
~
~

ELSEVIER Applied Numerical Mathematics 31 (1999) 353-374

~ APPLIED
~NUMERICAL

MATHEMATICS

www.elsevier.nlJlocate/apnum

Parallel Stormer-Cowell methods for high-precision orbit
computations

P.J. van der Houwen a,*, E. Messina b, J.J.B. de Swart a

a CW!, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
b Dip. di Matematica e Applicazioni "R. Caccoppoli", University of Naples "Federico II", Via Cintia, I-80126 Naples, Italy

Abstract

Many orbit problems in celestial mechanics are described by (nonstiff) initial-value problems (IVPs) for second­
order ordinary differential equations of the form y" = f (y). The most successful integration methods are based
on high-order Runge-Kutta-Nystrom formulas. However, these methods were designed for sequential compute1
systems. In this paper, we consider high-order parallel methods that are not based on Runge-Kutta-Nystrorr
formulas, but which fit into the class of general linear methods. In each step, these methods compute blocks ot
k approximate solution values (or stage values) at k different points using the whole previous block of solution
values. The k stage values can be computed in parallel, so that on a k-processor computer system such methods
effectively perform as a one-value method. The block methods considered in this paper are such that each equation
defining a stage value resembles a linear multistep equation of the familiar St6rmer-Cowell type. For k = 4 and
k = 5 we constructed explicit PSC methods with stage order q = k and step point order p = k + 1 and implicit
PSC methods with q = k + 1 and p = k + 2. For k ;?: 6 we can construct explicit PSC methods with q = k and
p = k + 2 and implicit PSC methods with q = k + 1 and p = k + 3. It turns out that fork~ 5 the abscissae of
the stage values can be chosen such that only k - 1 stage values in each block have to be computed, so that the
number of computational stages, and hence the number of processors and the number of starting values needed,
reduces to k* = k - 1. The numerical examples reported in this paper show that the effective number of right-hand
side evaluations required by a variable stepsize implementation of the 1 Oth-order PSC method is 4 up to 30 times
less than required by the Runge-Kutta-Nystrom code DOPRIN (which is considered as one of the most efficient
sequential codes for second-order ODEs). Furthermore, a comparison with the 12th-order parallel code PIRKN
reveals that the PSC code is, in spite of its lower order, at least equally efficient, and in most cases more efficient
than PIRKN. © 1999 Elsevier Science B.V. and !MACS. All rights reserved.

Keywords: Numerical analysis; General linear methods; Orbit equations; Parallelism

*Corresponding author. E-mail: p.j.van.der.houwen@cwi.nl.

0168-9274/99/$20.00 © 1999 Elsevier Science B.V. and !MACS. All rights reserved.
PII: S 0168-927 4(98)0013 5-4

354 P.J. van der Houwen et al. I Applied Numerical Mathematics 31 (1999) 353-374

1. Introduction

Many orbit problems in celestial mechanics are described by (nonstiff) initial-value problems (IVPs)

for the special second-order ordinary differential equation (ODE)

d2 Y I (1.1) -d 7 = f(y), y, f E ~', t ~to,
t-

where the right-hand side does not contain the derivative of y. The most successful integration

methods are based on high-order Runge-Kutta-Nystrom formulas. We mention the methods proposed

by Dorrnand and Prince [3], by Fehlberg et al. [4], and by Filippi and Graf [5,6]. These methods were

designed for sequential computer systems. The first high-order methods designed for use on a parallel

computers are the PIRKN (Parallel Iterated Runge-Kutta-Nystrom) methods due to Sommeijer [10).

On a parallel computer system these methods are by far superior to the earlier sequential Runge-Kutta­

Nystrom methods which do not have any scope for parallelism.
In this paper, we consider high-order parallel methods that are not based on Runge-Kutta-Nystrom

formulas, but which fit into the class of general linear methods. In each step, these methods compute

blocks of k approximate solution values (or stage values) at k different points using the whole previous

block of solution values. The k stage values can be computed in parallel, so that on a k-processor

computer system such methods effectively perform as a one-value method. The block methods considered

in this paper are such that each equation defining a stage value resembles a linear multistep equation of

the familiar Stormer-Cowell type. Therefore, we shall call these block methods parallel Starmer-Cowell

(PSC) methods. They are the second-order-ODE analogue of the parallel Adams methods for first-order
OD Es proposed in [11].

For k = 4 and k = 5 we constructed explicit PSC methods with stage order q = k and step point order

p = k + 1 and implicit PSC methods with q = k + 1 and p = k + 2. For k ~ 6 we can construct explicit
PSC methods with q = k and p = k + 2 and implicit PSC methods with q = k + 1 and p = k + 3. It turns

out that fork ~ 5 the abscissae of the stage values can be chosen such that only k - 1 stage values in

each block have to be computed, so that the number of computational stages, and hence the number of

processors and the number of starting values needed, reduces to k* = k - 1.
The PSC methods of this paper are uniquely defined by their abscissa vector. Therefore, we spent a lot

of attention on the analytical evaluation of the abscissae. Fork= 4 and k = 5, we succeeded in deriving

explicit expressions for the abscissae. For k = 6 and k = 7, the abscissae are partly given explicitly

and partly defined by a polynomial equation of degree 4. We shall derive exact rational expressions for

the coefficients of these polynomials, so that the user can compute the abscissae and, by means of the
abscissae, the other method parameters with any accuracy desired.

An important aspect of block methods is their stability interval. In most block methods, the stability

interval is relatively small. Therefore, we computed the stability boundary for all methods derived in this

paper. In some cases, the stability interval turns out to be empty. However, slightly relaxing the definition
of stability by allowing that the eigenvalues of the stability matrix are in a disk of radius I + 1 o-6 ,

we obtained acceptably large stability boundaries. For example, the explicit 8-stage PSC method of

order 10 has a stability boundary 0.78. Since PSC methods, when run on a parallel computer system,

are effectively one-value methods, we can compare this value with the stability boundary of the scaled

stability boundary of Runge-Kutta-Nystrom methods (that is, the stability boundary is divided by the

number of right-hand side values per step). For example, the 7th-order Runge-Kutta-Nystrom method
of Dormand and Prince has a scaled stability boundary 0.32.

P.J. van der Houwen et al. I Applied Numerical Mathematics 31 (1999) 353-374 355

The numerical examples reported in this paper contain a two-body orbit problem, the nonlinear
Fehlberg problem often used as a stability test problem, and the seven-planet problem PLEI [7] which is
considered as a hard test problem for numerical integration techniques (together with a number of other
'real-life' test problems, the PLEI problem can also be found in the CWI Test set for IVP solvers (9]).
These examples show that the effective number of right-hand side evaluations required by a variable
stepsize implementation of the lOth-order PSC method is 4-30 times less than required by the Runge­
Kutta-Nystrom code DOPRIN (which is considered as one of the most efficient sequential codes for
second-order ODEs). Furthermore, a comparison with the 12th-order parallel code PIRKN reveals that
the PSC code is, in spite of its lower order, at least equally efficient, and in most cases more efficient than
PIRKN.

2. General linear methods

In 1966 Butcher proposed the general linear method (GLM) formularium in order to describe in a
unified way the many first-order-ODE methods available in the literature. Extending this formularium to
the second-order ODE (1.1) yields the method

Y 11 +1 = (R ® l)Y11 + h2(S ® l)F(Y11) + h2(T ® l)F(Yn+1), n = 0, I,.... (2.1)

Here, I is the k-by-k identity matrix, R, Sand T are k-by-k matrices,® denotes the Kronecker product
operator, h the stepsize t11 + 1 - t11 , and each of the k components y n+ l .i of the kd-dimensional solution
vector Y11+1 represents a numerical approximation to y(t11 + a;h), to hy1(t11 + a;h) or "to any other
quantity which enables us to construct and describe useful methods" (see (2, p. 339]). The vector a :=(a;)
is called the abscissa vector, Y 11 the stage vector and its components Yni the stage values. Furthermore,
for any vector Y,, = (y,,;), F(Y11) contains the right-hand side values (j(y,,;)). Evidently, we can fix
one of the abscissae without loss of generality. We shall put ak = 1.

The GLM (2.1) is completely determined by means of the arrays {R, S, T} and the starting vector
Y 0 ~ (y(to + (a; - l)h)) and defines in each step a new block Y 11+1 of solution values. Thus, given
{ Y 0 , R, S, T}, (2.1) defines the sequence of block vectors Y 1, Y 2,

In this paper, we shall assume that all components of Yn+l represent numerical approximations to
solution values y (t11 + a; h) and we shall restrict our considerations to the case where T is a diagonal
matrix with diagonal entries 8;. Such GLMs will be referred to as GLMs with parallel stages, because
all stage values can be computed in parallel. GLMs for second-order ODEs with a full matrix T will be
subject of future research.

2.1. Solution of the implicit relations

If the matrix T has one or more nonzero diagonal entries 8;, then Yn+l.i has to be obtained by solving
one or more (uncoupled) implicit relations of the form

y -8;h 2 j(y) = V11 ;, (2.2)

where v11 ; represent ad-dimensional vector component of V 11 := (R ® l)Y 11 + h2 (S ® l)F(Yn). Note
that Eqs. (2.2) can be solved concurrently, so that only after completion of a full integration step the

356 P.J. van der Houwen et al. I Applied Numerical Mathematics 31 (1999) 353-374

processors need to exchange their computed results. The conventional way of solving (2.2) in nonstiff
situations is a fixed point iteration (briefly FP iteration) process of the form

y<j) =oih2 f(yU-n) +vni· j ~ 1, (2.3)

where y(O> represents an initial stage value iterate. These initial iterates can be generated by the OLM
(2.1) wich T = 0 and with the same abscissa vector as the underlying implicit OLM. The process (2.3)
satisfies the error recursion

y(j) -y =oih2(j(y(j-I)) -j(y)), j ~ 1,

leading to the estimate

llY(j) - Yll ~ \8dh2 llaf ;ayllilY(j-I) - Yil·
Hence, the convergence condition becomes

1
h < v'lloiaf /oyll ·

(2.4)

Thus, we should take care that \oi \ is sufficiently small.

2.2. Consistency

Consistency is defined by substitution of the exact solution into the OLM and by requiring that the
residue vanishes as h tends to zero. The rate by which the residue tends to zero determines the order of
consistency. We shall call the OLM (and the stage vector Y n+I) consistent of order q if the residue upon
substitution of the exact solution values y(t12 + aih) into (2.1) is of order hq+2• The value of q is often
called the stage order. The consistency condition leads to a set of order conditions to be satisfied by the
matrices R, S and T. In addition, in order to have convergence, the OLM should satisfy the necessary
condition of zero-stability, that is, the matrix R should have its eigenvalues on the unit disk and the
eigenvalues of modulus one should have multiplicity not greater than two.

From the consistency definition given above, the order conditions follow immediately. For simplicity of
notation, we assume that the ODE is a scalar equation. Using the componentwise definition of functions
of vectors, that is, for any function g and vector v, we define g(v) := (g(v;)), we obtain on substitution
of the exact solution into (2.1) and expansion in a Taylor series

811 := RY(t,,) + h2SF(Y(t,,)) + h2T F(YCtn+i)) -YCtn+1)

= c(-2) YUn) +he(- l)y'I) (tn) + · · · + hq+2c(q) y'q+2> (tn) + hq+3 c(q + 1) y'q+3> (t11) + · · · ,
c(-2) :=Re - e, c(-1) :=Rb-a,

c(;·) := 1 (RbJ+2 - a1+2) + _!__ (SbJ + Tal) 0
(j + 2)! j! ' j ~ '

(2.5)

where b :=a - e, Y(t11) = y(t11 _1 + a;h) denotes the vector containing the exact stage values, and yU> (t)
is the jth derivative of the solution. Hence, requiring the local error 8 12 to be of order q + 2 in h, we
conclude that the stage values are (at least) consistent of order q if c(j) = 0 for j = -2, -1, ... , q - 1.
The components of c(q) may be considered as the local error constants. Although c(q) is the first error
vector that does not vanish, it may happen that particular components of c(q) are zero. Thus, particular
stage equations may have a higher order of consistency.

P.J. van der Houwen et al. I Applied Numerical Mathematics 31 (1999) 353-374 357

In the construction of GLMs, we shall sta.J.t with a given zero-stable matrix Rand a diacronal matrix T
with. s_mall, nonnegati~e diagonal entries. The matrix S is then determined by impo~ing the order
cond1t1ons. From (2.5) it follows that we obtain stage order q = k if R and S satisfy

Rbj =aj, j =0, 1;
(2.6)

Rbj + j (j - l)Sbj-l = aj - j (j - l)Taj- 2 , j = 2 , k + l.
Let us introduce the k-by-2 matrices Ux and the k-by-k matrices Vx and Wx:

u c) v·-c2 k+1) (kl x:= e,x, x·- x, ... ,x , Wx:= 2e,6x, ... ,k(k+l)x-). (2.7)
The consistency conditions (2.6) can now be expressed as

RUb = Ua, SWb =Va -RVb -TWa. (2.8)
Given an abscissa vector a with distinct abscissae, a zero-stable matrix R satisfying the condition
RU b = U a, and any matrix T, we obtain a family of GLMs with stage order q = k by defining

S=(Va-RVb-TWa)Wb-I· (2.9)

2.3. Linear stability

In this paper, the linear stability region§ is defined by the set of points in the complex ::-plane where
the matrix

M (z) :=(I - zT)- 1 (R + zS) (2.lO)
has its eigenvalues on the unit disk. The process (2.1) will be called linearly stable if the eigenvalues)..
of the matrix h2 a f /a y are in §. Since the problem (1.1) is itself only linearly stable if the eigenvalues of
of /ay are negative, the intersection of§ with the negative axis is of special interest. If [-,8 2• O] is the
largest interval contained in §, then f3 will be called the stability boundm)'·

We should avoid the situation where the matrix M(h 2Jc) becomes singular, i.e., h2 should never be
equal to (8,.A.)- 1• This can only happen if o;A. > 0. Together with the requirement of linear stability, we
are led to the stepsize conditions

1 f3 h < , h < (2.1 n
Jmaxc1;>..>o{8;A.} ,Jmax,_ {Jc}

Note that the nonsingularity condition is always less restrictive than the convergence condition \ 2.4) and
less restrictive than the stability condition if max \8; I < .s-2 .

3. Parallel Stormer-Cowell methods

In this paper, we restrict our considerations to GLMs where R is given by the zero-stable matrix
(3. la) R = (0, ... , 0, e - r, r),

It is easily verified that this matrix has k - 2 zero eigenvalues and two eigenvalues I, hence ~t is Lero­
stable. On substitution of (3.la) and b =a - e into RUb = Ua, that is, into Re= e. Rb= a. yields

a
r=e---­

ak-1 - 1
(3. lb)

358 P.J. van der Houwen et al. I Applied Numerical Mathematics 31 (1999) 353-374

Thus, for any abscissae vector a, the matrix R defined by (3.1) is zero-stable and it satisfies the
consistency condition RU b = U a. Each stage equation of the GLM { (2.1), (3 .1)} resembles the linear
multistep formula of Stormer and Cowell, in the sense that the new y-value is defined using two preceding
y-values and k preceding f-values. Therefore, we shall call the GLM { (2.1), (3.1)} a parallel Stormer­
Cowell method or briefly PSC method.

3.1. Order of accuracy at the step points

If the GLM (2.1) has stage order q, then its local error is given by (cf. (2.5))

8n(q) := hq+2c(q)y(q+2 l Un) + hq+3c(q + l)y<q+3l (t11) + · · ·, (3.2a)

where again, for simplicity of notation, we assume that the ODE is a scalar equation. Let us consider
how this local error is propagated by the GLM (2.1). Let an denote the global or accumulated error, i.e.,
Y 11 = Y(t11) +an. Then

F(Y(tn) +an) - F(Y(tn)) =Ina,,+ O(a~),

where In is the k-by-k diagonal matrix whose diagonal entries contain the derivatives of f with respect
to y at the points yUn-l + a;h). Ignoring second-order terms in a11 , the GLM (2.1) propagates the
accumulated error a 11 according to

a11+1 = Mnan + Dnsn(q), M,, := (! - h2T In+1)- 1 (R + h2SI11),

(?)-1 D11 := /-h-T I 11 +1 . (3.2b)

Note that for the scalar test equation y' = A.y, the matrix Mn reduces to the matrix M(h 2 J...), where M(-)
is the stability amplification matrix defined in (2.10). Suppose that the vector Y 11 -s+l is exact at tn-s+I •
i.e., a,,_s+I = 0. Then, the accumulated error overs steps is given by

a11+1 = Dnsn(q) + MnDn-1811-1 (q) + MnM11-1Dn-2Bn-2(q) + · · ·
+Mn··· Mn-s+2D11-s+1S11-s+I (q). (3.2')

We are particularly interested in the accumulated step point errors an+l.k. Since Mn = R +
O(h 2), M 11 M 11 _ 1 = R2 + O(h2), ..• , and because for PSC methods the first k- 2 columns of Rj vanish,
only the last two components of Djsj(q) play a role in the O(hq+2) and 0(hq+3) terms of a 11+l.k· In fact,
a11+1.k = O(h'1+3) if ck-1 (q) = ck(q) = 0 and an+I.k = O(h'1+4) if Ck-I (q + 1) = ck(q + 1) = 0. Thus, in
PSC methods, we can achieve step point order p = q + 1 and p = q + 2 (superconvergence) by imposing
conditions on the last two components of the error vectors c(q) and c(q + 1), respectively.

In the following, we distinguish between explicit PSC methods (T = 0) and implicit PSC methods
(T "I 0). In the case of explicit PSC methods, the stage order q = k, but as shown above, the step point
order becomes p = k + 1 if the abscissae can be chosen such that

Ck-1 (k) = Ck(k) = 0

and it can be raised to p = k + 2 if in addition to (3.3a),

Ck-l (k + 1) = Ck(k + 1) = 0.

(3.3a)

(3.3b)

If the method is implicit, then we first use the matrix T to obtain stage order q = k + 1. Given a, R, T
and defining S by (2.9), the error vector c(k) can be written as

P.J. van der Houwen et al. I Applied Numerical Mathematics 31 (1999) 353-374 359

1
c(k) := (k + 2)! (Tm(k) -n(k)), m(k) := (k + l)(k + 2)(ak - Wa wb-lbk),

n(k) := ak+2 - Rbk+2 - (k + l)(k + 2)(CVa - R Vi) wb- 1 bk). (3.4)

Hence, the stage order can be raised to q = k + 1 by setting c(k) = 0, that is, Tm(k) = n(k). Let the
abscissae vector a be such that m (k) has nonzero entries. Then all stage values in the GLM (2.1) have
order of consistency q = k + 1 if the matrices S and T are defined by

T = diag(n(k)m- 1 (k)), S =(Va - RVb - TWa)Wb-I · (3.5)

We remark that the ith diagonal entry of T can be chosen arbitrary whenever m;(k) and n;(k) both vanish.
Furthermore, if m;(k) = 0 and n;(k)-::/::. 0, then the stage order cannot be raised to k + 1, unless the ith
row of S vanishes. Assuming that m; (k) = 0 implies n; (k) = 0, the step point order is raised top= k + 2
if the abscissae can be chosen such that

Ck-I (k + 1) = Ck(k + 1) = Q,

and to p = k + 3 if, in addition,

Ck- I (k + 2) = Ck (k + 2) = 0.

(3.6a)

(3.6b)

One option for the derivation of superconvergent abscissae a;, is to solve the (highly nonlinear) conditions
(3.3) and (3.6). However, it turns out that using the theory of quadrature formulas yields more simple
conditions for generating superconvergent abscissae.

3.2. Conditions for superconvergent abscissae using quadrature formulas

In the PSC case { (2.1), (3 .1)}, the stage equations can be written as

Yn+a; - (1 - r;)Yn-l+a,_ 1 -r;Yn-l+a, = h2 (e[S ® I)F(Yn) + h28;f(Yn+a),

i = 1, ... ' k, (3.7)

where Yn+ll corresponds with the numerical approximation at the point tn+H := tn +eh. We compare
these equations with their analytical analogue. The main tool is Taylor's theorem with remainder term

which yields for the solution of (1.1) the formula

t+Ll

y(t + .d) = y(t) + .dy'(t) + / (t + t1 -x)y"(x) dx

t

t+Ll

= y(t) + .dy' (t) + / (t + t1 - x)f (y(x)) dx.

r

It can now be verified that the solution of (1.1) satisfies the relations

I

YUn+a) - (1- r;)YCtn-l+a,_ 1) -r;y(tn) = a?h 2 j g;(Of(y(tn + a;hs)) d~,
0

g;(O={I
1
=!. -(1-r;)(bk_ 1a[1 -~) forO:(s~bk-1a;- 1 ,

c; for bk_ 1a;- 1 :(~ :(1,

(3.8)

360 P.J. van der Houwen et al. I Applied Numerical Mathematics 31 (1999) 353-374

and where we assumed that 0 <bk-I~ 1 + b; (this implies that a; 'f. 0). If this constraint is not satisfied,
then the function g; has to be redefined, but it turns out that the constraint on the b; does not limit us in
the construction of useful PSC methods.

Next, we approximate the integral terms in (3.8) by a quadrature formula. Since the functions g; are
not differentiable, we use a formula based on product integration. Using the points bja;- 1 (and 1 in the
case of implicit PSC methods) as quadrature points, we may write

l

j g;(~)f (y(t,, + a;h~)) d~ = Wn f (y(t11 + hb1)) + W;2f (y(tn + hb2)) + · .. , (3.9)

0

where the wij are the corresponding quadrature weights which take the function g; into account. From
(3.7)-(3.9) it follows that the right-hand sides in (3.7) may be interpreted as quadrature formulas
for the integral terms in (3.8). Let us define bk+ 1 a;- 1 = 1 for all i. Then, the quadrature points are
given by the k points {bjaj 1, j = 1, ... , k} if the PSC method is explicit and by the k + 1 points
{ b ja;- I , j = 1, .. ., k + 1} if the PSC method is implicit.

In the following formulas, we introduce the parameter r to indicate explicit PSC methods (r = 0) and
implicit PSC methods (r = 1). It can be shown that the quadrature weights wij (r) corresponding with
the quadrature points bjaj 1 are given by (see, e.g., [l, p. 886])

I

2 2/ Wij(T)=a;h g;(~)Lij(T,~)d~,
k+r a;~ - br

Lij(T,~):= IT b·-b
0 r=l,rf-j J r

Hence, h2ef Se .i = wij for j = 1, ... , k and h2o; = rw;,k+i. so that the matrices Sand T are given by
I

S = (ef Se.i) = (af Jg; (~)Lij(T, n d~),
0

I

T = diag (rnf j g;(~)Lu+1 (r, ~) d~).
0

These expressions for the matrices Sand T are equivalent with the expressions derived in the preceding
section, but have the advantage that the entries are explicitly expressed in terms of the abscissae. For
example, it can now immediately seen that the ith row of S and T vanish if g; is identically zero. This
happens if, and only if, ak- l = ~ and a; = ~ for some i ~ k - 2, say for i = k - 2. PSC methods with
this property are attractive from ~ computational point of view because the corresponding stage equation
reduces to Yn+a1 _ 2 = Yn-l+ak-i' that is, Yn+l.k-l = Yn,k-I ·Hence, the (k - 2)nd component of F(Y 11+1)
equals the (k - l)st component of F(Y 11), so that the (k - 2)nd processor is not really needed, that is,
computationally the PSC method has only k - 1 stages. Thus, we have:

Theorem 3.1. Let all b; be real and distinct, satisfying the constraint 0 < bk- I :(1 + b;, i = 1, ... , k.
Then, the PSC method has k* = k - l computational stages if bk-I =!and if bk-'2 = -!.
The quadrature error of the product integration formula (3.9) is given by

l k

Q; = (k ~ r)!af h2 j p; (r, ~)</>; (r, 8(~)) d~, p; (r, ~) := g;(~)(~ - If IT(~ - b1a;-I),
0 j=l

<j>-(T e) := dk+r f(y(t,, + aihe)) =(a hl+r dk+r f (J(tn + aihe))
' ' dek+r ' d(a;he)k+r '

P.J. van der Houwen et al. I Applied Numerical Mathematics 31 (1999) 353-374 361

where e(;) assumes values in the interval [0, 1]. We remark that this error formula holds for any
integrable function g(O and sufficiently differentiable function f (y(t)). By writing

I

Q;(T) = (ka:h;)! J p;(T, ;){ </>;(T, e(O)) +; a<j>;(~·:(O)) + ~;2 az</>;~T~:(O)) + ... }di;,
0

and observing that each differentiation of the function </J;(T, e(;)) with respect to I; increases its order
with respect to h, we see that the order of the quadrature error Q; (r) increases by one if the quadrature
points {b1aj 1: j = 1, ... , k} satisfy the condition

I

J p;(r.Od; =O,
0

and by two if, in addition,

I

J ;p;(T, ;) d; = 0.
0

(3.lOa)

(3.lOb)

From the structure of the matrix R and the factor h2 in front of the derivative terms in the PSC method it
follows that these conditions need only to be satisfied for i = k - 1, k (compare our discussion in Section
3.1). The following theorem summarizes the above result.

Theorem 3.2. Let all b; be real and distinct, satisfying the constraint 0 < bk- I ~ 1 + b;, i = 1, ... , k.
Then, the PSC method has step point order

(a) p = k + 1 + T if(3.10a) is satisfied for i = k - 1, k,
(b) p = k + 2 + T if both (3.lOa) and (3.lOb) are satisfied for i = k- 1, k.

Let us apply this theorem for k = 3. Solving (3.lOa) with i = 2, 3 using Maple yields an explicit
fourth-order method (T = 0) defined by

bi= ~J22- 2v'l69:::::: 0.529005, (3.lla)

and an implicit fifth-order method (r = 1) defined by

b1 = - /0 J130 - 10JT29 ~ -0.405238, bz =Po+ ~b1 - ~(1+b1)2 =0.515271. (3.1 lb)

For k = 4, Maple offers already problems to find an analytical solution. A numerical approach yields an
explicit fifth-order method defined by

b1 :::::: 1.083424930, bz :::::: 2.283072685, b3:::::: 0.494330785. (3.12)

For k ~ 5 we have to solve the four equations (3.10) with i = k - 1, k simultaneously. This direct
approach becomes quite cumbersome even when using numerical techniques, unless we can guess an
accurate initial approximation to the solution. An alternative is to assume that the abscissa ak- I is given
in advance. Then it is possible to derive an analytically given polynomial equation whose solutions define
superconvergent abscissae.

362 Pl. van der Houvven et al. I Applied Numerical Mathematics 31 (1999) 353-374

3.3. Superconvergent PSC methods

From now on, we assume that ak- I is prescribed. Let k ;::: 4 and let the abscissae a i be given for j ;::: 3.
Then we can write

k

p;(r, ~) = (~ - b1aj 1) (~ - b2a{ 1)q; (r, ~), q;(r, ~) := g; (~)(~ - ir II(~ - b1a;- 1),

}=3

where q; (r, ~) does not contain unknown parameters. Similarly, for k ;::: 6 we assume that the abscissae
a1 are given for j ;::: 5 and we write

4 k

p;(r, ~) = IJ (~ -b1a;- 1)r;(r, ~), r; ('r, n := g;(~)(~ - l)r II(~ - b1a;-I).
j=I

Furthermore, we define the integrals

I

IiJ(t) := jca;~)iq;(r.~)d~,
0

I

1;1(t) := jca;~)ir;(r,~)d~.
0

j=5

Then, condition (3. lOa) holds if the shifted abscissae b1 and b2 satisfy the two equations

where A 1 and A2 are the solution of the two linear equations

1;1 (r)A 1 - l;o(r)A2 = /;2(r), i = k - 1, k, k;::: 4.

(3.13)

(3.14a)

The coefficients /il (r), 1;0 (r) and /;l(r) do not depend on b 1 and b2 , so that they are completely
determined. Having computed the quantities A 1 and A 2, the abscissae b 1 and b2 are defined as the roots
of the equation b2 - A 1 b + A1 = 0.

Likewise, (3. lOa) and (3. lOb) are both satisfied if b1, b2 , b3, and b4 satisfy the equations

where B1, B2, B3, and B4 are the solution of the four linear equations

l;3(r)B1 - J;l(r)B'2 +Ji! (r)B3 - l;o(r)B4 = l;4(r),

l;4(r)B1 - l13(r)B2 + l;2(r)B3 - l;1 (r)B4 = l;s(r),
i =k-l,k, k;:::6, (3.14b)

in which the coefficients do not depend on b1, b2, b3, and b4 . The parameters b 1, bi, b3 , and b4 are now
defined as the roots of the equation b4 - B 1b3 + B2b2 - B3b + B4 = 0.

We recall that in the derivations above, it is assumed that all a; are distinct and that the constraint
0 <bk-I :;:;:; 1 + b; is satisfied for i = 1, ... , k. Furthermore, we observe that using formula manipulation
software enables us to find exact values for the quantities A; and B;, so that the superconvergence

P.J. van der Houwen et al. I Applied Numerical Mathematics 31 (1999) 353-374 363

equations b2 -A 1b+ A2 = 0 and b4 - B1b3 + B2b2 - B3b + B4 = 0 are obtained in analytical form. The
following theorem summarizes the preceding considerations:

Theorem 3.3. Let the quantities Ai and B; be defined by (3.14a) and (3.14b), let all bi be real and
distinct satisfying the constraint 0 < bk-I ~ 1 + b; for i = 1, ... , k. Then, the P SC method has step point
order

(a) p = k + 1 + r if b1 and h2 satisfy b1 - A 1 b + A 2 = 0,
(b) p = k + 2 + r if b1, b2, b3, and b4 satisfy b4 - B 1b3 + B2b 2 - B3b + B4 = 0.

By means of this theorem the polynomial equation to be satisfied by the abscissae of superconvergent
PSC methods can straightforwardly be constructed, provided that the abscissa ak- I = bk- I + 1 is
prescribed in advance. In the following, we shall always choose bk-I= 1· This choice is motivated by
the following observations: (i) the methods defined by (3.11) and (3.12) show that one of the abscissae
b; seems always to be close to ~, and (ii) if the method contains sufficiently many free parameters, then
we may set bk_2 =-~,so that by virtue of Theorem 3.1 the number of computational stages is reduced
to k - 1. -

In Sections 3.4 and 3.5, we derive with the help of Maple the superconvergence equations b2 - A 1 b +
A2 = 0 and b4 - B1b3 + B2b2 - B3b + B4 = 0 in analytical form fork= 4, ... , 8 and r = 0, 1. The
resulting (shifted) abscissa vector b (or approximations to it) are listed in Table 1. Since, in principle,
we can associate with each abscissa vector both an explicit PSC method (predictor method) defined by
{(2.9), T = 0} and an implicit PSC method (corrector method) defined by (3.5), we have also listed the
orders of accuracy p := (Pprect. Pcorr) of the PC pairs (for a derivation of these orders of accuracy, we refer
to Sections 3.4 and 3.5). Finally, we listed the number of computational stages k* (see Theorem 3.1).

3.4. PSC methods with k ~ 5

First we construct PSC methods with at most 5 stages using part (a) of Theorem 3.1. If the PSC method
is explicit (r = 0) and has 4 stages, then the method is uniquely defined by the equation

b'l 37 b + 57 0 b I - TO 20 = • 3 = 2· (3.15)

Thus, (3.15) generates an explicit PSC method of order p = 5 and an implicit PSC method of order 5,
both with 4 parallel stages. The solutions of (3.15) can be found in Table 1 and tum out to be close to the
solutions (3.12) where we did not fix the abscissae b3 in advance.

For k = 5 we can construct a one-parameter family of methods of order p = 6. Given the abscissa b3,
the abscissae b1 and b2 follow from the superconvergence condition

b2 _ 74b~ - I95b3 + 124 b l l4b~ - 248b3 + 131 = O
20b~ - 74b3 + 57 + 2(20b~ - 74b3 + 57) '

b - l 4- 2· (3.16)

The free parameter b3 can be exploited by setting h = -! , so that we have only 4 computational stages
(see Theorem 3.1).

In a similar way, we find the implicit 4-stage PSC method of order 6 defined by

b2 -b+fo=0, b3=!, (3.17)

and the implicit 5-stage PSC method of order 7 with 4 computational stages defined by

b2 445b 1231 0
- ill + 2436 = , (3.18)

364 P.J. van der Houwen et al. I Applied Numerical Mathematics 31 (1999) 353-374

Table 1
Abscissa vector b for PSC methods. Solutions of the superconvergence conditions

k k* p Abscissa Eq. b = a - e

4 4 (5, 5) (3.15) (37 +2t229 37 -2:.:229 ~ 0)

5 4 (6, 6) (3.16) (8° -6~ 80 +6~ - ~ ~ 0)

4 4 (4,6) (3.17) (1°+2~ 10 -2~ ~ o)
5 4 (5, 7) (3_18) (1335 - v'l3777089 1335 + J13777089 -~ ~ o)

4872 4872 2 2

6 6 (8, 8) (3.19) (0.220473884991749550773176296 0.785748179438222426650898115

7 6 (9, 9) (3.20)

8 7 (10, 10) (3.21)

6 6 (6, 9) (3.22)

7 6 (7, 10) (3.23)

8 7 (8,11) (3.24)

3.5. PSC methods with k ~ 6

1.082801901339905567884428919 1.357404605658693883262925242

4 0)
(1.359849808362845524482247 4361 l .08550243286155484559219203238

0.7831415266517613622931020219 0.22366067273036013403372306979

-! 4 o)
(1.34769190490729875418306514160 l.07208031244751681867238199782

0.78608615201785326002175468995 0.22516824834210228704446788414

d2 _1 lo)
20 2 2

(0.21755580207730697329345869375 0.80211953599522583518112647952

l .09733188738319384639542393592 l .34878406687322980677477319902

4 0)
(1.31055925607203754003020571295 1.0503046858204850073846230065

0.77614140147425929479586597693 0.2261701100662944062560580057

-! ! 0)
(l.32926038747280407572724831106 l .07617474082873809284962387998

0.79120732633177980331380185023 0.22305652889369376529159340900

TI _l l o
20 2 2

Fork~ 6 we can invoke part (b) of Theorem 3.1. Three types of PSC methods will be considered:
(I) Explicit PSC methods of order k + 2.

P.J. van der Houwen et al. I Applied Numerical Mathematics 31 (1999) 353-374 365

(II) Implicit PSC methods of order k + 3.
(III) Predictor-corrector pairs of PSC methods of order (k + 2, k + 2).

3.5.1. Explicit PSC methods of order k + 2
For k = 6 we have a uniquely defined method of order p = 8 defined by

b4 - 193 b3 + 19279 b2 - 17891 b + 1597 - 0 b - .!. (3.19)
56 4704 9408 6272 - , 5 - 2.

Fork;:;::: 7 we obtain methods of order p = k + 2 with k - 6 free parameters b5 , .•• , bk_3• Fork= 7 we
used the free parameter b5 to reduce the number of computational stages to 6 and found the equation

b4 - 235865b3 + 210776b2 - 3139325b + 423971 -0
68324 51243 1639776 1639776 - ,

b - 1 5- -2, b - l 6- 2· (3.20)

Finally, fork= 8 we have two free parameters. We set b6 = -~ and used b5 to reduce the size of the
error constant E (k + 2) according to the approach described in S-ection 3.6, to obtain

b4 - 16493095751 b3 + I 17118655069b2 - 217047351761 b + 88026108193 - 0
4814898736 28889392416 115557569664 346672708992 - '

(3.21)
b 39

5 = 20'

3.5.2. Implicit PSC methods of order k + 3
Proceeding as in the previous section, we solve Eqs. (3.14b) for r = l, to obtain a 6-stage, 9th-order

method defined by

b4 - 5015b3 + 18010b2 - 67235b + 251147 -0 b - l
1447 4341 34728 972384 - , 5 - 2' (3.22)

a 7-stage, lOth-order method with 6 computational stages

b4 - 9023504b3 + 157695722b2- 14440832b+ 71811311 -0
2683031 40245465 8049093 297197280 - '

b~ =-.!.
~l 2' b -.!.

6- 2' (3.23)

and an 8-stage, 11 th-order method with 7 computational stages whose free parameter b5 was used to
minimize the error constant E(k + 3):

b4 - 109326306018669b3 + 1293727397185447b2 - 479656555759929b + 3874147299589559 -0
31969569995869 319695699958690 255756559966952 15345393598017120 - ,

(3.24)

b5 = ~b·

3.5.3. PC pairs of order (k + 2, k + 2)
The explicit methods of type I and the implicit methods of type II constructed in the two preceding

sections possess an optimal order of accuracy k + 2 and k + 3, respectively. A third option is to construct
a PC pair with the same abscissae vector such that the predictor is of order k + 1 and the corrector of
order k + 2. This can be achieved by determining a single shifted-abscissae vector b such that (3. lOa)
is satisfied both for r = 0 and for r = 1. Proceeding as in Section 3.2, we first solve the four linear

equations

i=k-1,k, k;;:6, r=0,1, (3.25)

vvhere Jij (r) is defined as in (3.13). The abscissae b 1, b2, b3 , and b4 are again defined as the roots of the
superconvergence condition b4 - B 1b3 + B2b2 - B3b + B4 = 0. Thus, if this equation has real, distinct

366 P.J. van der Houwen et al. I Applied Numerical Mathematics 31 (1999) 353-374

roots, then the resulting PC pair has order (k + l, k + 2). However, it turns out that the actual order is
(k + 2, k + 2).

Theorem 3.4. Let the quantities B; be defined by (3.25), let all b; be real and distinct such that
0 <bk-I ~ l + b; for i = 1, ... , k, and let bi, b2, bJ, b4 satisfy b4 - B1b3 + B2b2 - B3b + B4 = 0.
Then, the abscissae vector b generates an explicit PSC method and an implicit PSC method which have
both of step point order p = k + 2.

Proof. The proof consists of showing that Eqs. (3.25) are identical with Eqs. (3.14b) obtained for r = 0,
i.e., with the equations

l;3(0)B1 - l;2(0)B2 +Iii (O)B3 - l;o(O)B4 = l;4(0),

l;4(0)B1 - l13(0)B2 + l;2(0)B3 - l;1 (O)B4 = l;s(O),
i = k - 1, k, k ~ 6. (3.26)

Evidently, the first two equations in (3.26) are identical with the two equations in (3.25) obtained for
r = 0. Furthermore, by observing that l;j(r) satisfies the relation lt.j+i(O) = a;(J;j(l) + Jij(O)), it
follows that the last two equations in (3.26) can be written as

(113 (0) +]13(1)) B1 - (1;2(0) + Ji2 (1)) B2 + (l; 1 (0) +Iii (1)) B3 - (J;o(O) + l;o(l)) B4

=];4(0) + l;4(l), i = k - 1, k,

which is by virtue of the first two equations of (3.26) identical with the two equations in (3.25) obtained
for r = 1. This proves the assertion of the theorem. O

Theorem 3.4 implies that fork~ 6 the abscissae vectors (3.19)-(3.21) derived in Section 3.4 not only
generate predictors of order k + 2, but also correctors of order k + 2.

3.6. Comparison of PSC methods

In order to compare the accuracy of the various PSC methods we again consider the formula (3 .2') for
the accumulated error a,,+ 1• The conventional approach is to compare the local errors s j (q) by means of
the error constants c(q), c(q + 1), ... given in (3.2a). However, then the amplifying effect of the matrix
M11 is not taken into account. Therefore, we consider the accumulated error after s steps. On substitution
of Ej(q) into (3.2') and writing 111 +1 = (af(y(t,,))/ay)J + O(h) in the definition of Mn and Dn, we can
easily find the first few terms of the expansion of the step point value of a,,+1.

Theorem 3.5. Afters steps the accumulated step point error can be represented by

<i11 +1,k = AqsC(q)hq+l + Aq+l,sc(q + l)hq+J + (Aq+2,sc(q + 2) + BqsC(q)) hq+4

+0(hq+5),

where for alls ~ 1 the row matrices A js are defined by

Ajs :=yU+2l(tn)eI + yU+2>Un-deIR + yU+2\tn-2)eIR2 + · · ·
+yU+2)Un-s+1)eIR"- 1, j ~q,

(3.27)

(3.28a)

Pl. van der Houwen et al. I Applied Numerical Mathematics 31 (1999) 353-374

and where for s = 1, 2, 3 the row matrices B js are defined by

B ·- (q+2>(t) af (y(tn)) Ty
qI .- y ll ay ek ,

B 7 := B + y<q+2l(t _) af(y(t")) T(RT TR S)
q- qi n I ay ek + + ,

Bq3 := Bq2 + y<CJ+2l Ctn-2) af(~~t11)) eT (RT R + RS +SR+ R2T + T R2).

367

(3.28b)

Because the first k - 2 columns of Rj vanish, (3.28a) shows that the last two entries of A .. do not vanish
).". '

so that the terms of order hq+Z and h'l+3 in (3.27) are completely determined by the last two components
of c(q) and c(q + 1). Furthermore, because any two PSC methods with bk-I=~ possess a matrix R with
identical entries Ru-I and Rk,b we see that the last two entries of their A js matrices also are identical.
Hence, if their stage order q is equal, then the last two components of c(q) and c(q + 1) may serve to
compare their accuracy up to the order hq+3 terms.

The term of order h<J+4 in (3.27) is much more complicated. Because it turns out that Aq+2,.,c(q + 2)
can be neglected with respect to Bq,c(q), we concentrate on Bqs· Firstly, we observe that all k components
of c(q) play a role in the size of Bqsc(q). Secondly, unlike the matrices Ajs' the matrix Bqs may
strongly differ for two different PSC methods, and thirdly, as is clear from (3.28b) its structure becomes
increasingly complicated ifs increases. Let us consider the matrix Bq3 , that is, in the order hq+4 term of
an+I,k we consider the accumulation of local errors over three steps:

Bq3 = yfCJ+2>(t11) af(~'~tn)) eI (T +RT+ T R + S +RT R + RS +SR+ R2T + T R2) + O(h).

Then, we may define the following 'error constants' associated with the order hCJ+2 , h 4+3 and hqH terms
in the expansion of a 11 + u:

E(q) = llck-1 (q), Ck(q)lloo'

E(q +I)= lick-I (q + 1), ck(q + Olloc'

E(q + 2) = JeY (T +RT+ S* + R2T + RS* + S* R)c(q)J.

For the PSC methods generated by the abscissa vectors b of Table 1, Table 2 lists the error constants
E(q), E(q + 1) and E(q + 2), where q = k and q = k + 1 for explicit and implicit PSC methods.
respectively. As already observed, with each abscissa vector b, we can associate both a predictor defined
by { (2.9), T = 0} and a corrector defined by (3.5). Therefore, Table 2 presents both predictor and
corrector values. Evidently, if E(j) = 0 for j < p, then the PSC method has step point order p. Hence,
we shall call E (p) the principal error constant (note that comparing the accuracy of two PSC methods
by means of E (j) values is only possible if their stage order q is identical).

Of course, the PSC method is only useful if the values of iSij I and loi I (in the case of implicit PSC
methods) are sufficiently small and if the method is sufficiently stable. Therefore, Table 2 also lists an
upper bound a for I Sij I and the range of oi values. As to the stability, it turns out that in many cases the
stability boundary f> defined in Section 2.6 is zero. However, if we relax the definition of the stability
region by allowing that the eigenvalues of M (z) are bounded by 1 + s with 0 < 8 « 1, then we obtain
quite substantial stability boundaries f3*, even for extremely small c:. For c: = 1 o-6 we found the values

368 P.J. van der Houwen et al. I Applied Numerical Mathematics 31 (1999) 353-374

Table 2
Characteristics of the PC pairs generated by the abscissa vectors b from Table l

Predictor Corrector

k b E(k) E(k + 1) E(k + 2) p (J fJ* E(k + l) E(k + 2) E(k + 3) p (J 8; fJ*

4 (3.151 0 3.5E-5 4.9E-3 5 3.3 0.79 3.5E-5 3.lE-5 4.4E-4 5 3.5 (-0.000, 0.036) 0.86

4 (3.17) 6.2E-4 3.7E-4 1.2E-2 4 21 0.37 0 1.4E-6 6.6E-4 6 4.3 (0.014, 0.146) 0.47

5 (3.16) 0 1.9E-6 9.3E-4 6 4.0 0.85 l.9E-6 9.3E-7 4.2E-5 6 1.5 (-0.000, 0.058) l.08

5 (3.18) 2.9E-4 9.8E-5 6.5E-3 5 63 0.90 0 4.7E-7 3.0E-4 7 9.3 (-0.018, 0.097) 0.59

6 (3.19) 0 0 l.3E-4 8 30 0.74 0 l.2E-10 5.2E-6 8 7.1 (-0.008, 0.041) 1.0 l

6 (3.22) 8.9E-8 7.0E-8 l.3E-4 6 27 0.74 0 0 4.9E-6 9 6.6 (-0.006, 0.041) 1.0l

7 (3.20) 0 0 4.4E-5 9 65 0.80 0 7.3E-1 l 1.5E-6 9 13 (-0.007, 0.036) 0.98

7 (3.23) 8.8E-8 5.4E-8 5.lE-4 7 67 0.80 0 0 1.6E-6 10 15 (-0.002, 0.035) 1.01

8 (3.21) 0 0 3.9E-8 10 319 0.78 0 2.5E-l2 l.4E-8 10 49 (-0.022, 0.040) 0.66

8 (3.24) 2.2E-9 l.6E-9 5.2E-7 8 260 0.78 0 0 5.SE-lO 11 42 (-0.005, 0.044) 0.65

as listed in Table 2. In actual computation these values turn out to be sufficiently large in the sense that
the stepsize is prescribed by accuracy and not by stability.

4. Implementation aspects

When implementing the PSC methods constructed above, we have to decide about the computation
of the starting vector Y 0 needed to start the recursion (2.1), the local error estimate, and the stepsize
strategy. In the case of implicit PSC methods, we always started the iteration by the predictor formula
associated with the abscissa vector of the implicit PSC method.

The starting vector Y 0 ~ (y(t0 +b;h)) is most conveniently computed by means of a one-step method.
In all our experiments, we computed the stage values of Y 0 by means of one (accepted) step of the 7th­
order Runge-Kutta-Nystrom method of Dormand and Prince [3]. Note that these k stage values can be
computed in parallel, so that effectively only one Dormand and Prince step is needed. Furthermore, we
remark that Runge-Kutta-Nystrom methods can be applied for negative stepsizes, so that negative values
of b; are allowed.

The numerical experiments presented in Section 5.2 use a variable stepsize implementation of PSC
methods, so that we shall briefly discuss the stepsize procedure applied in this paper. The abscissae
obtained in the preceding sections assume constant stepsizes, so that we should either allow h to be
variable in (2.1) and determine abscissae corresponding to nonconstant stepsizes h, or we should replace
in (2.1) the stage vector Y n corresponding to the points t11 _ 1 +a; h by a new stage vector V 11 corresponding
to the points t11 -1 + a;hnew· The first option is not feasible, because it would mean that the process

P.J. van der Houwen et al. I Applied Numerical Mathematics 31(1999)353-374 369

described above should be performed each time the stepsize changes. The second option, however, is
quite straightforward. Let

v n = (P ® l)Y n + h2(Q ® l)F(Y,,), (4.1)

where the k-by-k matrices P and Q are such that V,, represents a numerical approximation to the exact
solution values y(tn-1 + a;hnew) = y(tn + b;hnew). Proceeding as in Section 2.2, we find the conditions

(4.2)

(cf. (2.6)). If q ~ k + 1, then the interpolation error is of order k + 2 in h. In order to keep the entries
of P and Q of acceptable magnitude for larger values of k, we should not allow P and Q to be full
matrices. The minimal number of nonzero columns needed in the matrix (P, Q) to achieve order k + 2
interpolation is k + 2. Since the last two stage values in Y 11 are of increased accuracy and because of
the factor h 1 in front of F (Y ,,) , it follows from (4.1) that it is natural to set the entries in the first k - 2
columns of P equal to zero. Thus, the interpolation formula (4.1) is based on the last two y-values and
on all /-values available from the preceding step. Let P* be the k-by-2 matrix containing the last two
columns of P. Then, (4.2) is equivalent with the condition

(P',Q)U=W, U:= G
w := (e, eh, ... , (8b)k+1).

bL1
b3

k

6b

bk+l) k-1
bk+I

• .. k '
. . . k(k + l)bk-l

(4.3)

Hence, the matrices P and Q follow from the formula (P*, Q) = wu- 1• The magnitude of the entries
of P and Q increases strongly with e and k. However, fore=~ and k = 8 (with abscissae as defined
in Table l), their magnitude is still acceptable (six in the range 12-60, the remaining less than 4). We
remark that if the interpolation formula (4.1) is based on the last two f -values and on all y-values, then
the magnitude of the entries in P and Q is unacceptably large (up to about 54000 fore = ~ and k = 8).

As soon as we change the stepsize, we apply the interpolation procedure described above. In this way,
we achieve that we may always use the constant stepsize formula (2.1). However, it also means that each
stepsize change implies the evaluation of F (V 11). We can reduce these extra costs by applying a stepsize
strategy which keeps the number of stepsize changes low.

Apart from an interpolation procedure, we also need an error estimator in the case of stepsize changes.
Observing that the solution values Yn,k-I • Yn+1.k and Yn+I.k-I correspond with t-values at distance ~h,
we may use the Numerov formula

(4.4)

as a fourth-order reference solution for appreciating the quality of the step point value Yn+I.k· Note that
this formula only uses already computed values. In choosing the new stepsize, we adopted the standard
procedure used in ODE solvers (see, e.g., [7, p. 167]) with a slight modification in order to keep stepsize
changes to a minimum. Let tol be a given tolerance parameter and define

I Zn+I - Yn+l,k I
err:= max{IYn+l.kl• I0-6} oo'

* . { { 5{tr;l}} h = h . mm 1.5, max 0.5, 0.8v ~ .

370 P.J. van der Houwen et al. I Applied Numerical Mathematics 31 (1999) 353-374

This leads to the following stepsize strategy:

if 0.01 tol <err< tol then hnew = h: perform next step,

if err:::;; 0.01 tol

if err~ tol

5. Numerical experiments

then hnew = h*: perform next step,

then hnew = h*: redo step.

In this section we illustrate the performance of the PSC methods generated by the abscissae of Table 1.
From now on, a PSC method is understood to be determined by (i) an abscissa vector b defining
the predictor-corrector pair, and (ii) a PE(CEr or PE(CErc iteration strategy. We performed many
experiments on well-known test problems taken from the literature of which a few typical performance
tests will be reproduced in the tables of results (Tables 3-9). In these tables, the accuracy is defined by
the number of correct digits L1 at the end point (that is, the maximal absolute end point error is written
as 10-.a, and the total number of steps and the total number of sequential right-hand sides needed in the
integration process is denoted by N and M, respectively. Furthermore, we present the effective order of
accuracy p*, based on the two last computed results in the case of constant stepsize experiments and
on the minimal and maximal error tolerance results in the case of variable stepsize experiments. The
corresponding formulas for p* are respectively given by

* "1(2hmin) - .d(hmin) d * .d(tolmin) - .d(tolmax)
P ·- an P ·-

.- log10(2) .- M(tolmin) - M(tolmax).
(5.1)

5.1. Selection of the most efficient method

First we want to know which PSC method is the most efficient one. It may be expected that for a given
number of iterations m, the PE(CErc mode yields the same or a higher accuracy than the PE(CE)"1
mode (note that these modes are equally expensive). This claim was carefully checked and turned out to
be true for all problems we tested. Furthermore, we observed that the accuracy did not improve anymore
by performing more than two iterations. Therefore, we only give results for the PEC and the P(EC)2

mode. In order to see clearly the algorithmic properties of the methods, we applied them with fixed
stepsizes. A comparison is presented in the Tables 3, 4 and 5, respectively for methods with 4, 6 and 7
computational stages, that is, methods requiring 4, 6 and 7 processors. For this comparison, we chose the
TWOB problem [7, p. 236] on the interval [0, 20] with eccentricity s = 0.5, because the performance of
the various methods on this problem turned out to be representative for a large class of problems.

5.1.1. Four-processor methods
From Table 1 we selected the four abscissa vectors (3.15)-(3.18) which generate PSC methods with

4 computational stages. The error constants listed in Table 2, indicate that (3.16) and (3.18) generate
the most accurate predictor and corrector, respectively. Therefore, we expect that these abscissa vectors
generate the most efficient PEC and P(EC)2 methods. This conclusion is confirmed by the results of
Table 3 (and by many other examples we tested). Taking into account that P(EC)2 is about twice as
costly as PEC, this table clearly shows that {(3.16), PEC}, {(3.16), P(EC)2}, and {(3.18), P(EC)2} are

Pl. van der Houwen et al. I Applied Numerical Mathematics 31 (1999) 353-374 371

Table 3
(L'.\, N)-values for PSC methods with 4 computational stages applied to TWOB

b Mode p 80 160 320 640 1280 2560 5120 p*

(3.15) PEC 5 0.4 2.0 4.4 6.2 7.8 9.6 11.8 7.0

(3.16) 6 0.8 3.2 4.5 6.5 8.6 10.7 12.8 7.0

(3 .17) 4 0.1 1.4 3.5 5.9 7.3 8.9 10.6 5.8

(3.18) 5 0.3 2.1 3.6 5.6 7.7 9.8 11.9 7.0

(3.15) P(EC)2 5 1.4 3.1 4.9 6.6 8.1 9.6 11.1 5.0

(3.16) 6 1.4 4.2 7.1 8.9 12.2 12.8 14.5 5.7

(3.17) 6 0.9 2.6 4.4 6.4 8.5 10.6 12.7 7.0

(3.18) 7 1.3 3.0 6.1 7.9 10.1 12.4 14.8 8.0

Table 4
(L'.\, N)-values for PSC methods with 6 computational stages applied to TWOB

b Mode p 80 160 320 640 1280 2560 5120 p*

{(3.19), (3.22)) PEC {8, 6} 0.8 4.0 6.4 8.4 10.6 12.9 15.3 7.9

{(3.20), (3.23)) {9, 7) 0.6 3.8 6.2 8.8 11.5 14.2 17.0 9.1

{(3.19), (3.22)} P(EC)2 {8, 9) 2.9 5.1 7.1 9.8 12.5 15.2 17.8 8.7

{(3.20), (3.23)) {9, 10) 1.7 5.1 8.0 10.7 13.6 16.6 10.0

the most efficient methods respectively in the low accuracy range (1-5 digits, say), in the middle-high
accuracy range (5-15 digits), and in the extremely high accuracy range (15 or more digits).

5.1.2. Six-processor methods
PSC methods with 6 computational stages are generated by (3.19), (3.20), (3.22) and (3.23). Table 2

indicates that (3.20) furnishes the most accurate predictor and (3.23) the most accurate corrector. Hence,
we anticipate that these abscissa vectors provide the most efficient PEC and P(EC)2 methods. However,
it turns out that the methods generated by (3.19) and (3.22) produce the same results as the methods
generated by (3.22) and (3.23). This can be explained by observing that the principal error constants of
(3.19) and (3.22) are extremely small (see Table 2), so that the characteristics of the methods generated
by (3.19) and (3.20) closely resemble the characteristics of the methods generated by (3.22) and (3.23),
respectively. The results presented in Table 4 are typical for a large number of experiments that we have
carried out. From these figures we draw the conclusion that {(3.19), PEC} or {(3.22), PEC} is most
efficient in the low accuracy range, { (3.20), PEC} or { (3.23), PEC} is most efficient in the middle­
high accuracy range, and {(3.20), P(EC)2} or {(3.23), P(EC)2} is most efficient in the extremely high
accuracy range.

372 P.J. van der Houwen et al. I Applied Numerical Mathematics 31 (1999) 353-374

Table 5
(L1, H)-values for PSC methods with 7 computational stages applied to TWOB

b Mode p 80 160 320 640 1280 2560 p*

(3.21) PEC 10 1.5 5.0 8.2 11.6 15.4 11.0

(3.24) 8 0.8 5.2 7.7 9.9 12.7 15.7 10.0

(3.21) P(EC)2 10 3.3 6.0 9.6 12.9 16.7 13.0

(3.24) 11 1.9 5.0 8.3 11.6 15.0 11.3

Table 6
Most efficient PSC methods

Processors O~L1~5 5 ~ L1 ~ 15 L1~15

4 {(3.16), PEC} {(3.16), P(EC)2} {(3.18), P(EC)2)

6 {(3.19), PEC} { (3.20), PEC} {(3.23), P(EC)2}

7 {(3.21), PEC} { (3.21), PEC} {(3.21), PEC}

5.1.3. Seven-processor methods
All error constants listed in Table 2 for the 7-computational-stage methods associated with (3.21) and

(3.24) are extremely small. Therefore, it is dangerous to base conclusions on their magnitude, because
the higher-order error constants may play a more dominant role unless we use unrealistic small stepsizes.
On the basis of many numerical experiments, we found that in general (3.21) generates more efficient
PSC methods than (3.24). A typical performance is listed in Table 5.

5.1. 4. Summary of recommended methods
For a few accuracy ranges ["1 1, "12], Table 6 summarizes the most efficient PSC methods of this paper

for 4, 6 and 7 processor computer systems.

5.2. Comparison with other codes

In this section, we compare the variable step version of our most powerful PSC method, that is, the
lOth-order method { (3.21), PEC} using automatic stepsize control as described in Section 4, with one of
the best sequential code available in the literature, viz. the 7th-order variable step code DOPRIN [7], and
with another parallel code, viz. the 12th-order variable step PIRKN code of Sommeijer [10]. We present
the total number of sequential right-hand sides M needed to produce a given number of correct digits
L1 (including the right-hand sides to generate the starting values by means of DOPRIN). The M values
were obtained by running the DOPRIN. PIRKN and PSC codes with tolerances 10- 1, 10-2, ••• and by
linear interpolation of the L1 and log 10 (M) values produced. Tables 7-9 show results for the two-body
orbit problem from the Toronto test set [8] (see also [10, (3.1)] on the interval [O, 20] with eccentricity

s = 0.9, the often used Fehlberg stability test problem (see [10, (3.2)]) on the interval [Jr;, 10], and the

PLEI problem [7, p. 237]. For these problems, the initial step used by DOPRIN and by {(3.21), PEC}
washo=0.01, 0.1 and0.01,respectively.

'

nd
1se

es.

~nt

1er

he
of
1d
nt

ts
:s
1y

ly

-:y

1e

Pl. van der Houwen et al. I Applied Numerical Mathematics 31 (1999) 353-374 373

Table 7
(d, M)-values for the orbit problem

id 5 6 7 8 9 10 11 12 13 14 15 p*

DOPRIN 1365 1598 1782 2515 3267 3938 4587 5598 6754 8049 13277 8.7

PIRKN 475 521 572 654 806 994 1205 1445 1698 1986 2239 15.9

{(3.21), PEC} 294 335 401 483 585 720 896 1122 1401 1751 2189 12.4

Table 8
(id, M)-values for the Fehlberg problem

.c1 5 6 7 8 9 10 11 12 13 14 15 16 17 p*

DOPRIN 886 1276 1793 2545 3485 4759 6423 8779 12217 16746 23121 32162 44571 7.2

PIRKN 362 427 508 604 724 868 1041 1249 1499 1799 2185 2653 3216 12.6

((3.21), PEC} 154 193 238 277 330 409 505 613 740 889 1069 1270 1508 12.1

Table 9
(.c1, M)-values for the PLEI problem

.d 5 6 7 8 9 10 11 12 13 14 15 p*

DOPRIN 1444 1743 2154 2674 3165 3673 4380 5668 7691 10853 15295 9.8

PIRKN 511 586 680 795 938 1116 1337 1581 1864 2199 2561 14.3

{(3.21), PEC} 312 368 436 540 666 807 991 1229 1446 1987 2519 11.0

6. Concluding remarks

In this paper, we constructed parallel Starmer-Cowell type methods (PSC methods) with orders
ranging from p = 4 until p = 11 for parallel computer systems with 4 until 7 processors. Of these
PSC methods the lOth-order, 7-processor method turns out to be most effective for high-precision orbit
computations. This method was compared with DOPRIN, one of the most efficient sequential code
currently available, and with PIRKN, a 12th-order, 6-processor code. In terms of the total number of
light-hand side evaluations needed in the integration process, the speed-up of the PSC method with
respect to DOPRIN ranges from 4 in the low accuracy range up to 30 in the high accuracy range, and
with respect to PIRKN, the PSC method is at least equally efficient and at best twice as fast.

References

[l] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, Dover, 1964.
[2] J.C. Butcher, The Numerical Analysis of Ordinary Differential Equations, Runge-Kutta and General Linear

Methods, Wiley, New York, 1987.
[3] J.R. Dormand, P.J. Prince, New Runge-Kutta algorithms for numerical simulation in dynamical astronomy,

Celestial Mech. 18 (1978) 223-232.

374 P.J. van der Houwen et al. I Applied Numerical Mathematics 31 (1999) 353-374

[4] S. Fehlberg, S. Filippi, J. Graf, A Runge-Kutta-Nystrom formula pair of order 10(11) for differential
equations of the form y" = f(x, y), Z. Angew. Math. Mech. 66 (1986) 265-270.

[5] S. Filippi, J. Graf, A Runge-Kutta-Nystrom formula pair of order 11 (12) for differential equations of the form
y" = j (x, y), Computing 34 (1985) 271-282 (in German).

[6] S. Filippi, J. Graf, New Runge-Kutta-Nystrom formula pairs of order 8(7), 9(8), 10(9) and 11(10) for
differential equations of the form y" = f(x, y), J. Comput. Appl. Math. 14 (1986) 361-370.

[7] E. Hairer, S.P. N~rsett, G. Wanner, Solving Ordinary Differential Equations, Vol. I. Nonstiff Problems,
Springer, Berlin, 1987.

[8] T.E. Hull, W.H. Enright, B.M. Fellen, A.E. Sedgwick, Comparing numerical methods for ordinary differential
equations, SIAM J. Numer. Anal. 9 (1972) 603-637.

[9] WM. Lioen, JJ.B. de Swart, W.A. van der Veen, Test set for IVP solvers, CWI Report NM-R9615,
Amsterdam. Available at http://www.cwi.nl/cwi/projects/IVPtestset/.

[10] B.P. Sommeijer, Explicit high-order Runge-Kutta-Nystrom methods for parallel computers, Appl. Numer.
Math. 13 (1993) 221-240.

[11] P.J. van der Houwen, E. Messina, Parallel Adams methods, to appear in J. Com put. Appl. Math.

