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Abstract. We study the solution of generalized eigenproblems generated by a model which 
is used for stability investigation of tokamak plasmas. The eigenvalue problems are of the form 
Ax= >.Bx, in which the complex matrices A and Bare block-tridiagonal, and Bis Hermitian positive 
definite. The Jacobi··-Davidson method appears to be an excellent method for parallel computation of 
a few selected eigenvalues because the basic ingredients are matrix vector products, vector updates, 
and inner products. The method is based on solving projected eigenproblems of order typically less 
than 30. 

We apply a complete block LU decomposition in which reordering strategies based on a combi­
nation of block cyclic reduction and domain decomposition result in a well-parallelizable algorithm. 
One decomposition can be used for the calculation of several eigenvalues. Spectral transformations 
are presented to compute certain interior eigenvalues and their associated eigenvectors. The conver­
gence behavior of several variants of the Jacobi-· Davidson algorithm is examined. Special attention is 
paid to the parallel performance, memory requirements, and prediction of the speed-up. Numerical 
results obtained on a distributed memory Cray T3E are shown. 
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1. Introduction. Consider the generalized eigenvalue problem 

(1) Ax= >.Bx:, 

where A and B are complex block-tridiagonal Nt x N 1 matrices and B is Hermitian 
positive definite. The number of diagonal blocks is denoted by N and the blocks are 
n x n; therefore Nt = N x n. 

Eigenvalue problems arise in many applications. We are particularly interested 
in generalized eigenvalue problems as they occur in linear magnetohydrodynamics 
(MHD). Such problems are generated by a finite-element spectral code CASTOR 
(complex Alfven spectrum of toroidal plasmas) [8]. This code is applied intensively at 
the FOM Institute voor Plasmafysica, Nieuwegein (the Netherlands) for the stability 
investigation of tokamak plasmas [9, 13]. The physicists are particularly interested in 
accurate approximations of certain interior eigenvalues, called the Alfven spectrum and 
their associated eigenvectors. Figure 1 shows the complete and the Alfven spectrum 
of (1) for a small test problem with N = 50 and n = 32. A target O" is given in 
the neighborhood in which we want to find several eigenvalues with corresponding 
eigenvectors. In general, the subblocks of A are dense and Nt can be very large, 
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Fro. 1. Entire (left) and Alfven (right) spectrum of a small MHD problem: N = 50, n = 32. 

so computer storage demands are very high. Until now powerful shared memory 
machines with a huge amount of memory, such as the Cray C90, were used for this 
purpose. In this paper, we study as an alternative the feasibility of parallel computers 
with a large distributed memory for solving large generalized eigenvalue problems. 

A promising method for computing selected eigenvalues of (1) is the Jacobi­
Davidson (JD) algorithm [16, 3, 4, 5, 15]. The method has become very popular, and 
since we have started this project many aspects have been investigated, for instance, a 
variant with harmonic Ritz values has already been implemented [12]. In the future, 
we consider implementation of the Jacobi--Davidson QZ algorithm (JDQZ) [6] and 
inclusion of explicit deflation. In section 2 we briefly describe the JD algorithm 
for solving a block-tridiagonal eigenvalue problem. Within JD a parallel method to 
compute the action of the inverse of the block-tridiagonal matrix A - a B is used. In 
this approach, called DDCR, a block-reordering based on a combination of domain 
decomposition and cyclic reduction is combined with a complete block-tridiagonal LU 
decomposition of A - a B, so LU = A - a B. Both the construction of L and U and 
the triangular solves parallelize well. In this report we concentrate on the application 
of DDCR within JD. Originally, it was developed as a parallel preconditioner to apply 
within JD and appropriate for solving MHD eigenvalue problems. Some aspects of 
this technique are discussed in section 3. 

However, the availability of a complete LU decomposition gives us the opportunity 
to apply the Jacobi-Davidson method to a standard eigenvalue problem instead of a 
generalized eigenvalue problem. Writing (1) as (A- aB)x =(.A - a)Bx, we have 

x =(.A- a)(A- aB)- 1 Bx. 

If we define Q as (A- aB)- 1 B, for some value a, we obtain the standard eigenvalue 
problem 

Q 'h 1 \ 1 x = µx wrt µ = -, - -<=? /\ = a + - . 
/\-(J µ 

(2) 

The eigenvaluesµ of (2) form the dominant part of the spectrum, which makes them 
relatively easy to compute. In practice, one has to be careful because small pivot 
elements can be generated during the decomposition of A - a B, especially when a- is 
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very close to an eigenvalue. In that case, taking Q = (LU)- 1 B in (2) may influence 
the computed spectrum. It is advisable to visualize the obtained eigenvalue spectrum 
and to compare it with results of a run with another target in the neighborhood of 
the spectrum. A smaller tolerance can also give information about the accuracy. 

As a basis for the development of the parallel code, we have taken a sequential 
FORTRAN code for the JD algorithm, which was developed by the late Albert Booten 
at CWI [3, 4, 5]. The data structure for storing the matrices was modified in such 
a way that we could use optimized BLAS routines as much as possible. Furthermore, 
that part of the CASTOR code [8] which generates the matrices A and B has been 
parallelized and coupled with the JD code. Of course, other (generalized) eigenvalue 
problems satisfying ( 1) can be solved by our code. Several subroutines are available 
to read data efficiently from files and to distribute them to the processors. Section 4 
describes the data organization of the JD code on the Cray T3E. Moreover, the 
memory requirements are given for both our sequential and parallel implementation. 

In section 5 the convergence behavior of several variants of the Jacobi-Davidson 
algorithm is examined. Numerical results for three MHD eigenproblems obtained by 
a Cray T3E are presented and analyzed, and an analysis for the parallel speed-up is 
given. Conclusions are drawn in section 6. 

2. The JD algorithm. Recently the JD method has been introduced as a new 
powerful technique for solving a variety of eigenproblems [16]. In this section we 
describe the method briefly and comment on our implementation. Suppose an eigen­
vector x is approximated by a linear combination of k search vectors Vj, j = 1, 2, ... , k, 
where k is very small compared with Nt. Let Vk be the Nt x k matrix whose columns 
are given by Vj· Then the approximation to the eigenvector can be written as Vks, 
for some k-vector s. The search directions Vj are made orthonormal to each other, 
hence Vk* Vk = I. 

Suppose that an approximation to an eigenvalue is denoted by e. The vector s 
and the scalar () are constructed in such a way that the vector r = QVis - ()Vis is 
orthogonal to the k search directions. From this Rayleigh-Ritz requirement it follows 
that 

(3) 

In this way one obtains a "projected" eigenvalue problem in which the order of the 
matrix Vk*QVk is k. By using a proper restart technique, k can remain so small that 
this problem can be solved by the QR method. The approximate eigenvalue e is the 
eigenvalue of the projected system with the largest modulus. 

At each step of the algorithm, a new search direction is constructed. Suppose that 
we have obtained an approximation 1L = Vks of the true eigenvector x associated with 
some eigenvalue p .. We assume that \lu\\ 2 = 1, hence()= u*Qu is an approximation 
ofµ. Let us define P = U'u* as the orthogonal projector onto the subspace spanned 
by {u}. Then I - P is the projector onto the orthogonal complement of span{u}, 
which is denoted by UJ.. Any vector :c E en can be written as x = X1 + X2 with X1 E 

span{u} and x 2 E uJ.. We can scale x such that x = u + z with z .l u. In the JD 
algorithm a correction vector z E u.J. is constructed. The restriction of Q to uJ. is 
given by 

(4) Qp = (I - P)Q(I - P). 

If we rewrite (4) and substitute the resulting expression for Q into Qx = µx, we 
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Jacobi-Davidson for Qx = µx, Q = (A- 11 B)- 1 B. 
Parameters: iter, Nev, tolJD, kmin, m {m 2: kmin + N •. "), itsoL­
step 0: initialize 

Choose an initial vector v1 with llv1II2 = 1; set V1 = [v1]; 
W1 = [Qv1]; k = 1; it= 1; nev = 0 

step 1: update the projected system 
Compute the last column and row of Hk := Vk'Wk 

step 2: solve and choose approximate eigensolution of projected system 
Compute the eigenvalues 81, ... , 8k of Hk and choose 8 := 8j with l8j I maximal 
and 81 =/= µ.i, for i = 1, ... , nev; compute associated eigenvector s with llsll2 = 1 

step 3: compute Ritz vector and check accuracy 
Let u be the Ritz vector Vks; compute the vector r := Wks - Bu; 
if the residual f :=(A- (tT + 1J)B)u satisfies llfll2/l11 + tJI < tolJD then 

nev := nev + 1; µnev := 8; if nev = Nev stop; goto 2 
else if it = iter stop 
end if 

step 4: solve correction equation approximately with itsoL steps of GMRES 
Determine an approximate solution z of z in 
(I - uu*)(Q- BI)(I - ·uu*)z = -r /\ u*z = 0 

step 5: restart if projected system has reached its maximum order 
if k = m then 

5a: set k = kmin + nev; compute the k eigenvalues of Hm with largest modulus; 
construct C E cm x k with columns the associated eigenvectors; 
orthonormalize columns of C; compute Hk := C* HrnC 

5b: compute Vk := VmC; Wk := WmC 
end if 

step 6: add new search direction 
k := k+ I; it:= it+ I; call MGS [Vk-1,z]; set Vk = [Vk-1,z]; U-'k = [W,-1,Q.Z]; 
goto 1 

FIG. 2. JD algorithm after spectrnl transformation. 

obtain, using Qu - Bu = r, z _l_ u, Pu = u, and Pz = 0, 

(5) (Qp - µI)z = -r + (µ - e - u*Qz)u. 

Since r is orthogonal to u, premultiplication of (5) by u* yieldsµ= e + 'u*Qz. Note 
that µ is unknown and its best approximation will be e. In this way, we obtain as a 
correction equation for z 

(6) (I - P)(Q - 81)(1 - P)z = -r, 'U*z=O. 

It is sufficient to solve (6) only approximately. This can be done by some steps of 
an iterative method, for example, GMRES [14]. When an approximate solution z of 
(6) has been constructed, it is made orthogonal to the previous search directions, and 
the new search vector Vk+l is taken equal to z/JlzJl 2 . Then k is increased by 1, and 
the new matrix Vk* QVk is constructed by expanding the "old" matrix by one new row 
and one new column. 

Our implementation of the JD method for the computation of several eigenvalues 
is shown in Figure 2. The following remarks apply to the algorithm: 

(i) The number of iteration steps that have been performed is denoted by it. 
The maximum allowed number of iterations is equal to it er. 
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(ii) The method is accelerated by searching for the best eigenvector approxima­
tion by selecting e such that IOI is maximal. To include the possibility of multiple 
eigenvalues, the condition ej =f µi, j = 1, ... 'k must be interpreted as follows: an 
accepted eigenvalue µi can be equal to only one ej. So, if the projected system con­
tains more than one ej close to µi, then it may be a multiple eigenvalue and, since its 
modulus is maximal, it becomes the next selected eigenvalue. 

(iii) The value nev indicates the number of eigenvalues found so far that satisfy 
the acceptance criterion, and the parameter Nev is the number of eigenvalues that we 
are looking for. The approximate eigenvalues e that satisfy the acceptance criterion 

llfll2 ' A i 
-
1 
--i 1 < tolJD with r :=(A - (a+ 0 )B)u, 

a+ o 
(7) 

are referred to as µi for i = 1, ... , nev· The algorithm stops when nev is equal to Nev 
or when it equals iter. In order to reduce computation time, we compute the actual 
residual f only if r satisfies 

(8) llrll2 . ief < 100 x tolJD with r := Wks - Ou= (Q- BI)u. 

From experiments we observe that (7) is hardly satisfied when (8) is violated. 
(iv) In the actual implementation of the algorithm, precautions have to be taken 

in step 2: theoretically, it is possible that all eigensolutions of the projected system 
satisfy the acceptance criterion. If that would happen, no new e and corresponding 
approximate eigenvector u can be found in step 2. In that case, a vector z is chosen 
that is not in the subspace spanned by Vi, and the algorithm proceeds at step 5. 

( v) The subspace spanned by Vk contains the eigenvectors corresponding to the 
eigenvalues found before, together with some search directions. In this way, implicit 
deflation is incorporated automatically, which means that the detected eigenvectors 
are not filtered out. Of course, they may not influence the progress in finding the 
next eigenpair or lead to an eigenpair already found. The process of acceleration to 
find the next eigenpair, as described above, ensures that each accepted eigenpair will 
be unique. This technique differs from the deflation technique described in [6] which 
uses explicit deflation. The latter technique can be more stable but requires more 
operations per iteration step. 

(vi) We require that the number of search directions k may not become too large. 
Therefore, if k has reached the value m, the upper bound for the order of the projected 
eigenvalue problem, k is reduced to kmin +nev· This is accomplished by extracting the 
most interesting information from Hk: the vectors which lead to previously accepted 
eigenvectors of the original problem are kept in the system together with those vectors 
that correspond to the kmin most promising eigenvalues, with IBI maximal. In other 
words, m- (km in +nev) vectors are thrown away. The columns of the remaining matrix 
C E cmxk are again orthonormalized and a new Hk is obtained by Hk := C* HmC. 
Postmultiplication of Vm and Wm with C provides the new bases Vk and Wk. This 
restart technique is also applied in [6]. 

(vii) We use modified Gram-Schmidt (MGS) [7] to orthonormalize vectors;"call 
MGS [Vk-i, z]" in step 6 means that z is made orthonormal to the columns of Vk-i· 
As suggested in [16] we apply MGS twice. Although classical Gram-Schmidt (CGS) 
has better parallel properties, we use MGS because it is more stable. Evidently, 
all inner products and all vector updates in our parallel implementation have been 
parallelized. 
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(viii) The original code that was taken as a basis for this project did not use 
harmonic Ritz values [6, 16]. Numerical experiments with a comparable algorithm 
using harmonic Ritz values have been described in [12]. The main advantage is that 
the LU decomposition of A - a B is used as a preconditioner and not as a shift 
and invert technique; then rounding-off errors in the decomposition for very large 
eigenvalue problems have less influence on the eigenvalue spectrum. We mention that 
the harmonic approach requires more memory and costs about 20% more execution 
time per Jacobi-Davidson iteration step. 

2.1. Solving the correction equation. In step 4 of the JD algorithm (Fig­
ure 2), we must solve the correction equation 

(9) (I - uu*)(Q - ()J)(I - uu*)z = -r and 'U* z = 0 

approximately. From u*z = 0, (9) can be rewritten as (I -uu*)( Q-()I)z = -r, which 
is equivalent to (Q - 8J)z + w = -r with E = -u*(Q - BI)z (cf. [16] ). In order to 
construct a suitable preconditioner for (9), it may be useful to write the equation in 
the augmented form of order Nt + 1, 

(10) 

(cf. also [15, Theorem 3.5]). If Q - ()J is nearly singular, then the matrix will 
be ill-conditioned; the augmented form leads to a better conditioned matrix. The 
augmented correction equation can be solved, for instance, by applying some fixed 
number of steps of GMRES(m) (at most m steps with full GMRES, no restarts). A 
special choice for m is 0 (or itsoL = 0), in which case the JD algorithm is closely 
related to the Arnoldi method [7]. Important differences between the JD algorithm 
of Figure 2 with itsoL = 0 and the Arnoldi method are the structure of the matrix 
Hk and the way the restarts are performed. The projected matrices Hk obtained 
by applying the Arnoldi factorization are always upper Hessenberg with nonnegative 
subdiagonal elements. The matrices Hk obtained by k steps of JD do not have this 
structure (except for itsoL = 0 and k:::; m, although rounding errors may appear for 
growing k). So, the computation of the eigenvalues of Hk requires an extra step to 
transform Hk to upper Hessenberg. Since JD does not have to repair the Hessenberg 
form, the restart technique in step 5 can be kept simple (see section 2). For details on 
the restart technique in the implicitly restarted Arnoldi method (IRAM), in which the 
Hessenberg structure of Hk has to be retained, we refer to [10]. A third difference with 
Arnoldi is the choice of 8; by selecting 181 maximal the JD method is accelerated. We 
also refer to Discussion 4.1 in [15] for a clear discussion on the relation between the JD 
method, including the exact solution of the correction equation and shift-and-inverse 
Arnoldi. In that discussion no restarts are considered. 

The convergence of GMRES(m) may be accelerated by incorporating a suitable 
(cheap) preconditioner. As in Booten et al. [5] and Sleijpen et al. [15], we rewrite the 
inverse of the augmented matrix, with K = Q - ()J, as 

(11) [K u]-l [I 
u* 0 = O* 

x-1 ] [ I 
- 1 u u* /v ~ ] 

with v = u* K-1u. It is easy to verify that 

(12) K = Q - ()J =-()(A- O"B)- 1 [(A - (a+ ~B)] 
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and K- 1 may be approximated by -fiJ. Hence, by replacing K-1 with -~Jin (11) 
and v by -fiu*u =-~,we obtain the preconditioner M-1: 

(13) [ K u]-l~[-~(I-uu*) u]=M-l. 
u* 0 u* e 

The augmented equation (10) can be preconditioned by M-1 and then in almost all 
cases the number of JD iterations needed to find the first eigenvalue will be smaller 
than in cases where no preconditioning is used, as numerical experiments demonstrate 
in section 5. 

3. The LU decomposition. To calculate an Alfven spectrum we choose some 
target values a in the neighborhood of this spectrum. For each a we compute a 
complete LU decomposition of A-a B. One (L, U) pair can be used for the calculation 
of several eigenvalues. However, if the method becomes too slow, it might be useful 
to choose a new target a. 

3.1. Block-tridiagonal LU approach. The matrices A and Bin (1) have the 
same block-tridiagonal structure and therefore A-aB is also block-tridiagonal. Since 
the subblocks are more than 50% full, a complete LU decomposition of A - aB is 
relatively cheap: the total number of nonzeros in L + U is at most twice as much as in 
A- a B. In the rest of this paper, this technique is referred to as the block-tridiagonal 
LU approach. The decomposition is performed on a block level. This enables us to 
use partial pivoting, which makes the decomposition more robust. In order not to 
disturb the block-tridiagonal structure, the search for pivot elements is restricted to 
the blocks on the main diagonal. In our experiments, this pivot strategy seems to 
work well. 

For a large number of diagonal blocks, the total number of complex multiplications 
required for the construction of L and U is approximately ~ N n3 , and the number of 
multiplications required for performing the triangular solves with both L and U once 
is approximately 3N n2 • 

3.2. The DDCR method. To improve parallelization possibilities of block­
tridiagonal LU decomposition, we use a reordering based on a combination of domain 
decomposition (DD) and cyclic reduction (CR), discussed in [18]. 

Let p be the number of processors that is actually used, and let the integer 
Np= I 1if l 1 represent the number of diagonal blocks to be treated on each processor 
(except possibly the last processor, on which the number of diagonal blocks can be 
less). The first step of the DDCR method is to perform a block-reordering of both 
block rows and block columns based on a domain decomposition strategy with p 
nonoverlapping subdomains. The second step of the DDCR method is to construct a 
block lower-triangular matrix Land a block upper-triangular matrix U in such a way 
that A - a B = LU and all blocks on the main diagonal of U are identity matrices. 

For NP large, the construction of a block-tridiagonal LU decomposition of the first 
block-tridiagonal matrix on the first processor costs about ~ n3 NP multiplications. In 
[18] it is shown that the rest of the block-tridiagonal LU decomposition costs about 
1i n3 (N - Np) multiplications. Hence the total number of multiplications required 
for the construction of L and U is approximately 

(14) 

1 By Ix 1 we denote the smallest integer ~ x and by l x J the largest integer :S x. 
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In the same way it can be shown that for large NP the number of multiplications 
required for performing the triangular solves with both L and U once is approximately 

(15) 

4. The parallel implementation and data organization. We started this 
project with the parallelization of the original code [3, 4, 5] on a Cray T3D in Eagan, 
MN. The last part of the development has been done on a Cray T3E in Delft, the 
Netherlands. Some important characteristics of the Cray T3E in Delft are listed in 
Table 1. 

TABLE 1 

Main characteristics of the Gray T3E at HPaC centre, Delft. 

# processors 
Clock period 
Peak performance / processor 
Total peak performance 
Local memory 
Total memory 
Data cache size 
Compiling system 
GiGaRing channels 

80 (72 in parallel) 
3.33 ns clock 
600 Mflop/s 
33.6 Gflop/s 
128 Mbytes 
10 Gbytes 
8 Kbytes 
Cray CF90 
available 

The communication steps in the recent code have been implemented with fast 
SHMEM routines (shared memory access library). These SHMEM routines are data pass­
ing library routines similar to message passing library routines and minimize the 
overhead associated with data passing requests, maximize bandwidth, and minimize 
data latency. Optimized BLAS routines are used as much as possible to achieve high 
performance per processor, and for the linear algebra part LAPACK routines [1] are 
called. For considerations on the programming technique, data distribution and com­
munication on the MHD application, we refer to (11]. 

4.1. Distribution of the MHD matrices. For large problems with a lot of 
data, the I/O is often very expensive. Therefore, we do not read the MHD matrices 
from the files but generate them during execution, which takes only a few seconds. A 
part of the CASTOR code, which computes the matrix elements, has been coupled 
with our JD code. Moreover, it has been parallelized such that the available processors 
generate their own pieces of the matrices A and Bin (1). The matrices are distributed 
block-row-wise along the processors; each processor gets one or more main diagonal 
blocks with their nearest sub- and superdiagonal blocks belonging to the same block 
row. All vectors are distributed accordingly. As a consequence, for a matrix-vector 
multiplication the memory traffic (of only two vectors of length n) is reduced to the 
first sub- and last superdiagonal block per processor. 

4.2. Data format: CRS format versus dense block-tridiagonal format. 
The compressed row storage (CRS) format puts the subsequent nonzeros of the matrix 
rows in contiguous memory locations. To describe a sparse matrix A, we need three 
vectors, one for complex nonzero floating point numbers (maLA) and two for integers 
(colind_A, rowptr _A). For more details and examples, we refer to [2]. 

CRS format has the advantage that it can be used to store general sparse matrices. 
However, the DDCR decomposition is completely based on the block-tridiagonal form 
of A- aB. This implies that, for our applications, CRS format can be advantageous 
only if the blocks of A and B are sparse enough. From Table 2, which gives the 
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TABLE 2 

Times for the matrix-vector multiplication on a single processor of a Cray T3E. Results for the 
block-tridiagonal form (dense blocks including zero values) are denoted by DENSE. Results for CRS 
format are denoted by CRS{A) and CRS(B) for A and B, respectively. 

Execution times in µ-seconds on a Cray T3E, N = 40. 
MATVEC n= 16 n=32 n=48 n=64 n = 80 
DENSE BLOCKS 4490 14577 32055 54666 93924 
CRS(A) 2469 9874 22518 33733 52861 
CRS(B) 1421 4979 10806 15814 24374 

Number of nonzeros in A and B. 
nnz(A) 11392 47906 109542 196300 308180 
nnz(B) 5934 22778 50532 89196 138770 

execution times for matrix-vector multiplications on a single processor of a Cray T3E 
for matrices A and B generated by the CASTOR code, we may conclude that CRS 
format is to be preferred for both A and B on this platform. 

4.3. Memory requirements. In this section, we will indicate which amount 
of memory is required for both the sequential and parallel implementation, expressed 
in nnz(A) and nnz(B), the numbers of nonzero values in the A and B, respectively, 
and N, n, and Nev, where N denotes the number of diagonal blocks, n the blocksize 
of the block-tridiagonal matrices, and Nev the number of eigenvalues we are looking 
for. The last parameter is m, the maximum allowed value of the projected system. 
As stated in section 2, m is much smaller than the order N x n of the matrices A and 
B. 

A CRS-formatted matrix of nnz(A) nonzero values requires 16 nnz(A) bytes for 
storing mat_A and 8 nnz(A) bytes for colind_A, respectively (cf. section 4.2). The 
integer array rowptr _A. uses an additional 8 N n bytes. The memory space for the CRS­
formatted matrix B can be expressed in nnz(B), analogously. The block-tridiagonal 
LU decomposition needs 3 Nn2 COMPLEX words. The subspace matrix Vk and asso­
ciated space Wk use 2 N nm COMPLEX words, and the restart in step 5 of Figure 2 
requires (in the worst case) another Nnm COMPLEX words. The total requirements for 
those matrices are 3 N nm COMPLEX words. The accepted eigenvectors are stored in a 
matrix of order Nn x Nev· An additional working space for some vectors takes 5 Nn 
COMPLEX words. 

Besides the matrix Hk, its Hessenberg form and its eigenvectors plus some work­
ing space require 4m(m + 1) COMPLEX words. Summarizing, the amount of memory 
required for the current sequential implementation in complex arithmetic, where one 
COMPLEX word corresponds with 16 bytes, is approximately 

(16) 24 (nnz(A) + nnz(B)) + l6Nn(3(n + m) +Nev+ 7) + 64m(m + 1) bytes. 

For the MHD matrices, the average sparsity of the sub-, super-, and diagonal blocks 
of A is approximately 413 and of B 20%, i.e., nnz(A)::::::: 0.41x3Nn2 and nnz(B)::::::: 
0.20 x 3Nn2 . Thus, the amount of memory for the sequential implementation (16) 
approximates 

(17) l6Nn(5.75n + 3m +Nev+ 7) + 64m(m + 1) bytes. 

The parallel implementation requires per processor approximately an additional 
32n(Npn+3n) bytes for the DDCR solver and some extra memory (10 %) to distribute 
the CRS matrices, in case their sparsity is not equally partitioned over the block 
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Fro. 3. Part of the eigenvalue spectrum of an MHD problem with N = 40, n = 64. The target 
c; is indicated by an "* ". In the right picture the order in which they appear are shown. 

rows. The small matrix of the projected system is present on all processors, and 
sequential steps, like the solution of the projected eigenvalue problem, are performed 
by all processors to avoid communication. Summarizing, the amount of memory (per 
processor) for our parallel implementation approximates 

(lS) 48Npn2 +16Npn(3(n + m) +Nev+ 7) + 32n(Npn + 3n) + 64m(m + 1) bytes 
= 128Npn2 + 16Np(3m +Nev+ 7) + 96n2 + 64m(m + 1) bytes. 

5. Numerical results. 

5.1. The influence of the correction equation. In the left picture of Fig­
ure 3, the eigenvalues of an MHD problem with N = 40 and n = 64 near the target 
O' = (-0.15, 0.60) are plotted. In the right picture, the eigenvalues are numbered 
consecutively as they are found. The solid line in Figure 4 displays the convergence 
behavior of this MHD problem solved by JD with itsoi = 0. Each "o" indicates a 
converged eigenvalue. Obviously, to find the first eigenvalue is rather expensive, but 
after that only a few iteration steps are required to find the next ones. Note that 
after 30 and 39 JD iteration steps two eigenvalues were even found in one step. It 
appears that with this target even more eigenvalues (probably of the upper Alfven 
branch) can be found than the 15 we asked for. However, since an implicit restarting 
technique is used, the order of the projected system will then grow . A better solution 
will be to choose a new target based on the results of the last (few) runs. 

The question arises if it is possible to reduce the number of JD iteration steps 
when GMRES(m) is applied to the augmented correction equation (10). In Table 3, we 
distinguish four variants to solve the correction equation: 

• JD-sol: in each JD step GMR.ES(m) is applied without preconditioning. 
• JD-sol*: GMRES(m) is applied only if llf\\2 < Etr without preconditioning. 
• JD-solP: in each JD step GMRES (m) is applied with preconditioning from the 

left by M-1. 

• JD-solP*: GMRES(m) is applied only if l\fl\2 < E:tr with preconditioning from 
the left by M-1. 

The preconditioning matrix M-1 has been introduced in section 2.1. The JD-sol 
variant does not improve the convergence process: from Figure 4 we know that if 
itsoL = 0, 23 iterations are needed to get the first eigenvalue. It is known that in the 
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FIG. 4. Convergence behavior of JD with itsoL = 0 (solid line with "o"s) and JD-solP*, 
GMRES(20) (dashed line with "D"s); N = 40,n = 64. 

TABLE 3 
Both the number of JD iterations as well as the execution time (in seconds on four processors) 

are given for several JD implementations with itsoL = 1 and ctr = 1.0. 

Number of JD steps to find first eigenvalue 
GMRES(1) GMRES(2) GMRES(5) GMRES(10) GMRES(15) GMRES(20) 

JD-sol 23 25 26 30 32 26 
JD-sol* 23 24 21 21 13 12 
JD-solP 23 33 13 19 22 28 
JD-solP* 23 28 15 12 12 12 

Execution time to find first eigenvalue 
JD-sol 1.68 2.55 4.89 10.09 15.58 16.38 
JD-sol* 1.44 1.97 2.69 4.51 2.33 2.28 
JD-solP 1.69 3.46 2.31 6.20 10.49 17.82 
JD-solP* 1.45 2.46 1.49 1.36 1.76 2.29 

Number of JD steps to find 15 eigenvalues 
JD-sol 72 139 140 109 107 82 
JD-sol* 72 105 122 100 92 70 
JD-solP 74 188 117 97 79 71 
JD-solP* 75 147 119 90 71 55 

Execution time to find 15 eigenvalues 
JD-sol 7.19 17.61 29.82 39.25 54.80 54.53 
JD-sol* 6.87 12.94 24.98 33.77 43.61 40.43 
JD-solP 7.43 23.74 25.08 35.20 40.63 47.26 
JD-solP* 7.26 18.15 24.33 30.25 31.83 30.45 

first steps of the process the vectors vk are usually poor approximations of the wanted 
eigenvectors, and solving the correction equation more accurately will not speed up 
the convergence. Therefore, we take in the first steps itsoL = 0 until the 2-norm 
of the actual residual f in (7) drops below a threshold value C:tr, i.e., for C:tr = 1.0 
after 9 "Arnoldi" steps then only an additional 3 steps are required to find the first 
eigenvalue (JD-sol*, GMRES(20)). We refer to [6] for more details, discussions and 
variants of the JD method and the influence of the way the correction equation is 
solved on the convergence behavior of the JD method. 

If the correction equation is solved by GMRES (m) preconditioned from the left by 
M- 1 , then in almost all cases the number of JD iterations to the first eigenvalue is 
smaller than when no preconditioning is applied. This is also true for the complete 
process of finding 15 eigenvalues, when sufficient GMRES inner iterations are applied. 
Compared to a multiplication with Q-()J, the application of M-1 is relatively cheap 
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an.d as a consequence, the P-variants are usually much faster than those without pre­
conditioning. The convergence history of JD-solP* with GMRES (20) is also displayed 
in Figure 4. Notice that the residual after an eigenpair is accepted in case itsoL = 0 
remains much smaller(:=:::: 10-4 ) compared to the JD-solP*-variant. 

However, each GMRES(m) step requires a multiplication with Q - BI, a very ex­
pensive operation even when performed in parallel. As a consequence, a reduction in 
the number of JD steps due to applying GMRES (m) does not guarantee a reduction in 
execution time. In fact, the timings listed in Table 3 indicate that GMRES(l) pro­
vides the fastest way to find 15 eigenvalues. When we replace step 4 in the algorithm 
of Figure 2 by z = r (corresponding to itsoL = 0) the number of JD steps hardly 
increases, resulting in the lowest execution time (see Table 4). Based on these and 
other results (not included in this paper), we continue with JD with itsoL = 0. 

TABLE 4 
Both the number of Jacobi-Davidson iterations as well as the execution time {in seconds on 

four processors) is given for JD with itsoL = 0. 

1 eigenvalue 15 eigenvalues 
# JD steps I Time # JD steps J Time 

JD, itsoL = O 23 I 0.99 78 I 5.23 

5.2. Parallel performance on the Cray T3E. In the rest of this paper, we 
set itsoL = 0 which implies that z = r (cf. Table 2, step 4). From numerical 
experiments this appears to be the best choice for minimizing the total wall clock 
time, as is-illustrated in section 5.1. Three generalized eigenvalue problems, exploited 
by the linearized MHD equations (7)-(10) in [17] with resistivity 'r/ = 5.10-6 and ratio 
of specific heats "f = i, generated by CASTOR have been timed. Their specifications 
are given in Table 5. N is the number of diagonal block and the number of Fourier 

TABLE 5 
The MHD problems used in the numerical experiments. 

Problem N n (]" nnz(A) nnz(B) 
I 40 64 (-0.15, 0.70) 196300 89196 
II 160 64 (-0.20, 0.70) 798632 362991 
III 320 128 (-0.20, 0. 70) 6491568 2886495 

modes is equal to n/16, where n denotes the blocksize. All problems describe the same 
physical problem. In [17] more information on the background concerning resistive 
magnetohydrodynamic spectra in tokomaks can be found. The other parameters in 
the algorithm were chosen as follows: 

iter = 300; Nev= 15; tolJD = 10-6 ; kmin = 10; m = 30. 

Table 6 shows the results for the test problems I, II, and III. The third column 
shows the wall clock time (measured in seconds) required for the construction of the 
parallel block-tridiagonal LU decomposition. The numbers in parentheses show the 
Mfl.op rates, calculated by using the estimate (14) for the number of multiplications. 
For the block-tridiagonal LU decomposition we obtain a reasonable fraction of the 
theoretical peak performance, which is due to the level-3 BLAS routines that perform 
most of the work in this preprocessing phase. Problem I shows that when the number 
of processors increases from one to two, the wall clock time increases, also. This is 
due to the computation of the extra fill-in blocks in L and U which are generated 
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when the reordering technique for parallel processing is performed. Increasing the 
number of processors again by a factor two approximately halves the wall clock time. 
The reduction in wall clock time for p = 40 compared with p = 20 is very poor due to 
the fact that pure cyclic reduction has been applied, since N = p. When we calculate 
those speed-ups for Problems II and III, we see that a gain of 1.44 and 1.65 is reached, 
respectively. From the performance of more than 10 Gflop/s on 64 processors achieved 
for the largest problem, we may conclude that the block-tridiagonal LU decomposition 
is extremely suitable for this platform. However, we must realize that for growing 
block size the decomposition becomes very expensive. 

TABLE 6 
Wall clock times (in seconds) of several parts of the JD process on the Cray T3E for Problems 

I, II, and III. 

Problem p Time for the Time for Number of Sequential Total time 
LU decomposition JD process JD steps time triangular solves 

I 1 1.06 (184) 16.99 81 0.77 4.74 (67) 
I 2 1.15 (315) 10.07 85 0.81 3.92 (114) 
I 4 0.60 (750) 5.74 87 0.82 2.11 (244) 
I 5 0.52 (899) 4.78 80 0.78 1.76 (275) 
I 8 0.34 (1440) 3.62 84 0.85 1.23 (424) 
I 10 0.32 (1542) 3.23 79 0.74 1.17 (425) 
I 20 0.26 (2003) 2.70 79 0.72 1.02 (495) 
I 40 0.24 (2155) 2.44 71 0.76 0.91 (508) 

II 2 4.85 (300) 153.60 300 3.77 57.98 (109) 
II 4 2.44 (732) 72.59 300 3.77 29.29 (242) 
II 5 2.00 (930) 59.40 300 3.76 24.17 (299) 
II 8 1.27 (1547) 30.14 247 3.08 12.69 (485) 
II 10 1.07 (1864) 25.23 241 3.01 10.62 (571) 
II 16 0.70 (2908) 21.32 300 3.74 8.84 (868) 
II 20 0.62 (3305) 21.08 300 4.61 8.18 (942) 
II 32 0.45 (4654) 16.13 300 4.08 6.06 (1282) 
II 40 0.43 (4857) 10.26 198 2.41 4.01 (1281) 

III 10 13.52 (2355) 184.07 300 3.49 95.88 (630) 
III 16 8.81 (3708) 109.82 300 3.58 61.91 (991) 
III 20 7.28 (4525) 92.13 300 3.38 53.64 (1149) 
III 32 4.97 (6700) 39.38 196 2.19 23.87 (1700) 
III 40 4.42 (7565) 54.45 300 3.53 33.80 (1842) 
III 64 3.22 (10461) 39.50 300 3.59 25.41 (2461) 

The fourth column shows the wall clock time required for the JD process without 
the time required for preprocessing. Since a part of the algorithm is not performed 
in parallel (solution of the projected eigenvalue problem), we cannot expect linear 
speed-up. The fifth column gives the number of Jacobi-Davidson iteration steps. 
If this number is equal to 300, less than 15 eigenpairs have been found. In those 
cases it should have been better to choose a smaller value for Nev. For Problem II 
approximately 54 iterations were needed to obtain 14 eigenpairs. We emphasize that 
it is hard to predict how many eigenvalues can be found in the neighborhood of some 
target a. It appears that the first 12 eigenvalues of Problem III are easy to find within 
100 iterations, whereas 300 iterations are not sufficient to get 15 of them. 

The sixth column displays the time spent by solving the eigenvalue problem on the 
projected system. For an equal number of iterations, this time should be independent 
of the number of processors involved. However, we found deviating values for p = 
20 and p = 32 in the case of Problem II. We observe that the contribution of the 
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FIG. 5. The relative 2-norm of the residual (7) or (8) against the wall clock times (in seconds) 
of Problem II (first 14 eigenpairs) obtained on p = 16, 20, 32, 40 processors of the Cray T3E. 

sequential part to the total wall clock time is small, especially for large I![; l · 
The seventh column shows the total time spent in performing the triangular 

solves. Again the numbers in parentheses show the Mfiop rates, which have been 
calculated by using the estimate (15) of the number of multiplications. The level-2 
BLAS routines used for the triangular solves are significantly slower than the level-3 
BLAS routines used for the construction of Land U, because the ratio of computations 
and memory-to-processor data transfer is much more favorable for level-3 BLAS than 
for level-2 BLAS. Therefore, the Mflop rates are significantly lower than those obtained 
for the construction of Land U. The triangular solves in combination with one matrix­
vector multiplication with the matrix B form the expensive application of the operator 
Q = (LU)- 1 B. 

In general, the convergence history hardly depends on the number of processors. 
This is illustrated by Figure 5, which shows the history of Problem II for the first 14 
eigenpairs on 16, 20, 32, and 40 processors. In all cases, the"same" eigenvalues were 
found in the same order. The distance between the "same" eigenvalues is about 10-6 

as we might expect, since tolJ D = 10-6 . 

5.3. Analysis of the speed-ups. The computations in the JD algorithm can be 
divided into three parts: the solution of the (small) projected eigenvalue problems, the 
triangular solves with L and U, and a part consisting of matrix-vector multiplications 
with Band A-aB, inner products and vector updates. The CPU times per processor 
for these parts are denoted by t~~~, t~&, and ti~l, respectively; in case p processors are 
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used for execution. If we assume that the time for communication can be neglected 

and the inner products scale linearly, the expected speed-up s:t~ on p processors is 

t (l) + t(l) + t(l) 
S (p) _ seq LU lp 

(19) JD - (pJ t(p)' 

t(p) + ~ + .J.L 
seq szJ p 

in which si:;J is the expected speed-up for the triangular solves. In the following, we 

will show that an approximation of si:;J, p > 1, is given by (Np= 11¥1) 

(20) 
for Np> 1, 

for NP= 1. 

If the JD code executes on one processor, the sequential block-tridiagonal LU approach 
is applied and in that case the number of multiplications in the triangular solves is 
approximately 3N n 2 • Almost every multiplication can be combined with one addition, 
hence the wall clock time required on one processor is approximately 3Nn2tmul, in 
which tmul is the time required for performing a complex multiplication combined 
with an addition. On p processors, the parallel direct solver (SOL)DDCR is applied. 
The first part of the triangular solves corresponds to the solution of N - p + 1 block­
tridiagonal systems, which scales linearly. The number of multiplications in this part 
is approximately 3(N - p + l)n2w, in which w is the number of multiplications in 
the DDCR approach divided by the number of multiplications in the block-tridiagonal 
LU approach. From (15) it follows that w ~ (5 - ~ )/3. Hence the wall clock time 

required for the domain decomposition part is approximately (3w(N -p+ 1 )n2 tmul) /p. 
The second part deals with cyclic reduction. The wall clock time required for this 

part is approximately 5n2tmul multiplied by the number of steps in cyclic reduction. 
In case NP > 1, p - 1 processors perform the cyclic reduction in pog2 p - 1 l steps. 
Otherwise, in the case of pure cyclic reduction (Np = 1), the process is performed 
on p processors in llog2 p J steps. The expressions in (20) are obtained by dividing 
the approximate wall clock time on one processor by the sum of the wall clock times 
required for the first and second part of the triangular solves on p processors. 

Figure 6 shows both the predicted Hpeed-ups by (19) and (20) and the measured 
speed-ups obtained from Table 6. Since this table does not contain the information 
for p = 1 for Problems II and III, the execution time must be approximated by, for 
instance, 

T(l) = t~~~+si'.i~ xtY'{,+pxti:) for both p = 2 (Problem II) and p = 10 (Problem III). 
(21) 
The large variation in the number of JD step8 has been balanced out by dividing t~~~1 , 
t~J, and ti:l by those numbers. For Problem I the predicted speed-up S:J'~ is a little 
too high for p large compared with the measured speed-up. This is caused by the 
fact that the simple prediction model as811mes that the inner products scale linearly, 
which is not quite true for small vectors. 

Notice that the speed-ups become higher when the problem size grows, which 

could be expected. If we increase the order of A and B, t~~~ hardly changes, when we 
keep the order of the projected systems fixed. Accordingly, the communication time 
due to inner products remains equal. However, the computational work expressed by 

tY'(1 and t~;) will increase with the order of the eigenvalue problem. 
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FIG. 6. The predicted (solid line) and measured speed-up ( "o ") of the block-tridiagonal 
LU factorization and the JD algorithm for Problems I, II, and III, respectively. 

6. Conclusions. We have studied the JD method for the parallel computation 
of a few selected eigenvalues of large generalized eigenvalue problems arising in the 
stability investigation of tokamak plasmas. The method has been combined success­
fully with a parallel complete block-tridiagonal LU decomposition, which appears to 
be robust because pivoting is used. However, in order not to disturb the block struc­
ture of the matrix, the search for pivot elements is restricted to the blocks on the 
main diagonal. Numerical experiments performed on a Cray T3E demonstrate that 
this method parallelizes well. 

Most other ingredients in the JD method like the matrix-vector multiplications, 
vector updates and inner products parallelize very well. Only the construction and 
solution of the small projected eigenvalue problems in the JD method do not par­
allelize. However, the order of these systems is kept small and is independent of 
the problem size. Hence for large applications, the total time spent in solving the 
projected systems is small compared with the time spent in the parallel parts of the 
method. 

We observe that for large problems the measured speed-up corresponds quite well 
with the prediction. More important is that the speed-up for large problems is much 
higher than for smaller ones; therefore we may conclude that the JD method is very 
well suited for parallel execution. 

The main reason to study implementations on distributed memory machines, like 
the Cray T3E for large eigenvalue problems, is the memory bound of shared memory 
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machines. If n and N are large ( n » m and N » p), then our parallel implementation 
of JD requires approximately 128Nn2 bytes of memory. Our sequential implementa­
tion requires approximately 92Nn2 bytes. The total amount of memory of the Cray 
T3E at HPaC, Delft, is only slightly larger than the 8 Gbytes of main memory of the 
Dutch National supercomputer with shared memory, a Cray C90 with 12 CPUs at 
SARA, Amsterdam. Hence on the current Delft configuration, we can solve problems 
of approximately the same size on the Cray C90. Recently, we got the opportunity to 
execute our code on a 512 processor Cray T3E, which enables us to examine larger 
eigenvalue problems (see also [12]). 

We remark that the JD method is applicable for generalized eigenvalue problems 
Ax = >.Bx in which the action of the inverse of A, B, or A - aB for a target a 
is not available. The projections included in the correction equation guarantee a 
proper update of an approximate eigenvector in the "right" direction. When we 
started our research, we hoped to be able to exploit the sparsity pattern within the 
block-tridiagonal structure of A - aB, by using an incomplete LU decomposition as 
a preconditioner for GMRES (m) to solve the correction equation approximately. If an 
incomplete decomposition would have been used, the transformation described by (2) 
would not have been possible and in that case the application of JD applied to the 
generalized eigenvalue problem would probably have been more efficient than Arnoldi's 
method. However, it turned out to be more efficient to construct a complete block­
tridiagonal LU decomposition of A - a B, because the block tridiagonal structure of 
this matrix can be exploited. Moreover, since the decomposition is performed on a 
block level, BLAS routines can be used, which guarantees an efficient implementation 
per processor. We therefore end up with the standard eigenvalue problem (2) in which 
the spectrum of interest is also the dominant part of the spectrum. 

For this special eigenvalue problem it is not efficient to use several GMRES steps for 
the correction equation that appears in the JD method. Four variants have been ex­
amined and the best results were obtained when the iteration process starts with some 
Arnoldi-like steps, until the residual is sufficiently small. The process can be accel­
erated by applying a (cheap) preconditioner within GMRES(m). However, a reduction 
in the number of Jacobi-Davidson steps does not guarantee a reduction in execution 
time. From numerical experiments, it appears that the best choice for minimizing the 
wall clock time is to take z = r· in step 4 of the algorithm in Figure 2. If we should 
use a (very) good preconditioner and solve the correction equation exactly, then the 
convergence to the next eigenvector will be quadratic (see [15, Theorem 3.2]). For this 
special case, it is probably more efficient to use Arnoldi's method than JD. However, 
the difference in efficiency will not be large, because the most expensive operation in 
both JD and Arnoldi's method is the matrix-vector multiplication with Q in (2) and 
both methods need approximately the same number of matrix-vector multiplications. 
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