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*) 
Estimating the global error of Runge-Kutta approximations 

by 

K. Dekker & .J.G. Verwer 

ABSTRACT 

The user of a code for solving the initial value problem for ordinary 

differential systems is normally left with the difficult task of assessing 

the accuracy of the numerical result returned by the code. Even when the 

code reports an estimate of the global error, the question may remain whether 

this estimate is correct, i.e. whether the user can rely on the estimate. 

This paper proposes a simple idea of measuring the reliability of the global 

error estimate with the aim of assisting the user in the validation of the 

numerical result. The idea is put into practice with the existing code 

GERK (ACM Algorithm 504) developed by Shampine and Watts. 
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1 • INTRODUCTION 

This paper deals with the problem of computing reliable estimates for 

the global error of numerical approximations to the exact solution ytx) of 

the initial value problem 

(1. 1) y = f(x,y), a~ x ~ b, y(a) = ya, 

where f is supposed to be a sufficiently smooth, real-valued vector function. 

We restrict ourselves to non-stiff systems and classical explicit Runge­

Kutta approximations (see e.g. [2,5,9]). 

Let us first introduce some notations and definitions. The initial 

value problem (1.1) is integrated on a grid 

(1. 2) GN = {xn E [a,b], n = O(l)N, with x0 = a, xn-l < xn' ~ = b} 

to obtain the approximations yn, where Yo = y and, for n = 0,1, ••• ,N-1, 
a 

(1. 3) 

m 

Yn+l = y + h L b.k., h = xn+l - xn, 
n ni=l ii n 

k. 
i 

i-1 
= f(x +c.h ,y + h L a .. k.). 

n in n n j=l iJ J 

The scalar parameters a .. ,b. and c. define the Runge-Kutta scheme. The grid iJ i i 
GN needs not to be uniform and, as is comm.on practice, may be determined 

during the integration process through some stepsize control mechanism. It 

will be assumed that for N sufficiently large the minimal and maximal step­

lengths behave like O(N-1). More specifically, we assume the existence of 

a piecewise constant function 0:[a,b] + [e . ,e ], 0 < e . ~ e , such min max min max 
that for N sufficiently large h = 0(x )R_ = 0(x )0 /N, n = O(l)N-1. If n n -""N n max 
this natural assumption is satisfied, we are assured of the existence of an 

asymptotic expansion in¾ for the global discretization errors 

(1. 4) 

See STETTER [9] for a detailed analysis. If we let f be M times differen-
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tiable (in some neighbourhood of y(x)), then functions e., j = p, •.• ,M, 
J 

exist independent of H =~such that 

(1.5) £ = n 

M 

I 
j=p 

Hj ( ) + O ( M+ 1 ) • e. X Ir~ 
J n 

Here p denotes the order of accuracy of the Runge-Kutta method. The exis­

tence of these asymptotic expansions for£ forms the basis for most of the 
n 

error estimation techniques. 

The usual approach in the literature on global error estimation is to 

compute a first approximation for £n' est!l) say, which satisfies a rela­

tion of the form 

(1.6) est(I) = 
n 

Here v(x) is some function different from e 1(x). The user of a code which 

delivers an estimate like est(l) will normai~y be interested in the global 
n 

error. Anyhow, it is reasonable to assume that most users wish to rely on 

the estimate. Otherwise the extra effort spent is of no use. In this respect 

global error estimation has to be approached in an essentially different way 

than local error estimation. The importance of local error estimation lies 

in stepsize control, while the reliability of the local estimate is of less 

importance than its additional costs. When reporting global error estimates 

however, one should make higher demands on reliability than on efficiency 

for the reason just mentioned. In fact, from the user's point of view, the 

computation of a highly reliable global error estimate might be considered 

as important as an efficient computation of the approximation itself. 

These considerations lead us to the conclusion that it might be desir­

able to compute a second and more accurate estimate est(Z) satisfying 
n 

(I. 7) 

and to compare this result with the first estimate est(l). 
n 

One way to do this is to check whether 

(1.8) r :~ est(Z) / est(l) 
est n n ' 

C 
means componentwise operation, 
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is sufficiently close to one. The quantity r tis a first order approxima­es 
tion to the true error ratio rt , i.e. r t = r + O(H), where rue es true 

(1. 9) r true 
c est(2) /£ := n n 

If r tis close to one and est(2) is of an acceptable magnitude, one has a es n 
strong indication that est(2) is an accurate estimate. We believe that the 

n 
reliability of automatic codes for our initial value problem (I.I) is 

greatly enhanced if the asymptotic quality of the global error estimation 

can be verified. 

The objective of this paper is to put this idea into practice and to 

show that it is useful. Our starting point is the existing Runge-Kutta code 

GERK developed by SHAMPINE & WATTS [8]. This code is based on a Fehlberg 

(4.5)-pair [1] and computes a first estimate est(l) by means of global 
n 

Richardson extrapolation. The decision to concentrate on GERK is based on 

the fact that this code is very suitable for the task we have set ourselves. 

2. GERK AND GLOBAL RICHARDSON EXTRAPOLATION 

Global Richardson extrapolation involves parallel integration with the 

same method on different grids. The use of Richardson extrapolation for 

estimating the global discretization error of one-step integration methods 

is well-known (see HENRICI [2], p.81, LETHER [6] and STETTER [9], p. 157). 

When using non-equidistant grids, which we assume, it is only allowed to 

change the stepsize at grid points where the various approximations are 

combined in the extrapolation process. 

SHAMPINE & WATTS [8] have implemented global Richardson extrapolation 

on top of the Runge-Kutta code RKF45 which is based on a Fehlberg (4.5)­

pair. They called the resulting code GERK. This code computes two parallel 

solutions and estimates the global error at the finest grid (grid G2N of 

Fig. 1). By computing a third parallel solution, on a grid G3N as shown in 

Fig. 1, the same idea can be used for obtaining two estimates est(l) and 
n 

est~2) of the global error at the grid G3N. Having two estimates of the 

global error available we then can measure the accuracy of these estimates 

as outlined in the introduction. 
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h n-1 h 
GN RKF45 

n yn I 
' 

GERK t-- ---- G2N Yn,2 

RGERK -t- G3N Yn,3 
X 

n-1 
X xn+I n 

Figure I. 

Let us give some details. Consider three coherent grids as shown in 

Figure 1. Apply on these grids some Runge-Kutta method of order p to obtain 

at the points x = x the approximations y 1 , y 2 and y 3 . Let 
n n, n, n, 

E n,i .- Yn,i - y{x ). Then n 

M 
(H/i)je. (x ) + O(HM+I), (2. I) E = I n, i 

j=p J n 
i = 1,2,3. 

We now define our estimates by 

(2.2) 

(1) 
est · := 

n (y 2 - y 3)/(1 .5P-I)' n, n, 

(2) (1) 
est· := (l+n)est - n(y 1 - y )/(3P-I) 

n n n, n,3 ' 

where n = (l-(l.5p+l_l)/(l.5p-l))/((l.5p+l_l)/(l.5p-l) - (3p+l_l)/(3p-l)). 

Relations (I. 5) - (I. 7) are satisfied if H is replaced by H/3 and E by E 3 . n n, 
Hence we estimate the error of the most accurate solution y 3 . n, 

The code GERK computes the solutions y 1,y 2 on the grids G ,G2 and 
n, n, ~ N 

delivers at the points x the global error estimate (y 1-y 2)/(2 -1), where 
n n, n, 

p = 5. Thus it also reports the more accurate solution y 2 . The stepsize n, 
selection of GERK is based on a mixed relative-absolute local error control 

on the coarsest grid GN by using the imbedded 4-th order scheme (see [8], 

section 4 for details). Control on the coarsest grid protects the parallel 

integration, where no control is performed, against instability. It shall 

be clear now that it is possible to place our estimation procedure on top of 

GERK without drastic changes. Only minor modifications are required. These 

are the implementation of the third parallel integration on G3N and the 
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implementation of the estimates (2.2). Further, the modified code, which we 

have named RGERK, should report the numerical solution yn 3 , the estimates 

est (2) and ir • ' 
n est 

We wish to emphasize that we did not modify the stepsize and local 

error control. This implies that for a given value of the local tolerance 

input parameters RGERK computes exactly the same solutions y 1 and y 2 as n, n, 
GERK does. GERK, in turn, computes the same solution y 1 as RKF45. 

n, 
It should b,e noted that in normal situations the global error of y 3 shall n, 
be somewhat smaller than the prescribed local tolerance values. This is be-

cause we report the solution computed on the finest grid G3N, whereas the 

local error and stepsize control is performed on the coarsest grid GN. It 

is perhaps clarifying to observe that the grids GN, G2N and G3N are deter­

mined in the course of the integration, viz. by the stepsize control. 

Finally, a few remarks on the cost ratios of RKF45, GERK and RGERK. 

When we consider the coarsest grid GN, RKF45 uses six f-evaluations per 

step, GERK eightteen, and RGERK thirty-six. However, they report the solu­

tion at GN' G2N and G3N, respectively. Hence one has to take the accuracy 

at the three grids into consideration. On the asymptotic basis we thus 

arrive at the ratios 6 : 9 : 12. In practice the cost ratios, in terms of 

the numbers off-evaluations, will slightly differ from the asymptotic 

ratios. Normally they will be somewhat larger. For further practical in-

.formation we would like to refer to SHAMPINE & WATTS [8]. 

3. MEASURING THE RELIABILITY OF THE GLOBAL ERROR ESTIMATES 

A code like GERK computes a numerical 

at the same~ time an estimate est ( 1) of the 
n 

Experiments reported by Shampine and Watts 

solution of (I.I) and reports 

global discretization error. 
h . . ( l) 

show that t eir estimate est 
n 

will be reliable in many cases. Nevertheless, in real life computation the 

user of GEH.K is left with the difficult task of assessing the accuracy of 

the estimate himself. If it is in doubt, which already may be very diffi­

cult to establish, one could apply the code a second time with a more 

stringent local error tolerance and then by comparison try to get more 

insight in the accuracy of the reported quantities. The theoretical support 

of the technique of reintegration is difficult to give, however, when using 
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a stepsize determined by local error control. To assist the user in his 

validation of the numerical result we prefer to compute the quantity 

c (:2) / (I) · d d . . ( I 8) (2 2) F h r = est est intro uce in equations . , .. rom at eoret-
est n n 

ical point of view, the use of r tis fully justified. In this section we es 
will consider r tin some more detail. es 

For convenience of presentation we now restrict ourselves to a single 

differential equation. First we introduce the quantity 

(3. 1) r := (l.Sp-l)(y 1-y 3)/(y 2-y 3)(3p-l), 
n, n, n, n, 

and observe that r can be written as a function of r, viz. 
est 

(3. 2) :r (r) =I+ n - nr. est 

In fact r has a similar meaning as rest being the quotient of two different 

estimates of s = s 3 . Equation (3.2) shows the range of r t" The equal-n n, es 
ity r (I)= I follows innnediately from the observation that both rand est 
r tend to I if H + 0. For p = 5 we have 
est 

(3.3) r (r) = (422 - 12lr)/301. 
est 

Note that r t(O).:::::. 1.4, which means that if r tis close to 1.4 at least 
es ( ) (2) . es 

one of the estimates est I or est is very inaccurate. Generally, too 
n n 

small or too larger -values mean that at least one of these estimates 
est (2) 

is wrong. One should observe, however, that est is a more accurate 
n 

estimate than est(I) (cf. (1.6),(1.7)). In other words, rest normally will 

b . n . . f (2) / ea conservative approximation or r = est s • 
true n n 

The main question is of course, which range of r t-values is still es 
meaningfull. We have tried to answer this question in two ways, viz. 

theoretically and experimentally. The experiments are discussed in the 

next section. Here we discuss our theoretical answer. 

Assume that in equation (2.1) the errors s . can be represented by 
n,i 

infinite series. Let e (x) j O and introduce p n 

(3. 4) a. : = Hj-p e. (x ) / e (x ) , 
J J n p n 

j ~ p. 



Substitution into (3.1) yields 

(3. 5) 
1 + (1-3-p)-l .E (1-3-j)a.. 

r=-------J_=p~+_l ____ J __ 
(2-p-3-p)-l .E (2-j-3-j)a.. 

J=p+l J 
1 + 

By imposing bounds for a.., j ~ p+l, one can obtain bounds for r, r t and 
J es 

rt • The idea is to compare these bounds. We will consider a..-values rue J 
satisfying 

(3. 6) I a. - I $ 
J 

j-p 
C , j ~ p+l and O < c < 1. 

The smaller c, the more dominance of the error term Hpe (x) is supposed 
p n 

by this condition. The following results were obtained. 

- 2 LEMMA 1. Let p = 5 and denote a.= (a.6 ,a.7 , ••• ), a. = (-c,-c , •.. ) and 

7 

+ 2 a. = (c,c , ••• ). Suppose tha.t 0 < c:;;; 2/7. For all sequences a. the elements 

of ~hich satisfy condition (3.6), it then holds tha.t 

(3.7) 
1 -~ 

:;;; r(a. +) = __ 2_ 
1 - c 

PROOF. Substitute p = 5 into (3.5) and write r(a.) = N(a.)/D(a.). Differentia­

ting r(a.) to a.k, k ~ 6, yields 

243 1 243 32 243 243 , (2-j+2-k)cj-5 = 
242 - zill - 242 211 j:;6 

243 90 243 243 (~ + 25-k ~) ~ 
242 21.l - 242 ill 2-c 1-c 

243 c 1 c 
242*211 (9o - 243 <2-c + 2 1-c)) 

for all k ~ 6 and O < c < 1. The last expression is positive for all c be-
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tween O and 2/7. Further, 

D(a) 

if O <cs 2/7. Hence for all k :::>: 6, clr(a)/aak > 0 if O <cs 2/7, which 

implies that for these values of c, r(a) takes its minimum and maximum at 

a = a d + . 
an a= a , respectively. • 

Substitution of (3.4) into r given by (1.9) yields true 

(3.8) 
1+(1+n)(2-p-3-p)-I .I: (2-j-3-j)a.-- n(I-3-p)-I .I: (1-3-j)a,. 

1=p+l J 1=p+l J r ·- ________ .......__ -----------,-"'-------~~-----
true p -J 1+3 .I: 13 a. j=p+ J 

and, for p = 5 

(3. 9) r true 

64 -j -j I I -j) 
= 1+243 301 j~6 c2 -3 -m+m3 aj 

-J 1+243.I:63 a. 
j= J 

- 2 * LEMMA 2. Let p = 5 and denote a= (a6 ,a7 , ... ), n = (-c,-c , ... ), a = 
2 3 = (-c,c ,c , ... ). Suppose tluxt O <cs 602/845. For all sequences a the 

elements of 1vhich satisfy condition (3.6) 3 it then holds that 

(3.10) * rtrue(a) 
8 I c 2 

= I - 602 ----------- s r (a) s 2 true 
( 1-c) (l -~)(] __ 2c +_2c_) 

2 3 9 

= r (a ) . 
true 

PROOF. We writer (a)= P(a)/Q(a) and note that Q(a) 1s positive, because true 

Q (a) = I + 243 l 
j=6 

1 - l (c/3)j-S > O, 
j=6 

if O < c < 3/2. Similarly, we have 

64 \ -j -j 1 1 -j 
P(a) = I + 243 301 .l (2 -3 - 128 + 128 3 )a.J. :::>: 

j=6 

_ 243 I cj-s > 0 
602 . 6 j= 
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"f 0 < 602 D"ff . . () . 1 < c ~ 845 • 1 erent1ating rtrue a to ak, k ~ 7, yields 

64 -k -k 1 1 · -k 243 
= 243 301 (2 -3 - 128 + 128 3 )Q(a) -Jk P{a) s O, 

-k -k 1 1 -k 
as 2 -3 - 128 + 1283 < 0 for k ~ 7 and both Q{a) and P{a) are positive. 
Finally, 

ar {a) 
Q2{a;) true = _!_{Q(a) _ P(a;)). 

aa6 3 

At the maximum we have P{a)/Q(a) > 1, so that the derivative with respect 
. . k-6 to a 6 is negative; thus the maximum is obtained for a 6 = -c and ak = -c , 

k ~ 7. At the minimum P(a;)/Q{a;) < 1, so the derivative with respect to a6 
k-6 is positive and the minimum is obtained for a6 = -c, °k = c , k ~ 7. D 

Using (3.3) Lemma 1 yields bound for r t under condition (3.6), where es . 
0 < c :S 2/7. Under the same condition Lemma 2 yields bounds for rt , but rue 
now for 0 < c :S 602/845. Table 2 shows these bounds for a number of values 

for cs 602/845. 

r est rtrue 

C lower upper lower upper 

1 
.998 1 .002 1 .000 1 .ooo 

100 
1 

.993 1 .007 1.000 1 .000 
30 
1 

.978 1.023 .998 1 .002 To 
1 

.951 1 .060 .991 1.009 5 
1 

.936 1 .087 .985 1.015 4 
2 

.923 1. 110 .978 1.022 
7 
1 

.876 1.135 2 
7 

.474 1 .634 To 

Table 2. Bounds for r t and rt • es rue 
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4. PERFORMANCE OF THE MODIFIED GERK CODE 

The purpose of this section is to give practical evidence to our view 

that the use of a second estimate est(2) greatly enhances the reliability of 
n 

the global error estimation procedure. Further we want to give an answer 

to the question of section 3 how to interpret a reported r t-value. es 
We have subjected the code RGERK to various experiments. In sections 

4.1 - 4.5 we present results, in some detail, for five different example 

problems. In section 4.6 we have collected some statistics on the well-known 

test set of Hull et al. [3]. All computations have been carried out on a CDC 

Cyber 750. The arithmetic precision of this computer is about 14 decimal 

digits (48 bits). 

4. I. An unstable problem 

To begin with we give an example of the behaviour of RGERK on the 

mathematically unstable problem 

(4. 1) j = 10(y-x2), y(O) = 0.02, 

2 lOx 
which has the general solution y(x) = 0.02 + 0.2x + x + ce Following 

[7] we solve this problem on the interval [0,2] using pure relative local 

error control. Table 3 contains for various tolerances the global error E , 
n 

r and r , measured at the end point x = 2; ND denotes the number off-
true est 

evaluations. l~or the sake of comparison, we have also inserted results of 

GERK. The numbers in the parentheses stand for exponents of 10. 
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- log of RGERK GERK 
tolerance E r r ND E r ND 

n true est n true 

-1 .5(+4) • 77 1.34 181 :... 7. 2 ( +4) . I 1 91 

2 -1 .2(+3) • 96 1.24 294 -7 .4(+3) .38 150 

3 -6. l ( +l) 1.00 I. 12 602 -4.2(+2) .68 314 

4 -4.4(+0) · 1 .00 1.06 1003 -3.l(+l) .83 517 

5 :-4. 0 (- 1) 1.00 1.04 1491 -2.9(+0) .90 771 

6 -4.0(-2) 1.00 1.02 2011 -2.9(+1) . 94 1021 

7 -4.0(-3) 1.00 1.02 2680 -3.0(-2) . 96 1348 

8 -4.1(-4) 1.00 1.01 4084 -3.1(-3) .97 2050 

9 -4.3(-5) .95 1.00 6450 -3.1(-4) .98 3228 

10 -7.9(-6) .49 .98 10266 -3.4(-5) • 9 3 5136 

1 1 -5.7(-6) . 14 .86 13038 -1.2(-5) .80 6522 

Table 3. Mathematically unstable problem (4.1) 

We see that for (4.1) most r -values are surprisingly close to true 
one, even for the larger tolerances for which the errors E are very large 

. . .n (2) . 
due to the unstable growth. Hence on this problem the estimate est is n 
very reliable. Furthermore, we can observe a very good agreement between 

the r t-values and rt -values. Recall that r t close to one indicates 
es (l) rue (2) es 

that both est and est are very good estimates. Further, we once 
n . n . . . (2) . 

more note that r tis a conservative estimate for r since est is 
es (l) true n 

more accurate than est . This implies that normally r will be closer 
n true 

to one than r (cf. the remark in section 3). In fact we have observed 
est 

this in all our experiments. 

Note that for the tolerance values 10-10 , 10-ll the estimates are 

contaminated by roundoff errors. For RGERK the effect is already observ­

able for 10-9 . We refer to SHMiPINE & WATTS [8] for some discussion on 

roundoff. Actually, since the order of accuracy is p = 5, the codes are 

not meant to be used with very small tolerance values. Furthermore, the 
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control is performed on the coarsest grid, while the reported approximation 

comes from the finest grid. For stable problems, we advise to choose toler-
-1 -7 ance values between 10 and 10 , say. 

4.2. The restricted 3-body problem 

Our second example is the restricted 3-body problem 

* 3 * 3 
ul = 2u2 + u1 - µ (ul+µ)/rl - µ(ul-µ )/r2 ' 

-2ti * 3 
- µuz!r2 

3 
U2 = + U2 - µ uz!r 

(4. 2) l ' 
2 2 1 * 2 2 1 

1/82.45, * rl [(u +µ) +u2 ]2 r = [(ul-µ) +u2 ]2, µ ::, µ = l - µ, 2 

u 1(0) = 1.2, ti. 1(0) = 0, u2 (0) = O, ti.2 (0) = -l.04935750983032, 

which has also been used by Shampine and Watts. Using absolute local error 

control we have integrated this difficult problem over the first period P = 

= 6.19216933131964. Table 4 contains results for the endpoint x = P. These 

r~sults belong to that component for which the error of RGERK, in absolute 

value, is maximal. 

- log of 
tolerance 

2 

3 

4 

5 

6 

7 

E: 
n 

-2.l(+l) 

-1.3(+1) 

1.6(-2) 

2.1(-5) 

I • 9 (-6) 

1.4(-7) 

7.8(-9) 

RGERK 
r true 

-.44 

- • I 8 

.95 

I.OS 

1.04 

1.02 

1.03 

r est 

1.40 

1.39 

1.40 

1.27 

I. 14 

1.06 

1.04 

ND 

355 

1494 

2009 

2856 

4171 

6257 

9445 

E: 
n 

2.3(+1) 

-I. 9 ( +O) 

8.7(-2) 

I. 3 (-4) 

1.3(-5) 

I. 0 (-6) 

5.9(-8) 

GERK 
r true 

-.03 

-.03 

-.03 

.30 

.64 

.83 

.89 

ND 

193 

810 

1055 

1506 

2191 

3269 

4873 

Table 4. Restricted 3-body problem (4.2) 

Table 4 shows again very 
-I -3 

tolerance values 10 - 10 . 

satisfactory results, except for the larger 

For 10-l and I0-2 r t fails to indicate that 
es . (2) 

the error estimate est 
n 

is inaccurate. In both cases, however, one can 

deduce from the magnitude of est(2) and est(!) that the results are unreliable. 
n n 
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It remains necessary to consider the magnitude of est(2) and est( 1). Further 
n n 

we see that for 10-3 the estimate est(2) is very good, while r t has nearly 
n es 

the same value as in the first two cases. We have already predicted this 

situation in section 3 where we established that r t-values close to 1.4 es 
may be meaningless. 

4.3. A problem with a peaked solution. 

Consider the initial value problem 

(4. 3) y = -32xy ln 2, -1 ~ x ~ 1, y(-1) -10 = 2 , 

2 
with the peaked solution y(x) = 26- 16x. We have taken this problem from 

LETHER [6]. For x < 0 the problem is unstable. Hence for x < 0 we will find 

global errors which increase with x due to unstable growth. On the other 

hand, for x > 0 the problem becomes highly stable for increasing x. Hence 

for x > 0 the errors should decrease again, as x increases. 

We have solved this problem using pure relative local error control. 

For the tolerance 10-4 we have tabulated£, r t' rt and ND for several n es rue 
values of x E [-1,+1] (see Table 5). For the remaining grid points similar n 
r and r t-values were found. Hence it can be concluded that the estima-true es 
tion procedure delivers a true copy of the global error behaviour over the 

complete integration interval. 

RGERK GERK 
X £ rtrue r ND £ r ND 

n n est n true 

-.884 -7.6(-9) .99 1.08 155 -5.3(-8) .78 83 

-.604 -2.0(-6) .99 1.08 443 -1 .4 (-5) .79 227 

-.409 -2.2(-5) .99 1.08 587 -1.5(-4) .79 299 

.078 -1.5 (-4) .98 1.04 767 -1.1(-3) .90 389 

.307 -5. 1 (-5) 1.00 I. 11 844 -3.6(-4) .70 430 

.617 -2.7(-6) 1.00 1.07 1080 -2.0(-5) .82 558 

.817 -1.4(-7) 1.00 1.04 1296 -1.0(-6) .90 666 

1.000 -4.0(-9) .99 1.02 1584 -3.0(-8) .95 810 

Table 5. Results for problem (4.3) 
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4.4. Mildly stiff problems 

Though explicit Runge-Kutta codes cannot effectively be used for stiff 

problems, they may be of value for problems exhibiting a mild stiffness. How­

ever, when integrating a mathematically stable problem and numerical stability 

limits the stepsize, global Richardson extrapolation will always perform bad­

ly (see also SHAMPINE & WATTS [8]). More precisely, any estimate which makes 

use of results from the coarsest grid will be conservative. The reason is 

that the solutions on the finer grids are not troubled by numerical stability 

because the local error control, which now prevents the computation from 

becoming unstable, is performed on the coarsest grid. Often this implies that 

due to the stability of the problem and of the computation, the true global 

error at the finer grids is smooth and small when compared with the global 

error at the coarsest grid. This causes, fortunately enough, conservative 

estimates, but also large oscillations in r , as well as in r • est true 
To see how our estimation procedure performs on a mildly stiff problem, 

we have shown in Table 6 some results for the simple problem 

y = - I 00 (y - 2-1 ) + --1--2 , x 2:: 0, x+ (x+l) 
(4.4) y(O) = O. 

The general solution is given by y(x) = e-IOOxy(O) + x/(x+l). Since we take 

y(O) = O, only the rather smooth solution x/(x+l) has to be computed. Table 

6 contains results of then-th step, where n = 10, 19, 30, 39, 50, from the 

integration under absolute local error control with the tolerance 10-3 • Re-

call that€ 1 denotes the error at the coarsest grid. n, 

€ 
n 

We observe that E 1 oscillates and slightly increases with n, whereas n, 
smoothly decreases with n. This results in increasing and oscillating 

r -values. Note that r t detects this behaviour in a satisfactory way. 
true es (l) (l) 

This is because r = r *€/est and est is based on results est true n n n 
from the second and third grid. Hence for mildly stiff problems est(l) is 

n 
to be preferred above est(Z), provided of course that the local error con­

n 
trol has to prevent the numerical instability. If the code is applied with 

a maximal stepsize, chosen in such a way that absolute stability is taken 

care of, the estimation procedure will perform in a normal way. 
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n X e: n, l e: est (I)/ e: r r n n n n true est 

IO .347 -I.4(-4) 2.6(-7) I. l 9 2.56 2. l 5 

19 .679 2.6(-4) 1.4(-7) 1.20 -1.40 -I. l 7 

30 l .084 -2.0 (-4) 5.9(-8) I. l 9 7.45 6.25 

39 1.418 3.6(-4) 4.5(-8) I. l 9 -11.37 -9.57 

50 1.823 -3. 4 (-4) 3.0(-8) I. l 9 20.57 17.33 

Table 6. Results of RGERK for problem (4.4) 

4.5. A problem with an oscillatory solution 

Our next example is the linear problem [7] 

'\ 
l ul 

2xu2, u1 (0) l ' 0 ~ X ~ 8, = 2 x+l - = 
(4. 5) 

l u2 . 2xu 1, u2 (0) = o, 0 ~ ~ 8, u2 = --- + X 2 x+l 

with solution u 1(x) = lx+l cos(x2), u2(x) = ✓x+l sin(x2). Observe that both 

components oscillate with increasing frequency as x increases. When solving 

this problem numerically the true global error appears to fluctuate rather 

strongly and takes on negative, as well as positive values. This lack of 

smoothness interferes with the error estimation, i.e. r t also fluctuates. es 
Here we even encountered negative values for r t caused by a wrong sign in 

(l) es 
the first estimate est 

n 
Problem (4.5) has been solved using absolute local error control for 

the tolerance 10-4• Results are shown in Table 7. For RGERK we tabulated the 

percentages of the total number of times the pair (r ,r ) belongs to true est 
the regions indicated in the table. In the counting we considered all grid 

points and both components. In the second line from below we summed the 

percentages column-wise, while the last line from below in the table con­

tains the corresponding rt -percentages for GERK. All entries have been rue 
rounded to one decimal place. Hence an empty square does not necessarily 

mean that the score is exactly equal to zero. 
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Table 7. Percentages for problem (4.5). 
iJP'° 

Inspection of Table 7 gives rise to several interesting conclusions. 

For RGERK almost all r -values are close to true 
tween 1//z and lz. For GERK this percentage is 

est(Z), as expected, is more accurate than the 
n 

one; 98.1 percent lies be­

given by 61.9, showing that 

estimate delivered by GERK. 

Further, r t shows an appreciable degree of reliability in detecting the es 
quality of the estimation. The percentage for the region 1//z ~ r ~ /z, 

true 
.6 ~rest:,; 1.3 is given by 85.4. 

4.6. Performance of RGERK on the test set of Hull et al. 

To gain further insight in the use of computing a second and more 
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accurate estimate est(Z), we have applied RGERK to the five problem classes 
n 

of [3]. For all 25 problems we used, componentwise, the local error criterion 

!estimated local error! ~ tolerance *I solution I + 10-14 

for the tolerances 10-3 , 10-5 and 10-7• Hence, in normal cases, a relative 

error control. The results of this experiment are shown in Tables 8, 9 and 

10 in exactly the same way as done in the preceding section for problem 

(4.5). However, here we calculated the percentages per problem and then aver­

aged over the whole collection. 

To show the influence of roundoff we have performed all integrations 

twice, in single precision and in double precision. Roundoff contaminates 

the estimates in cases where the errors and the estimates are extremely small. 

For example, for this reason Shampine and Watts exclude class C from their 

tables. Comparison of the results for single precision and double precision 

clearly shows that the majority of failures of the estimation procedure is 

caused by roundoff. 

To facilitate the interpretation of Taoles 8,9 and 10, we have collect-

ed total percentages for five interesting regions in (r ,r t)-space in true es 
Table 11. Region I u II shows the number of times that est<2) approximates n 
£ rather accurately. Region II shows the number of times that r t should n es 
be considered as too conservative. Region III u IV u V shows the number of 

times that the accuracy of est(Z) is not so good. Fortunately, in most of 
n 

the cases this has been detected by r t' according to the percentages of es 
region III. Regions IV and V show the most interesting information, viz. 

the percentages of the number of times that r t fails to indicate an in­es 
accurate global error estimation. By way of illustration we show these 

percentages for two different ranges for rt • When considering the fail-rue 
ure percentages the reader should realize that we deal with a collection of 

25 initial value problems which are divided into 5 different classes, each 

class having its own degree of difficulty. Again we note that the majority 

of failures is caused by roundoff. 
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results. Lower table contains double precision results. 
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-5 
Table 9. Results for tolerance IO . Upper table contains single precision 
results. Lower table contains double precision results. 
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Table 10. Results for tolerance 10-7 . Upper table contains single precision 
results. Lower table contains double precision results. 
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II 

III 

IV 

V 

single precision double 
10-3 10-5 10-7 10-3 

I/ ./2:s;r :s;/z,. 6:s;r :s; 1. 3 
true est 49 .1 79.4 86.9 55.1 

1//z:s;r :s;./2,r :s;.6,r ~1.3 
true est est 17.4 5.8 2.4 17.7 

r $1/./2,r ~rz,r $.6,r ~1.3 true true est est 28.0 11. 8 5.4 23.5 

1/4:s;r ::;;1/./2,./2:s;r :s;4,.6:s;r $1.3 true true est 3.4 1.2 2 .4 · 2.8 

rt $1/4,rt ~4,.6:s;r t:s;l.3 2. I 1.8 2.9 .9 rue rue es 

Table 11. Percentages for five regions in (rt ,r t)-space. rue es 
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precision 
10-5 10-7 

84.7 94.7 

5.6 3.7 

9.0 I • 4 

.4 • I 

.3 • I 

The roundoff problem can be significantly diminished by using double 

precision. The additional runtime may be considerable, however. We found a 

factor of approximately 2.5. An alternative way to cope with the round-off 

problem is to distinguish between extremely small estimates and estimates of 

a more realistic magnitude. Table 12 contains single precision results for 

two intervals for est(2), viz. lest(2)1 > 10-lO and lest(2)1 :s; 10-10 • The 
n n n 

percentages were taken over the corresponding subsets defined by these in-

equalities. 

lest(2)1 > 
n 

Regions 10-3 I0-5 

I 46.4 84.2 

II 

III 

IV 

V 

totals 

22.2 

27. I 

3.7 

.6 

75.0 

6.5 

8.7 

.6 

70. 1 

96.9 

2.5 

.6 

52.8 

les/2) I $ 10-10 
n 

10-3 10-5 10-7 

57.3 68.3 75.6 

3. I 3.8 2.3 

30.5 19.2 10.8 

2.2 2.7 5.2 

6.9 6.0 6. 1 

25.0 29.9 47.2 

Table 12. Percentages for two intervals for est(2). 
n 

5. CONCLUSIONS 

The percentages of Table 12 show that in case of extremely small est­

imates the reliability is insufficient. This cannot be avoided since the 
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failures are due to roundoff effects. Fortunately, one is usually not in­

terested in a very accurate estimate of extremely small errors, so these 

results are not as bad as they look. 

The reliability is much larger if est(2) itself is not very small. In 
-7 n 

fact, for 10 the score for region Vis exactly zero, while for region IV 

only a few failures out of approximately 20.000 data points were found. The 

score for region II is still too large, however. This is caused by inaccur­

acies in est(l). For 10-3 and 10-S the reliability is less, as expected. In 
11 -3 

particular for 10 , a current 

f . ( (1) d score or region I est an 
n 

the score for II, IV, Vis too 

tolerance value for a 5-th order code, the 

est(2) both accurate) is too low, whereas 
n 

high. Part of the failures for the larger 

tolerances is of course due to a failure of the asymptotics. However, num­

erical instability at the coarsest grid GN (cf. section 4.4) also influences 

the results in a negative way. 

Therefore we intend to continue our investigations with an estimation 

procedure which performs local error-stepsize control on the coarsest grid 

GN and which performs global error estimation only on the finer grids 

G2N, ... ,GPN' P ~ 3. Herewith we avoid non-smoothness effects which might 

interf~re with the estimation procedure. Such a procedure delivers P-2 
. (i) . 1 P 2 . f . (i) estimates est , i = , .•. , - , satis ying est = s p n n n, 

+ O(Hp+i). The 

results of the present investigation show that a value P > 3 should be in-

vestigated. The cost ratio, in terms of f(y)-evaluations, is given by 

(P+l)/2. Henc.e, for a given accuracy, the additional computer time for the 

global estimation will be roughly a factor (P+l)/2-1 of the computer time 

required when no global error estimation is performed. In this respect it 

is worthwhil,e to observe that global Richardson extrapolation is uncommonly 

attractive for users who have a parallel computer at their disposal. De­

pending on the number of processors, the additional computer time can then 

be greatly reduced, even to zero (see e.g. JOUBERT & MAEDER [4]). 
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