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a b s t r a c t

We propose a simulation-based approach for solving the constrained dynamic mean–
variance portfolio management problem. For this dynamic optimization problem, we first
consider a sub-optimal strategy, called the multi-stage strategy, which can be utilized in a
forward fashion. Then, based on this fast yet sub-optimal strategy, we propose a backward
recursive programming approach to improve it. We design the backward recursion
algorithm such that the result is guaranteed to converge to a solution, which is at least as
good as the one generated by the multi-stage strategy. In our numerical tests, highly
satisfactory asset allocations are obtained for dynamic portfolio management problems
with realistic constraints on the control variables.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Since Markowitz's (1952) pioneering work on a single-period investment model, the mean–variance portfolio optimi-
zation problem has become a cornerstone of investment management in both academic and industrial fields. An interesting
topic, extending Markowitz's work, is to consider the mean–variance target for a continuous or multi-period optimization
problem. Along with introducing dynamic control into the optimization process, constraints on the controls can be included.

In some situations, the constrained dynamic mean–variance optimization problem can be solved analytically. For
example, Li et al. (2002) solve this portfolio management problem with no-shorting of stock allowed and Bielecki
et al. (2005) solve the problem with bankruptcy prohibition. In Fu et al. (2010), the authors investigate the mean–variance
problem with a borrowing constraint, where the investor faces a borrowing rate different from the risk-free saving rate.
However, all this research is performed in the framework of continuous optimization. In fact, as mentioned in Cui
et al. (2014), the continuous constrained optimization problem is usually easier than the discrete one. In general, an elegant
analytic mean–variance formulation can be derived in case of a complete market, where re-balancing can be performed
continuously and there are no constraints on the controls and no jumps in asset dynamics. If we consider a realistic problem
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which is designed in an incomplete market, it will be difficult to obtain analytic solutions and thus utilizing computational
techniques to calculate numerical solutions is our preferred choice.

The nonlinearity of conditional variance is the main obstacle for solving the dynamic mean–variance optimization
problem. In Zhou and Li (2000) and Li and Ng (2000), an embedding technique, by which the mean–variance problem is
transformed into a stochastic linear-quadratic (LQ) problem, is introduced. For the linear-quadratic problem, an investor
does not need to choose a trade-off parameter between mean and variance. Instead, she decides a final optimization target
of her investment. In Zhou and Li (2000) and Li and Ng (2000), it is proved that varying the final investment target traces out
the same efficient frontier as varying the mean–variance trade-off parameters. To generate the efficient frontier of the
mean–variance optimization problem, we can thus solve the LQ problem with different target parameters.

To solve the constrained target-based problem, the Hamilton–Jacobi–Bellman partial differential equation (HJB PDE) is
often considered. Accurate results can be generated by solving the HJB PDEs for a one-dimensional scenario. For example,
Wang and Forsyth (2010) solve the continuous constrained mean–variance optimization problem with various constraints
and the risky asset following geometric Brownian motion. The authors of Dang and Forsyth (2014) solve a similar problem
with the risky asset following jump-diffusion dynamics. In both papers, realistic constraints are cast on the control variables.
However, it is rather expensive to implement the algorithm, which is based on solving the HJB PDE, for a problem with
several risky assets. Reducing the dimensionality of such a problem is a potential solution. However, when constraints are
introduced, the assumption for establishing the well-known mutual fund theory is not valid and the ratio between the
different risky assets is not constant any more. A general multi-dimensional problem can hardly be transformed into a one-
dimensional problem.

To deal with the curse of dimensionality, using Monte-Carlo simulation constitutes a possible solution. A well-known
simulation-based dynamic portfolio management algorithm is proposed in Brandt et al. (2005). However, they discuss a
problem where the investor has constant relative risk aversion. For such problems, the investor's optimal asset allocation is
only influenced by the dynamics of the risky asset, so dynamic programming can be performed after the (forward) simu-
lation of the risky assets. For an investor with other types of risk aversion, her optimal intermediate decisions usually do not
only depend on the dynamics of the risky asset but also on the amount of wealth at that time. The simulation approach
proposed in Brandt et al. (2005) is therefore not feasible for a general investment problem. Solving the constrained dynamic
mean–variance problem based on Monte-Carlo simulation is the focus of our work.

Our methods depend on transforming the mean–variance problem into the LQ problem, which is a target-based problem.
In Basak and Chabakauri (2010), the investment strategy for solving the LQ problem is named the pre-commitment strategy,
which however does not guarantee time consistency. As mentioned in Wang and Forsyth (2011), a time-consistent strategy
can be formulated as a pre-commitment strategy plus time consistent constraints on the asset allocations. Thus, the pre-
commitment strategy generally yields an efficient frontier which is superior to the one generated by a time consistent
strategy. In this paper, we will contribute to pre-commitment strategies and propose two solutions for the dynamic mean–
variance problem, one is performed in a forward manner and the other in a backward manner.

In the forward approach, we decompose the dynamic optimization problem into several static optimization problems by
specifying intermediate investment targets at all re-balancing time steps. A reasonable approximation for the optimal
controls can be determined at each single stage and solving the problems at all stages provides us a sub-optimal strategy
called the “multi-stage strategy”. We prove that the multi-stage strategy is the optimal strategy when there are no con-
straints on the asset allocations. Although the multi-stage strategy becomes sub-optimal in case of constrained controls, it is
straight-forward to implement the multi-stage strategy for either high dimensional problems or problems with complicated
constraints. While experimenting, we observe that the multi-stage strategy can yield highly satisfactory results compared to
the reference solutions.

The main challenge to perform backward programming for a constrained optimization problem is that the value function
at each time step is non-smooth and thus the optimality cannot be computed efficiently by solving the corresponding first
order conditions. To tackle this problem, we utilize the idea of differential dynamic programming (Jacobson and Mayne,
1970), by which a stochastic control problem is solved by a local optimization strategy, and we come up with a backward
recursive approach. Our backward recursive programming algorithm is an iterative method. With special design of the
algorithm, we can guarantee that the outcome converges to a solution, which is not worse than the solution generated by
the multi-stage strategy. In the backward process, conditional expectations are calculated recursively via cross-path least-
squares regression. To make this numerical approach stable, we implement the “bundling” and “regress-later” techniques,
proposed in Jain and Oosterlee (2015). The idea of “bundling” is highly compatible with the local optimization in differential
dynamic programming. The backward recursive programming is initiated with a reasonable guess for the asset allocations,
which can be, but is not restricted to, the one generated by the multi-stage strategy. In our tests with the initial allocation
generated by the multi-stage strategy, we achieve highly satisfactory results after at most four backward iterations. Like the
multi-stage strategy, the backward recursive programming can be performed highly efficiently. In our numerical tests, one
iteration of the backward recursive programming only takes a few seconds.

This paper is organized as follows. In Section 2, we introduce the formulation of the dynamic mean–variance problem
and the embedding into a stochastic LQ problem. Section 3 describes the multi-stage strategy. The optimality of the multi-
stage strategy in the unconstrained case is proved in Section 3.2. In Section 4, the backward dynamic programming method
is presented. Section 5 displays several realistic constraints for the portfolio management problems and in Section 6
numerical tests are performed for both one- and two-dimensional problems. We conclude in Section 7.
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2. Problem formulation

This section describes the dynamic portfolio optimization problem for a defined contribution pension plan. We assume
that the financial market is defined on a probability space ðΩ;F ; fF tg0r trT ;PÞ with finite time horizon ½0; T �. The state space
Ω is the set of all realizations of the financial market within the time horizon ½0; T �. F is the sigma algebra of events at time T ,
i.e. F ¼F T . We assume that the filtration fF tg0r trT is generated by the price processes of the financial market and aug-
mented with the null sets of F . Probability measure P is defined on F .

For convenience, we consider a portfolio consisting of two assets, one risk-free and one risky. To extend the analysis to a
problem with more than one risky asset is feasible. We consider a portfolio, which can be traded at discrete opportunities,1

tA ½0;Δt;…; T�Δt�, before terminal time T. At each trading time t, an investor decides her trading strategy to maximize the
expectation of the terminal wealth and to minimize the investment risk. Formally, the investor's problem is given by

vtðWtÞ ¼ max
fxsgT �Δt

s ¼ t

E½WT jWt ��λ � Var½WT jWt �
� �

; ð1Þ

subject to the wealth restriction:

WsþΔt ¼Ws � ðxsRe
sþRf ÞþC � Δt; s¼ t; tþΔ;…; T�Δt:

Here xs denotes the asset allocation of the investor's wealth in the risky asset in the period ½s; sþΔtÞ. It is assumed that the
admissible investment strategy xt is an F t-measurable Markov control, i.e. xtAF t . Rf is the return of the risk-free asset in one
time step, which is assumed to be constant for simplicity, and Res is the excess return of the risky asset during ½s; sþΔtÞ. We
assume that the excess returns fRe

t g
T�Δt
t ¼ 0 are statistically independent.2 C � Δt stands for a contribution of the investor in the

portfolio during ½s; sþΔtÞ, and a negative C can be interpreted as a constant withdrawal of the investor from the portfolio.
The risk aversion attitude of the investor is denoted by λ, which is a trade-off factor between maximizing the profit and
minimizing the risk. vtðWtÞ is termed the value function, which measures the investor's investment opportunities at time t
with wealth Wt.

Remark 2.1. When the mean–variance optimization problem proposed by Eq. (1) is convex, then solving Eq. (1) is
equivalent to determination of the Pareto-optimal points, i.e. solving

min
fxsgT �Δt

s ¼ t

Var½WT jWt �
� �

s:t: E½WT jWt �Zd;

with a suitable choice of d. However, when the problem is not convex, solving Eq. (1) generates Pareto-optimal points, but
not all of them.

The difficulty of solving this mean–variance optimization problem is caused by the nonlinearity of conditional variances,
namely Var½Var½WT jF t �jF s�aVar½WT jF s�; srt, which makes the well-known dynamic programming valuation approach
not applicable. To tackle this problem, the original mean–variance equations can be transformed into another framework as
done in Zhou and Li (2000), Li and Ng (2000), and Wang and Forsyth (2010). The following theorem supports the
transformation.

Theorem 2.2. If fx�s gT�Δt
s ¼ t is the optimal control for the problem defined in Eq. (1), then fx�s gT�Δt

s ¼ t is also the optimal control for the
following problem:

min
fxsgT �Δt

s ¼ t

E WT �
γ

2

� �2�����Wt

" #( )
ð2Þ

where γ ¼ 1
λþ2Ex� WT Wtj �½ . Here the operator Ex� ½�� denotes the expectation of the investor's terminal wealth if she invests

according to the optimal strategy fx�s gT�Δt
s ¼ t .

Proof. See Li and Ng (2000).

Based on this theorem, the original mean-variance problem can be embedded into a tractable auxiliary LQ problem. The
investment strategy corresponding to this LQ problem is called the pre-commitment strategy. This technique can also be
interpreted as transforming the original mean–variance problem into a target-based optimization problem, which has been
discussed in Haberman and Vigna (2002) and in Gerrard et al. (2004). For numerical computation, the pre-commitment
optimization problem as shown in Eq. (2) is usually formulated as an HJB PDE and realistic constraints on either controls or
state variables can be correspondingly established as boundary conditions. In this manner, Wang and Forsyth (2010) solve
the mean-variance problem numerically and derives a solution to the constrained pre-commitment strategy.
1 We assume that the re-balancing times are equidistantly spread and the total number of re-balancing opportunities before terminal time T is M. The
time step Δt between two re-balancing days is T

M.
2 For a risky asset with dynamics following geometric Brownian motion or a Levy process, the independence structure is valid. For some problems

where the asset returns are directly defined, for example, as model-free data, the independence assumption is also correct. For a VAR or GARCH model, this
assumption is, however, not satisfied.
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However, even for the LQ problem, casting constraints in the numerical approach is in general not trivial. Imposing
constraints on the controls will substantially change the formulation of the problem and make it nontrivial to solve the
problem efficiently. The reasoning is as follows. For the unconstrained problem, the value function at each time step forms a
smooth function and thus the optimality can be obtained by solving the first-order conditions associated to this smooth
function. Adding constraints will remove the smoothness of the value function. Derivative-based optimization techniques
cannot be applied in this situation and the optimality has to be computed by grid-searching on the whole domain of
possible controls, for example, as in Wang and Forsyth (2010).

In the following section, we propose a sub-optimal yet highly efficient strategy for the mean–variance portfolio man-
agement problem. In this strategy, we avoid dealing with non-smooth value functions even if there are constraints on the
controls. It is possible to extend this sub-optimal strategy to high-dimensional problems and to problems with complicated
asset dynamics.
3. A forward solution: the multi-stage strategy

When we prescribe constraints on the allocations, neither the original mean-variance strategy associated to solving Eq.
(1) nor the pre-commitment strategy associated to solving Eq. (2) is easy to obtain.

Here we treat the mean–variance optimization problem from a different angle. After writing it into the pre-commitment
form, or equivalently into the target-based form, the objective of the reformulated optimization problem is to minimize the
difference between the final wealth and a predetermined target. Hence the optimization problem at time t reads:

J�pct Wtð Þ≔ min
fxsgT �Δt

s ¼ t

E WT �
γ

2

� �2�����Wt

" #( )
; ð3Þ

or, in a recursive fashion,

J�pct ðWtÞ ¼min
xt

E½ J�pctþΔtðWtþΔtÞjWt �
� �

; ð4Þ

with J�pcT WTð Þ ¼ WT � γ
2

� �2.
At the state ðt;WtÞ, i.e. time t and wealth Wt, the value function JtðWtÞ depends on all optimal allocations at subsequent

time steps. That is why generally this kind of optimization problem has to be solved in a backward recursive fashion via, for
example, solving the HJB PDEs or backward stochastic differential equations (BSDEs) with conditions at the terminal time.

Solving this dynamic programming problem numerically in a backward recursive fashion suffers from two problems.
First, solving the optimality, especially for constrained cases, at each time step may be difficult or computationally
expensive. Secondly, since we use the value function to transmit information between two recursive steps, the error
accumulates as the recursion proceeds.

Reflection on these two issues leads us to define a sub-optimal strategy, which does not involve these two types of errors,
which we call the multi-stage strategy.

Notice that at the terminal time, our target is γ
2. Then, at state ðt;WtÞ, in the multi-stage strategy we choose xt to be:

x�ms
t ≔arg min

xt
E Wt � ðxtRe

t þRf ÞþC � Δt�δtþΔt
� �2h ���Wt

in o
; ð5Þ

where

δt ¼

γ

2
�C � Δt � 1�ðRf ÞðT� tÞ=Δt

1�Rf

ðRf ÞðT� tÞ=Δt : ð6Þ

So, here we do not consider the optimality in the future, but perform a single-stage, or static, optimization with respect to a
given target value.

Eq. (6) is straightforward. We set an intermediate target at time t such that once we achieve this target, we can put all the
money in the risk-free asset and at the terminal time the wealth reaches the final target. Therefore, this intermediate target
is computed by discounting the final target while taking into account the constant contribution.

Considering an intermediate wealth target is not a new idea. In Gerrard et al. (2006), the authors study the target-based
optimization problem for a defined-contribution pension plan and make use of intermediate targets mainly for calculating
the cumulative losses throughout the management period. In Cui et al. (2012), the authors consider an intermediate
threshold. Once the portfolio wealth exceeded this threshold, they proved that withdrawing a suitable amount of money
from the portfolio will not influence the performance of the portfolio in the sense of mean–variance optimization.

Since our multi-stage method merely depends on solving a single-stage optimization problem at each time point, the
problem can be solved in a forward fashion:

� First, we generate the intermediate target values at each time step.
� Then, starting at the initial state we compute the optimal allocation step by step until the terminal time.
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If we consider no periodic contributions, i.e. C¼0, we can rewrite the optimal allocation for the pre-commitment pro-
blem in Eq. (3) as:

x�pct Wtð Þ ¼ arg min
xt

E Wt � xtR
e
t þRf

� � � ∏
T�Δt

s ¼ tþΔt
x�pcs Re

s þRf
� �� γ

2

	 
2" �����Wt

#( )
; ð7Þ

where fx�pcs gT�Δt
s ¼ tþΔt denote the optimal allocations at times s¼ tþΔt;…; T�Δt.

In this scenario the multi-stage optimization problem can be formulated as:

x�ms
t Wtð Þ ¼ arg min

xt
E Wt � xtR

e
t þRf

� � � ∏
T�Δt

s ¼ tþΔt
Rf
� �� γ

2

	 
2" �����Wt

#( )
: ð8Þ

We see that the objective of the multi-stage optimization is indeed different from that of the original optimization. Instead
of considering the true optimization fx�pcs gT�Δt

s ¼ tþΔt , we “specify” fx�ms
s gT�Δt

s ¼ tþΔt to be zero. That is why we call the multi-stage
solution sub-optimal. However, by sacrificing the possibility to pursue the optimality, we also gain some profits which are
discussed in the next section.

Remark 3.1. The multi-stage strategy can be treated as a “greedy strategy” for the stochastic optimization problem (Boyd
et al., 2013). In each stage, we minimize the distance between our wealth and the target of the current stage.

Remark 3.2. One crucial restriction for constructing the multi-stage strategy is that there should be a risk-free asset in the
market. Regarding the wealth-to-income case discussed in Wang and Forsyth (2010), we cannot find a risk-free part in the
market and therefore cannot derive the intermediate optimization target for our multi-stage approach.

3.1. Gains and losses

By the multi-stage strategy, we avoid the backward recursive programming by constructing determined intermediate
targets. Since there is no error accumulation in the recursion, the optimization problem solved at the intermediate time step
is unbiased3 to what we designed it to be.

On the other hand, casting constraints on this sub-optimal strategy is trivial. Since at every time step we deal with a
quadratic optimization problem in the multi-stage strategy, solving the constrained optimization problem can usually be
performed efficiently. In the one-dimensional case, for example, solving the constrained quadratic optimization problem is
equivalent to first solving the unconstrained problem to generate the optimal control and then truncating this optimal
control by the constraints.

The drawback of the multi-stage strategy is also obvious: instead of tackling the original optimization problem, we work
on a tailored one. The optimal control for the sub-optimal problem may differ from that for the original problem, so the
mean–variance pair corresponding to this sub-optimal strategy may be located below the optimal efficient frontier. How-
ever, in the next section we will prove that in some situations the optimal allocation for the multi-stage strategy is exactly
the same as that for the original pre-commitment strategy.

3.2. Equivalence in the unconstrained case

In this section, we restrict ourselves to the situation where there is no periodic contribution, i.e. C¼0. Extending the
analysis to the case where Ca0 is however possible. Under the following condition, we can prove that the multi-stage
strategy and the pre-commitment strategy are equivalent for generating the optimal asset allocations.

Condition 3.3. The asset allocations at each time step are unconstrained.

In this case, we can obtain the analytic form of the value function at intermediate time steps for the pre-commitment
problem.

Lemma 3.4. For the pre-commitment problem shown in Eq. (3), the value function JtðWtÞ can be formulated as:

Jt Wtð Þ ¼ Lt � Wt � ðRf ÞðT� tÞ=Δt� γ

2

� �2
; ð9Þ

where Lt ¼∏T
s ¼ t ls with lt defined as follows:

lt ¼ 1� E½Re
t �2

E½ðRe
t Þ2�

; t ¼ 0;Δt;…; T�Δt;

lT ¼ 1:
3 In the traditional backward programming approach, since numerical errors cumulate alongside the recursive procedure, biases in the intermediate
optimization problems exist.
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Proof. At time step T, the value function is known as:

JT WTð Þ ¼ WT �
γ

2

� �2
;

which satisfies Eq. (9). At time step T�Δt, the value function reads:

JT�Δt WT�Δtð Þ ¼max
xT �Δt

E½ JT ðWT�Δt � ðxT�ΔtR
e
T�ΔtþRf ÞÞjWT�Δt �

� �
¼max

xT �Δt
E WT�Δt � xT�ΔtR

e
T�ΔtþRf

� �� γ

2

� �2� ����WT�Δt

� �
: ð10Þ

To obtain the analytic form of JT�ΔtðWT�ΔtÞ, we first need to determine the optimal asset allocation x�T�Δt , which satisfies:

x�T�Δt ¼ arg min
xT �Δt

E WT�Δt � xT�ΔtR
e
T�ΔtþRf

� �� γ

2

� �2� ����WT�Δt

� �
:

Solving the first-order conditions of the optimality problem gives us that x�T�Δt is the solution to the following equation:

E WT�Δt � xT�ΔtR
e
T�ΔtþRf

� �� γ

2

� �
�WT�ΔtR

e
T�Δt

��WT�Δt

h i
¼ 0:

So, the optimal allocation x�T�Δt can be calculated as:

x�T�Δt ¼
γ

2
�WT�ΔtRf

� �
� E Re

T�Δt
� �

WT�Δt � E½ðRe
T�ΔtÞ2�

: ð11Þ

Inserting Eq. (11) into Eq. (10) yields:

JT�Δt WT�Δtð Þ ¼ E 1�E½Re
T�Δt � � Re

T�Δt

E½ðRe
T�ΔtÞ2�

 !2
2
4

3
5 � WT�ΔtRf �

γ

2

� �2

¼ 1� E½Re
T�Δt �2

E½ðRe
T�ΔtÞ2�

 !
� WT�ΔtRf �

γ

2

� �2
:

It is clear that the value function at time step T�Δt has the same form as in Eq. (9). For the remaining time steps, we can
formulate the value functions by backward induction.
Assume that at time step tþΔt we have:

JtþΔt WtþΔtð Þ ¼ LtþΔt � WtþΔt � ðRf ÞðT� tÞ=Δt�1� γ

2

� �2
:

Then at time step t, the value function can be formulated as:

Jt Wtð Þ ¼max
xt

E½JtþΔtðWt � ðxtRe
t þRf ÞÞjWt �

� �
¼max

xt
E LtþΔt � Wt � xtR

e
t þRf

� � � ðRf ÞðT� tÞ=Δt�1� γ

2

� �2� ����Wt

� �

¼ E LtþΔt½ � �max
xt

E Wt � xtR
e
t þRf

� � � ðRf ÞðT� tÞ=Δt�1� γ

2

� �2� ����Wt

� �
:

Here the last equality is based on the independence of the excess returns. Solving the first-order condition yields:

x�t ¼
γ

2
�Wt � ðRf ÞðT� tÞ=Δt

� �
� E Re

t

� �
Wt � ðRf ÞðT� tÞ=Δt�1 � E½ðRe

t Þ2�
: ð12Þ

and the corresponding value function reads:

Jt Wtð Þ ¼ LtþΔt � 1� E½Re
t �2

E½ðRe
t Þ2�

 !
� Wt � ðRf ÞðT� tÞ=Δt� γ

2

� �2

¼ Lt � Wt � ðRf ÞðT� tÞ=Δt� γ

2

� �2
:

Thus we finalize the proof.□

Remark 3.5. The optimal asset allocation shown in Eq. (12) is exactly the same as the one proposed in Li and Ng (2000) for
the one-dimensional case.

With Lemma 3.4, we can prove the equivalence between our multi-stage strategy and the pre-commitment strategy.
Formally, the equivalence is shown in the following theorem.
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Theorem 3.6. For a mean–variance portfolio management problem, where Condition 3.3 is satisfied, the optimal control for the
multi-stage strategy and for the pre-commitment strategy are identical. That is, x�pct and x�ms

t , as respectively shown in Eqs. (7)
and (8), are equal at each time step t.

Proof. For the pre-commitment problem, the optimal control x�pct reads:

x�pct ¼ arg min
xt

E½ JtþΔtðWt � ðxtRe
t þRf ÞÞjWt �

� �
:

Using the form of the value function JtþΔtð�Þ as shown in Lemma 3.4, we find:

x�pct ¼ arg min
xt

E LtþΔt � Wt � xtR
e
t þRf

� � � ðRf ÞðT� tÞ=Δt�1� γ

2

� �2� ����Wt

� �
:

Because of the independence of the excess returns, we can treat LtþΔt as a constant factor and thus the minimization
problem turns out to be:

x�pct ¼ arg min
xt

E Wt � xtR
e
t þRf

� � � ðRf ÞðT� tÞ=Δt�1� γ

2

� �2� ����Wt

� �
; ð13Þ

Since the right-hand-sides of Eqs. (8) and (13) have the same form, the proof is finished.□

Notice that we only establish the equivalence between the multi-stage problem and the pre-commitment problemwhen
the excess returns are independent and the allocations are unconstrained. If we equip the excess returns with path-
dependent dynamics or cast constraints on the allocations, the equivalence may be lost. However, based on numerical
results in Wang and Forsyth (2012), we know that the efficient frontiers for different investment strategies may differ
significantly in the unconstrained case but the differences are relatively smaller when constraints are introduced. In our
numerical approach we only apply the multi-stage strategy to generate asset allocations and then the mean-variance pair is
calculated by combining the simulated trajectories and the corresponding “sub-optimal” allocations. As spotted in Wang and
Forsyth (2010), small errors in asset allocations may not influence the accuracy of the mean–variance pair dramatically.

Even though the multi-stage strategy may be not equivalent to the pre-commitment strategy in some situations, it can
serve as a sub-optimal solution to the constrained dynamic mean–variance portfolio optimization problem. If some other
accurate solutions exist, the corresponding efficient frontiers should be at least above that of the multi-stage strategy.
Moreover, for some numerical methods that depend on iteratively updating the asset allocations, a reasonable initial guess
can be provided by the multi-stage method, see Section 4.

Skaf and Boyd (2008) proposed a similar technique to the multi-stage strategy for the quadratic convex optimization
problem. Our research differs in two aspects. First, instead of dealing with one optimization problem which can yield one
point on the efficient frontier, we consider a series of optimization problems which generate results to construct the whole
efficient frontier. We find that the multi-stage strategy is particularly satisfactory when the investor is highly risk averse.
However, in case the investor is less risk averse, the sub-optimal strategy turns out to be problematic. For this, we propose a
backward dynamic programming approach, which is different from the forward strategy.

Remark 3.7. As discussed in Cui et al. (2012) and Dang and Forsyth (2014), a semi-self-financing strategy exists which is
better than the pre-commitment strategy. In that strategy, a positive amount of money is withdrawn from the portfolio
when the wealth in the portfolio is above a determined value. Similarly, the multi-stage strategy can be adjusted in this
respect. However, since the improvement achieved by breaking the self-financing is not significant, we will not deal with
the semi-self-financing multi-stage strategy in this paper.
4. Backward recursive programming

In the preceding sections, we considered the “greedy policy” for the dynamic optimization problem, and therefore the
constrained dynamic mean–variance problem can be solved in a forward fashion via Monte-Carlo simulation. Except for the
unconstrained case, the multi-stage strategy allocation is generally not the optimal solution to the dynamic optimization
problem. In order to get the optimal solution, we have to consider a backward dynamic programming solution. In this
section, we present an approach to perform backward recursive calculation based on the solution of the multi-stage
strategy.

4.1. Benefit from the constraints

In general, constraints complicate dynamic optimization problems. For an unconstrained optimization problem, the value
functions are smooth, so the optimality can be obtained by solving the first-order conditions. When constraints are
introduced, the smoothness of the value functions is destroyed and derivative-based optimization is thus no longer feasible.
However, if we treat the constraints differently, they can also be “helpful”.
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Consider an optimization problem at the state ðt;WtÞ:
JtðWtÞ ¼min

xt AA
E½ JtþΔtðWtþΔtÞjWt �
� �

; ð14Þ

where A is the admissible set for the asset allocation xt. Jtð�Þ is the value function at time t. When AaR, this is a constrained
problem, which may not be easy to solve. However, if we consider a special case where A¼ fxt jxt ¼ Kg, i.e. xt is restricted to
be a constant, the constrained problem becomes trivial. In fact, since we know that xt has to be constant, the “optimal”
solution in the admissible set is known immediately.

Using the multi-stage strategy, we obtain x�ms
t , which may be a reasonable approximation of x�t , which denotes the real

optimal allocation. If we construct a truncated admissible control set, Aη ¼ ½x�ms
t �η; x�ms

t þη�, the solution to the following
optimization problem:

JtðWtÞ ¼ min
xt AAη

E½ JtþΔtðWtþΔtÞjWt �
� �

;

should be the same as that of the problem shown in Eq. (14). Assuming that the optimal allocations for the state ðt;WtÞ are
in an interval ½x�ms

t �η; x�ms
t þη�, the investor's optimal wealth WtþΔt should be located in the domain4:

DtþΔt≔fWtþΔt jWtþΔt ¼Wt � ðxt � Re
t þRf ÞþC � Δt; xtAAηg:

We further transform the original optimization problem shown in Eq. (14) to be:

JtðWtÞ ¼min
xt AA

E½ JtþΔtðWtþΔtÞjWt ;WtþΔtADtþΔt �
� �

; ð15Þ

where an additional condition is introduced into the conditional expectation. Instead of considering the optimization
problem on the whole domain of WtþΔt , we restrict the optimization problem to a finite domain DtþΔt and thus establish a
local optimization problem. For solving the stochastic optimization problem at state ðt;WtÞ, we focus on the value function
JtþΔtðWtþΔtÞ on a finite interval DtþΔt .

4.2. Benefit from bundling

By means of the constraints, the original problem in Eq. (14) is simplified to a truncated problem in Eq. (15). To solve this
truncated problem, we first need to determine the value function JtþΔtðWtþΔtÞ on domain DtþΔt . A common simulation-
based approach is that we vary xt around x�ms

t and perform sub-simulation, which is however involved and costly. One way
to avoid sub-simulation is by plain Monte-Carlo simulation combined with bundling. Using the bundling technique, the
domain DtþΔt can be approximated by:

D̂tþΔt ¼ fWtþΔt jWtþΔt ¼ Ŵ t � ðx�ms
t � Re

t þRf ÞþC � Δt; Ŵ tABδg;

where Bδ ¼ ½Wt�δ;Wtþδ�. So, instead of varying xt, we vary Wt by considering the paths whose states are around ðt;WtÞ. For
more details about bundling, we refer the readers to Jain and Oosterlee (2015).

4.3. Backward programming algorithm

Now we formally describe the algorithm for the backward programming stage.

� Step 1: Initiation:
Generate an initial guess of optimal asset allocations f ~xtgT�Δt

t ¼ 0 and simulate the paths of optimal wealth values
fWtðiÞgNi ¼ 1; t ¼ 0;…; T . At the terminal time T, we have the determined value function JT ðWT Þ.
The following three steps are subsequently performed, recursively, backward in time, at t ¼ T�Δt;…;Δt;0.

� Step 2: Solving
Bundle paths into B partitions, where each bundle contains a similar number of paths and the paths inside a bundle have
similar values at time t. Denote the wealth values associated to the paths in the bundle by fWb

t ðiÞg
NB

i ¼ 1, where NB is the
number of paths in the bundle. Within each bundle, we perform the following procedure.
○ For paths in the bundle, we have the corresponding wealth values fWb

tþΔtðiÞg
NB

i ¼ 1 and the continuation values

f JbtþΔtðiÞg
NB

i ¼ 1 at time tþΔt. So, a function f btþΔtð�Þ, which satisfies JbtþΔt ¼ f btþΔtðWb
tþΔtÞ on the local domain, can be

determined by regression.5

○ For all paths in the bundle, since the value function f btþΔtðWb
tþΔtÞ has been approximated, we solve the optimization

problem by calculating the first-order conditions. In this way, we get new asset allocations fx̂bt ðiÞg
NB

i ¼ 1.
4 This domain is much smaller than the domain obtained without restricting xt. To avoid unnecessary technicalities, we assume that the wealth process
is locally bounded.

5 Here regression refers to the technique of approximating the target function by a truncated basis function expansion, where the expansion coeffi-
cients are determined by minimizing the approximation error in the least squares sense.
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○ Since the wealth values fWb
t ðiÞg

NB

i ¼ 1 and the allocations fx̂bt ðiÞg
NB

i ¼ 1 are known, by regression we can also compute the new

continuation values f Ĵ bt ðiÞg
NB

i ¼ 1. Here Ĵ
b
t ðiÞ is the expectation of JtþΔtðWtþΔtÞ conditional on Wb

t ðiÞ and x̂bt ðiÞ, that is,

Ĵ
b
t ðiÞ ¼ E½ JtþΔtðWtþΔtÞjWt ¼Wb

t ðiÞ; xt ¼ x̂bt ðiÞ�:

� Step 3: Updating

For the paths in a bundle, since we have an old guess f ~xbt g
NB

i ¼ 1 for the asset allocations, by regression we can also calculate

the old continuation values f~J bt ðiÞg
NB

i ¼ 1. For the i-th path, if ~J
b
t ðiÞ4 Ĵ

b
t ðiÞ, we choose x̂bt ðiÞ as the updated allocation. Otherwise

we retain the initial allocation. We denote the updated allocations by fxbt ðiÞgvNB
i ¼ 1.� Step 4: Evolving

Once the updated allocations fxbt ðiÞg
NB

i ¼ 1 are obtained, again by regression we can calculate the “updated” continuation

values f Jbt ðiÞg
NB

i ¼ 1 and proceed with the backward recursion.

In the algorithm, at each time step and inside each bundle, four regression steps are performed. Especially, the last three
regression steps are added for calculating value functions. Since the value function is used to evolve information between
time steps, an error in calculating them will accumulate due to recursion. In general, we can settle this problem by using a
very large number of simulations, which is however expensive. In our numerical approach we always use the “regress-later”
technique as applied in Cong and Oosterlee (2015).

When we use the regression, polynomials up to order two are considered as basis functions. For the unconstrained
problem, the value function is a quadratic function, so this choice of basis functions is sufficient. In the constrained case,
although the value function is non-smooth, it is still piecewise quadratic as stated in Fu et al. (2010). Since the regression is
performed with respect to paths in the same bundle, it is a local regression, i.e. local polynomial fitting. In all, our algorithm,
which adopts second order local polynomial fitting to approximate piecewise quadratic functions, should yield satisfactory
results.

After one iteration of the algorithm, we will obtain an “updated” asset allocation at each time step. The algorithm can be
performed iteratively. In the remaining part of this section, we will prove that these iterations will lead to a convergent
result.

Remark 4.1. In the engineering field, this type of dynamic programming is called differential dynamic programming. For
more details, we refer the reader to Jacobson and Mayne (1970) and Tassa et al. (2008).

4.4. Convergence of the backward recursive programming

For the dynamic backward recursive programming, we have

JtðWtÞ ¼min
xt

E½ JtþΔtðWt � ðxtRe
t þRf ÞþC � ΔtÞjWt �

� �
; t ¼ T�Δt;…;0;

where the expectation is taken over the return Ret . This recursion can be written as:

Jt ¼Ψ t JtþΔt ; t ¼ T�Δt;…;0;

where Ψt is the Bellman operator, defined as

ðΨ thÞðWtÞ ¼min
xt

E½hðWt � ðxtRe
t þRf ÞþC � tÞjWt �

� �
: ð16Þ

According to Bertsekas (1995), the Bellman operator has the monotonicity property, which is described by the following
lemma.

Lemma 4.2 (Monotonicity). For any f :R-R and g:R-R,

f rg ) Ψ t f rΨ tg;

where the inequalities are interpreted pointwise, and Ψt is as in (16).

We can prove the following proposition:

Proposition 4.3. The backward recursive updating process, as explained in Section 4.3, converges. That is: there exists a function
J�0ð�Þ satisfying

J�0ðW0Þ ¼ lim
k-þ1

JðkÞ0 ðW0Þ;

where JðkÞ0 ðW0Þ denotes the value function at initial state after k iterations of the algorithm in Section 4.3.
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Proof. The proof is directly based on the design of the backward recursive programming algorithm and the Monotonicity
Lemma 4.2. Since at each iteration, we compare the previous and the new allocations and retain the one which generates a
smaller value function and since the Bellman operator preserves monotonicity, we get:

Jð1Þ0 ðW0ÞZ Jð2Þ0 ðW0ÞZ⋯Z JðkÞ0 ðW0Þ; k¼ 1;…; kmax:

Since the value function is positive, according to the Monotone Convergence Theorem, we can finalize the proof.□

Whereas the convergence can be proved, the convergence rate is not determined. The convergence rate depends on the
smoothness of the value functions and the initial guess of the allocations. For example, for a smooth quadratic value
function, any initial guess should give the correct result after one iteration. On the other hand, if we choose zero as the initial
guess for all the asset allocations, the solution can never depart from the stationary point, which is generated by the risk-
free investment strategy. In our numerical tests, we always achieve satisfactory results using the initial guess of the asset
allocations generated by the multi-stage strategy.

On the other hand, the solution of our backward recursive approach is not guaranteed to be the optimal one. We call this
algorithm “sub-optimal” because a bias is introduced when we approximate the non-smooth value function by piecewise
quadratic polynomials. Although the numerical tests indicate that our algorithm generates highly satisfactory solutions, we
expect that in case the value function is highly non-smooth the approximation bias in our algorithm will be large and the
accuracy of our algorithm may be unsatisfactory.
5. Constraints on the asset allocations

From the perspective of real-life applications, introducing constraints on the asset allocations is important. For example,
when an investor goes bankrupt, she should not be allowed to manage her portfolio any more. Besides, according to reg-
ulations for banks, the leverage ratio should be bounded. In this section, we will formulate controls on the asset allocations.

5.1. No bankruptcy constraint

In this paper, the “no bankruptcy” constraint implies that there is zero probability of bankruptcy when the constraint is
cast on the asset allocations. To ensure that the allocation at time t does not lead to bankruptcy at time tþΔt, we need:

Wt � ðxtRe
t þRf ÞþCΔtZ0: ð17Þ

Note that if there is a “no bankruptcy” constraint, definitely we haveWt40. Therefore, to guarantee that Eq. (17) is valid, we
need:

xtR
e
t Z�Rf �

CΔt
Wt

: ð18Þ

Since Re
t ¼ expðret Þ�Rf , where re is a random variable, we require

�Rf Z�Rf

xt
� CΔt
Wt � xt

and xtZ0:

to ensure Eq. (18) to be valid. Reformulating these equations, we have:

0rxtr1þ CΔt
Wt � Rf

: ð19Þ

The “no bankruptcy” constraint given by Eq. (19) implies limWt-0ðxt �WtÞ ¼ 0, as given in Wang and Forsyth (2010) and
Wang and Forsyth (2011) for the continuous portfolio optimization problem. Our version of the “no bankruptcy” constraint
for the multi-period case is stronger than the constraint in Wang and Forsyth (2010, 2011). Rather than specifying that
wealth should not be invested in the risky asset when the total wealth amount is close to zero, our constraint also indicates
that special consideration to the asset allocation should be given even though the wealth amount is far above zero. This is
due to the difference between continuous and discrete re-balancing. In the latter case, since we cannot manage the portfolio
between two re-balancing opportunities, it is possible that the investor goes bankrupt after an extreme market movement.
To avoid this situation, we need to impose more strict constraints on the asset allocations, which is however not necessary
for a continuous re-balancing problem.

5.2. No bankruptcy constraint with 1–2α% certainty

When the wealth in a portfolio is large, according to the discussion in the last subsection, the upper bound for “no
bankruptcy” constraint (19) will be close to 1, which is quite rigorous. Using this as the upper bound protects an investor
from bankruptcy only in the rare case that the risky asset yields zero return. A possible way to relieve this constraint is to
take the possibility of bankruptcy into account.
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Assume that the α- and the ð1�αÞ-quantiles of the excess return Ret are respectively Re;α
t and Re;1�α

t . Then with certainty
1–2α% and the constraints shown below, we can guarantee that the “no bankruptcy” constraint in Eq. (17) is valid. The
bounds for the asset allocations can be computed as:

�CΔt�Wt � Rf

Wt � Re;1�α
t

rxtr
�CΔt�Wt � Rf

Wt � Re;α
t

: ð20Þ

Remark 5.1. The constraints proposed by Eq. (20) correspond to discrete monitoring on re-balancing times. When mon-
itoring is performed continuously, more strict constraints may be obtained.

5.3. Bounded leverage

Eqs. (19) and (20) imply that when an investor's wealth is close to zero, the upper bound for the allocation in the risky
asset goes to infinity. The “no bankruptcy” constraint does not forbid an investor from gambling when she is almost
bankrupt. To avoid this, we can impose constraints on the leverage ratios, for example, by restricting the proportion of
investor's wealth in the risky asset to be within ½xmin; xmax�.
6. Numerical experiments

In this section, we test our algorithms by solving several multi-period mean–variance portfolio management problems.
We start with a simple case with one risky asset and one risk-free asset in the portfolio. We choose geometric Brownian
motion as the dynamics of the risky asset, and assume that the log-return of the risky asset has volatility σ and mean
rf þξ � σ. Here rf is the log-return of the risk-free asset and ξ the market price of risk. Since only the return of the risky asset is
stochastic, we call this problem a “1D problem”. We will also consider a “2D problem” with two risky assets and one risk-
free asset in the portfolio. We consider only bounded leverage constraints in the 2D problem, and therefore it can be solved
highly efficiently.

In the numerical tests, we choose the sample size to be 50 000 and the number of bundles to be 20 in the backward
recursive programming stage. When we employ the “no bankruptcy” constraint (20), we choose parameter α to be suffi-
ciently small, α¼ 10�8, which ensures that the undesired event will not happen. Regarding the backward recursive pro-
gramming, we use a common random seed to generate Monte-Carlo paths for one run of the algorithm (including one
forward and several backward processes). To ensure that the choice of random seed does not introduce a bias, we consider
20 different random seeds in all tests.

Based on reference results, we choose three different sets of parameters, shown in Table 1.

6.1. 1D problem

6.1.1. Multi-stage optimization with constraints
We first test the plain multi-stage strategy using the model parameters from Set I in Table 1. Different types of con-

straints are prescribed on the asset allocations. The bounded control is chosen to be [0,1.5]. Fig. 1 shows that constraints on
the controls have a significant influence on the efficient frontiers obtained by the multi-stage strategy.

Without periodic contribution, i.e. C¼0, an analytic solution to the “no bankruptcy” case with continuous re-balancing is
presented in Bielecki et al. (2005). For a corresponding test, we choose the model parameters from Set II in Table 1. In Fig. 2,
we can see that when the number of re-balancing opportunities is sufficiently large, the efficient frontier generated by the
multi-stage strategy is close to the analytic solution, especially when the investment risk is not large.

6.1.2. Backward recursive programming
In this section, we show the performance of the backward recursive programming stage. Unless indicated differently, the

initial asset allocations are generated by the multi-stage strategy. We first consider a continuous re-balancing scenario
shown in Fig. 2, where an analytic solution is available. We observe that when backward recursive programming is
Table 1
Parameter settings used in the test.

Set I (From Wang and Forsyth, 2010):
rf¼0.03, ξ¼ 0:33, σ ¼ 0:15, C¼0.1, T¼20 (years), W0 ¼ 1, M� ¼ 80.
Set II (From Bielecki et al., 2005):
rf¼0.06, ξ¼ 0:4, σ ¼ 0:15, C¼0, T¼1 (year), W0 ¼ 1.
Set III (From Forsyth and Vetzal, 2014):
rf¼0.03, ξ¼ 0:4, σ ¼ 0:15, C¼0, T¼30 (years), W0 ¼ 100, M¼30.

n M denotes the number of re-balancing opportunities, which are equidistantly distributed in T years.
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implemented, we obtain a better efficient frontier than the one generated by the multi-stage strategy. Moreover, we find
that the efficient frontier resulting from backward recursive programming is close to the analytic solution.

Subsequently, we perform tests for a multi-period portfolio management case presented in Forsyth and Vetzal (2014)
with the parameters from Set III in Table 1. We consider bounded constraints [0,1.5] on the asset allocations.

In Fig. 3, we present the efficient frontiers generated by the multi-stage approach and by the first four iterations in the
backward recursive programming stage. Again we can see that the backward recursive approach generates better results
than the multi-stage approach. Even with one iteration of backward programming, the result is already highly satisfactory.

In Table 2, we consider two cases for which also reference results are available. We find that in general, even with the
same terminal target, the mean–variance pair calculated by the multi-stage strategy is different from the reference value.
However, after the backward recursive programming, the result is highly satisfactory. In fact, the backward programming
even provides results somewhat superior to the reference values.6 Moreover, the multi-stage strategy and the backward
recursive programming stage cost only seconds.
6 For generating the efficient frontiers, we implement Monte-Carlo simulation while the authors of Forsyth and Vetzal (2014) utilize a PDE approach.
As explained in Ma and Forsyth (2016), the simulation based approach usually yields slightly better results.
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Table 2
Comparison of the results generated by the multi-stage strategy and the backward recursive programming to the reference values in Forsyth and Vetzal
(2014).

Target γ ¼ 1751:94 γ ¼ 5856:15

E�0ðWT Þ (s.e.) Std�
0ðWT Þ (s.e.) CPU time (in seconds) E�0ðWT Þ (s.e.) Std�

0ðWT Þ (s.e.) CPU time (in seconds)

Reference 816.62 142.85 2008.55 969.33
Multi-stage 823.84 154.37 4.71 2031.65 987.55 4.17

(0.71) (1.28) (4.86) (2.54)
One backward 818.83 143.33 9.09 2018.47 969.29 8.23
iteration (0.70) (1.30) (4.73) (2.58)
Four backward 817.74 141.40 22.25 2014.90 964.80 20.34
iterations (0.70) (1.28) (4.73) (2.62)
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The backward recursive programming technique is robust regarding different choices of initial allocations. As shown in
Fig. 4, even though we fix the initial asset allocations to be constant,7 the backward recursive programming stage still gives
us a satisfactory result after some iterations.

6.2. 2D problem with box constraints

To tackle dynamic portfolio management problems with either the forward or the backward strategy proposed, we
essentially need to deal with a constrained convex optimization problem. Some fast numerical solvers exist for this kind of
problems in high dimensional scenarios. In this section, we will consider a simple 2D case where box constraints are cast on
the asset allocations. In this case, bounded controls are prescribed for the allocations of both risky assets. Solving this
constrained 2D convex optimization problem is therefore equivalent to solving five simple optimization problems and
choosing the best results from them. The reason is that for a quadratic optimization problem with box constraints the
optimal solution lies either at the boundary or in the interior of the admissible set. These five optimization problems include
one unconstrained 2D problem8 and four 1D problems with bounded constraints.

We use the parameters displayed in Set III from Table 1 and for the other risky asset we use the same market price of risk
but a higher volatility, σb ¼ 0:4. The correlation ρ between these two risky assets is fixed at ρ¼ 0:4, unless mentioned
otherwise. For both assets, we prescribe bounded constraints [0,0.75] on their asset allocations.

First, we test the influence of adding another risky asset to the portfolio. Here we simply implement the multi-stage
strategy for generating the mean–variance efficient frontier. As shown in Fig. 5, increasing diversification in the portfolio has
a significant impact on the solution of the dynamic optimization problem. When the correlation between the two risky
assets is closer to �1, a higher efficient frontier can be obtained. This is intuitive, because a large part of the volatility can be
hedged in the case of two negatively correlated risky assets. When their correlation gets larger, the efficient frontier gets
7 In general this will lead to quite a rough initial approximation of the mean–variance pair.
8 First, we solve the unconstrained 2D problem. Then we penalize the optimal solution when the constraints are not satisfied.
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Fig. 6. We compare forward and backward strategies for the 2D dynamic portfolio management problem with box constraints. When considering the
backward recursive programming, we use the results obtained after four iterations. (a) 2D efficient frontier. (b) 2D efficient frontier (zoom in).
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worse. However, in most cases two risky assets in the portfolio yield better results than having one risky asset in the
portfolio. For example, when we choose the correlation to be 0.4 and the final target to be 5856.15, as used in Section 6.1.2,
we obtain ½E0½W�

T �; Std0½W�
T �� ¼ ½2501:41;893:87� which is significantly better than ½E0½W�

T �; Std0½W�
T �� ¼ ½2031:65;987:55� as

acquired in the 1D case.
In Fig. 6, we compare the multi-stage strategy and the backward recursive programming approach. The outcome is

similar to that observed in the 1D tests. When we implement the backward recursive programming stage, a significant
improvement is obtained. For example, when the standard deviation is around 200, an almost 10% higher expected return
can be obtained if we consider the backward recursive programming approach rather than the multi-stage approach.

Remark 6.1. In the 2D case, we also observe that satisfactory results can be obtained after several iterations of backward
recursive programming even if we start with an inaccurate initial guess of the asset allocations.
7. Conclusion

In this paper, we propose simulation-based approaches for solving the dynamic mean–variance portfolio management
problem. To deal with the nonlinearity of the conditional variance, we use the embedding technique introduced in Li and Ng
(2000) to transform the mean–variance optimization problem into a linear-quadratic problem, which has a determined final
optimization target. To tackle this target-based dynamic optimization problem, also known as “the pre-commitment pro-
blem”, we propose two approaches, one in a forward fashion and the other in a backward fashion.

The forward approach, called the “multi-stage strategy”, is based on determining an intermediate investment target at
each re-balancing time. The intermediate target is chosen as the amount of wealth, which, if obtained, an investor can invest
with a risk-free strategy and still reach the final investment target. Although it is generally believed that backward pro-
gramming is essential for solving a dynamic optimization problem, we prove that the multi-stage strategy yields optimal
controls when no constraints are involved. In the case that there are constraints on the controls, the multi-stage strategy can
only yield a sub-optimal solution. However, since it is a forward and thus highly efficient approach, it is always feasible even
when the dimensionality of the problem increases.

Although the forward approach is fast and easy-to-implement, in general it is not optimal for a dynamic optimization
problem. Therefore, we propose another simulation-based approach which involves backward recursive programming. The
main idea of the backward recursive approach is that we consider local quadratic optimization instead of global optimi-
zation. By tailoring the numerical algorithm, the backward recursive programming is guaranteed to yield convergent results
after several iterations. In the numerical tests, it is shown that, although the backward approach is also sub-optimal, it
always generates better efficient frontiers than the multi-stage strategy.

In the backward approach, we need to calculate conditional expectations associated to each simulated path recursively
by least-squares regression. To make this regression-based numerical approach stable, we implement “bundling” and the
“regress-later” techniques, as introduced in Jain and Oosterlee (2015). We find that our backward recursive approach is very
robust. Even if it is initiated by an inaccurate guess for the allocation, highly satisfactory results can be obtained after several
iterations.

As both the forward and backward approaches are based on simulation, it is feasible to implement them for high-
dimensional problems. Moreover, since at each single stage or recursive step we consider a constrained quadratic optimi-
zation problem, it is possible to solve them efficiently with suitable quadratic optimization algorithms. Combining the
algorithms with these quadratic optimization algorithms for a general high-dimensional case will be our future work.
Another research direction is to implement our backward recursive programming approach to generate a time-consistent
strategy.
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