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Convergence and Order Reduction of Diagonally 

Implicit Runge-Kutta Schemes in the Method of Lines 

J.G. Verwer 

We examine four known diagonally implicit Runge-Kutta discretizations of initial-boundary value problems in 
partial differential equations. Our main interest lies in the derivation of bounds for the full discretization 
error under the assumption that the grid distances in space and time are independent parameters. We 
follow the method of lines approach which enables us to exploit ideas and results from the 8-convergence 
theory for Runge-Kutta schemes applied to stiff problems. Emphasis is laid upon order reduction 
phenomena. Various numerical examples are presented which illustrate and confirm the theoretical results. 
It is shown that in the field of partial differential equations order reduction severely reduces the 
performances of higher order schemes. 

1980 Mathematics Subject Classification:~. 65M10, 65M20 
Key Words & Phrases: numerical analysis, initial boundary value problems in partial differential equations, 
method of lines, Runge-Kutta schemes, convergence analysis, order reduction. 
Note: This report will be submitted for publication elsewhere. 

l. INTRODUCTION 

The method of lines (MOL) idea is simple in concept: for a given time dependent partial differential 
equation (PDE) discretize the space variables so that the equation is converted into a continuous time 
system of ordinary differential equations (ODEs). This ODE system is then numerically integrated by 
an integration scheme, often one which can handle stiffness. Various known numerical schemes for 
PDEs can be viewed in this way. This contribution is devoted to an analysis for the full error of 
implicit Runge-Kutta MOL schemes. We will particularly concern ourselves with a class consisting of 
four known diagonally implicit methods although much of this paper will apply to other schemes as 
well. However, within the class of general implicit methods there is a significant computational 
advantage in diagonally implicit RK (DIRK) methods, especially for PDEs. With the exception of 
special circumstances, other types of implicit RK methods are in fact of rather limited practical value 
here. 

An overview of the paper reads as follows. In §2 we discuss the type of evolution problems our 
analysis applies to. The third paragraph is devoted to preliminaries on the discretization. Here we 
present the four DIRK schemes and we anticipate on the convergence analysis which is presented for 
these schemes in detail in §4. This analysis is centered around the semi-discrete approximation, i.e., 
the ODE system. That means that the stability concept we use is borrowed from the field of 
nonlinear, stiff ODEs [7]. Our error analysis is reminiscent of the analysis developed in the B­
convergence theory by FRANK, SCHNEID & UEBERHUBER [9, 10]. The central theme of this theory is 
that of order reduction. We examine this unwanted phenomenon in detail for a 3-rd and 4-th order 
DIRK scheme in the MOL framework. An interesting feature of these DIRK schemes is that the 
reduction for the global error is less than for the local error, although it still may be considerable 
when it occurs. To illustrate that the results of our analysis have real practical significance we have 
performed a number of numerical experiments which are presented in §5. There we also summarize 
some conclusions on the merits of higher order DIRK schemes in the method of lines. 
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2. PRELIMINARIES ON THE PROBLEM CLASS 

We consider a real abstract Cauchy problem 

u, = '?j\x,t,u), 0 < t ~ T, u(x,O) = u0(x), (2.1) 

where <if represents a partial differential operator which differentiates the unknown function u (x ,t) 
w.r. to its space variable x in the space domain in R,R 2 or R3

• <if should not differentiate w.r. to the 
time variable t. The function u (x ,t) may be a vector function. Boundary conditions are supposed to 
be included in the definition of <J. 

To the problem (2.1) we associate a real Cauchy problem for an ODE system, 

iJ = F(t ,U), 0 < t ~ T, U(O) = u°, F(t, ·):Rm ~Rm, (2.2) 

which is defined by a discretization of the space variable in (2.1 ). For the moment it is not necessary 
to discuss in detail how the semi discrete, continuous time approximation (2.2) arises from (2.1). Nor 
is it necessary, for the time being, to be specific about the partial differential equation. The reason is 
that our convergence analysis is centered around the ODE system (2.2). This is most convenient for 
the analysis and allows for the general treatment we aim at. We merely assume that U and F 

. represent the values of grid functions on a space grid covering the space domain of (2.1). Further, we 
let h refer to the grid spacing, i.e., to the grid distances which may vary over the grid. In what 
follows, h ~ 0 means that the grid is refined arbitrary far in a suitable manner. Note that the 
dimension m of problem (2.2) depends on h. The formulation (2.2) of the semi-discrete problem 
indicates that we concentrate on finite difference space discretizations. However, finite element or 
spectral methods could also be considered. 

Let II· II be a vector norm on Rm (we shall use the same symbol for the subordinate matrix norm) 
and p. [·] the corresponding logarithmic matrix norm. Let F'(t;) be the Jacobian matrix of F(t; ). 
Our analysis applies to problen1s (2.1)- (2.2) for which µ[F'(·,OJ, r E Rm can be bounded from above 
by a constant, P-rnax say, which is independent of the grid spacing, i.e., P-rnax should satisfy 

-- .. rF'( h.] lim III+ M'(· ,011- 1 P-max """' max 1'1. ·,-:,,1 = max 
re1r reRmA!O A 

(2.3) 

uniformly in h. We let t lie in the whole of Rm for convenience of presentation. In actual applications 
it suffices to take r in a tube around the exact solution. For inner product norms lltll = ( <t,t> )1 /Z 

condition (2.3) can be reformulated as the one- sided Lipschitz condition (see [7], §1.5) 

<F(·J)-F(·,nJ-t> ~ P-rnaxll~-r112, v~.r E Rm. (2.4) 

Hypothesis (2.3), or (2.4), implies that any two solutions U, U of (2.2) satisfy the exponential stability 
estimate (a result due to DAHLQUIST [6]) 

llU(t)- U(t)ll ~ eP....1 llU(O)-U(O)ll, Vt E [o,T], (2.5) 

uniformly in h. Hence, in view of this well-posedness inequality, conditions (2.3)-(2.4) are natural. We 
wish to remark, however, that given a certain pair of problems (2.1)-(2.2), it may be far from trivial to 
select a specific norm for which (2.3) or (2.4) can proved to be valid. 

ExAMl>LE 2.1. To illustrate the foregoing we mention two equations which were analysed in [18]. The 
first is the scalar, nonlinear parabolic equation 

a au 
Ur= j(t,X,U, OX(d(x,t)

0
X)), t > 0, X E (0,1), (2.6) 

u(O,t) = b0(t), u(l,t) = b 1(t), t > 0, 

where f and d satisfy the familiar conditions of uniform ellipticity. The second is the nonlinear 
SchrOdinger equation 
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v1 +wxx +(v2+w2)w = 0, t > 0, x E (xL,xR), (2.7) 

w1 - Vxx - (v 2+w2)v = 0, t > 0, x E (xL,xR), 

vx(x,t) = Wx(x,t) = 0, x = XL,XR, t > 0. 

Applying 3-point finite differences on nonequidistant grids ODE systems result which can be proved 
to satisfy (2.3), the parabolic problem in the F - norm and the Schrodinger problem in the r- norm. 

D 

In this paper we avoid questions concerning existence, uniqueness and smoothness of exact and 
numerical solutions. Hence, we suppose throughout that the two Cauchy problems at hand possess 
unique solutions u (x ,t) and U (t ), respectively. In addition, it is supposed that the true PDE solution 
is as smooth as the numerical analysis requires. 

3. PRELIMINARIES ON THE FULL DISCRETIZATION 

For the time integration of the ODE system (2.2) we define the implicit Runge-Kutta step 
lJ1' ~ Un +I given by 

s 
un+I = Un + T ~ b;F(tn +c;T,Y;), n = 0,1, ... , 

i=l 

s 

Y; = un + T ~ aijF(tn +cjT,Yj), i = l(l)s, 
j=I 

(3.1) 

where to= 0 and un+I is the approximation to U(tn+J),tn+I = tn + T. Throughout, we adopt the 
usual convention c; = an+ ... + a;S> all i, and b 1 + ... + bs = 1. Consequently, it is supposed that the 
order of consistency p of the integration formula of (3.1) is at least one. 

EXAMPLE 3.1. For future reference we already list the DIRK schemes we shall concentrate on later in 
the paper, viz., using Butcher's notation, the implicit Euler rule 

!lLl 11 p = l 

and the 2-stage scheme 

y y 0 
1-y 1-2y y 

l 1 
2 2 

and the 3-stage scheme 

y y 

1-y 2y 

p = 2 

0 
y 

1-4y 

1 l_r:; 
y = 2 + 6 v 3, p = 3 

0 
0 

y 
I 1.r:; 'IT 

y = 2 + 3 v 3cos( 18 ), p = 4. 

(3.2) 

(3.3) 

(3.4) 

(3.5) 
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developed independently by N.0RSETT [15] and CROUZEIX [5]. Observe that the order of consistency p 
ranges from I to 4. Later we will show that the 2-stage and 3-stage scheme may suffer from accuracy 
and order reduction. 

A common property of these DIRK schemes, which make them computationally similar to the 
implicit Euler scheme 

un+I = un + TF(tn+hun+I), 

is that the implicitness only appears in equations of the form 

Y; =a known term + ryF(tn +c;T,Y;). 

Due to the large number of components the· numerical solution of this equation may already be a 
tremendous task, so that RK methods with a higher degree of implicitness are usually not 
recommended. D 

The RK result un +I is the full approximation to uh (tn + 1) = rh u (x ,tn + 1). Here rh stands for the 
natural restriction operator on the space grid. Hence uh(t) is a vector in or. We want to study the 

· full convergence of (3.1), i.e., the behaviour of the full discretization error 

(3.6) 

as both T ~ 0 and h ~ 0. Unless otherwise stated, it is supposed that T and h are independent 
parameters. Further, for ease of presentation we restrict ourselves to constant stepsizes T, i.e., in the 
limit process we take tN = NT fixed and suppose that + ~ 0, N ~ oo in such a way that NT = tN. 

As E is a full error it does contain the error due to discretization of the space variables. According 
to the MOL approach we want to treat this part separately from the error due to discretization of the 
time variable. For this purpose we introduce the space truncation error 

(3.7) 

Here uh (t) = duh (t) / dt = rh u, (x ,t ), i.e., the restnct10n of the derivative u, of the true PDE 
solution u to the space grid. The defect a is obtained by substituting the true solution uh into the 
semi-discrete approximation. Loosely speaking, it measures how the partial differential operator ~ is 
approximated by F. 

Our convergence analysis is aimed at deriving full error bounds at fixed times tN = NT of the form 

II~ II :s;;; C 1T'l + C 2 max lla(t )II, 'th E (O,T], 1 :s;;; q :s;;; p, (3.8) 
Qo;;;/o;;;/N 

where Ci.C2 and "Tare constants independent of T and h. The term C 1T'l emanates from the time 
integration. Clearly, the order q appearing in this bound must be smaller than or equal to p, the 
order of consistency of the RK formula. As C 1 and "T are required to be independent of h 
(independent of the stiffness in the ODE terminology), it may very well happen that q is really 
smaller than p (order reduction). One can say that q is the order uniform in h, whereas p is the order 
for fixed h. 

4. DERIVATION OF THE FULL ERROR BOUND 

4.1 Convergence stability 
Because our convergence analysis is centered around the semi-discrete problem, we can make fruitful 
use of stability results from the field of stiff ODEs [7]. Here the concept of C-stability [7,Ch.10] 
proves to be very useful for transferring the local errors (defined later on) to the full global error (in 
the definition below ·er ,un + 1 is a second numerical solution satisfying (3.1 )). 

DEFINITION 4.1. Let II· II be a norm on Ulm. The integration method is called C -stable for the Cauchy 
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problem (2.2) with respect to this norm, if a positive real number To = To(h) and a real constant C0, 

independent of T and h exist, such that for each T E (0,T0] and each un ,(;n E 1rr 
11un+I_un+ 111 ~ (l+C0T)llUn-un11. D (4.1) 

C -stability is an abbreviation for convergence stability and is linked with stability in the Lax­
Richtmeyer sense [16] and, more closely with stability in the sense of KRE1ss [13] (sometimes referred 
to as strong stability [16]). If C0 ~ 0 and we think of un, as being a numerical solution, and of un 
as being a perturbation of un, then (3.10) shows that the perturbation will not increase in time. The 
bound (3.10) then provides the definition of contractivity, also called computing stability, a concept 
which plays a major role in recent developments in ODES [7]. If C0 > 0, we allow an increase in the 
difference un - un . In this case C -stability is mainly useful in the convergence analysis and not as a 
concept of computing stability. Notice that C -stability is a property for nonlinear problems. In 
general To may decrease with h. However, for the given DIRK schemes we have a fixed bound To(h) 
for T, under the hypothesis (2.3): 

THEOREM 4.1. Let hypothesis (2.3) be true for a given norm 11·11 on 11\r. Then (i) The implicit Euler 
method is C-stable for this norm (ii) The implicit midpoint rule and the 2-stage and 3-stage schemes (3.4) 
and ( 3.5) are C -stable if II· II is an inner product norm. Further, for all four schemes To and C 0 depend 
solely on Jlmax: D 

The proof of this theorem can be found in the literature on nonlinear stiff ODEs (see the survey [7], 
§2.4 for (i), §7.4 for (ii)). The result for implicit Euler goes back to DESOER & HA.NEDA [8]. The C­
stability of implicit midpoint has been proved by various authors and is in fact known for a long 
time. The result for the 2-stage and 3-stage scheme is of a more recent date and can be concluded 
from the general Th.7.4.2 in [7]: if an algebraically stable RK method is RSI-stable, then it is C-stable. 
At this place we should like to mention that the proof of BSI-stability of the 2-stage and 3-stage 
DIRK scheme, given in [7], is largely due to MONTIJANO [13]. 

It shall be clear now that for the DIRK schemes applied to the problem classes (2.1)-(2.2) satisfying 
(2.3), stability in the sense of Definition 4.1 is guaranteed. We now leave the subject of C-stability 
and shall proceed with the examination of a recurrence for the full error t: where, in the usual way, 
C ~stability takes care of transferring full local errors to t:. 

4.2. A recurrence for the full error 
We consider the Runge-Kutta step un ~ un+l given by (3.1) and the perturbed fictitious step 
uh (tn) ~ uh (tn + 1) given by 

s 

uh(tn+l) = uh(tn) + T ~ b;F(tn +c;T,uh(tn +c;T))+ro, 
i=l 

s 

uh(tn +c;T) = uh(tn) + T ~ aiJF(tn +c1T,uh(tn +c1T))+r;, i = l(l)s. 
j=I 

(4.2) 

The (specific) perturbations r; are residuals depending exclusively on the true PDE solution uh and on 
the space truncation error a. For, using (3.7), 

s s 
ro = uh(tn+1)-uh(tn)-T ~ b;uh(tn +c;T)- T ~ b;a(tn +c;T), (4.3) 

i=I i=I 

s s 
r; = uh(tn +c;T)-uh(tn)-T .~ aiJuh(tn +c1T)-T ~ a;1a(tn +c1T), i = l(l)s. 

1=l j=l 

By straightforward Taylor expansion of uh it follows that integers p; ;;;;;., l (recall the convention made 
for (3.1)) and positive reals d;, i = O(l)s, exist such that uniformly inn 
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s 
llroll :s;;; dol'o+I + T ~ lb; I lla(tn +c;-r)ll, (4.4) 

i=l 

s 

llr;ll :s;;; d;l''+ 1 +-r~ laijl lla(tn+cj-r)ll, i = l(l)s. 
j=l 

we note that all d; are determined exclusively by bounds for one or more of the derivatives iih' uh,. ... 
In the work of FRANK, ScHNEID & UEBERHUBER [9, 10], the minimum of p;, ft say, is called the stage 
order. 

Let us return to formulas (4.2) and subtract (3.1). If we define the intermediate errors 
E; = uh(tn +c;-r)- Y;, we then get the error scheme 

s 
~+l = ~ + T ~ b;A;E; + ro, 

i=I 

s 

E; = ~ + T ~ aijAjEj + r;, i = l(l)s, 
j=I 

where, according to the mean value theorem for vector functions, 
I 

(4.5a) 

(4.5b) 

A; = f F'(tn +c;-r,Ouh(tn +c;-r)+(l-O)Y;)dO, i = l(l)s. (4.6) 
0 

For convenience we suppress the dependence of A; on n, like we did for Y; ,r; and E;. Supposing that 
(4.5b) can be solved for £1> ••• , Es we thus arrive at the full error recurrence which is of the familiar 
form 

(4.7) 

with R<n> as the amplification matrix and P" + 1 as the full local error. 
The solution of the algebraic system (4.5b) is rather complicated for the general method (3.1) (see 

[7], Ch.5 for an extensive discussion), but fairly simple for DIRK schemes since then aij = 0, 
j > i, i = l(l)s. We only need to assess the invertability of the matrices I - Ta;;A;. 

LEMMA 4.1. Suppose (2.3) for a given norm 11·11. Then 1-y-rA; is invertible for all T > 0 satisfying 
YTJLmax < 1 while 

ll(/-y-rA;)- 111 :s;;; l l , lly-rA;(/-y-rA;)- 111 :s;;; 1 + l l (4.8) 
-yTJLmax -yTJLmax 

PRooF. The proof follows from known properties of the logarithmic norm (DAHLQUIST [6]). Also 
given in [7], Lemma 1.5.4 and Theorem 2.4.1. D 

It follows that for the integration schemes and problem class under consideration the recurrence 
(4.7) is well defined. We may also conclude that for the DIRK schemes (3.2)-(3.5) the C-stability 
inequality 

11~ +t11 :s;;; (I +C0-r)ll~ 11 + 11/J" +111, V-r E (O,-r0], (4.9) 

holds due to Th.4.1 (provided the correct norm is chosen). This statement can be understood from the 
observation that if we subtract (3.1) from the perturbed RK Ster er ~ [Jn+l, where we only 
consider equal perturbations like in Def.4.1, that then [Jn+ I - un + = R (n >(ir - un) provided the 
definition of A is appropriately changed. Consequently, as C0 is independent of T and h, for finding 
error bounds of type (3.8) it suffices to prove that for the local error P" + 1 a similar bound exist with 
the right hand side multiplied by T. 

By using (4.4) and (4.8) such local error bounds can be obtained in a straightforward manner for 
any DIRK scheme from the explicitly available expression for P" + 1• Rather than considering the 
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general DIRK scheme, we shall carry out the computation for each of the four schemes (3.2)-(3.5). 
This enables us to discuss in greater detail the emerging order reduction phenomena. Finally we want 
to emphasize that the ideas behind the presented error analysis are borrowed from the B -convergence 
theory for stiff ODEs due to FRANK, ScHNEID & UEBERHUBER · [9,10]. However, the derivation 
presented hereis a bit shorter than in [9, 10] and, in our opinion, also slightly more transparant. More 
details ooncerning this point can be found in a forthcoming paper with K. BURRAGE and W. 
HUNDSDORFER (3]. 

4.3. The first order implicit Euler scheme (3.2) 
From (4.5) we immediately can write down the error recurrence (4.7), i.e. 

£1+1 = (/-TA 1)-1£' + /f'+I, (4.10) 

/3"+ 1 =(I-TA 1)- 1ro, ro = uh(tn+1)-uh(tn)-Tuh(tn+1)-m(tn+1). 

Hence, according to (4.8), for uh in C2, 

11/3"+ 111 ~ l I (tM2~+Tlla(tn+J)ll), TJLrnax < I, 
-TJLrnax 

(4.11) 

where M 2 is an upper bound for lluh(t)ll. In view of the C-stability of implicit Euler, the full error 
bound (3.8) exists with q = p = 1 (no order reduction). It shows convergence of order one in time 
as T,h ~ 0 in any way and for any norm for which (2.3) holds. An interesting feature is that only uh 
enters into the bound. We emphasize that this convergence result for implicit Euler is well known in 
the PDE and stiff ODE literature. 

4.4. The second order implicit midpoint scheme (3.3) 
The error scheme ( 4.5) now reads 

€'+ 1 = €' + TA 1£1 + r0, £1 = €' + tTA 1£1 + ri. 

and the local error ff' + 1 is given by 

/f'+I = (l-fTA1)- 1TA1r1 + ro, 

ro = uh(tn + T)-uh(tn)-Tuh(tn +tT)-Ta(tn +tT), 

1 1 • I I I 
r1 = uh(tn +1T)-uh(tn)-2Tuh(tn +1T)-2m(tn +1T). 

Using the second of inequalities (4.8), and (4.4), we find for uh in C 3, 

11/f' + 111 ~ cd 1~ + do~ + T(l + fc )lla(tn + tT)ll, h11max < 1, 

(4.12) 

(4.13) 

where c = 2(1+1 / (1-fTJLrnax)). Consequently, for inner product norms the existence of a full error 

bound (3.8) has been shown, but only with q equal to the stage order ft = 1. This result suggests that 
implicit midpoint may suffer from order reduction, unless the differential equation meets an 
additional requirement (cf. class D2 in [10]; in our setting this condition reads 

llF(t,uh +8~uh)-F(t,uh)ll = O(~), 8 = - t. (4.14) 

uniformly in h ). Fortunately, this suggestion is false. The situation is that the local error ff'+ 1 indeed 
may suffer from a reduction ([9,10],[7],Ch.7), but, quite unexpectedly, the global error €'+ 1 does not. 
This last point has been proved by STETIER [16] and just recently by KRAAUEVANGER [11] (see also 
AxELSSON [I]). Kraaijevanger's proof fits best in our setting. His idea is to treat an appropriately 
perturbed error scheme where the defect of the intermediate stage has been removed. 
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Write r8,r7 for r0 ,r1• Let£" = t' + rT. Then f." satisfies 
-n+I _.,,, + A + jjn+I _ -n + I A E: - t: 7'. 1E:1 fJ , E:t - E: 27'. 1£1 (4.15) 

and 'fr'+ 1 = rT + 1 - rT + r8 can be interpreted as a (perturbed) truncation error. Because 
'i.n+I = R(n)f." + 'if'+ 1

, these new local errors, say for n = O(l)N-1, can be transferred to 'i.N in the 
standard way using the C -stability property. Herewith rf should be defined as the zero vector so that 
~ = ~ and ff' = _r~-I - rr- 1

• Note that t = rP if i::
0 = 0. Neglecting a in r8,r7 it is easily 

verified that llf.° II, 11'/I' II ..;;;; M 2T1- / 8 and, for n = 0(1 )N - 2, llff' + 111 ..;;;; M 3T3 / 12. Here ·M 2,M 3 
represent bounds for lliih II and lluh II, respectively. In this way the global error bound (3.8) is proved 
with q = p = 2 (no reduction). Noteworthy is that C 1 is determined exclusively by M 2 and M 3. 

For more details, a.o. concerning variable stepsizes T and the trapezoidal rule, we refer to [11]. 

4.5. The third and fourth order DIRK schemes (3.4),(3.5) 
In view of the experiences in the field of stiff ODEs, see e.g. [7], §7.5 for numerical experiments with 
(3.5), we must reckon with eventual order reduction when a DIRK scheme of higher order is used for 
the time integration of a PDE. We shall discuss this now for the 3-rd and 4-th order schemes (3.4) 
and (3.5). In our analysis we hereby concentrate on (3.4) and remark that the 4-th order scheme can 
be dealt with in the same manner. 

For (3.4) the error scheme (4.5) reads 

£1 = t' + '{TA 1£1 + rl> 

t:2 = t' + (l -2y)TA 1£1 + '{TA2t2 + r1, 

and the local error f3" + 1 is given by 

/3"+ 1 = r0 + (fB1+f(l-2y)B2B1)r1 + fB2r2. 

(4.16) 

(4.17) 

For convenience of notation we introduced the abbreviation B; = (/ -yTA; )- 1TA;. The residuals r; 

(cf.(4.3)) satisfy, for uh in C4 and for any y, 

1 1 1 .2'-3•"• 4 1 1 ro = (-12+2y-27 )T uh(tn)+O(T )-2Ta(tn +yT)-2rn(tn +(1-y)T). 

r1 = ~ y2T1-iih(tn)+ ~ y3T3uh(tn)+O(T4)-yrn(tn +yT), 

r1 = (- ~ + 3y- ~ y2}T1-iih (tn )-( ! -y+y2 + ~ y3)T3uh (tn )+ 

0(T4)-(1-2y)rn(tn +yT)-yrn(tn +(1-y)T). 

If y = f+tV3, the -?-term of r0 vanishes. This value of y corresponds to the order p =3. 

(4.18) 

Using the stability argument (the scheme is C-stable for y ;;;;:.: 1 / 4) and the boundedness of B; it 
thus follows that for the DIRK scheme (3.4) a global error bound (3.8) exists with q ;;;;:.: 1, i.e., q_;;;;:.. ft, 
the stage order. This result is disappointing asp =2 for any y and p =3 for y = t + tv3. For 
problems satisfying the condition (4.14), the order q =2 is obtained. However, the constant C 1 in 
(3.8) then will depend also on the size of F(t,uh +6iih)-F(t,uh) and no longer exclusively on the 
smoothness in time of uh . 

Extensive numerical experiments has led us to the conjecture that i:: always satisfies a bound (3.8) 
with q ;;;;:.: 2, rather than q ;;;;:.: 1, although f3 may show a reduction which is more in line with q ;;;;:.: 1. 
This means that we are in a similar situation as with the implicit midpoint rule. Note, however, that 
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in the present case t: does suffer from a reduction. In fact, experiments showing a virtual 2-nd order in 
time for the global error are easily conducted. 

When attempting to prove the conjecture the first approach which comes to mind is that of 
analysing an appropriate perturbation of (4.16), like Kraaijevanger did for the midpoint rule. A little 
reflection shows that this is easily done if the leading terms of r 1 and r 2 are equal, which is the case 
only if y = li2,Il4. For other values of y the perturbation approach. seems to lead to a rather 
complicated analysis, but is feasible for problems of the semi-linear type U =AU +G(t ,U) [3]. 

A CASE STUDY. We shall now outline an alternative method of proof for our conjecture for the 
constant coefficient problem 

U =AU+ G(t). (4.19) 

The method of proof can be extended to problems of the above semi-linear type U =AU + G(t ,U) 
where llG'(t ,t)ll < oo uniformly in h. 

Consider the error scheme (4.5). Let us write r;" for r;. Put 'in = ~ + r7. Then (note that 
R<n>,B1'B2 are independent of n in this case) 

N-1 

~ = RNf + ~ Rn'if'+ 1
, 'if'+ 1 = (r8-r7+r7+ 1 ) + iB(r~-r7), (4.20) 

n=O 

which we write as 
N-1 N-1 

f.N = RNf + ~ iRnBfn + ~ Rn('if'+l_iBrn), (4.21) 
n =O n =O 

where pn is the difference of the leading terms of r 1 and r 2, i.e., pn = <i-3r+4-y2)~iih(tn)· Using the 
stability argument on R and the boundedness of B it thus can be seen that for proving (3.8) with 
q =2 it suffices to prove that the second term, say S, satisfies llS II ,,;;;;;; C~ for all T(O,T] uniformly in 
h. 

In what follows we now consider the most simple case where iih is constant, i.e., r = r0 for all n . 
Also suppose that I - R is regular (both restrictions are not essential and can be removed). Then S 
can be brought in the form 

s = (I-RN)(I-R)- 1tBr0 (4.22) 

= t<t-3r+4r)(J-RN)(J +<i-2y)'rA )- 1(1-TA~iih(O), 

where we used the expression R = I + B + i(l-2y)B2
• Again using the stability argument to cope 

with RN and inequalities (4.8) for the rational expression in TA, finally shows that S is of second 
order in T, uniformly in h , for all y > II 4 (for y = II 4, 1 /2 we have S = 0). 

For clarity, the essence of the proof is to bound the whole series S rather than its individual terms 
Rn Br. The philosophy here it to attack directly the global error rather than following the standard 
approach of the convergence analysis which consists of first bounding locally and then adding all 
bounds via the stability argument. We also emphasize that no additional condition, such as (4.14), has 
been made and that the constant C 1 in the resulting bound (3.8) for ~ is determined exclusively by 
/Lmax and bounds for d 2uh / dt 2,d3uh / dt 3 and d4uh / dt4 (only if r=i+iV3). 

Note that for problem (4.19J, (4.14) implies that A and uh should satisfy Aiih = 0(1) uniformly in 
h . In the example below we will show, a.o., that already for simple PDE problems, leading to ( 4.19), 
(4.14) is a too severe restriction. D 

EXAMPLE 4.1. The objective of this example is two-fold. We want to show, for a concrete but simple 
problem, that the local error /J indeed may suffer from more reduction than the global error, thus 
motivating the global approach we followed in the case study. In the second place we want to 
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illustrate in which cases order reduction is to be expected for the method (3.4) (and (3.5)). 
Let the semi-discrete system be of type (4.19) and suppose that uh is a quadratic polynomial (this 

restriction is not essential and can be removed). Let y = t+tv'3, so we have p =3 in (3.4). The 
local error '/!' + 1 given by ( 4.17) then takes the form f3" + 1 = /J + space error part, where /J is the 
time error part 

/J = ±r(l -2y)B2T2uh(O) = ±r(l-2y)(/ -yTA )- 2
T

4A 2iih(O), (4.23) 

which is independent of n. We now confine our attention to /J. Clearly, in order that 
/J = O(-P'+ 1

) = 0(T4), uniformly in h, it is sufficient and necessary that (l-yTA )-2A2iih(O) = 0(1), 
uniformly in T and h. However, this boundedness condition is rather restrictive and essentially 
requires that A 2iih (0) = 0 ( 1 ), uniformly in h , As A contains negative powers of h, u11 then should 
not only be smooth enough in x, but also satisfy the boundary conditions imposed by A 2• However 
these b.c. are not natural (see also [2],p.7). 

To show this we consider the simple parabolic equation 

u, = Uxx + g(x,t), t > 0, 0 ~ x ~ 1, 

with the exact solutions (imposed by adapting g(x ,t )) 

u(x,t) = t 2x(l-x) and (ho~ogeneous) Dirichlet b.c., 

u (x ,t) = t 2(x + + )(}-x) and (inhomogeneous) Dirichlet b.c .. 

(4.24) 

(4.25a) 

(4.25b) 

For the discretization in space we select 2-nd order finite differences on a uniform grid. Then (4.24) 
is converted into ( 4.19) where A is the finite difference matrix 

A 
1 

h2 

-2 1 
1 -2 

-2 1 
-2 

h 
m+1 · (4.26) 

mXm 

The definition of G in (4.19) shall be clear. Note that the discretization in space is exact since u is a 
quadratic polynomial in x, in both cases. Hence, f3" + 1 = /J, n = 0, 1, .... 

Now let T = h ~ 0. Then the following asymptotic behaviour is observed: 

i3·25 for ( 4.25a ), 
11/J112 - .rz.2s for <425b ), (4.27) 

where 11·112 = (h<.,.>)11 2, the standard 12 norm. In the homogeneous case we have a reduction in 
local order from 4 to 3.25, and in the inhomogeneous case even from 4 to 2.25. 

In the homogeneous case the reduction originates from the fact that Uuxx is not zero on the 
boundary x = 0, 1. To see this, Uuxx is approximated by Aiih. Here, Aiih (0) = 2[ - 2, ... , - 2f. 
However, this implies that A2iih(O) = 2[2h-2,0, ... ,0,2h- 2f, i.e., the nearby boundary components of 
A 2iih are unbounded. Fortunately, these extremely large boundary errors are smeared out and 
diminished through the multiplication by(/ -yTA )-2• In passing we note that /J = O(i3), uniformly 
in h, as Aiih(O) = 0(1) (see (4.8)). 

In the inhomogeneous case we have a similar situation, but here the reduction is larger because 
already Uu does not vanish at x = 0, 1 which implies that the nearby boundary components of Aiih, 
and A 2iih, are unbounded in h. Notice that now condition (4.4) does not hold and that /J = O(T2), 
uniformly in h, as iih (0) = 0( I). 
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At first sight one might think now that we have to face a reduction in global order from , 
respectively, 3 to 2.25 and 3 to 1.25 as T = h ~ 0. However, a direct consequence from our case 
study is that for both solutions (4.25) the global error is at least O(-r2), uniformly in h. To illustrate 
this numerically we have integrated the problems ( 4.24)-( 4.26) in time over the interval [O, 1] using the 
3-rd and 4-th order method (the latter was applied for the sake of comparison). Table 4.1 shows the 
quantity 

p 2(N) = logzll~lh/ ll~Nlli, NT= 1, (4.28) 

Le., the order of accuracy measured using T = h = N- 1,(2N)- 1• Recall that no space error is 
present. The floating point numbers are lle10

11 2• 

TABLE 4.1. Order test for methods (3.4), (3.5) applied to problems (4.24)-(4.26). The left table 
corresponds to the homogeneous b.c., the right table to the inhomogeneous ones. 

N 10 20 40 80 160 
(3.4) l.6j() 2.56 2.72 2.83 2.90 
(3.5) 8.7j()4 2.99 3.28 3.40 3.33 

N 
(3.4) 
(3.5) 

10 20 40 80 160 
8.2j(i 2.34 2.34 2.29 2.26 
5.0,()4 2.38 2.25 2.21 2.22 

We see that in the case of the homogeneous b.c.; p 2 tends top =3 for method (3.4) (no virtual 
reduction visible), whereas for method (3.5) the pi-values indicate clearly that reduction occurs. In the 
case of the inhomogeneous b.c. both methods suffer from reduction. Noticeable is that it is larger for 
the 4-th order method (3.5) (from 4 to approximately 2.2). This experiment shows that even for simple 
parabolic problems with smooth solutions and inhomogeneous b.c. there may be no advantage at all 
in using high order in time. Finally, it is worthwhile to remark that the same results are found when 
we keep h fixed and consider a finite, realistic range of T-values. D 

REMARK 4.1. BRENNER, CROUZEIX & TuoMEE [2] reported earlier on the phenomenon of order 
reduction for RK methods applied to PDEs. They restrict their analysis to constant coefficient linear 
problems (in Banach space) and examine only reduction of the local error. They also use problem 
(4.24)-(4.25) as an example. D 

REMARK 4.2. The case study and the example treated in this paragraph were meant to give insight 
into the local and global error behaviour of higher order DIRK schemes. It is noted that a proof of 
our conjecture that q ;a.: 2 in (3.8) has not yet been obtained for the general nonlinear problem (2.1 )­
(2.3). The method of proof followed in the case study can probably not extended to this general 
nonlinear problem (see also [3]). In the example we have shown the origin of the order reduction. We 
want to remark that the restriction to constant A is not essential. Also for A time dependent, thus 
covering the most general situation, an expression similar to (4.23) can be derived from (4.17). 
However, this expression is lengthy and complicated and renders no more insight. D 

ExAMPLE 4.2. The objective of this example is to call attention for another source of inaccuracy, viz., 
non-smooth coefficients in the PDE operator (non-smooth in the sense of having large gradients). It is 
best illustrated from a concrete, simple problem. Consider the parabolic equation 

U1 = (d(x)ux)x + g(x,t), t > 0, 0 :s;;; x :s;;; 1, (4.29) 

with Dirichlet boundary conditions. Let u be a quadratic polynomial in t. Any (finite difference) 
semi-discrete approximation takes the form (4.19) and, like in Example 4.1, the time error part P of 
the local error ( 4.17) is given by ( 4.23). 

Now examine the grid functions Auh, A 2uh. Clearly, Auh represents an approximation to (duux )x 
and A 2uh to (d(duux )xx )x. Next suppose that d has much larger gradients than u so that 

l(d(duux)xx)x I >> l(dUux)x I >> luu I, 
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which will imply that for all components (· )j, and for any realistic value of h, 

l(A 2uh)j I >> l(Auh)j I >> l(uh)j I. 

This observation suggests that the bound 11.811 .;;;;; Cil, derived from the expression 

'/J = ±io -21><il A 2<1 -1,,.A >-2>iluh (o), (4.23') 

and thus with C independent of the non-smooth coefficient d, will be in better accord with the true error 
behaviour than a higher order bound where the constant involved does depend on d. 

To test this we have repeated the numerical experiment of Example 4.1 using the non-smooth 
coefficient d (x) = (2 + x )8 and the solutions ( 4.25). For the discretization in space we here used the 
standard 4-th order finite difference formula, except at the nearby boundary points where a 3-rd order 
approximation was applied. Table 4.2 shows the results in exactly the same way as Table 4.1. These 
results indeed reveal a distinct 2-nd order behaviour for both solutions (4.25) (and both methods). D 

TABLE 4.2. (same information as in table 4.1). 

N 10 20 40 80 160 
(3.4) 2.110-4 1.62 1.90 1.98 2.00 
(3.5) 1.710-4 1.60 1.88 1.97 2.00 

5. A NUMERICAL STUDY 

N 
(3.4) 
(3.5) 

10 20 40 80 160 
1.310- 3 1.86 1.97 1.99 2.00 
1.110- 3 1.90 1.97 1.99 2.00 

Our DIRK schemes of order p > 2 do suffer from order reduction as the numerical experiments of 
§4 clearly illustrate. One then should question whether the extra computational work needed to reach 
this order p pays off. The answer to this question is not easy to give since in general there are many 
factors involved (type of problem, level of accuracy, stability, eventual stepsize control , iteration 
strategy). Despite this inherent uncertainty we have conducted numerical experiments on some more 
problems in an attempt to supplement our theoretical results with a conclusion which is of some 
value to the numerical practice. The present section is devoted to three of these problems (scalar 
parabolic PDEs from practice, but with smooth solutions). 

For the sake of comparison all four DIRK methods discussed in this paper were applied. 
For the discretization in space we used a uniform grid and the standard 4-th order finite difference 

technique, except at the nearby boundary points where a 3-rd order formule was implemented. 
Further in all cases h = 'TB, so h decreases with the stepsize 'T. In the tables of result we have listed 
the full error II~ 1'2,N,,. = T and the quantity p 2(N) given by (4.28). In each experiment we selected 
one basic stepsize 'TB and then used 'T = 'TB for the two I-stage schemes and ,,. = 2'TB ,3'TB for the 2-
stage and 3-stage scheme, respectively, thus accounting the extra work of the latter ones. 

Noteworthy is that according to this way of presentation, the 2-stage (DIRK.2) and 3-stage 
(DIRK3) method are considered to be 2 and 3 times as expensive as EULER and MIDPOINT, 
respectively. Thus we tacitly assume that the costs per stage are equal, for all four methods and all 
stepsizes. For nonlinear problems this may be somewhat in favour of the higher stage methods 
because these become attractive only when they are capable of yielding sufficient accuracy for 
relatively large stepsizes. In order to reach this accuracy it then may be necessary, in practice, to do 
some more Newton iterations per stage, which, to some extent, then annihilates the advantage of a 
greater stepsize. 

PROBLEM I. The Burger's equation 

U1 = 11Uxx - UUx, 0 < t .;;;;; T = 1, 0 < X < 1. (5.1) 

This equation has been studied by many authors. For 11 << 1, steep gradients may exist in the 
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solution u. We used the "large" value 11 = 0.1 and defined initial and Dirichlet boundary values from 
the exact solution given by WHITHAM [19], Ch.4. 

r1 
- 0.5 

r2 
(5.2) u(x,t) = 1-0.9 

' . r1+r2+r3 r1 +r2+r3 
_ x-.5 _ 991 - x-.5 _.1i_ _ x-3/8 

where r1 = e 2011 40011 , r 2 = e 411 1611 , r 3 = e 211 This solution has also been used by 
VARAH [17]. 

TABLE 5.1. Results for Burger's equation (5.1)-(5.2). 

TB EULER(TB) MIDPOJNT(TB) DJRK2(2TB) DIRK3(3TB) 

II 112 P2 II 112 P2 II llz P2 II llz P2 
1/24 l.2j(i3 4.6105 5.6105 8.8105 

l/48 6.0104 1.0 1.2105 2.0 9.8106 2.52 1.4105 2.63 
1196 3.0104 1.0 2.9106 2.0 1.8106 2.43 2.8106 2.35 

1/192 1.5104 1.0 7.3107 2.0 3.6107 2.34 5.9101 2.25 
l/384 7.6104 1.0 1.8107 2.0 7.4108 2.28 1.3107 2.23 

The results, collected in Table 5.1, reveal a distinct order reduction of the 3-rd order DIRK2 and 
the 4-th order DIRK3. In contrast, the order one and two of EULER and MIDPOINT clearly shows 
up. An interesting observation is that the pz-values of the 3-rd and 4-th order method again are nearly 
equal (compare with Table 4.1, right table, and Table 4.2) and approach 2. A consequence is that 
these two methods do not perform better than MIDPOINT. 

PROBLEM II. Again the Burger's equation 

U1 = '1T- 21'Uxx - '1T- 1
UUx, 0 < t ~ T = 1, 0 ~ X ~ 1, (5.3) 

but now with homogeneous boundary conditions u(O,t) = u(I,t) = 0 and with the initial function 
u(x,O) = u0sin('1Tx). The exact solution of this problem was obtained by COLE [4] and reads 

oo ' Uo 
411 ~ e-vn 'gn(-

2 
)sin(n'1TX) 

n =I 11 
u(x,t) = -------------

uo oo ' Uo 
go(-

2 
)+2 ~ e-vn 'gn(-

2 
) cos(n'1Tx) 

11 n=I 11 

(5.4) 

where gn (y ) is the modified Bessel function of the first kind. In this example we chose 11 = w2 / 10 
and u0 = I. Results are given in Table 5.2 

TABLE 5.2. Results for Burger's equation (5.3)-(5.4). 

TB EULER(TB) MIDPOINT(TB) DIRK2(2TB) DIRK3(3TB) 

II lb P2 II lh P2 II llz P2 II lb P2 
1124 8.1103 6.5105 3.0105 6.4105 

l/48 4.1103 .97 1.6105 2.06 4.8106 2.67 7.8106 3.04 
1196 2.1103 .99 3.9106 2.01 6.9107 2.79 7.3107 3.42 

11192 1.0103 .99 9.7107 2.00 9.2108 2.91 5.7108 3.68 
l/384 5.2104 1.00 2.4107 2.00 1.2108 2.94 4.4109 3.69 

It is striking that for the solution (5.4) the observed orders p 2 of DIRK2 and DIRK3 are in much 
better agreement with their orders p than for the solution (5.2). This indicates that for (5.4) the 
contamination of their local errors with large elementary differentials is much less than for (5.2) due 
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to the zero boundary values. We again refer to Table 4.l for comparison. Also note that for the 
larger Trvalues DIRK2 and DIRK.3 are hardly more efficient than MIDPOINT. 

PROBLEM III. The nonlinear problem 

u1 = (u 5)xx; 0 < t ~ T = l, 0 ~ x ~ 1, (5.5) 

discussed by RlcHTMYER & MORTON [15], §8.6. They consider the running wave solution implicitly 
defined by 

5 4 20 3 2 2 4(u -uo) + 3uo(u -u0) + 15u0 (u -u0) (5.6) 

+20uJ(u -u0)+5u~ln(u -u0) = v(vt-x), 

where v ,u0 are constants. This is a wave running to the right if v > 0. Following [15], initial and 
(Dirichlet) boundary values were taken from (5.6) by Newton-Raphson solution. Results are given in 
Table 5.3 for v = 10, u0 = I. 

TABLE 5.3. Results for the nonlinear problem (5.5)-(5.6). 

'TB EULER(TB) MIDPOINT( TB) DIRK.2(2TB) DJRK.3(3TB) 
II Iii P2 II Iii P2 II Iii P2 II Iii P2 

1/12 u io5 3.9j(i3 3.1 io3 4.4j(i3 
1/24 5.4j(i6 1.03 5.5j(i4 2.82 3.6j(j4 3.09 7.7j(j4 2.50 
1/48 2.7j(j6 1.02 9.7j(i5 2.50 7.8j(i5 2.22 l.5j(i4 2.40 
1/96 l.3j(i6 1.01 l.8j(i5 2.44 l.9j(i5 2.01 3.6j(i5 2.02 
1/192 6.7j(j 7 1.00 3.4106 2.39 4.8106 2.02 8.9106 2.03 

Also for this problem DIRK2 and DIRK.3 both suffer from a distinct order reduction. However, 
EULER and MIDPOINT behave uncommon, too. The observed order of MIDPOINT is clearly 
higher than two, while, not withstanding its order one, EULER yields remarkably accurate results. 
The explanation lies in the fact that u is non-smooth in the sense that higher derivatives of u are 
much larger than the lower ones (differentiate, e.g., the solution for u0 =0). In such situations EULER 
may operate more accurately than higher order schemes because for EULER the error depends 
essentially on the size of Uu. The peculiar behaviour of MIDPOINT must be due to some lucky 
cancellation. Finally, the appearance of p 2 = 2.0 for DIRK2 and DIRK.3 indicates that the 
reduction is dominated by a phenomenon as discussed in Example 4.2. 

Our numerical experiments lead us to the following conclusions: 
(i) The experiments support our conjecture of §4 which states that the order q of DIRK2 and DIRK.3 
~ the error bound (3.8) is at least 2. We proved this for semi-linear problems of the type 
U =AU + G(t ,U) [3]. 
(ii) For many problems order reduction will decrease seriously the performance of DIRK2 and 
DIRK.3. In case of time dependent boundary conditions the quantity p 2 given in (4.28) will be nearly 
equal for these two methods and close to the conjectured lower bound 2. 
(iii) DIRK2 and DIRK.3 shall in general not perform better than MIDPOINT, neither ill the high 
accuracy region due to order reduction. Our experiments strongly indicate that mostly the three 
schemes will be competitive to each other. 
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