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Abstract

A continuation approach to the computation of essential and absolute spectra of differential operators on the real line is presented. The
advantages of this approach, compared with direct eigenvalue computations for the discretized operator, are the efficient and accurate computation
of selected parts of the spectrum (typically those near the imaginary axis) and the option to compute nonlinear travelling waves and selected
eigenvalues or other stability indicators simultaneously in order to locate accurately the onset to instability. We also discuss the implementation
and usage of this approach with the software package AUTO and provide example computations for the FitzHugh–Nagumo and the complex
Ginzburg–Landau equation.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Phase transitions in dissipative spatially extended systems
often go hand in hand with instabilities of coherent structures.
Famous examples are pipe flows, thermal convection, and
the transition to chemical turbulence. On the theoretical side,
phase transitions in the complex Ginzburg–Landau equation
are among the best understood theoretical examples for the
role of instabilities in dissipative non-equilibrium systems, and
yet there are still many unresolved challenges in this “simple”
model.

Identifying the onset of instability can present major
computational challenges due to the many active degrees of
freedom that systems in large domains exhibit. An additional
difficulty arises when convective transport mechanisms
cause linearized operators to be non-normal, leading to
ill-conditioned eigenvalue problems where pseudo-spectra
become relevant [18], and to sensitive dependence on boundary
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conditions. One is then led to distinguish different types of
instability: At the onset of convective instability, perturbations
of a coherent structure grow in norm but decay at each fixed
point in space, and it is only at the subsequent onset of an
absolute instability that perturbations grow at each fixed point
in physical space.

Beyond this idealized characterization in an unbounded
domain, it is often of interest to determine the onset of
instability in a large but bounded domain, with boundaries
formed by either physical boundaries or domain walls in the
pattern. In [13], we showed that the stability of coherent
structures in such large but finite domains can be characterized
using spectral information on the unbounded domain together
with information on localized boundary modes: As the size of
the domain goes to infinity, spectra in large domains converge
to a limiting set which is the disjoint union of a continuous
part formed by curves and a discrete part that consists of
localized modes and resonance poles. In the case of periodic
boundary conditions, the continuous part is given by the
essential spectrum of the prevailing background pattern. In the
more typical case of separated boundary conditions, it is given
by the absolute spectrum of this background state. Eigenvalues
of the linearization in finite-size domains accumulate at these
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spectral curves as the domain diameter goes to infinity. The
location of these curves is independent of the number and
location of defects embedded in the regular pattern and of the
imposed boundary conditions.

Our goal in this paper is to provide efficient and accurate
numerical procedures to determine the continuous part of
the limiting spectrum. We will outline algorithms that
are based on complex extensions of Fourier and Laplace
transforms for spatio-temporally homogeneous background
patterns, and on Floquet–Bloch theory for spatio-temporally
periodic background states. Knowing the location of all
accumulation points of eigenvalues greatly simplifies the task
of computing the onset of instability: On the one hand, the
convergence of eigenvalues away from the limiting curves is
exponential in the domain size, so that accurate information
can be gained by computations on only moderately sized
domains. On the other hand, the knowledge of the limiting
curves makes it possible to construct Cayley transforms in order
to either avoid these eigenvalue clusters on large domains and
to resolve only isolated eigenvalues and resonance poles, or else
to efficiently compute eigenvalues with maximal real part near
the boundaries of these eigenvalue clusters.

We emphasize that, in many problems, the direct
computation of spectra on the large domain is either intractable
or at least highly ill-conditioned. While computations of
pseudo-spectra often remedy some of these problems, essential
and absolute spectra provide valuable additional information,
which is, moreover, independent of the artificial cut-off choice
for the norm of the resolvent, the size of the domain, and the
particular boundary conditions.

The methods that we describe here have already been used
to compute the onset of instability of coherent structures in
reaction–diffusion systems, for instance, in the computation of
the onset of spiral breakup in [19,12] and in the numerical
stability proof for wide pulses in a model for CO oxidation
on Pt(110) surfaces [15]. We shall now outline these two
applications in more detail: The numerical computation of
absolute spectra was exploited for the direct computation of
linearized spectra of spiral waves in large disks: In [12],
the absolute spectrum of these two-dimensional vortex-like
structures was computed using only the spectral properties of
the emitted wave trains, utilizing the continuation algorithm
that we describe in this article. The results were then exploited
in [19] to construct suitable Cayley transforms for the direct
computation of spectra of the elliptic linearized operator on the
large disk using subspace iterations. The large-scale spectral
computations in [19] are in excellent agreement with the
predictions of the continuation algorithm in [12]; see [19,

Figure 7]. In the second example, the stability of pulses
with a wide plateau, which are obtained by gluing together
widely separated fronts and backs, was determined from the
computation of the absolute spectrum of the plateau state [15].
Direct computations of spectra in large one-dimensional
domains delivered only ambiguous results which depended
heavily on the choice of boundary conditions and the relative
size of plateau versus background state [20,15].
One of the examples in this paper follows up on the spiral-
wave computations by computing absolute stability boundaries
of plane waves in the complex Ginzburg–Landau equation
which arise as far-field patterns of vortices. We show that wave
trains may destabilize due to robust persistent reflection at
generic boundaries on finite domains, while wave trains remain
stable on the unbounded domain. In other words, there are
parameter regions where perturbations of wave trains decay
pointwise on the unbounded domain, but grow in norm on any
finite domain for almost any boundary condition. The latter
parameter regime provides a prominent example that pointwise
stability does not guarantee stability in large but finite domains.
In particular, the crossing of double roots of the dispersion
relation together with the pinching condition that characterizes
the onset of absolute instability in unbounded domains [1,17]
is only a sufficient, yet not necessary, criterion for the onset of
instability in finite-size domains.

Technically, the present article considers reaction–diffusion
patterns on large intervals as a prototype of spatially extended
dissipative dynamical systems. The methods however are
readily adapted to much more general problems. Typically, the
method assumes that the linearized problem can be written as a
family of Fredholm operator equations L(λ, ν)w = 0 where w

lives in a space of functions on a bounded (not large) domain.
The equation L(λ, ν)w = 0 is obtained upon substituting
the spatio-temporal Floquet–Bloch ansatz u(t, x) = exp(λt +

νx)w(t, x) into the original linearized problem, where the
temporal frequency ω = −iλ and the spatial wavenumber
k = −iν are typically complex. The continuation procedure
outlined below can be readily adapted to this type of problem,
e.g., the Kuramoto–Sivashinsky equation [11]. We give details
for the implementation for one-dimensional boundary-value
problems using the continuation software AUTO. Alternatively,
the package TRILINOS [7] can be used which is optimized
for large-scale systems. Problems where inverting L involves
the solution of boundary-value problems on multi-dimensional
domains can sometimes be approached using finite-dimensional
Galerkin approximations in the transverse components.

To set the scene, and to further explain the significance
of absolute and essential spectra, we review the most
straightforward situation in which they arise. Consider
reaction–diffusion systems

ut = Duxx + cux + f (u), x ∈ R (1.1)

where u ∈ RN and f is smooth. To ensure that (1.1) is well-
posed, we shall assume for simplicity throughout this paper that
D is a positive diagonal matrix. Suppose now that u∗(x) is a
stationary solution of (1.1) so that

|u∗(x) − u±(x)| → 0 as x → ±∞

where the asymptotic states u±(x) are constant or periodic in
x . Linearizing (1.1) about u∗(x), we obtain the operator

L∗ = D∂xx + c∂x + ∂u f (u∗(x)) (1.2)

whose spectrum decides upon linear stability of the equilibrium
u∗ as a solution of (1.1).
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The spectrum of the operator (1.2) on L2(R, CN ) is the
disjoint union of the essential spectrum Σess and the point
spectrum Σpt which consists by definition of all isolated
eigenvalues with finite multiplicity (and is therefore discrete).
While the point spectrum involves the full nonlinear wave u∗,
the boundary of the essential spectrum is determined entirely
by the linearization of (1.1) about the asymptotic states u± [6,
Appendix to Section 5].

Also of interest are finite but large domains of the form
(−`, `) with ` � 1. When considering (1.2) on (−`, `), we add
appropriate linear separated boundary conditions of the form

Qbc
±

(
u(±`)

ux (±`)

)
= 0, Qbc

± ∈ R2N×2N ,

rank Qbc
± = N (1.3)

at x = ±`. While the spectrum Σ` of the operator L∗ on
(−`, `) is then necessarily discrete for each finite `, we can
still distinguish different parts in the limit ` → ∞ [13]:
Generically, the set Σ` converges in the symmetric Hausdorff
distance to a limiting set Σ∞ which again consists of a discrete
and a continuous part. The discrete part is the union of the
extended point spectrum Σext, which contains in particular the
point spectrum Σpt of the profile u∗(x) on R, and the boundary
spectrum Σbc, which is generated by the boundary conditions
(1.3). The continuous part is called the absolute spectrum
which, in general, differs from the essential spectrum. As ` →

∞, each element of the absolute spectrum is approached by
infinitely many eigenvalues of L∗ which therefore cluster near
the absolute spectrum. As already alluded to, the discrete part
depends on the full profile u∗ and on the specific boundary
conditions employed. The absolute spectrum, however, depends
again only on the asymptotic states u±, but not on the boundary
conditions (as long as they are separated) or the profile u∗ [14].

In summary, the continuous parts of the spectrum of L∗ on
R or (−`, `) are determined by the asymptotic states u± which,
we assumed, are constant or periodic in x . From now on, we
shall therefore focus exclusively on operators with constant or
periodic coefficients.

The aim of this paper is to outline reliable and efficient
ways to compute these spectra using cheap but accurate
continuation algorithms without solving discretized matrix
eigenvalue problems on large domains. For the convenience of
the reader, we describe in some detail how our strategies can be
implemented in the boundary-value solver AUTO [4]. We will
also mention various extensions to compute linear spreading
speeds and linear instability thresholds such as the boundary of
Eckhaus instabilities.

As mentioned above, the methods presented here can be
adapted to more general problems. As a general rule, the con-
tinuation procedures should generally be applicable to stability
analyses of coherent structures in extended systems, including
dissipative systems as well as conservative or dispersive equa-
tions such as members of the Korteweg–de Vries family or cou-
pled nonlinear Schrödinger equations, or higher order problems
such as the Kuramoto–Sivashinsky equation. Some of our argu-
ments can also be adapted to periodic structures in higher space
dimensions via Fourier- and Bloch-wave decomposition. We re-
mark, however, that absolute spectra have not been used so far
for genuinely higher-dimensional problems.

2. Notation and hypotheses

We consider the operator

L := D∂xx + c∂x + a(x) (2.1)

where we shall always assume that the entries d j of the diagonal
matrix D = diag(d j ) are strictly positive for all j and that the
coefficient matrix a(x) is either constant or periodic in x :

Hypothesis (C). The coefficients a(x) = a0 ∈ RN×N do not
depend on x .

Hypothesis (P). The coefficients a(x) ∈ C1(R, RN×N ) are
periodic in x with minimal period L > 0.

Unless explicitly stated otherwise, we shall always consider
the operatorL on R as a densely defined operator on L2(R, CN )

with domain H2(R, CN ). The eigenvalue problem

Lu = Duxx + cux + a(x)u = λu (2.2)

can then also be written as

ux = v (2.3)

vx = D−1
[λu − cv − a(x)u]

or equivalently as

Ux = [A(x) + λB]U (2.4)

where U = (u, v) ∈ C2N and

A(x) =

(
0 1

−D−1a(x) −cD−1

)
, B =

(
0 0

D−1 0

)
.

Solutions to the eigenvalue problem (2.2) are therefore found
by solving the initial-value problem (2.3). For periodic
coefficients, we denote by

Φλ : C2N
−→ C2N ,

(u0, v0) 7−→ Φλ(u0, v0) := (u, v)(L) (2.5)

the linear time-L map of (2.3) that associates to each initial
condition (u0, v0) the solution of (2.3) at time L . We refer to
the eigenvalues of Φλ as spatial Floquet multipliers and to their
logarithms as spatial Floquet exponents.

Note that nonlinear periodic waves can be found as periodic
solutions of the first-order system

Ux = F(U, c), F(U, c) =

(
v

−D−1
[ f (u) + cv]

)
(2.6)

in the variables U = (u, v) ∈ R2N . If u∗(x) denotes a constant
or periodic solution of (2.6), then a(x) = ∂u f (u∗(x)) in (2.2).

Most of the results presented here do not require that d j > 0
for all j . If some of the diffusion coefficients vanish, however,
we need that the speed c is non-zero. Alternatively, if a concrete
model has d j = 0 for one or more indices j , we may also set
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d j = δ for those indices with δ > 0 sufficiently small. The
results in [9, Chapter 3.2] show that the resulting spectra are
continuous in δ as δ → 0 on any bounded subset of the complex
plane C.

3. Essential spectra

3.1. Characterizing essential spectra via Bloch waves

For constant coefficients a(x) ≡ a0, we consider the Fourier
transformed operator

Lν := Dν2
+ cν + a0 : CN

→ CN (3.1)

for ν ∈ C. Since the Fourier transform is an isomorphism on
L2(R, CN ) which turns L into a multiplication operator, we
immediately obtain the following lemma.

Lemma 3.1. For constant coefficients, we have

specL =

⋃
ν∈iR

specLν .

In particular, the following assertions are equivalent:

(i) λ ∈ specL;
(ii) [Dν2

+ cν + a0 − λ]u = 0 for some u ∈ CN with u 6= 0
and some ν ∈ iR;

(iii) d(λ, ν) := det(Dν2
+ cν + a0 − λ) = 0 for some ν ∈ iR.

While the third condition gives the most compact criterion,
the second condition is, in general, preferable for numerical
computations.

Note that the spectrum of the matrixLν consists for each ν of
precisely N temporal eigenvalues λ j , counted with multiplicity.
Furthermore, the eigenvalues λ j can be continued globally in ν

since they are roots of the complex analytic equation d(λ, ν) =

0. The essential spectrum is obtained by restricting to purely
imaginary ν = iγ with γ ∈ R.

Lemma 3.2. For constant coefficients, the essential spectrum
of L on R has at most N connected components, each
containing an eigenvalue λ j of the matrix a0 (when γ = 0)
and the point at infinity. Furthermore, we have |arg λ| → π

as |γ | → ∞ in each connected component of the essential
spectrum.

We remark that it is not difficult to derive expansions for the
location of the curves as |γ | → ∞.

For periodic coefficients a(x), there is a similar characteri-
zation. For each ν ∈ C, we define the Bloch-wave operator

Lν := D(∂x + ν)2
+ c(∂x + ν) + a(x) (3.2)

which is closed and densely defined on L2
per(0, L) with periodic

boundary conditions u(0) = u(L) and ux (0) = ux (L).

Lemma 3.3. For periodic coefficients with minimal period L >

0, we have

specL =

⋃
ν∈i[0,2π/L)

specLν .

In particular, the following assertions are equivalent:
(i) λ ∈ specL;
(ii) [D(∂x + ν)2

+ c(∂x + ν) + a(x) − λ]u = 0 for some
u ∈ H2

per(0, L) and some ν ∈ i[0, 2π/L);

(iii) d(λ, ν) := det(Φλ − eνL) = 0 for some ν ∈ i[0, 2π/L).

The proof is a consequence of the Bloch-wave decomposi-
tion

L2(R) ∼=

⊕
ν∈i[0,2π/L)

L2
per(0, L)

given by the isomorphism

u(x) =

∫
ν∈i[0,2π/L)

eνxw(x; ν)dν,

where u ∈ L2(R) and w(x; ν) = w(x + L; ν) [16]. Since the
direct computation of the Floquet exponents ν of the period map
Φλ of the ODE (2.3) is often numerically unstable, condition
(ii) is again preferable, from a numerical viewpoint, to the
seemingly simpler condition (iii).

The operators Lν have compact resolvent for each ν, and
their spectra consist therefore of isolated eigenvalues with finite
multiplicity whose real parts accumulate at −∞. In particular,
we denote the countably many eigenvalues of L0 by λ j , which
we order so that their real parts decrease as j increases. The
roots λ j of the complex analytic dispersion relation d(λ, ν) can
again be continued globally in ν = iγ with γ ∈ R. In particular,
it suffices to solve for γ ∈ [0, 2π/L) since we necessarily have
λ j (2π i/L) = λΠ ( j)(0) for some permutation Π of N.

Lemma 3.4. For periodic coefficients, the essential spectrum
of L on R is an at most countable union of connected sets,
each of which contains a point in the spectrum of L0, that is, an
eigenvalue of the operator L considered on (0, L) with periodic
boundary conditions.

Note that the connected components do not need to contain
a point at infinity. Isolas are possible, and the spectrum may
not be connected on the Riemann sphere C (see, for instance,
Section 4.3 and Section 5.2).

Lastly, we briefly comment on the effect of coordinate
transformations of the form x 7→ x − c∗t which correspond to
changing the frame of reference in which spectra are computed.
For constant coefficients, the passage to a comoving frame
ξ = x − c∗t simply introduces an additional drift term c∗uξ

in the expression for L. Thus, the eigenvalues Λ in the frame
ξ can be computed from solutions λ(ν) of d(λ, ν) = 0 via
Λ = λ(ν)−c∗ν. A similar result is true for periodic coefficients
though the equation becomes time dependent, and we therefore
have to consider the period map ΨT of the linear PDE

ut = Duξξ + (c + c∗)uξ + a(ξ + c∗t)u

with T = L/c∗.

Proposition 3.5 ([14]). The essential spectrum of ΨT is of the
form ρ = eΛT where Λ = λ(ν) − c∗ν, and λ(ν), with ν = iγ
and γ ∈ [0, 2π/L), satisfies d(λ(ν), ν) = 0.
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Thus, the computation of spectra in an arbitrary frame
reduces to the solution of an eigenvalue problem of the type
considered above. Note that spectral stability does not depend
on the coordinate frame since the real part of the spectrum is
independent of the chosen frame by Proposition 3.5.

3.2. A priori estimates

Since we assumed that all diffusion constants d j are positive,
a straightforward scaling result for both (C) and (P) shows that
for each fixed δ ∈ (0, π

2 ) there is a constant R > 0 so that L
does not have any spectrum with |λ| > R and |arg λ| < π

2 + δ.
It will turn out to be useful to consider the dispersion

relations d(λ, ν) for purely imaginary temporal and spatial
eigenvalues so that λ = iω and ν = iγ for ω, γ ∈ R. We
prove here that all real roots (ω, γ ) of d(iω, iγ ) lie in bounded
rectangles of R2 and provide estimates for these squares.

For constant coefficients, we assert (and refer to [9,
Lemma 10] for the proof using Gershgorin circles) that any

real solution (ω, γ ) of d(iω, iγ ) = 0 satisfies

(ω, γ ) ∈ [−|c|R0, |c|R0] × [−R0, R0]

where

R2
0 = max

1≤ j≤N

1
d j

(
a j j +

N∑
i=1,i 6= j

|ai j |

)
.

For periodic coefficients, we write L as the sum of the diagonal
operator L0 with constant coefficients

L0
= diag(d j )∂xx + c∂x + diag(a j j ),

where a =
∫ L

0 a(x)dx , and the bounded remainder L1 which
can be estimated in the operator norm on L2(R, CN ) by

‖L1
‖ ≤ sup

x∈[0,L]

|a(x) − diag(a j j )|,

where the norm on the right-hand side is the matrix norm
induced by the norm used on CN (the Euclidean norm on CN ,
for instance, induces the matrix norm |A| =

√
σ(AT A) where

σ(B) denotes the spectral radius of the matrix B). Using the
explicit resolvent estimate

‖(λ − L0)−1
‖ ≤ sup{| − d j k

2
+ cik + a j j − λ|

−1
;

j = 1, . . . , N , k ∈ R},

we see that the spectrum of L is contained in an ‖L1
‖-

neighborhood of the spectrum

specL0
= {−d j k

2
+ cik + a j j ; j = 1, . . . , N , k ∈ R}

of L0. Thus, any real root (ω, γ ) of d(iω, iγ ) satisfies

(ω, γ ) ∈ [−|c|R1, |c|R1] × [−R1, R1]

where

R2
1 = max

1≤ j≤N

1
d j

[
a j j + ‖L1

‖

]
≤ max

1≤ j≤N

1
d j

[
a j j + sup

x∈[0,L]

|a(x) − diag(akk)|

]
.

A rough estimate for the real parts therefore is

Re spec(L) ≤ 2

(
max

1≤ j≤N
a j j + sup

x∈[0,L]

|a(x) − diag(akk)|

)
.

3.3. Constant coefficients

3.3.1. Computing essential spectra using continuation
For constant coefficients, we had seen that we can compute

the essential spectrum of L by continuing the N temporal
eigenvalues λ of the matrix Lν defined in (3.1) in the parameter
ν = iγ . Thus, starting from ν = 0, say, where the temporal
eigenvalues appear as eigenvalues of the matrix a0, we can use
the complex normalized eigenvalue equation

[−Dγ 2
+ ciγ + a0 − λ]u = 0, 〈uold, u〉 = 1, (3.3)

where uold denotes the eigenvector from a previous infinitesi-
mal step in the continuation parameter γ or the initially sup-
plied solution at the beginning of the continuation. The condi-
tion

〈uold, u〉 = 1 (3.4)

is evaluated in the complex plane and therefore fixes the norm
of the solution u and its complex phase. Such a condition is
necessary as nontrivial solutions u to

[−Dγ 2
+ ciγ + a0 − λ]u = 0

are, of course, not unique but come in group orbits
{reiαu; α, r ∈ R}. Eq. (3.4) can be replaced by any other
condition that fixes a unique element in the group orbit of
solutions. Bordering conditions similar to (3.4) will occur
throughout this paper to enforce uniqueness of solutions.

3.3.2. Testing stability
Often, the spectrum is only computed to check whether

a given homogeneous equilibrium is stable (i.e. whether its
essential spectrum lies completely in the open left half-plane).
For N = 2, the spectrum is strictly stable if, and only if,

(i) det(a0) > 0 and tr(a0) < 0, and
(ii) a0

22d1 + a0
11d2 < 0 or (d1a0

22 − d2a0
11)

2
+ 4d1d2a0

12a0
21 < 0

where a0 = (a0
i j ) (see e.g. [2]). For general N , connectedness

of the essential spectrum on the Riemann sphere as stated in
Lemma 3.2 immediately gives the following stability criterion.

Lemma 3.6. The essential spectrum of L is contained in the
open left half-plane if, and only if, it does not intersect the
imaginary axis.

Remark 3.7. When some of the diffusion coefficients d j
vanish, then the equivalence stated in the lemma remains true
provided c 6= 0 and all eigenvalues λ j of a0 lie in the open
left half-plane (curves with vertical asymptotes at some Re(λ j )

occur).
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To determine whether the essential spectrum intersects the
imaginary axis, we do not need to calculate the entire essential
spectrum. It suffices to compute the 2N spatial eigenvalues ν

for λ ∈ iR through continuation in λ. The above lemma then
states that the equilibrium is stable provided Re ν j 6= 0 for all
λ ∈ iR and each j = 1, . . . , 2N . A strategy for determining
stability therefore goes as follows:

(i) Compute the 2N solutions ν j (0) of d(0, ν) = 0 and find
the associated nontrivial solutions u j of the equation

[Dν2
+ cν + a0]u = 0, |u| = 1.

(ii) Follow each (ν j , u j ) as solutions to

[Dν2
+ cν + a0 − iω]u = 0, 〈uold, u〉 = 1 (3.5)

by continuation in ω ∈ [0, |c|R0] with R0 as in Section 3.2,
starting at ω = 0.

(iii) Stability is equivalent to Re ν j (iω) 6= 0 for all ω ∈

[0, |c|R0] and all j .

3.3.3. Generic singularities
When continuing roots λ or ν of d(λ, ν) = 0 in the real

parameters ν = iγ or λ = iω, it is of interest to know what the
generic singularities are that one may encounter. On the level
of the dispersion relation, this question can be easily answered.
Continuation of λ in ν = iγ : We can always continue
eigenvalues λ as functions of ν = iγ by the implicit function
theorem unless ∂λd(λ, ν) = 0. Thus, suppose, without loss of
generality, that ∂λd(λ, ν) = 0 at λ = ν = 0 so that

d(λ, ν) = α20λ
2
+ α01ν + O(|ν|

2
+ |λν| + |λ|

3).

If α20α01 6= 0, then the Newton polygon shows that the solution
set in ν = iγ is given locally by the curves

λ(iγ ) = ±
√

−iγα01/α20 + O(|γ |) (3.6)

for γ ∈ R close to zero. The coefficients α20 and α01 are real
whenever the singularity occurs for real λ.

Due to analyticity, the equations d = 0 and ∂λd = 0
can be satisfied together either only at a discrete number of
points (λ, ν) or else along curves. In the latter case, at least two
branches of the essential spectrum coincide and, by Bézout’s
theorem, d and ∂λd have a common factor, which is, for
instance, precluded if the diffusion rates are pairwise different
[9, Lemma 10]. In the first case, the number of isolated double
roots, counted with multiplicity, is equal to the degree of the
resultant of d(·, ν) and ∂λd(·, ν) which is at most 2N (2N − 1).
In particular, for generic systems, we will not encounter any
singularities during continuation in ν = iγ since these should
not occur for purely imaginary ν. Thus, generically, we will be
able to continue temporal eigenvalues in the real parameter γ in
a smooth fashion. A notable exception is the reversible situation
c = 0 where the dispersion relation depends analytically on
ν2

= −γ 2, so that temporal eigenvalues can collide on the real
axis and split into complex conjugate pairs.
Continuation of ν in λ = iω: To determine stability, we
proposed to continue the 2N roots ν j as functions of λ = iω,
whose singularities are of the form

d(λ, ν) = α10λ + α02ν
2
+ O(|ν|

3
+ |λν| + |λ|

2).
If d and ∂νd have no common factors, the number of double
roots is again finite and, in fact, not larger than N (2N − 1) by
Lemma 4.5. The roots ν unfold in the same way as the roots λ in
(3.6) above. Since these singularities occur for discrete values
of λ, they do typically not occur during continuation in λ = iω.

3.4. Periodic coefficients

3.4.1. Continuation-based computation of the essential spec-
trum

For periodic coefficients, we can compute the essential
spectrum of L by continuing the countably many temporal
eigenvalues λ j of the Bloch-wave operators Lν in the
parameter ν = iγ . Supplementing the equation appearing in
Lemma 3.3(ii) by an appropriate normalization condition, we
obtain the complex boundary-value problem[
D(∂x + iγ )2

+ c(∂x + iγ ) + a(x) − λ
]

u(x) = 0 (3.7)∫ L

0
〈uold(x), u(x)〉dx = 1,

where uold is the solution at a previous continuation step or the
initially supplied solution at the beginning of the computation.
Note that the integral condition is evaluated in the complex
field C and therefore selects again an element in the real two-
dimensional group orbit.

If the linearization L arises from a translation invariant
reaction–diffusion system as laid out in the introduction, then
we typically need to solve the equation for the wave train and
its temporal eigenvalues in tandem. Using the notation from
Section 2 and normalizing the spatial period L to unity, we
therefore consider the boundary-value problem

Ux = L F(U, c) (3.8)

Vx = L[∂U F(U (x), c) + λB − ν]V

U (1) = U (0)

V (1) = V (0)∫ 1

0
〈U ′(x), Uold(x) − U (x)〉dx = 0∫ 1

0
〈Vold(x), V (x)〉dx = 1,

corresponding to the travelling-wave ODE (2.6) and the
eigenvalue problem (3.7), for U ∈ RN

× RN and V ∈ CN
×

CN . Here, (Uold, Vold)(x) denotes the solution at a previous
continuation step or the initial solution at the beginning of
the continuation, and we have added appropriate phase and
normalization conditions to fix an element in the group orbit
of solutions. Note that the complex normalization condition for
V is slightly different from the one used in (3.7) as it normalizes
(u, ux ) instead of only u. While theoretically equivalent, it turns
out that one or the other may be more stable in numerical
computations. We also remark that computations often run
more reliably when the last equation in (3.8) is replaced by the
nonlinear condition∫ 1

0
|V (x)|2dx = 1,

∫ 1

0
Im〈Vold(x), V (x)〉dx = 0.
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We now focus on the case where ν = iγ is purely imaginary as
this gives the essential spectrum. We remark, however, that the
considerations below remain true for ν ∈ C.

If we are given a solution (U∗, V, λ, iγ ) of (3.8), then we
can continue this solution numerically as a function of ν = iγ
by using a boundary-value solver such as AUTO. The generic
singularities that we may encounter during continuation of
(3.8) are identical to those for constant coefficients since both
problems reduce to a single analytic equation in two complex
variables; in particular, we do not expect that singularities arise
during continuation in γ .

It remains to find initial solutions (V, λ, iγ ) of the
eigenvalue problem part of (3.8). Firstly note that, in the
context of (3.8), λ = 0 will always be an eigenvalue of
L0 with eigenfunction ∂x u∗(x) due to translation invariance.
Thus, (U, V, λ, ν) = (U∗, ∂xU∗, 0, 0) satisfies (3.8), and we
can compute a curve λ0(ν) of solutions to d(λ, ν) = 0 by
continuation in ν = iγ provided λ = 0 is a simple eigenvalue
of L0.

More generally, we may discretize the operator L0 with
periodic boundary conditions using finite differences in space
and solve the resulting matrix eigenvalue problem using
packages such as LAPACK or MATLAB. Each of the resulting
temporal eigenvalues λ together with its eigenfunction V can
then be used as an initial guess for (3.8) at γ = 0.

3.4.2. Testing stability
The following lemma gives conditions that guarantee

spectral stability of spatially periodic equilibria.

Lemma 3.8. The essential spectrum of L, with the exception of
the eigenvalue λ = 0, is contained in the open left half-plane
provided the following conditions hold:

(i) The spectrum of L0 is contained in the open left half-plane
except for the algebraically simple eigenvalue λ = 0, and
the curve λ0(iγ ) satisfies λ′′

0(0) > 0.
(ii) The origin λ = 0 is not an eigenvalue of Lν for ν = iγ 6∈

2π i/LZ.
(iii) The spectrum of L does not intersect iR \ {0}.

To verify (i), we compute the spectrum of L0 and check
that the eigenvalue λ = 0 is simple and that there are no
other eigenvalues in the closed right half-plane. Afterward, we
continue λ = 0 in ν = iγ near γ = 0 as outlined in the
preceding section to see whether Re λ0(iγ ) < 0 for γ 6= 0
near zero.

Condition (ii) is equivalent to the statement that the 2N
spatial Floquet exponents ν j of the linear time-L map Φλ=0
that we defined in (2.5) are non-zero except for a single simple
exponent ν1 = 0 that corresponds to the temporal eigenvalue
λ = 0. The exponents ν for λ = 0 coincide with the Floquet
exponents of the linearization

Ux = L∂U F(U∗(x), c)U

of the travelling-wave ODE about the wave train U∗, and
condition (ii) is therefore equivalent to hyperbolicity of the
wave train as a periodic orbit of (2.6). AUTO, for instance, has
subroutines that compute these Floquet exponents together with
the wave train U∗.

Condition (iii) can be checked as follows: Take the spatial
Floquet exponents ν j with j = 1, . . . , 2N of the wave train
that were computed in the previous step at λ = 0. For each of
the ν j , we compute the corresponding Floquet eigenfunction V
by solving the linear boundary-value problem

Vx = L[∂U F(U∗(x), c) − ν]V + εH1(x), (3.9)

V (1) = V (0),

∫ 1

0
〈H2(x), V (x)〉dx = 1

for (V, ε) with ε ∈ C, where H1 and H2 are arbitrarily
prescribed 1-periodic continuous functions. Note that (3.9) is
linear in (V, ε), and it can been shown that it is uniquely
solvable for any choice (H1, H2) except when these lie in a
certain subspace of C0([0, 1], C2N ) of codimension one. Once
we computed a Floquet eigenfunction V j for each ν j at λ = 0,
we continue them in ω for ω ∈ (0, |c|R0] with R0 as in
Section 3.2 as solutions (U∗, V j , iω, ν j ) of (3.8). Condition (iii)
is met provided Re ν j 6= 0 for all ω ∈ (0, |c|R0] and all j .

3.4.3. Group velocities, and Eckhaus instabilities
Quantities relevant for the interaction and stability of spatio-

temporally periodic travelling waves are their group velocity

cg := −
dλ0

dν

∣∣∣∣
ν=0

∈ R,

which measures transport along the wave, and the coefficient

d2λ0

dν2

∣∣∣∣
ν=0

∈ R

which determines whether the curve λ0(iγ ) extends into the
left or the right half-plane near the origin. Continuation of
these quantities in systems parameters allows us to detect sign
changes of the group velocity and certain Eckhaus instabilities,
in particular of sideband type, where the onset is via zero
wavenumber [3].

To calculate the group velocity and the above coefficient, we
consider the first-order system (2.3)

Ux = L[A(x) + λB]U, U (1) = eiγ U (0), (3.10)

for U ∈ C2N , with L again rescaled to unity or, equivalently,
the system

Vx = L[A(x) + λB − iγ ]V, V (1) = V (0) (3.11)

where U = eiγ x V . We set

λ| :=
dλ0

dν

∣∣∣∣
ν=0

, λ‖ :=
d2λ0

dν2

∣∣∣∣
ν=0

.

Differentiating (3.11) with respect to ν = iγ and evaluating the
resulting equations at γ = 0, we obtain the system

V ′

|
= L[A(x)V| + (λ| B − 1)V ] (3.12)

V ′

‖
= L[A(x)V‖ + 2(λ| B − 1)V| + λ‖ BV ]
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on (0, 1) with periodic boundary conditions

V|(0) = V|(1), V‖(0) = V‖(1) (3.13)

for V| := ∂νV and V‖ := ∂2
ν V both in R2N and (λ|, λ‖) ∈ R2.

Lastly, we add the integral conditions∫ 1

0
〈V (x), V|(x)〉dx = 0,

∫ 1

0
〈V (x), V‖(x)〉dx = 0,

(3.14)

which ensure that both V| and V‖ are L2-orthogonal to the null
space of the ODE for V . We mention that the scalar products in
the integral conditions can, with V = (V (1), V (2)) ∈ R2N , be
replaced by the PDE scalar products∫ 1

0
〈V (1)(x), V (1)

|
(x)〉dx = 0,∫ 1

0
〈V (1)(x), V (1)

‖
(x)〉dx = 0,

which are sometimes computationally more stable and reliable.
The system (3.8) and (3.12)–(3.14) with λ = ν = 0 can
now be solved uniquely for (U, c), (V, V|, V‖) and (λ|, λ‖).
Alternatively, using nontrivial solutions V (x) and W (x) of

Vx = L A(x)V, V (0) = V (1), Wx = −L A(x)t W,

W (0) = W (1)

and finding λ| and Ṽ (x) so that

Ṽx = L[A(x)Ṽ + (λ| B − 1)V ], Ṽ (0) = Ṽ (1),

we have

λ| =
〈W, V 〉L2

〈W, BV 〉L2
, λ‖ =

〈W, 2(λ| B − 1)Ṽ 〉L2

〈W, BV 〉L2
.

3.5. Implementation in AUTO

We now discuss briefly how the strategies that we outlined
above can be implemented in the continuation package AUTO

and refer to the names of routines and constants as given in [4];
we write source code in FORTRAN syntax. Since AUTO uses
only real arithmetics, dimension counting will always be done
over the real numbers (unless explicitly stated otherwise).

3.5.1. Periodic coefficients
Implementing the system (3.8) in AUTO works as follows.

The constants file: Eq. (3.8) is a boundary-value problem,
and we therefore set ips=4. The ODEs appearing in (3.8)
involve 6N real unknowns, namely (U, V ) ∈ R2N

× C2N ,
and we therefore set ndim=6N. We have nbc=6N real boundary
conditions and nint=3 real integral conditions. Since the ODEs
can be solved uniquely upon choosing initial conditions, we
have effectively 6N + 3 real equations and hence need the
same number of variables plus one for continuation which gives
6N + 4. In addition to the 6N initial data for (U, V ), we
have five real parameters at our disposal, namely c, L , γ ∈ R
and λ ∈ C. Thus, we may fix the period L and use the four
parameters γ, c ∈ R and λ ∈ C for continuation by setting
nicp=4 and specifying the four parameters in the array icp.
It may be helpful for convergence to increase the number of
Newton iterations itnw from its default value.
The equations file: The unknowns (U, Re V, Im V ) ∈ R2N

×

R2N
× R2N are stored in U(1), . . . , U(6N), the period L in

par(11), and we use par(1), . . . , par(4) for c, γ , Re λ, Im λ.
The periodic boundary conditions are defined in the subroutine
bcnd via

do j=1,ndim
fb(j) = U0(j) - U1(j)

end do

The integral conditions are defined in icnd. We set

fi(1) = 0.0
do j=1,ndim/3

fi(1) = fi(1) + UPOLD(j) * (UOLD(j)-U(j))
end do

for the phase condition of the wave train U , and use

fi(2) = -1.0
fi(3) = 0.0
do j=ndim/3+1,2*ndim/3

fi(2) = fi(2) + U(j)*U(j)
+ U(j+ndim/3)*U(j+ndim/3)
fi(3) = fi(3) + UOLD(j)*U(j+ndim/3)
- UOLD(j+ndim/3)*U(j)

end do.

for the normalization of the eigenfunction V .
Initial data: We assume that the period L , the wave train U∗ =

(u∗, u′
∗) and the associated wave speed c are known. These

can be obtained, for instance, from direct PDE simulations or
from continuation in the travelling-wave ODE (2.6) beginning
at a Hopf bifurcation point. We also assume that we found
initial solutions for λ, γ and the associated eigenfunction V
(see Section 3.4.1). This information needs to be stored in the
subroutine stpnt or an external data file that can be read by
AUTO (see [4]). It is recommended to scale the initial guess
for the eigenfunction to have norm one so that it satisfies the
integral condition; otherwise, convergence may be quite slow.
Solving (3.9) and (3.12): We discuss now how Eq. (3.9) is
solved to get the Floquet eigenfunction V for a given Floquet
exponent ν. First, we pick functions H1 and H2 (for instance,
constant functions). Note that (3.9) involves two real integral
conditions and a real two-dimensional parameter ε. We fix ν

and continue instead in the real two-dimensional ε and the
unused dummy parameter par(9): continuation in a dummy
parameter in AUTO allows us to solve a linear or nonlinear
system through Newton’s method. Next, we continue to Re ε =

0 using Im ν as additional free parameter. Lastly, we continue
to Im ε = 0 using ν as free parameter.

Eq. (3.12) is solved analogously. It is affine in (V|, V‖, λ|, λ‖)

∈ R2N
× R2N

× R2, and therefore almost any initial guess
(for instance, constant functions) for (V|, V‖, λ|, λ‖) will give
the correct solution by continuing in the dummy parameter
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par(9) and the active parameters (λ, λ|, λ‖) ∈ C × R2, start-
ing at λ = ν = 0. We recommend to exclude V|, V‖ from the
pseudo-arclength computation by setting nthu=4N followed by
4N lines of the form 〈index of component〉0.

3.5.2. Constant coefficients
The implementation for constant coefficients is similar

to the one for periodic coefficients discussed above. While
the eigenvalue problem (3.3) is only an algebraic equation,
it is recommended to implement it as a boundary-value
problem as in Section 3.5: this is done by setting ips=4 and
choosing ntst=1 and ncol=2. In the following, we shall only
comment on the differences to the implementation for periodic
coefficients.
The constants file: Unless the equilibrium is to be continued
in a parameter, we do not need to solve the nonlinear problem
simultaneously. In this case, we have two integral conditions,
three free parameters (γ ∈ R and λ ∈ C), and the unknowns
u ∈ CN stored in U(1), . . . , U(2N) in AUTO. (It may also be
convenient to use the files from the periodic case in the first-
order formulation with U ∈ C2N .) We recommend disabling
mesh adaptation by setting iad=0.
Initial data: Initial data for λ, ν and the eigenvector u (or U =

(u, ux )) can be imported from root-solving routines in packages
such as MAPLE or MATHEMATICA applied to the dispersion
relation d(λ, ν) = 0 for a fixed value of either λ or ν.

4. Absolute spectra

4.1. Definition and characterization of the absolute spectrum

As outlined in the introduction, the absolute spectrum
arises naturally as follows: Take the linearization L about
an asymptotically homogeneous or a periodic travelling wave
and compute its spectrum on the interval (−`, `) with fixed
separated boundary condition at x = ±`. The resulting spectra
will depend on ` and on the boundary conditions. It is proved
in [13] that these spectra converge, uniformly on compact
subsets of C and in the symmetric Hausdorff distance, to a
limiting spectral set as ` → ∞. The continuous (non-discrete)
part of the limiting set is given by the absolute spectrum
Σabs, defined below in Definition 1, which does not depend
on the boundary conditions: As ` → ∞, each element of the
absolute spectrum is approached by infinitely many eigenvalues
of L which therefore cluster near the absolute spectrum.
We emphasize that the results in [13], even though mostly
formulated for constant coefficients, are valid for periodic
coefficients.

Definition 1. For constant coefficients, we define the general-
ized absolute spectrum Σm

abs with Morse index m as the set of
those λ ∈ C for which

Re ν1 ≥ · · · ≥ Re νm = Re νm+1 ≥ · · · ≥ Re ν2N

where ν j are the 2N roots of d(λ, ν) repeated with multiplicity.
The generalized absolute spectrum

Σ ∗

abs :=

2N−1⋃
m=1

Σm
abs
is the union over all indices m, and the absolute spectrum is
defined as

Σabs := Σ N
abs.

For periodic coefficients, we use the same definition with the
eigenvalues ν replaced by the Floquet exponents of Φλ.

Both notations Σabs and Σ N
abs for the absolute spectrum will

be used interchangeably. The generalized absolute spectrum
with Morse index different from N is usually meaningless for
spectral properties of L from (2.1). It is, however, a natural first
step towards the computation of the absolute spectrum. Note
that each Σm

abs is typically the union of curve segments that
are glued together at singularities that we shall discuss in detail
below. First, we note the absolute spectrum is also bounded to
the right:

Remark 4.1. For both (C) and (P), a scaling result shows that
for each fixed δ ∈ (0, π

2 ) there is a constant R > 0 so
that Σ N

abs does not contain any elements λ with |λ| > R and
|arg λ| < π

2 + δ.

The characterization of Σ ∗

abs in Definition 1 allows us to
reformulate Σ ∗

abs using the system

d(λ, ν1) = 0, d(λ, ν2) = 0, ν2 − ν1 = iγ (4.1)

with γ ∈ R. We see that λ ∈ Σ ∗

abs if either (λ, ν1, ν2) are
solutions of (4.1) for some non-zero real γ or else if λ and
ν1 = ν2 are solutions of (4.1) with ∂νd(λ, ν1) = 0. Setting
ν = ν1 and ν2 = ν + iγ , we can remove the singularity of (4.1)
at γ = 0 by considering the system

A(λ, ν; γ ) =

(
d(λ, ν),

d(λ, ν) − d(λ, ν + iγ )

iγ

)
= 0 (4.2)

so that A : C × C × R → C2 and A(λ, ν; 0) =

(d(λ, ν), dν(λ, ν)). Thus, λ ∈ Σ ∗

abs if, and only if, (λ, ν; γ )

satisfies (4.2). We shall call solutions (λ, ν) of A(λ, ν; 0) = 0
double roots.

In practice, it is often not feasible, or numerically not stable,
to use the formulations (4.1) or (4.2) directly. Instead, it is
typically more convenient to work with the original algebraic or
differential system that leads to the solvability conditions (4.1)
or (4.2), and we give those systems in Sections 4.3 and 4.2.4.

4.2. Constant coefficients

In Sections 4.2.1–4.2.3, we collect various useful properties
of the absolute spectrum before commenting on the practical
implementation of the continuation algorithm in Section 4.2.4.

4.2.1. Continuation within the generalized absolute spectrum
We first collect several properties of the systemA(λ, ν; γ ) =

0. For each isolated solution (λ, ν) of A(λ, ν; γ ) = 0 for some
fixed γ ≥ 0, we can define its multiplicity to be the (real)
Brouwer degree deg(A(·, ·; γ ), 0) in the variable (λ, ν) eval-
uated at the solution (λ, ν).
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Lemma 4.2. The multiplicity is non-negative, and the multi-
plicity of an isolated double root (λ, ν) is one precisely when
∂λd(λ, ν) 6= 0 and ∂ννd(λ, ν) 6= 0.

Proof. Since the derivative ∂(λ,ν)A is complex linear, it has
a non-negative determinant when considered as a real 4 × 4
matrix which proves the first claim. The second statement
follows since ∂(λ,ν)A is, in this case, block upper triangular
with diagonal entries given as non-zero complex multiples of
the identity, such that det ∂(λ,ν)A > 0. �

We say that an isolated double root is simple if it has
multiplicity one. If a solution is not isolated, we say it has
multiplicity ∞.

In the following, we consider various homotopies by
allowing the coefficients D, c, a0 and γ to depend on a
homotopy parameter τ ∈ [0, 1]. The resulting functions will be
denoted by Aτ (λ, ν), omitting the dependence on γ = γ (τ).
The homotopy invariance of the Brouwer degree gives the
following result.

Lemma 4.3. The number of solutions (λ, ν) of Aτ (λ, ν) = 0
inside a ball G ⊂ C2, counted with multiplicity, is independent
of τ provided there are no roots on the boundary ∂G for each
τ ∈ [0, 1].

Next, we prove that the assumption in the preceding lemma
is automatically met provided the ball G has sufficiently large
diameter.

Lemma 4.4. If the diffusion coefficients are pairwise distinct
so that di 6= d j for i 6= j , then there exists a number R > 0,
depending only on |D|, |a0|, |c| and |γ |, such that every solution
(λ, ν1, ν2) of (4.1) satisfies

|λ| + |ν1| + |ν2| ≤ R.

Proof. Suppose that the claim is wrong so that, for a certain
fixed γ , there are solutions (λ, ν) of (4.1) for which |λ|, |ν1|, or
|ν2| are arbitrarily large. In this case, a straightforward estimate
of the equation d(λ, ν) = 0 shows that |ν| ≡ ±

√
λ/di for

some i as |λ| or |ν| tend to infinity. Since di 6= d j for i 6= j ,
this implies |Im(ν1 − ν2)| → ∞ whenever Re ν1 = Re ν2, and
therefore |γ | → ∞ as well. This contradicts the assumption
that γ is fixed and therefore shows that (λ, ν1, ν2) stays in a
bounded region. �

Lemma 4.5. Assume that di 6= d j for i 6= j , then there are
precisely N (2N −1) double roots, i.e. solutions toA(λ, ν; 0) =

0, when counted with multiplicity.

Proof. We choose a homotopy of A(λ, ν; 0) = 0 to the
equation with c = 0 and a = diag(a j ). On account of
Lemmas 4.3 and 4.4, the number of roots of Aτ (λ, ν; 0)

does not change during the homotopy. The resulting diagonal
equation has the N double roots (λ, ν) = (a j , 0) which are
easily seen to have multiplicity one. The remaining double roots
are solutions to

diν
2
+ ai − λ = 0, d jν

2
+ a j − λ = 0,
that is, to

λ = diν
2
+ ai , ν2

= −
ai − a j

di − d j

for a given pair (i, j) with 1 ≤ i < j ≤ N . Choosing the a j
appropriately, the above system has N (N −1) distinct solutions.
We claim that each solution has Brouwer degree equal to 2.
Indeed, differentiating the dispersion relation

d(λ, ν) =

N∏
j=1

[λ − d jν
2
− a j ]

and computing the Taylor jet at the solutions (λ∗, ν∗), we obtain

d(λ, ν) = a(λ − λ∗)
2
− b(ν − ν∗)

2
+ O(3)

with a 6= 0. In particular, d(λ, ν) + ε has two simple double
roots at λ = λ∗ ±

√
ε/a + O(ε) and ν = ν∗. The additivity and

homotopy invariance of the degree shows that the multiplicity
is two. Altogether, we have found N +2N (N −1) = N (2N −1)

roots which proves the lemma. �

We can now show that the generalized absolute spectrum
consists of at most N (2N −1) curves that are parameterized by
γ :

Proposition 4.6. The generalized absolute spectrum is given by

Σ ∗

abs =

⋃
γ≥0

{
λ j (γ ); j = 1, . . . , N (2N − 1)

}
,

where λ j (γ ) denotes the λ-component of the solutions to
A(λ, ν; γ ) = 0. Moreover, λ j (γ ) can be chosen to be
continuous in γ . In particular, Σ ∗

abs consists of at most N (2N −

1) connected components, each containing a double root and
the point at infinity (when considered on C).

Proof. The representation of Σ ∗

abs follows from the previous
discussion and the homotopy invariance of the degree in a
ball of radius R near each fixed finite γ , and therefore for all
γ . To prove continuity, we have to show that the set C :=

{(λ, ν, γ ); A(λ, ν; γ ) = 0} is the union of N (2N − 1)

continuous curves (λ j , ν j )(γ ). It suffices to prove this property
locally, and we therefore work in a fixed box B = B(λ,ν)×Bγ ⊂

C2
× R+ near a given root (λ∗, ν∗, γ∗) of A with multiplicity

r . By Sard’s theorem, there exists a sequence ck ∈ C2 with
ck → 0 as k → ∞ so that each ck is a regular value of
A : C2

× R+
→ C2. In particular, the preimages A−1(ck) ∩ B

are smooth one-dimensional submanifolds, and therefore the
disjoint union of one-dimensional embedded curves. We claim
that each of these curves can be parameterized by γ : Indeed, if
this were not possible, we would readily obtain a contradiction
to the fact that there are precisely r roots of A(·, ·; γ ) in B(λ,ν)

for each fixed γ ∈ Bγ by degree arguments. Thus, for each
k, we can parameterize the roots of A inside B by r disjoint
continuous curves (λ

(k)
j , ν

(k)
j )(γ ), and taking the limit k → ∞

gives the desired characterization of Σ ∗

abs. �

To summarize, to compute the generalized absolute
spectrum, it suffices to calculate all double roots and to
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subsequently continue the curves of Σ ∗

abs that emanate from the
double roots in γ from γ = 0 to γ = ∞.

We remark that double roots may coalesce in certain
situations:

Lemma 4.7. If a is triangular and N ≥ 2, then there are at
least two degenerate double roots (λ∗, ν∗) of the dispersion
relation which are double roots with respect to both ν and λ

so that

d(λ∗ + λ, ν∗ + ν) = α20λ
2
+ α02ν

2
+ O(|λ|

3
+ |ν|

3).

Proof. It suffices to consider N = 2, D = (1, δ) with δ 6= 0,

and a =

(
a1 ∗

0 a2

)
in which case the dispersion relation is equal

to d(λ, ν) = d1(λ, ν)d2(λ, ν) = 0 with d1(λ, ν) = ν2
+ cν −

λ + a1 and d2(λ, ν) = δν2
+ cν − λ + a2. In particular, there

are
(

4
2

)
= 6 double roots for δ 6= 1 which satisfy d = 0 and

∂νd = (∂νd1)d2 + d1∂νd2 = 0.
The solutions to d1 = 0 and d2 = 0 are given by λ1 =

ν2
+ cν + a1 and λ2 = δν2

+ cν + a2, respectively, where
ν is arbitrary. These give rise to spatial double roots provided
d2(λ1, ν) = 0 or d1(λ2, ν) = 0, respectively, that is, when
δν2

+ cν − (ν2
+ cν + a1) + a2 = 0 or ν2

+ cν − (δν2
+

cν + a2) + a1 = 0. This is the case for ν±

j = ±

√
(−1) j a2−a1

1−δ
.

The remaining two of the six double roots are the roots ν1 =

−
c
2 and ν2 = −

c
2δ

of the dispersion relations d1 and d2,
respectively. �

If some of the diffusion coefficients are equal (di = d j
for appropriate indices i 6= j), we cannot a priori exclude
that branch points ‘disappear’ at infinity. In fact, in the explicit
decoupled model problem that we utilized in the proof of
Lemma 4.5, a double branch point ‘crosses’ the point at infinity
when di − d j crosses zero.

4.2.2. Testing absolute stability
We shall show that, for constant-coefficient operators, the

absolute spectrum Σ N
abs is connected in C. Since Remark 4.1

shows furthermore that it lies in an acute sector that opens
up along the negative real axis, it suffices to check whether
the absolute spectrum has a non-zero intersection with the
imaginary axis to establish stability or instability.

Lemma 4.8. The absolute spectrum Σ N
abs is connected in C

and contains the point at infinity. Furthermore, the absolute
spectrum Σ N

abs is contained in the open left half-plane if, and
only if, it does not intersect the imaginary axis.

Proof. We argue by contradiction. Thus, suppose that Σ̃ is a
non-empty, compact subset of Σ N

abs so that there is a smooth
Jordan curve Γ in C with Γ ∩ Σ N

abs = ∅ and int Γ ∩ Σ N
abs = Σ̃ .

The idea is to show that the spectrum of L on (−`, `) with
appropriate boundary conditions cannot accumulate on Σ̃ as
` → ∞ in contradiction to [13, Theorem 5]. Since Γ does
not intersect the absolute spectrum with Morse index N , the
eigenvalues ν j of A + λB satisfy

Re ν1 ≥ · · · ≥ Re νN > Re νN+1 ≥ · · · ≥ Re ν2N
for all λ ∈ Γ . We denote the N -dimensional generalized
eigenspaces associated with the N smallest and largest
eigenvalues of A + λB in the above ordering by E s(λ) and
Eu(λ), respectively: These spaces are well defined, unique and
analytic in λ for λ in a neighbourhood U of Γ . Next, pick
λ0 ∈ Γ and an N -dimensional subspace Ebc with

Ebc
⊕ Eu(λ) = C2N , Ebc

⊕ E s(λ) = C2N (4.3)

for λ = λ0. Analyticity then implies that (4.3) is true for all
λ ∈ U except possibly for finitely many λ. Redefining Γ if
necessary, we can therefore assume that (4.3) is true for all
λ ∈ Γ .

We set our boundary conditions by choosing a matrix Qbc
− =

Qbc
+ with null space equal to Ebc. Eq. (4.3) shows that [13,

Hypothesis 7] is met, and [13, Proposition 5] now asserts that
there are numbers M ≥ 0 and `∗ � 1 such that the spectrum
of L on (−`, `) with the boundary conditions (1.3) cannot
intersect Γ for ` ≥ `∗ and contains precisely M elements in
the interior of Γ for ` = `∗. Thus, the number of eigenvalues
in the interior of Γ is equal to M for all ` ≥ `∗. We emphasize
that (4.3), and therefore the above statement, remains true if we
change Ebc, A, and B slightly.

Next, pick an element λ1 in the non-empty set Σ̃ . Upon
transforming the matrix A + λ1 B into Jordan normal form, it
is easy to see that there are matrices C0 and C1 of arbitrarily
small norm so that the eigenvalues ν j of

A + λ1 B + C0 + (λ − λ1)C1 (4.4)

satisfy

Re ν1 ≥ · · · ≥ Re νN−1 > Re νN = Re νN+1

> Re νN+2 ≥ · · · ≥ Re ν2N , (4.5)

Im νN 6= Im νN+1

at λ = λ1 and

dIm(νN − νN+1)

dλ

∣∣∣∣
λ=λ1

6= 0. (4.6)

In particular, we may choose C0 and C1 so small that the
statements in the previous paragraph are also true for (4.4). On
the other hand, (4.5) and (4.6) show that [13, Hypothesis 8]
is satisfied near λ = λ1, and [13, Theorem 5] now implies
that the number of eigenvalues of L, posed on (−`, `) with
the boundary conditions (1.3), in a small disk centered at λ1
becomes unbounded as ` → ∞. This contradicts the statement
established before that this number is equal to M which is
independent of `. The second statement of the lemma follows
from Remark 4.1. �

4.2.3. Generic singularities
The generalized absolute spectrum Σ ∗

abs does typically not
have any singularities except that curves may begin or end at
double roots: For a double root at the origin, we have λ = αν2

which gives ν1 = −ν2 = ±iγ /2 for γ ≥ 0 along the curve
λ = −γ 2α/4 of generalized absolute spectrum. However, even
though we may continue curves smoothly in Σ ∗

abs, the Morse
index m may jump along these curves. This occurs typically
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Fig. 1. A triple-point singularity of the generalized absolute spectrum in the
complex λ-plane. The curves are oriented by increasing γ , the numbers along
the curves indicate the Morse index, and the insets show the relevant spatial
eigenvalues in the complex plane where we plot Re(ν(λtriple))+ iR as a dashed
line.

at triple points where Re ν j+1 = Re ν j+2 = Re ν j+3 and
Im ν j+1 > Im ν j+2 > Im ν j+3. Triple points should form a
discrete subset of the generalized absolute spectrum. Typically,
λ = λtriple + bl(ν − νl) + O(|ν − νl |

2) for l = j, j + 1, j + 2
near these singularities, and the resulting bifurcation picture is
readily computed under the assumption that the coefficients bl
are different from each other (see Fig. 1).

The Morse index drops from j + 1 to j along two of
the curves as they cross the singularity. Between these two
curves, there is a curve of generalized absolute spectrum which
also crosses the singularity and along which the Morse index
increases. The Morse index increase occurs along the curve
where Re ν1 = Re ν3, i.e. where the difference of imaginary
parts is given by the sum of the two other differences of
imaginary parts.

Note that if we insist on following curves with constant
Morse index (rather than preserving smoothness during the
continuation), then we lose a curve with Morse index j + 1
and create a curve with Morse index j . Furthermore, if we
follow curves with Morse index j , the parameter γ jumps to a
lower value as we cross the singularity: In particular, we cannot
enforce by local considerations only that curves of constant
Morse index continue to γ = ∞, although we may well be able
to continue them in λ. We emphasize that the absolute spectrum
is nevertheless connected in C, see Lemma 4.8.

The singularity dν1/dλ = dν2/dλ at ν∗

j with j = 1, 2
in the generalized absolute spectrum typically requires an
additional systems parameter, but can be observed for real λ

without external parameter. To leading order, we find from the
dispersion relation that ν j = ν∗

j + aλ + b jλ
2 for j = 1, 2 and

therefore

Re(ν1 − ν2) = Re[(b1 − b2)λ
2
] = 0.

The solutions of Re[(b1 − b2)λ
2
] = 0 form a cross (in x-shape

if b1−b2 is real), and γ increases towards the singularity on one
of the curves and decreases along the other curve towards the
singularity. The Morse indices are the same on all four curves.
This singularity occurs, for instance, on a real bounded interval
of Σ ∗

abs ∩ R whose endpoints are double roots.
Similarly, we can encounter two disjoint pairs of spatial
eigenvalues with the same real part, in a robust fashion for
real λ = λ∗, or with an additional parameter for λ complex.

We expect 6 =

(
4
2

)
smooth curves of generalized absolute

spectrum to intersect at such a value of λ. If λ is real, then
two of these curves coincide and lie on the real axis due to
the additional symmetry of spatial eigenvalues with respect to
complex conjugation.

4.2.4. The algorithm in practice
Computationally, it is more reliable and convenient to

replace the dispersion relation d(λ, ν) by the original algebraic
equation. Using the definition

D(λ, ν) := Dν2
+ cν + a0 − λ, (4.7)

the system A(λ, ν; γ ) = 0 is equivalent to solving

D(λ, ν)u = 0,

[D(2ν + iγ ) + c](u + iγ v) +D(λ, ν)v = 0,
(4.8)

together with the normalization

〈uold, u〉 = 1, 〈vold, u〉 − 〈uold, v〉 − iγ 〈vold, v〉 = 0 (4.9)

for (λ, ν, γ, u, v), where (uold, vold) are the solutions taken at a
previous continuation step.

Proof. For γ 6= 0, we start with (4.1) and see that it is
equivalent to the system

D(λ, ν)u = 0, 〈u, u〉 = 1

D(λ, ν + iγ )w = 0, 〈w, w〉 = 1

with the additional unknowns (u, w). If we assume that uold and
wold are solutions to this system, or close to solutions, then we
may replace the above system by

D(λ, ν)u = 0, 〈uold, u〉 = 1

D(λ, ν + iγ )w = 0, 〈wold, w〉 = 1.

We write w in the form w = u+iγ v so that the second equation
becomes

0 = D(λ, ν + iγ )(u + iγ v) = [D(λ, ν) −D(λ, ν + iγ )]u

+D(λ, ν + iγ )iγ v

where we used the equation for u. Dividing by iγ and using
(4.7), we get

[D(2ν + iγ ) + c]u +D(λ, ν + iγ )v = 0.

The normalization condition 〈wold, w〉 = 1 for w becomes

1 = 〈uold + iγ vold, u + iγ v〉

= 1 + iγ 〈uold, v〉 + iγ 〈vold, u + iγ v〉

and therefore

〈uold, v〉 + 〈vold, u + iγ v〉 = 0.

The computations for γ = 0 are similar and we therefore omit
them. �
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4.3. Periodic coefficients

The initial set-up for periodic coefficients is similar. The
dispersion relation is now given by

d(λ, ν) = det[Φλ − eνL
],

and we shall use the regularized system

D(λ, ν)u = 0,

[D(2(∂x + ν) + iγ ) + c](u + iγ v) +D(λ, ν)v = 0,
(4.10)

where

D(λ, ν) = D(∂x + ν)2
+ c(∂x + ν) + a(x) − λ, (4.11)

together with the normalization conditions∫ L

0
〈uold, u〉dx = 1 (4.12)∫ L

0
[〈vold, u〉 − 〈uold, v〉 − iγ 〈vold, v〉] dx = 0

for u and v. It suffices here to consider γ ∈ [0, π/L).
Regarding instability of the absolute spectrum, we can

conclude that the existence of an unstable isola of essential
spectrum implies unstable absolute spectrum provided it lies
on the boundary of the component of the resolvent set where
the Morse index of the period map Φλ is N . This observation is
a consequence of the more general fact that isolas of essential
spectrum contain absolute spectrum of a certain Morse index
(see [9, Theorem 3.3] and [10] for details).

Continuing a curve of generalized absolute spectrum starting
at double roots proceeds as for constant coefficients. However,
neither the generalized absolute spectrum nor the absolute
spectrum of a given index are, in general, connected, and the
initial computation of double roots becomes therefore more
important. For periodic coefficients, there exist infinitely many
double roots for γ = 0 even though each bounded region
of the complex plane typically contains only finitely many. In
addition, it is more complicated to find double roots in the first
place: in fact, we do not know of any systematic way of locating
double roots in a given region of the complex plane.

Instead of starting continuation at a double root, one may, of
course, start at any given element of the (generalized) absolute
spectrum, and we therefore discuss now possible strategies
for locating elements of the (generalized) absolute spectrum.
These strategies involve continuing solutions of (3.8), where
ν = η + iγ , in either (γ, λ, L) or (η, λ, L) or (ν, Re λ, L).
Continuation in (γ, λ, L) for fixed and possibly non-zero η

corresponds to computing the essential spectrum of L in an
exponentially weighted space with exponential rate η.

Firstly, consider an intersection point of two curve segments
of essential spectrum, possibly for η 6= 0. Unless this point is
a root of ∂λd(λ, ν), it lies in the generalized absolute spectrum,
because two Floquet exponents have the same real part, and
it can be used as a starting point for continuation. In fact, a
Jordan curve of essential spectrum that does not contain further
essential spectrum continues in η either to a self intersecting
curve or to a double root [10].
Secondly, we discuss the case when (generalized) absolute
spectrum intersects the real axis. If λ lies in the generalized
absolute spectrum, then the two associated Floquet multipliers
have the same modulus. If λ is, in fact, real, then the two Floquet
multipliers are either non-real complex conjugates, or they form
a double root, or they are real and of opposite sign:

If the Floquet multipliers are non-real, simple and complex
conjugates, then so are the associated Floquet exponents ν. A
small change in the real part of λ or in η = Re ν does not
change the property that the exponents are complex conjugates
and, consequently, the generalized absolute spectrum intersects
the real axis in an interval with open interior. The end points of
these intervals are double roots. Thus, continuation of ν = η +

iγ in λ ∈ R may lead to double roots in the generalized absolute
spectrum. By symmetry of Floquet exponents, the computation
of real intervals using (3.8) requires the continuation of only
one Floquet exponent.

If there are two real simple Floquet multipliers of opposite
sign for real λ, then these multipliers will stay real if λ is varied
on the real axis. Thus, on account of the Cauchy–Riemann
equations, changing the imaginary part of λ will, to leading
order, only change the imaginary part of the Floquet multipliers,
which shows that the corresponding curve of generalized
absolute spectrum intersects the real axis transversely with a
vertical tangent. Hence, continuing for real λ a pair of Floquet
multipliers with opposite sign in ν may lead to the location of
such a crossing point.

Other typical singularities of the absolute spectrum on the
real axis are as described in Section 4.2.3.

We refer to Section 5 (see also [9, Chapter 4.4] and [10]) for
examples where we use exponential weights to locate absolute
spectrum.

4.4. Continuation, and implementation in AUTO

In the case of constant coefficients, we first calculate all
double roots (λ, ν), i.e. all roots of A(λ, ν; 0) = 0, and
subsequently nontrivial solutions u and v of the linear equation
(4.8). Starting from each of these at most N (2N −1) points, we
then continue solutions of (4.8) and (4.9) in γ .

Afterward, we reconstruct the Morse indices on all curve
segments of Σ ∗

abs between triple points and double roots by
computing all 2N solutions of A(λ, ν; γ ) = 0 at all double
roots and triple points (or at arbitrary test points on each
segment). Alternatively, we could compute all 2N solutions ν j
of D(λ, ν j )u j = 0 and (4.8) and (4.9) simultaneously, though
this is computationally much more expensive.

We remark that it is not necessary to use the regularized
system (4.8) and (4.9) away from double roots. Instead, it may
be convenient for the implementation to useD(λ, ν)u1 = 0 and
D(λ, ν + iγ )u2 = 0.

Except for the location of double roots, these remarks apply
equally to periodic coefficients and (4.10)–(4.12). For the sake
of consistency with this case, we describe the set-up in AUTO

for (4.8) and (4.9) as a first-order system and boundary-value
problem, so there are 2N + 2N complex equations. This way
the same equation file of AUTO can be used.
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Fig. 2. (a) Bifurcation diagram of wave trains with period L = 200 to the FitzHugh–Nagumo equation in the (ε, c) parameter plane. The inset shows the
u-component of the fast wave train for ε = 0.0033. (b) The real part of the eigenvalue of L0 that changes sign at the fold bifurcation is plotted as a function
of ε. Here the lower branch corresponds to the fast wave trains and the upper one to the slow wave trains.
The constants file: We cast both (4.8) and (4.10) as ndim=8N
real ODEs with bcnd=8N periodic boundary conditions and
icnd=4 real integral conditions for normalization. The nicp=5
free parameters are λ, ν ∈ C and γ ∈ R. It is useful for
subsequent computations to view γ = Im ν2 and include Re ν2
in the implementation.

For the case of constant coefficients, eigenfunctions are
spatially constant, so we set ntst=1 and ncol=2. It is useful
to disable mesh adaptation by setting iad=0 and to exclude
the vector v in (4.8) and (4.9) from the pseudo-arclength
computation by nthu=4 followed by 2N lines of the form
“〈component index〉0”.
The equations file: It is often useful to implement the operator
D(λ, ν) in a new subroutine that is called from the subroutine
func, since (4.8) and (4.10) require two evaluations of D. This
makes it also easy to simultaneously continue all eigenvalues
and thereby the Morse index, if feasible. The current Morse
index can then be stored in an additional parameter. Boundary
and integral conditions are implemented in the subroutine bncd
and icnd as described previously in Section 3.5.
Initial data: For constant coefficients, we use double roots
as described above and set the data in the subroutine stpnt.
For periodic coefficients, initial points in the generalized
absolute spectrum are often found by continuing single Floquet
exponents in exponential weights to a point where two of
these have the same real part. To improve convergence of the
initialization, we recommend to join both eigenfunctions and
the nonlinear solution into a single data file and rescale to the
same discretization grid. The program @fc converts such a file
to AUTO format and reads initial parameters from the subroutine
stpnt, see [4].

5. Examples

To illustrate the algorithms outlined above, we investigate
essential and absolute spectra for the FitzHugh–Nagumo and
the complex Ginzburg–Landau equation.1
1 The AUTO files used for the following computations are available from the
authors upon request.
5.1. The FitzHugh–Nagumo equation

Our first example is concerned with the classical FitzHugh–
Nagumo equation

ut = uxx + cux − v − u(u − 1)(u − a)

vt = δvxx + cvx + ε(u − γ v),

one of the best understood models for excitable media. Here,
we already passed to a frame moving with speed c. Our goal
is to investigate the critical part of the spectrum of wave trains
(u, v)(x) = (u, v)(x + 2π/k).

It is known, from numerical computations and through
theoretical work, that the FitzHugh–Nagumo equation supports,
in an appropriate parameter regime, a fast stable pulse and
an unstable slow pulse which disappear in fold or saddle-
node bifurcations as the parameter ε is increased. Both pulses
are accompanied by wave trains with arbitrarily large spatial
period, which converge to the pulses as the period is increased
and also undergo saddle-node bifurcations for each fixed period
as ε is increased. Our objective is to numerically continue the
spectrum of these wave trains, which will cross the imaginary
axis as we continue the wave trains for a fixed large period
through their fold bifurcation. For large periods, the eigenvalues
of the pulses generate nearby isolas of essential spectrum [5]
and so we expect an isola to cross at the fold point. Throughout,
we fix the parameters a = γ = 0.2 and δ = 0.25, and consider
the wave trains with spatial period L = 200. The bifurcation
diagram in (c, ε) and the associated solution profiles are shown
in Fig. 2(a).

First, to illustrate the PDE spectra near the fold bifurcation,
we continue the fast wave trains in the (ε, c)-plane until
they become the slow wave trains while, at the same time,
computing and continuing the simple real eigenvalue of their
PDE linearization L0 that destabilizes the wave train at the fold.
The resulting eigenvalue curve is shown in Fig. 2(b).

Next, we compute the isolas of essential spectrum that
emanate from the fold eigenvalue and from the translation
eigenvalue at λ = 0 for different values of ε near the
fold bifurcation. As illustrated in Fig. 3, the fast wave train
destabilizes already before the actually fold bifurcation as
the two aforementioned isolas first coalesce at the temporal
eigenvalues corresponding to ν = iπ/L to form a single
isola, part of which then moves into the right half-plane. Note
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Fig. 3. (a) ε ≈ 0.00371: The isola corresponding to the fold eigenvalue has merged with the isola at the origin. (b) ε ≈ 0.00371013: The merged isolas of the fast
wave train have already crossed the imaginary axis before the fold point.

Fig. 4. Details of the onset of instability of the isola shown in Fig. 3. (a) We plot an overlay of the critical parts of the isola for ε ≈ 0.00371011259 and
ε ≈ 0.00371011266. (b) We plot the tangency coefficient λ‖ (see Section 3.4.3) as a function of ε, which corroborates that the onset occurs at zero wavenumber.

Fig. 5. (a) The isola from Fig. 3(b) in the unweighted space and the upper part of the same isola, now computed in a weighted space with Re ν ≈ −0.035. (b)
Magnification of the isola in the weighted space for two different values of ε: the unstable isola to the right corresponds to a value of ε closer to the fold. Both isolas
contain absolute spectrum, cf. [10].
that the unfolding of the essential spectrum near the temporal
double root that occurs when the two isolas touch each other
is the x-shape crossing that we expect from the list of generic
singularities in Section 3.3.3. Fig. 4 indicates that the onset of
instability does not occur at finite wavenumbers; instead the
curvature of the essential spectrum at the origin changes sign,
see Section 3.4.3. We remark that at the fold point the isola has
an x-shaped crossing point at the origin and the group velocity
changes sign through a singularity.

The merged isola in Fig. 3(b) contains absolute spectrum,
which we found hard to compute directly though. Instead, we
located it indirectly via isolas of essential spectrum, computed
in exponentially weighted spaces, which necessarily contain
absolute spectrum of index 2 on account of the discussion in
Section 4.3. Fig. 5 shows these isolas inside the isola plotted
in Fig. 3(b). The isola containing absolute spectrum moves into
the unstable half-plane as the parameter ε approaches the fold
point (see Fig. 5(b)). Thus, the wave train is not only essentially
but also absolutely unstable before the fold point.

Lastly, on the branch corresponding to the slow wave train,
the merged isolas separate again into an unstable isola which
is completely contained in the right half-plane and an isola
which emerges from λ = 0 and is contained in the closed
right half-plane (see Fig. 6). Again by Section 4.3, both of these
isola contain absolute spectrum. Concerning the isola attached
to the origin, we located a point in the absolute spectrum
by continuation of two Floquet exponents whose imaginary
parts differ by π/L and hence have opposite signs as Floquet
multipliers, see Fig. 7. The expected curve of absolute spectrum
containing this point seems hard to compute. However, since
the signs of the real Floquet multipliers eν2 and eν3 are opposite,
the crossing point of the real parts of the Floquet exponents is
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Fig. 6. (a) The essential spectrum of the slow periodic wave train at ε = 0.0033 near the origin is plotted. The two tiny isolas located near λ = 0 and near λ = 0.08
have been marked to be visible. (b) Magnification of the isola which is attached to the origin.

Fig. 7. (a) Real parts of the ordered Floquet exponents ν2 and ν3 for λ ∈ R within the isola of essential spectrum in Fig. 6(b). Here, sgn(eν2 L ) = −sgn(eν3 L ) with
signs as indicated. The crossing point λ ≈ 1.446575 × 10−7 lies in the absolute spectrum. (b) We plot the isola of essential spectrum in Fig. 6(b) continued to the
exponential weight η ≈ −0.075. Signs of real Floquet multipliers are indicated. This isola contains the component of the absolute spectrum referred to in (a).
not a double root and the attached curve of absolute spectrum
should cross the real axis with orthogonal tangent. We bound
the location of this curve of absolute spectrum by continuing
the isola of essential spectrum in Fig. 6(b) in decreasing
exponential weight η = Re ν ≤ 0. These isolas in weighted
spaces appear to be concentric circles about the crossing point,
and the component of absolute spectrum lies inside the smallest
isola we computed, a circle of radius 5 × 10−13.

5.2. The complex Ginzburg–Landau equation

Our second example exemplifies how the methods can be
adapted outside of the class of reaction–diffusion systems,
allowing for a complex diffusion coefficient with positive real
part. We consider wave trains of the complex Ginzburg–Landau
equation (CGL)

At = (1 + iα)Axx + A − (1 + iβ)A|A|
2, (5.1)

which is an approximate modulation equation valid near the
onset of certain instabilities of the essential spectrum; see the
review [8] and references therein.

Periodic wave train solutions of (5.1) are given by A∗ =

rei(κx−ωt) with r2
= 1 − κ2 and ω = β + (α − β)κ2. In

the detuned variable A = Ãe−iωt , the equation becomes, upon
omitting tildes,

At = (1 + iα)Axx + (1 + iω)A − (1 + iβ)|A|
2 A

with solutions A∗ = reiκx . For the linearization about these
wave trains, we consider B and B as independent variables, not
necessarily complex conjugate, and obtain the linearization

λB = (1 + iα)Bxx + (1 + iω)B − (1 + iβ)(2|A∗|
2 B + A2

∗ B)

λB = (1 − iα)Bxx + (1 + iω)B − (1 − iβ)(2|A∗|
2 B + A

2
∗ B).

Next, we substitute B = beiκx+νx and B = be−iκx+νx , where
we view b and b as independent variables. We obtain the
analogue to the matrix in (4.11) for the dispersion relation

D(λ, ν) =

(
(1 + iα)(ν + iκ)2 0

0 (1 − iα)(ν − iκ)2

)
+ a − λid

where

a =

(
1 + iω − 2(1 + iβ)r2

−(1 + iβ)r2

−(1 − iβ)r2 1 − iω − 2(1 − iβ)r2

)
which simplifies to the equation in Box I. Hence, we obtain
a constant-coefficient problem with the dispersion relation
d(λ, ν) = detD(λ, ν) = 0, and the approach of Section 3.3
and Section 4.2 for N = 2 applies.

The essential spectrum {λ; d(λ, iγ ) = 0, γ ∈ R} consists of
the two explicit curves as given in Box II.

We note that λ−(0) = 0, so zero is always in the essential
spectrum (see Fig. 9(a) for the shape of the essential spectrum).

Regarding the absolute spectrum, note that the dispersion
relation d has four spatial roots ν for each λ, and the Morse
index for the absolute spectrum is therefore two. Furthermore,

we expect
(

4
2

)
= 6 double roots by Lemma 4.5; note, however,

that this prediction will not hold for α = 0 since the diffusion
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D(λ, ν) = −λid +

(
(1 + iα)(ν2

+ 2iκν) − (1 + iβ)r2
−(1 + iβ)r2

−(1 + iβ)r2 (1 − iα)(ν2
− 2iκν) − (1 − iβ)r2

)
.

Box I.

Fig. 8. The generalized absolute spectrum Σ∗
abs is plotted for (α, β) = (0.1, 0.2), where bullets correspond to branch points and numbers indicate the Morse index.

(a) For the wavenumber κ = 0.1 the absolute spectrum, Σ2
abs, is stable, and its rightmost point is a branch point at λ ≈ −0.0001. (b) For the wavenumber κ = 0.7

the absolute spectrum is unstable, and its rightmost points are branch points at λ ≈ 0.115 ± 0.036i (here we omitted two branch points of index one at λ ≈ 189 and
λ ≈ 210).

Fig. 9. (a) The essential spectrum of the wave train with wavenumber κ = 0.1 is plotted for (α, β) = (0.1, 0.2). (b) For (α, β) = (0.1, 0.2), we plot the real parts of
branch points with different Morse indices as functions of κ . The absolute spectrum becomes unstable at κ ≈ 0.598 through branch points at λ ≈ ±0.032i of index
two.

λ±(iγ ) = κ2
− 1 − γ (2iακ + γ ) ±

√
(κ2 − 1)2 − γ (4iβκ3 + 2αβγ + α2γ 3 − 4iκ(β + αγ 2) − 2κ2(2 + αβ)γ )

Box II.
coefficients coincide in this case, and Lemma 4.5 does not
apply. Indeed, the resultant of d(λ, ν) and ∂νd(λ, ν) with
respect to ν has degree four in that case, hence there are only
four double roots (plus two at infinity). We now discuss the set
Σ ∗

abs for various different parameter values.
We focus on the complex Ginzburg–Landau equation with

α 6= 0 for which essential and absolute spectrum generally
differ. Furthermore, the explicit solution (Box II) is not easy
to interpret for general α, β and κ . Therefore, it appears
appropriate to use the numerical approaches discussed in
Section 4.2 to compute the absolute spectrum.

Our results are summarized in Figs. 8 and 10, where we plot
the numerically computed sets Σ ∗

abs and the indices associated
with each segment for three sets of parameter values. The union
of the segments with index 2 is the absolute spectrum. Of
interest is the onset of absolute instability, which we computed
for fixed values of (α, β) as the wavenumber κ is varied. For
(α, β) = (0.1, 0.2), the absolute spectrum becomes unstable
through a complex conjugate pair of branch points that crosses
the imaginary axis, while for (α, β) = (−8, 1) all branch points
lie to the left of the imaginary axis, and the instability is induced
by a pair of complex conjugate curves of absolute spectrum that
crosses the imaginary axis.

First, consider (α, β) = (0.1, 0.2). Starting with the stable
absolute spectrum for κ = 0.1 shown in Fig. 8(a), we continued
the branch points in the parameter κ ∈ [0, 1] to locate the onset
of absolute instability (see Fig. 9(b)). The real stable branch
point in the absolute spectrum for κ = 0.1 shown in Fig. 8(a)
merges with a branch point of index 3 at κ ≈ 0.51 and Re λ ≈

−0.01. For increasing κ a pair of complex conjugate branch
points emerges, each with index 2, and crosses the imaginary
axis at κ ≈ 0.598. This is the only crossing of branch points in
the absolute spectrum for (α, β) = (0.1, 0.2) and κ ∈ [0, 1].
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Fig. 10. (a) The absolute spectrum is plotted for (α, β) = (−8, 1) and κ = −0.3. Note that Σ2
abs is unstable, but that there are no branch points with index two. (b)

Magnification of one of the critical regions.
Next, we consider the Ginzburg–Landau equation for
(α, β) = (−8, 1), which lie in the Benjamin–Feir unstable
regime αβ < 1, and focus on the wave train with wavenumber
κ = −0.3. The generalized absolute spectrum is plotted in
Fig. 10. In this case, the absolute spectrum is unstable but does
not contain any branch points. In particular, the instability is a
remnant instability (in the terminology of [13]) which cannot
be detected by locating branch points of index two.
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