) in terms of the corrections on U. Observe that 
this left-hand side can be partitioned into vectors rj in R3, rj = (r1,j,r2,j,r3,jl = 
w'(vj)[vj +1-vj], j = 0, l, ... ,N; thus, the three variables in V can be transformed for each grid point, 
separately. 

Let 

We find 

1 0 0 Lllf;j 
[ 6o/1 

Lllf;j 

1 I 1 
rj = w'(vj)Llvj = I 0 llpj Lllf;· + /lp·l(ap'!) Lllf;·+-exp[a(t:.q,7 -Lllf;-)]-- . 

apj 1 1. 1 1 a 1 1 a 

-1 
Llnj Lllf;j-Llnjl(anj) 

Lllf;· _ _!_exp[a(Lllf;· -Llq, :--)]+ _!_ I 0 
anj 

1 a 1 1 a 

Now, the corrections Lluj=uj+ 1 -uj=(Lllf;j,Llq,f ,Ll<t>Tl in terms of the U-variables are easily found 
.to be 

r1,j 

I 
Lluj = 8(rj) := r 1,j+-;In(l+a(r2,j-r1,j)). (4.9) 

r 11· _ l_ln(l -a(r31· -r1 1-)) , a , , 

Defining 0(R) : = (8(r0 ),8(r1), ••• ,8(rN)l for R =(rj), each rjER3, the resulting process in terms of the 
U-variables can thus be written as 

(4.10) 

We observe that, mathematically, this process is equivalent to (4.7) (with un =O(Vn) for all n). Or, in 
other words, the present method is just a reformulation of Newton's method (4.7) for the original 
variables 1[;,p and n. 

However, in actual application, there is an important difference between the processes (4.7) and 
(4.10): the Jacobian F'(Un) in (4.10) is easily invertible, whereas the G'(Vn) in (4.7) turned out to be 
numerically singular in our experiments. This is due to the fact that G'(V)=F'(U)D'(V), where D'(V) 
is ill-conditioned since p and n assume very large values (cf. (4.5)). 
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To sum up, instead of working with (4.1), in each iteration step_ we first compute the values 
(r 1,j,r2,j,r3,j) by solving the linear systems in the right-hand side of (4.8). Then the corrections in 
terms of the U-variables are computed from (4.9). 

REMARK I. Clearly, if one of the logarithms in (4.9) has a nonpositive argument, the correction 
transformation in its present form is not feasible. If this situation is encountered, one of the following 
remedies can be applied: 

Rl: if one of the arguments is nonpositive, then the transformation is omitted for the corresponding 
grid point, i.e., tluj=(r1,j,r2,jh,jf· 

1 R2: tlcpf =r1,j+-;ln[ max(l +a(r2,j-r1,j),£)], 

flct>T =r1,j- ! ln[ max(l -a(r3,j-rJ,j),€)], 

where £ is a small positive number. 

R3: if l+a(ri,j-r 1,j)~O thentlcpf =r1,j+max(r2,j-rl,j•-.026), 
if l -a(r3,j-r1,j) ~ 0 thentlcf>T =r1,j +max(r3,j-rl,j• + .026). 

This last remedy is in use at Philips. The number .026 is very close to 1/ a, hence R 3 is approximately 
equivalent with: 

if 1 + a(ri,j-r 1,j)~O thentlcpf = r1,j-l!a 

and if l -a(r3,j-r 1,j)~ 0 thenflct>T = r1,j + l/a. 

We have implemented all remedies; their influence on the performance will be discussed in Section 
5.1. 

REMARK 2. We end up this section with a brief discussion on the above remedies. First of all, it is 
easy to show that one of the logarithms in ( 4.9) will have a nonpositive argument iff some pJ + 1 or 
nJ + 1 would come out nonpositive in ( 4. 7). Here, we recall that p and n denote concentrations and 
are nonnegative by definition. Hence, a nonpositive argument in one of the logarithms corresponds to 
a nonphysical situation. Bearing this in mind, the remedies R 1 and R 2 have been constructed. They 
allow for the following interpretation: Remedy R 1 simply means: if one of the arguments in the loga­
rithm, say in the J'h component, is nonpositive then the component uJ + 1 is computed from ( 4.10) by 
replacing O(rj) by the identity operator. 

Process (4.10) in combination with remedy R 2 is equivalent with the Newton process (4.7) in which 
pJ + 1 and nJ + 1 are "cut off" if they become smaller than f:/JJ and mJ, respectively. This can be shown 
by considering the following modification of (4.7) 

yn+I - yn = -N[G'(Vn)r1G(Vn), (4.11) 

where N = Diag(A8,A 7, ... , A'Jv ), with each AJ a 3 X 3 diagonal matrix, say diag (~J, 11J .KJ). In the 
same way as before, this can be written as (cf. (4.8)) 

O'(Vn)[An]-I(Vn +1 - Vn) = -[F'(Un)r1 F(Un). 
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[ 

Lllf!· ~Jr1,i 
1 I 

au.= tlcf>:'- = ~'!r1 .+-ln(l+00111(r2 .-r1 -)) . 
1 J l•la l·l ,J 

tlcf>-:- I 1 ~'!r1 .--ln(I-at'!(r3 --r1 -)) 
J ·l a J •l ·1 

By using 'i = w'(vj)[AJr'(vj+ 1-vj) we obtain for the arguments in the logarithms the expressions 

I + n( ) _ n+l; n 
OOli r2,i-rl,i - Pi Pi• 

I - arj(r3,i-r1,j) = nj+I lnj. 

It follows that remedy R 2 (replacing ln(x) by ln(max(x,£))) is equivalent with (4.11), where ~J=I, and 
11} ,tj E(O, l] are as large as possible such that pj + 1 ;;;.qJj and nj + 1 ;;;.mj. Finally, we note that 
remedy R 3 does not seem to allow for such an interpretation. 

4.1. 4. Additional information 
We conclude this section with some remarks: 
(i) a frequently used variant of Newton's method consists in "freezing" the Jacobian matrix during 

all or a number of iterations (modified- or quasi-Newton method). Anticipating the description of 
the numerical results, we remark that we have experimented with a lot of variants of this type. 
However, the overall efficiency was not increased, when compared with the classical Newton pro­
cess. Therefore, in all experiments reported in Section 5, the Jacobian was updated in each itera-
tion, like we assumed so far. · 

(ii) another commonly used technique is the so-called damped Newton process, that is, not the full 
Newton-correction but only a fraction is used in updating the last iterate (cf. (4.1)): 

un+I = un - An[F'(Un)r1 F(Un), 

for some suitably chosen An >0. The idea is to improve the global convergence behaviour. How­
ever, in order to retain the excellent local convergence of Newton's method, the procedure for 
choosing A,, should allow A,, = I near the solution. It is certainly not a trivial task to select an 
optimal A-sequence; moreover, a lot of additional F-evaluations will be needed for properly 
choosing these damping factors. 
Our numerical experiments have indicated that the global convergence behaviour of Newton's 
method is strongly improved by the correction transformation (see Section 4.1.3). Therefore, we 
think that this technique, in combination with a judicious choice of the continuation parameter t, 
makes damping redundant. 

4.2. Multiple grid methods 
Another class of methods which can successfully be applied in semiconductor device simulation con­
sists of schemes which obtain information from more than one spatial grid (see also Bank et al. [l]). 

A well-known example is the multigrid method. Here, the spatial domain is covered by a sequence 
of grids with increasing mesh sizes. Then, some iteration process is applied (e.g. a defect correction 
process) and the iteration errors are expanded in discrete Fourier series. In terms of these Fourier 
expansions we can roughly distinguish between smooth (low-frequency) and nonsmooth (high­
frequency) error components. Usually, some relaxation technique is used to quickly damp the 
nonsmooth components on a particular grid. The low-frequency modes, which are responsible for the 
slow asymptotic convergence, are damped on a coarser grid, where these frequencies are high(er) fre­
quencies, relative to that grid. 

An obvious advantage of this method is that the major part of the work can be performed on the 
coarser grids. Moreover, in many applications, the total number of iterations does not increase as the 
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finest-grid discretization parameter h tends to zero. For a profound discussion on multigrid methods, 
we refer to [2,3). 

To get some insight in its performance, we implemented a very simple version in which only two 
grids are involved, viz. the grid on which the solution is requested, called the fine grid, and one addi­
tional (coarse) grid by altematingly deleting one grid point. For the coarse-grid operator we simply 
chose the fine-grid operator, restricted to the coarse grid. We remark that in a real multigrid approach 
a much more sophisticated coarse-grid operator is employed. 

Thus we obtain two nonlinear systems (cf. (3.1)) 

Fh(Uh) = 0 and FH(Un) = 0 

for the fine- and coarse-grid solutions Uh and Un, respectively. 
Now, again introducing a continuation parameter t and using the same strategy as described in Sec­

tion 4.1.3, we "solved" the coarse-grid problem Fn(Un(t),t)=O if t<l. Only, if t has reached its final 
point (i.e. t = 1), that is, the solution Uh on the original (finest) grid is desired, we changed to the 
finest-grid problem, taking the last obtained coarse-grid solution as an initial approximation. Here we 
need an operator which transforms Un into Uh, usually called a prolongator. In the literature, various 
sophisticated prolongation techniques have been proposed; we implemented the simplest one, viz. 
linear interpolation. An alternative might be, for example, to exploit the exponential behaviour of the 
solution and to fit the coarse-grid solution by exponential functions from which a fine-grid approxi­
mation can be obtained. This may be the topic of future research. 

In spite of all these simplifications, we obtained a significant speedup in the overall performance of 
the method (see Section 5.3). 

We think that this type of methods is very promising and has a great future in the context of the 
present application. 

Finally, we remark that the above multiple grid modification was obtained by minimal program­
ming effort. As a matter of fact, most of the alterations were restricted to implementing in a number 
of DO-loops a variable stride which took the value 2 (for t < 1) or 1 (for t = 1 ). In doing so, the data 
structures could be maintained. 

5. NUMERICAL RESULTS 

We will present the numerical results obtained by applying the various methods described in the 
preceding section. First, we shall specify some quantities, not yet defined and we shall introduce some 
nomenclature to facilitate the description of the experiments. 

All numerical experiments were restricted to one fixed nonuniform spatial grid Ah with number of 
grid points N= 130. The mesh sizes hj,} = l, ... ,N are given by (see also Section 3) 

.9510-5
, j=l, ... ,10 

.6991 10-
5 , j=ll, ... ,20 

.3710-7 

' }=21, ... ,30 

.12910-6 

' }=31, ... ,40 

.234310-5 

' }=41, ... ,50 
h ·- (5.1) j .- .342710-5 }=51, ... ,60 ' 

.53610-5
' }=61, ... ,70 

.273110-5 

' }=71,. .. ,80 
1 -4 . 10 ' }=81,. .. , 120 

.948510-s 
' }=121, .. .,130 

and the grid points are obtained from xj=xj_ 1 +hj,}=l, ... ,130, x 0 =0. Hence, the basis which is 
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positioned at x = 1.910-
4 corresponds to grid point 50. 

Next, we specify the set of applied voltages {VE, Ve} where a solution is required. In fact, each 

given set of these "output points" defines what we call "a Problem." We have tested four such Prob­

lems, defined by: 

Problem I: 

case nr. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

VE 0 0 0 0 0 0 -.2 -.4 -.6 -.7 -.8 -.85 -.9 -.95 -1.0 

Ve 0 .2 .4 .6 .8 1 1 1 1 1 1 1 1 1 I 

Problem II: 

case nr. 0 1 2 
VE 0 0 -1 
Ve 0 1 I 

Problem III: 

case nr. 0 1 2 
VE 0 0 -1 
Ve 0 .5 5 

Problem IV: 

case nr. 0 1 2 
VE -1 0 0 
Ve I 1 0 

The nature of our test model is such that increasing the collector voltage does not offer serious prob­

lems. However, decreasing the emitter voltage gives rise to substantial difficulties. Especially for VE 

in the range [-.8,-1] the solution rapidly varies, if this boundary value is slightly changed. This 

motivates the clustering of the output points in this region, as specified in Problem I (in Appendix A, 

plots are given of the solution of this problem). However, if one is only interested in a solution for 

{VE= - l, Ve= 1}, then the input as specified in Problem II is relevant. It should be observed that 

this problem is a severe test for the stepsize strategy, since now the algorithm has to pass the difficult 

range automatically. Problem III is very similar to the second problem but now the voltage jump at 

the collector equals 5. Problem IV has the same set of output points as Problem II but in reversed 

order. This means that the most difficult part of the solution process is encountered in the initial 

phase, which may have consequences in designing an optimal strategy. 

To have some form of reference, we solved Problem I with the classical Newton method. That is, 

without strategy and without correction transformation. Moreover, we added (by trial and error) a 

number of output points if the solution of case i was outside the contraction region for case i + 1. The 

total number of Newton iterations to reach the solution of case 14 (VE= -1, Ve= 1) was 424. Obvi­

ously, using the classical Newton method is not an efficient way to tackle this particular problem, but 

is provides some insight in the merits of the correction transformation technique as well as in the 

strength of the strategy. 
We mention that the linear systems arising in the Newton process possess a bandstructure with 5 

lower and 3 upper codiagonals. To solve these systems we used the routine LEQTIB from the IMSL-
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library [5]. 
In testing the problems I, II and IV, we used a bandwith (see criterion A, Section 4.1.2) specified 

by 

l/JE(-0.7,2.0], 

'/> + E( -1.0, 1.5], 

'/>- E( - 1.5, 1.5]. 

For problem III these ranges are enlarged to 

l/JE( -0.8, 7.5], 

q,+ E(-1.0, 7.5], 

'/>- E( -1.5, 7.5]. 

Although these numbers require some preknowledge on the solution, we remark that they can be 
chosen rather arbitrary. Provided that they safely enclose the solution, the performance of the algo­
rithm is not significantly influenced by their values. 

Finally, a few remarks on the solution corresponding to case 0. For the problems I, II and III, we 
have q,f = 0, 4>T _ 0, 'rfj. The potentials 1/11 are easily obtained by applying Newton's method to the 
equations (3.2) starting with the initial approximation iP1=.larcsinh (~D(x1)!n;), i.e. by assuming 

a 
space charge neutrality (see [8] and Section 2.2). 

The final solution from Problem I was used as case 0-solution in Problem IV. 
The effort involved in finding these case 0-solutions is not taken into account in the tables of result. 

5.1. Effect of the correction transformation 
First of all, we observe that the correction transformation has a positive effect on the robustness of 
the Newton method. By this we mean that the global convergence behaviour is strongly improved. 
For example, if we repeat the experiment with Newton's method including the correction transforma­
tion (but still without the continuation strategy), then the total number of iterations decreases from 
424 to 163. This gain is mainly due to the fact that fewer additional points were needed to proceed 
from one case to the other. 

Next, we implemented the strategy with respect to the choice of the continuation parameter t. For 
the time being, we fixed the strategy parameter y to 1.25 and TOL is defined in (4.4b). On the basis 
of the Problems I and II, we have tested the various remedies R 1, R2 and R3 as defined at the end of 
Section 4.1.3. The results of this test can be found in the Tables 1 and 2. These results give rise to the 
following conclusions and observations: 
I) the second and third remedy are of comparable efficiency, whereas R I falls far behind. We 

decided to select R 2, since this has a simple interpretation ( cf. Section 4.1.3, Remark 2); hence, 
in the sequel, all experiments will be performed using this remedy. 

2) we separately tested the influence of£ on the second remedy. For£ within the range po- 1, 10-5] 

we did not notice a difference in the number of iterations; therefore £ is set to 10-4 . 
3) another observation is that the strategy is working well, especially for Problem II. To get some 

insight into its performance, especially in the way the stepsizes 8.t have been chosen and how 
many rejections have been occurred (due to criterion A), we add Figure 2. This figure illustrates 
the behaviour of the strategy (with remedy R 2). The accumulated number of iterations is plotted 
as a function of t if the algorithm is applied to Problem II and proceeds from case I to case 2, 
i.e., Vc=l and VE: 0--'->- l as t: 0--'->1. 
From this picture we may conclude that the algorithm is capable of detecting the difficult region 
and that only 9 iterations are spent to detect that the stepsize was too large, resulting in a rejec­
tion. We consider this an acceptable performance for an automatic mechanism. 
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4) Finally, we deduce from Table 2 that the initial phase of the problem (i.e. increasing the collector 
voltage) offers no problems at all: the solution of case 0 is inside the convergence region of case 
1. 

TABLE 1. Number of Newton iterations required to solve Problem I (in parentheses the 
accumulated numbers). 

case nr. {VE, Ve} Rl 
remedy 

R2(£=10-4 ) R3 

0 0,0 
1 0,.2 5(5) 6(6) 6(6) 
2 0,.4 5(10) 5(11) 5(11) 
3 0,.6 5(15) 5(16) 5(16) 
4 0,.8 5(20) 5(21) 5(21) 
5 0,1 5(25) 5(26) 5(26) 
6 -.2,1 5(30) 5(31) 5(31) 
7 -.4,l 5(35) 5(36) 5(36) 
8 -.6,l 16(51) 6(42) 6(42) 
9 -.7,l 6(57) 6(48) 6(48) 

10 -.8,l 7(64) 7(55) 7(55) 
11 -.85,l 8(72) 8(63) 8(63) 
12 -.9,1 20(92) 16(79) 16(79) 
13 -.95,l 21(113) 16(95) 16(95) 
14 -1,l 23(136) . 18(113) 19(114) 

TABLE 2. Number of Newton iterations required to solve Problem II (in parentheses the 
accumulated numbers) 

0 0,0 
1 0,1 
2 -1,l 

Rl 

18(18) 
89(107) 

remedy 
R2(E= 10-4) R3 

7(7) 7(7) 
62(69) 63(70) 
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5.2. The influence of y and TOL 
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Next, we will test the influence of the strategy parameters y (the growing-factor for the stepsize) and 
TOL (the stopping criterion in subproblems). For several values of these parameters, we solved the 
Problems I and II. 



TABLE 3. Number of Newton iterations as a function of the strategy parameters y and 
TOL 

Problem I Problem II 
TOL y=l y=l.25 

3 101 101 101 * * * 
I IOI 101 101 * * * 

310-1 107 107 107 53 57 58 
-l 111 lll 111 61 61 67 lO 

3 -2 
lO 112 112 Il2 66 66 70 
-2 113 ll3 113 69 69 72 10 

3 -3 
lO 114 114 114 71 71 75 
-3 ns II5 115 71 71 78 lO 
-4 . 

lO H5 ll5 ll5 76 76 81 
-ll 120 120 120 86 86 94 10 

Table 3 contains the results of this test from which we conclude: 
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1 Q, the growing-factor y is of no fuftuence in problems with a dense set of output points which, a 
priori, is adapted to the difficult regions in the process (Problem I); or, in other words, before the 
factory can manifest itself, a next output point has been reached. We recall that, additionally, 
criterion C is imposed which prevents the strategy to exhibit optimal performance for this prob-
lem. · 
However, in. the second problem the situation is quite different. Especially if we realize that the 
step from case 0 to case. 1 (i.e. the jilmp in the collector voltage) is performed without subdivi­
sion, i.e. independent of y. Hence, the strategy is only active when the process proceeds from 
case 1 to case 2. The results indicate that a growing-factor y = 1.5 is too optimistic in this case, 
since the most-difficult part of the. problem is obtained for t close to 1. 

TABLE 4. Number of Newton iterations as a. function of y and TOL for problem IV 

TOL y=l y=l.25 y=l.5· y=2.0 
1 * * * * 3 -I 

10 77 67 57 61 
-l 139' 85 75 81 lO 

3'10-2 140 86 75 82 
-2 141 87 76 85 10 
-4 159 96 82 88 lO 

-II. 192 llO 92 99 10 

Therefore; we also tested Problem IV, in which the output points are specified in reversed order, 
thus transformfug the. difficult part. to the initial phase of the process. Therefore, once this 
difficult phase has been traversed, the algorithm should be. able to increase its stepsi.Zes. Conse­
quently~. a relatively large growing,.factor is expected to result in a superior behaviour. The 
results, collected. in Table.4,.confu:m these expectations (note. especiiill.y the results for y= l); and 
indicate. that y=lS is.optimal for thiSproblem. 
In conclusfon; we t:hiilk that ye (1.25, .. l.5) is a good choice .. 

2P Next, we consider the. fufiuence. of the parameter TOL We observe that the results show the ,. 
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expected behaviour: the more stringent the stopping criterion, the more expensive the process. 
For very large values of TOL, however, the algorithm failed to reach the endpoint t = l; such a 
failure is indicated by an * in the tables. It turned out that, due to such a crude tolerance, the 
accepted "solution" in an intermediate point is too far from the true solution. Then, proceeding 
with this solution, the way back to the solution curve cannot be found anymore, and the strategy 
has completely lost the control. Hence, for the sake of robustness, one should be a bit conserva­
tive in choosing TOL. 
Another observation is that, in situations where the strategy is hardly active (e.g. in Problem I) 
the effect of TOL is not very pronounced. For the Problems II and IV, however, there is a sub­
stantial difference between the extreme values TOL = 0.3 and TOL = 10- 11 • 
Taking into account that the solution is e(l), a value from the range (lo-2 ,10- 1) seems to be a 
reasonable choice for the parameter TOL. 

Finally, we applied the algorithm to Problem III. The difference with Problem II merely consists in an 
increased jump of the collector voltage. Again, the solution for case 1 could be obtained from the case 
0-solution without activating the strategy (!lt = 1 was successful). For this part, 9 iterations are 
required, whereas Problem II needs 7 iterations to drop the Newton corrections below 10- 11 • The 
conclusions with respect to the parameters y and TOL are similar to those obtained in the previous 
tests. Table 5 contains the complete results. 

TABLE 5. Number of Newton iterations as a function of y and TOL for problem III 

TOL y=l y= 1.25. y=l.5 y=2 
1 * * * * 3 -1 

10 66 63 71 73 
-1 77 72 76 76 10 

3 -2 
10 88 76 81 81 
-2 85 79 84 84 10 
-4 94 86 91 91 10 

-11 112 108 116 116 10 

5.3. Effect of using a coarse grid 
To conclude this numerical section, we will shortly discuss the modification suggested in Section 4.2. 
This comprises the use of information obtained on coarser grids. 

Here we will give the result of a preliminary test achieved by the modification as outlined in Sec­
tion 4.2. We solved the second part of Problem II (i.e. from case 1 to case 2), since the first part does 
not need a strategy. As a reference, we consider the single-grid approach, which required 62 iterations 
(cf. Table 2, R2(€= 10-4)). 

The two-grid variant needed 53 coarse-grid iterations and 16 fine-grid iterations; hence, the total 
amount of work is approximately equivalent with 5312+ 16=43 fine-grid iterations. 

Thus, a substantial reduction of computer time is obtained by this extremely simple modification. 

6. CONCLUSIONS AND RECOMMENDATIONS 
In this report we have described our experiences in computing stationary solutions of a 1 D model 
problem for semiconductor devices. In solving the nonlinear system, emphasis was placed upon 
Newton's method, which was extended with a technique called "correction transformation" (cf. [8] 
and Section 4.1.3). The resulting scheme was studied in the context of continuation type methods and 
imbedded in such an environment, where the continuation parameter was associated with the boun­
dary values. 

A strategy was designed for properly choosing the steplength of the continuation parameter. Several < 
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tests are described which served to tune the strategy parameters. We believe that, for this choice of 
the continuation parameter, the resulting algorithm is close to the optimum, and no much gain can be 
achieved by improving upon this strategy. However, we have not considered to employ other prob­
lem parameters for the continuation process (see also the remark in Section 4.1). It may tum out that 
there exists a better choice for this parameter which, in combination with an adequate strategy for its 
steplength, results in an improved overall performance. This possibility may be the subject of future 
research. 

Another conclusion is that the correction transformation technique in combination with a reliable 
strategy, strongly improves the global convergence behaviour of Newton's method. This approach is, 
in our opinion, a more elegant (and less expensive) way in obtaining a robust algorithm than the fre­
quently used damped form of Newton's method (see Section 4.1.4., (ii)). 

In higher-dimensional, real-life problems, for example in designing VLSI structures, the calculation 
of the static behaviour of a single device should be standard. For example, it should be possible, 
preferably interactively, to repeat such calculations many times. Depending on the computer facilities, 
of course, it may tum out that the above class of methods still behaves unsatisfactorily to meet this 
requirement. 

In order to achieve a real break-through, for that purpose, multigrid methods are serious candi­
dates. In this study we had a glimpse on a first attempt in that direction. Of course, much more 
numerical evidence is required to judge the merits of this type of methods in the present application. 
However, due to the very positive results obtained in other fields, we think that these methods are 
very promising and worth to be subject of extensive further research. 

Another important aspect to mention is that the present problems possess a moving front in their 
solutions. This behaviour strongly indicates that the use of a so-called "adaptive-grid technique" will 
be beneficial. The grid that we used in this study has some refinement near 1.6 10-

4 , but this region 
did not always coincide with the region where the solution exhibits its largest gradients. The develop­
ment of adaptive-grid software has not yet reached a high level of sophistication (especially for 
higher-dimensional problems) and it certainly will require a lot of research to reach an acceptable 
level. Nonetheless, for a substantial increase in the efficiency of numerical simulation of semiconduc­
tor devices, these techniques should be examined as well, since they offer an attractive alternative to 
fixed-grid methods. 
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APPENDIX A 

To provide some insight into the behaviour of the solution as a function of the boundary values, we 
add the following plots. They show the solution of Problem I; the numbers along the lines refer to the 
various cases, i.e. 0,1, ... ,14. 

In order to illustrate the tremendous range of values assumed by the variables p and n, we include 
plots for these variables. The plots were supplied by Dr. W.H.A. Schilders, Philips. 
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THE ELECTROSTATIC POTENTIAL if;: 
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THE HOLE QUASI-FERMI POTENTIAL c/Jp: 
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THE ELECTRON QUASI-FERMI POTENTIAL '/Jn: 
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THE ELECTRON CONCENTRATION n: 
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APPENDIX B 

Here we present a flowchart showing the strategy as defined in Section 4.l.2: 

dt:=dt/2 
reset current 

""""-----. field to initial 
approximation 
for this problem 

start 

dt=I 

perform a 

Newton-iteration 

increase t 
dt := ydt 
apply crit. C 
set the initial 
approximation for 
next sub problem 

we found u· 
stop 


