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ITERATIVE DEFECT CORRECTION AND MULTIGRID ACCELERATED 
EXPLICIT TIME STEPPING SCHEMES FOR THE STEADY 

EULER EQUATIONS* 

MARIE-HELENE LALLEMANDt AND BARRY KOREN:): 

Abstract. Analytical and experimental convergence results are presented for a novel pseudo-unsteady 
solution method for higher-order accurate upwind discretizations of the steady Euler equations. Comparisons 
are made with an existing pseudo-unsteady solution method. Both methods make use of nonlinear multigrid 
for acceleration and nested iteration for the fine-grid initialization. The new method uses iterative defect 
correction. Analysis shows that it not only has better stability but it also has better smoothing properties. 
The analytical results are confirmed by numerical experiments, which show better convergence and efficiency. 
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1. Introduction. 
1.1. Equations. The equations considered are the steady, two-dimensional, com

pressible Euler equations 

( 1.1) 

where 

( 1.2) W=(~} 

aF(W) aG( W) 
---+ =0 ax ay ' 

( 
pu ) u2+p 

F( W) = p , ( 
pv ) pvu 

G(W)= ? • 

pv-+p puv 

pu(e+ p/ p) pv(e+p/p) 

Assuming a perfect gas, the total energy e satisfies e = p / ( p ( y - 1)) + !( u 2 + v2 ). The 
ratio of specific heats y is assumed to be constant. 

1.2. Spatial discretization. The computational grid is obtained by a hybrid finite 
element-finite volume partition. A (possibly unstructured) finite element triangulariz
ation is used as the basic partition. A cell-centered finite volume partition is derived 
from the finite element partition by connecting the centers of the triangle sides in the 
manner illustrated in Fig. 1. The finite volume grid gives us the easy possibility of 
grouping together the nodes associated with contiguous finite volumes. If we take 
unions of control volumes this results in a new coarser mesh. Repetition of this operation 
gives coarser and coarser meshes. For details about this hybrid way of constructing 
finite volume grids, see [ 1]. For applications in single-grid Euler and Navier-Stokes 
flow computations, we refer to [5] and [23], respectively. For details about the 
coarsening process (multilevel gridding), we refer to [ 16]. 
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FIG. 1. Finite volume C;. 

On the finest grid, for all finite volumes C;, i = 1, 2, ... , N, we consider the integral 
form 

(1.3) f,w (F( W)nx + G( W)ny) ds = 0, 

' 

i = 1, 2, ... , N, 

with nx and ny the x- and y-component of the outward unit normal on the volume 
boundary aC;. For the Euler equations, because of their rotational invariance, (1.3) 
may be rewritten as 

( 1.4) ,L T- 1(nx, ny)F( T(nx, ny) W) ds = 0, Tac1 

i= 1, 2, ... , N, 

where T(nx, ny) is the rotation matrix 

0 

(1.5) 
-n.v 
0 

For simplicity, we assume the flux to be constant across each bisegment aC;i of the 
boundary aCi> where aCii = aC; n aci is the common boundary between the neighboring 
volumes C; and Ci (Fig. 2(a) ). Hence, aC; = U a Cu ,j = 1, 2, ... , n;, with n; the number 
of neighboring volumes Ci. (In the example of Fig. 1; n; = 5.) Since we have assumed 
that the flux is constant along acif, it is equal to the flux across the straight segment 

ac,,; ac.. 
J \ l) 

---~\-----j 

(a) (b) 

FIG. 2. Segments in between.finite volumes C; and Ci. (a) Bisegment aC,i. (b) Straight segment aC,i. 



ITERATIVE DEFECT CORRECTION AND TIME STEPPING 955 

acii connecting the two extreme points of aCii (Fig. 2(b) ). If we introduce the outward 
unit normal fiij = ( (fix) ij , ( fiy) ij) T along each a Cij, j = 1, 2, , , . , ni> With the assumption 
of a constant flux, the contour integral (1.4) can be rewritten as the sum 

n, 

(1.6) L T"i/F(TijW;j)lij=O, i=l,2, ... , N, 
j=l 

where Tu= T((iix)ij, (ii.v)ii), where Wii is some value of W depending on for instance 
W; and "'J, and where /ij is the length of the segment acij. 

Crucial in (1.6) is the way in which the cell face flux F( f;i Wu) is evaluated. For 
this we use an upwind scheme that follows the Godunov principle [8], which assumes 
that the constant flux vector along each segment acij is determined only by a uniformly 
constant left and right cell face state ( W~ and Wij). The one-dimensional Riemann 
problem, which then arises at each cell face, is solved in an approximate way. With 
this, (1.6) can be further written as 

( 1.7) i= 1, 2, ... , N, 

where <I> denotes the approximate Riemann solver. Several approximate Riemann 
solvers exist (see, for example, [20] and [22]). In this paper, without any particular 
motivation, we restrict ourselves to the application of Osher's approximate Riemann 
solver [20]. 

The flux evaluation, and so the space discretization, may be either first- or 
higher-order accurate. First-order accuracy is obtained in the standard way; at each 
finite volume wall, the left and right cell face state, which must be inserted in the 
numerical flux function, are taken equal to those in the corresponding adjacent volumes 

( l.8a) 

( l.8b) 

W'.i= W;, 

W(;="']. 

Whereas the first-order accurate discretization is applied at all levels, the higher-order 
discretization is applied at the finest grid only, using the finite element partition existing 
there. Higher-order accuracy is obtained with a MUSCL approach [18]. Here, W~ 
and Wij are derived from linear interpolations. On each volume Ci around the 
triangle-vertex i an approximate gradient, denoted by (V W) i, is derived by integrating 
the gradient of the linear interpolant of W over all the triangles that have i as a vertex: 

( l.9a) _ [(aw) (aw) JT 
(V W)j = ax ;' ay i ' 

with 

(l.9b) (a W) =Jsupp(iJ (a W/ax) dx dy' 
ax i f.upp(i) dx dy 

( 1.9c) (aw) =f.upp(i) (aW/ay) dxdy. 
ay i Lupp ui dx dy 

Here, supp (i) denotes the union of triangles which have i as a vertex. Then for each 
pair of neighboring vertices (i,j) we compute the extrapolated values 

( 1.1 Oa) 

(l.lOb) 

l I - -;--, 
Wii= W;+2(VW);· 1J, 

Wij = "'}-~(V W)j · Tf. 
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On equidistant grids, this higher-order accurate discretization can be formally proved 
to be second-order accurate. The proof is still valid for nearly equidistant grids. In 
this paper we do not analyze orders of accuracy; the discretization is already known. 
It has been described in more detail in other papers; see, for example, (7]. 

In order to ensure monotonicity, while preserving the higher-order accuracy in 
smooth flow regions, the higher-order values W~ and Wij according to (1.10) can be 
replaced by limited values that do not affect the order of accuracy. 

1.3. Existing solution method. To solve the steady discretized system (1.7), we 
consider the unsteady, semidiscrete system of ordinary differential equations 

( 1.11) 
dW-
dt '=R;, i= 1, 2, ... , N. 

The natural choice for Ri is 

-1 n, --1 - I - r 
(l.12) Ri=- 2: Tij <P(TijWij, TijWij)lu, 

Ai j=I 

where A; is the area of finite volume Ci. 
As an upwind analogue to Jameson's central method (13], in (16] and (17] an 

explicit four-stage Runge-Kutta (RK4) scheme is applied for the temporal integration 
of (1.11)-(1.12). The benefits of the upwind analogue are evident: better shock captur
ing, greater robustness, and no tuning of explicitly added artificial viscosity. Similarly, 
just as in [ 13], in [16], multigrid is applied for accelerating the solution process. 
Furthermore, just as in (13], time accuracy is not pursued, and optimal Runge-Kutta 
coefficients are applied to get good stability as well as good smoothing properties. It 
seems that the solution method presented in [16] is already competitive with Jameson's 
method, without the introduction of a further acceleration technique such as, for 
example, residual averaging. 

It is interesting that the upwind analogue allows a further efficiency improvement 
by exploitation of the direct availability of the corresponding first-order upwind 
discretization, with its better stability and smoothing properties. Since a first-order 
central discretization is not readily available, a standard central method does not easily 
allow this improvement. 

2. Novel solution method. 
2.1. Explicit time stepping. Compared with the existing solution method, the new 

solution method only uses a more extensive right-hand side in the explicit time stepping 
scheme. The extension consists of two first-order upwind defects; one which is evaluated 
at each stage of the multistage scheme, and another which is kept frozen during a 
fixed number of v, RK4 time steps (v1 !;:;;1), and which compensates for the other 
first-order defect by its opposite sign. Furthermore, significantly, the higher-order defect 
is kept frozen as well during v, RK4 steps. The four-stage time stepping scheme is 
written as 

(2.la) 

(2. lb) 

(2.lc) 

W,l·4 ·- W,l·0 • - 1 2 N i .- i' l- ' , ... , 

for v from 1 to v, do 

i= 1,2, ... , N 

for k from 1 to 4 do 
W,~,k := W~·o+ t:..t-akR~·k-1 

J l l ' 

end do 

enddo 

i= 1, 2, ... , N 
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Here, v is the time step number, k the stage number, !itj the local time step, and ak 

the kth Runge-Kutta coefficient. In the existing higher-order method the right-hand 
side R7·k-i is 

(2.2) R~,k-1= -1 ~ y:-:1<f>(f..(W1)"·k-1 T-.. (W')"·k-1)/ 
I A. .'-' IJ I) lJ ' I) ij ij' 

I J=I 

"th ( W 1 )"·k-i d (W')"k-l h" h d w1 u an ij • 1g er-or er accurate. So, nothing is kept frozen in the 
existing method's right-hand side. For the novel method, we take 

(2.3) 

-1 "1 
R"·k-1 __ " y--1 (n-.(T- W"k-1 T- w•k-1) n-.( - .. ,.(Jo - u,.()o 

i -A. _L. ii -v u i' , u / --v Tuwi·,Tuw/) 
I J=I 

+ <f>( f;j( w:j)o,o, Tu( Wij)o·o) )lu, 

where only ( W~) 0•0 and ( Wij) 0•0 are higher-order accurate. The frozen first-order cell 
face states ( w?·0 and wJ·0 ) and the frozen higher-order cell face states (( W~)0•0 and 
( Wij) 0 •0 ) are updated in an additional outer iteration, which will be explained in the 
next section. In the following, for convenience, W"·4 will also be denoted as 
WRKiv, Ro,o, W°·o). 

2.2. Complete solution method. The novel solution method is of defect correction 
type [2]. Though defect correction iteration is not as necessary for a pseudo-unsteady 
solution method as it is for a solution method that directly tackles steady discretized 
equations [12], [14], [15], it may lead to an improved efficiency. In§ 3, we will show 
that the defect correction method proposed here can take advantage of a greater stability 
domain (larger local time steps) guaranteed by the first-order defects in the right-hand 
side. Furthermore, we will show that with multigrid as an acceleration technique, 
advantage can also be taken of better smoothing properties. 

The new solution method can be divided into two successive stages. The first stage 
is nested iteration [10, p. 98], also called full multigrid (FMG) method [4], which is 
applied to obtain a good initial solution on the finest grid. The second stage is an 
iterative defect correction (IDeC) method [2], [10, p. 282], which is used to iterate until 
the higher-order accurate solution is obtained. The initial solution for the defect 
correction process is the solution obtained by the nested iteration. The inner iteration 
of both stages is a nonlinear multi grid method [ 10, p. 181 ], viz. the full approximation 
storage (FAS) algorithm [3], [4]. In the following sections we discuss successively: 
the nested iteration(§ 2.2.1), the iterative defect correction method(§ 2.2.2), and the 
building block of these two iterations: the nonlinear multigrid iteration (§ 2.2.3). 

2.2.1. Nested iteration. To apply multigrid we construct a nested set of grids. Let 
0 1, 0 2 , ••• , OL be a sequence of nested grids with 01 the coarsest and OL the finest 
grid. (For a description of the coarsening rule applied here, we refer to [16].) The 
nested iteration (FMG) starts with a user-defined initial estimate of W1 : the solution 
on the coarsest grid 0 1. To obtain an initial solution on 0 2 , the solution "On 01 is first 
improved by a few FAS cycles. (The number of FAS cycles that is applied in each 
FMG step can be either fixed, vFAS =constant, or dependent on the residual.) After 
this, the improved solution W1 is prolongated to 02. The process is repeated until OL 
has been reached. 

The prolongation of the solution can be the simple piecewise constant prolongation 
Il_ 1 , 2 ~I~ L, or it can be a smoother one. If we denote the area of finite volume Cl 
at level I by A:, and the number of neighboring volumes CJ of Cl by nL a smooth 
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prolongation operator Jl-1 is defined by 

I )) = A:Ui-1(1-Vi-1)); + IJl1 AJUL1( Wi-1))j 
(2.4) (.~1-1CWl-1 ;- A:+IJl1 Aj ' 2~/~L. 

we note that since Jl_ 1 strictly obeys the physical conservation laws by the prolongation 
of cell-integrated amounts of mass, momentum, and energy, g:_ 1 is strictly conservative 

as well. 

2.2.2. Iterative defect correction. Let .:F~( WL) == 0 and &Ii!( WL) = 0 denote the 
first-order and higher-order discretized Euler equations, respectively, on the finest grid. 
Then, IDeC can be written as 

(2.5a) 

(2.Sb) 

&Ii~( w<l,) = 0, 

.'ffeU Wl.) =&Iii( Wl.- 1)- ~( Wl.- 1), n=l,2, ... ,n1oec, 

where Wi. is the solution yielded by FMG. From (2.5b), it is immediately clear that 
at convergence ( Wl. = w1- 1 = Wd, we have solved the higher-order discretized Euler 
equations ~( Wd = 0. Therefore, we emphasize that the present defect correction 
method is not mixed defect correction iteration [ 11]. (A mixed defect correction method 
would yield a solution whose accuracy is not well defined; its solution would be a 
vague mixture of the first-order and higher-order accurate solutions.) Though both 
theory [6] and practice [6] show that IDeC gives poor convergence of the residual, 
theory [9], [10, p. 282] and practice [12], [15] also show that for smooth problems, a 
single IDeC cycle (nm.c = 1) is sufficient to obtain second-order solution accuracy. 
Furthermore, for solutions with discontinuities, a few IDeC cycles (nrnec"" 5) may 
improve the accuracy to a sufficient extent [12], [14]. In summary, for both smooth 
and nonsmooth flow problems, numerical experiments with IDeC show this 
phenomenon of slow convergence but of fast solution improvement [6], [12], [14], [15]; 
a phenomenon that is understood by theory [6], [9], [10, p. 282]. 

In each IDeC cycle we must solve a first-order system with an appropriate 
right-hand side. From [14] it is known that it is inefficient to solve this system very 
accurately. With a steady approach, application of only a single FAS cycle per IDeC 
cycle appears to be the most efficient strategy in [14]. In this paper, with our unsteady 
approach, we will re-investigate what is the most efficient number of FAS cycles per 
IDeC cycle (see § 3 ). 

2.2.3. Nonlinear multigrid iteration. Let us denote by ( W/) V<v""'"""" 1( vFAs, R1, w?) 
the solution obtained on level /, after vFAs FAS V( vpre, vpos1)-cycles have been applied 
to &Ii)( Wj) = R,, with initial solution w?. A single FAS V( Vpre, vP0 , 1)-cycle on level 
I, 1 ~I~ L, is then recursively defined by the following successive steps: 

(i) Improve on the grid 0 1 the initial solution W? by applying vpre RK4 steps to 

(2.6) .'ffe)( W/) = R,. 

Let us denote the resulting solution ( Wj) RK4 ( vP,•• R1, wJ) by \Vi. 
(ii) Coarse-grid correction step: Approximate on the underlying coarser grid !l 1_ 1 

the solution of 

(2.7a) 

(2.7b) 

Sli)_1( Wi-1) = R1-i. 

I /-1 - ~l-1 I -R1-1=&1i1-1CI1 (W1))-l1 (Sli10.v/)-R1), 

by applying a single FAS V(vpr•• vP0 • 1}-cycle on level l-1. Let us denote the resulting 
approximate solution ( WJ_1) v(vp,..vp0jl, R1_ 1, 1:-1( W/)) by W1_ 1 • 
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(iii) Improve the solution on !11 by first correcting the approximate solution W, 
obtained in step (i): 

(2.8) W,:= W1+I!-1(~Wi-1), 
where~ Wi- 1 = W,_ 1 - r:- 1 W, is the result of the coarse-grid correction step (ii). Further
more, improve W1 by applying llpost RK4 steps to (2.6): Wi := ( W1) RK4 ( llros" R1, W, ). 

In the FMG-stage in step (i), we have on each starting (locally finest) grid 
111, 1 ~I~ L: R1 = 0. Hence, the initial solution for IDeC as obtained by FMG is at 
most first-order accurate. In the IDeC stage the starting grid is always the globally 
finest grid OL, and there we have: RL = $'~( WL)- .9'1( WL). This higher-order right-hand 
side is kept frozen during vFAs FAS V(vpre• 11P0 ,,)-cycles per IDeC cycle. Note that 
with the novel method, we evaluate the higher-order operator at most once per FAS 
V( vpre, vpost)-cycle, instead of 4 x ( vpre + 11r0 ,,) + 1 times per FAS V( vrre, 11P0 ,,)-cycle with 
the existing method. 

In step (ii), note that in the RK4 scheme, the complete right-hand side R1_ 1 is 
kept frozen. Just as the prolongation operator r:_ 1, the restriction operator 1:- 1 is such 
that it also exactly obeys the conservation of cell-integrated mass, momentum, and 
energy. The restriction operator j:- 1 restricts the defect in the standard way; by 
summation of mass, momentum, and energy defects over fine-grid cells whose union 
is a coarse cell. On the coarsest grid (!1 1), step (ii) (the coarse-grid correction step) is 
skipped of course. 

To illustrate the structure of the complete novel solution method, we give two 
examples of a complete higher-order solution schedule in Fig. 3. The schedule in 
Fig. 3(a) is fixed by L = 2, vrre = 1, llpost = 2, vFAS = 2, nmec = 2. The schedule in Fig. 3(b) 
is fixed by L = 3, vpre = vpost = 1, vFAS = 1, n11JeC = 3. In both figures, the marker C> 
denotes a single RK4 step (over !1 1) preceding a coarse-grid correction, whereas the 
marker <l denotes a single RK4 step after the coarse-grid correction. The marker 0 
denotes the computation of RL = .9'i( WL)- %1( Wd. Note that the corresponding 
first-order variants of both schedules (i.e., the variants without any marker 0) are 
simply obtained by taking nrnec = 0. 

!!, 

I 
i< 

FMG-stage 

FMG-stage 

(b) 

IDeC-stage 

(a) 

IDeC-stage 
>I 

FIG. 3. Examples of complete solution schedule. (a) L = 2, "pre= 1, vP0 " = 2, "FAS= 2, n1 oec = 2. (b) L = 3, 
Vpre = Vpost = 1, VFAS = 1, nlDeC = 3. 
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2.3. Analysis. To analyze the convergence properties of the IDeC method pro
posed, we consider the unsteady, linear, scalar, one-dimensional model equation 

aw aw 
(2.9) -+c-=0 c>O. at ax ' 
For the spatial discretization, we consider a grid with a uniformly constant mesh size 
h. Then we have, for fixed time t, for the first-order upwind discretization, 

(2.10) aw -w;-~ + w;+ O(h). 
ax 

As a higher-order upwind discretization, we take the Fromm scheme (i.e., van Leer's 
K-scheme [ 19] with K = O), which leads to 

(2.11) 
aw Wi-2-5W;-1+3w;+W;+1 (h2) 
-= +O . 
ax 4h 

For these two spatial discretizations and the existing explicit solution method, the 
following Runge-Kutta coefficients can be derived by maximizing the maximally 
allowable CFL number: a 1 = 0.11, a2 = 0.2767, a 3 = 0.5 (see [ 17]). Consistency requires 
a4 = 1. The optimization can be redone for our new solution method. However, in the 
next section we will show that if we simply omit the optimization, the new method 
already yields both better stability and better smoothing with the ak 's given above 
(i.e., the ak's found for the existing higher-order method). 

2.3.1. Stability analysis. First we will perform a stability analysis for IDeC with 
an explicit RK4 scheme as the inner solution method. Let us denote the steady-state 
analogue of (2.9) by 

(2.12) 
dw 

Aw=cdx" 

Assuming that we have periodic boundary conditions, we denote by A 1 and A+ the 
first-order and higher-order accurate, linear operators, approximating A. Then, the 
IDeC process to solve the discrete linear system 

(2.13) 

can be written as 

(2.14a) 

(2.14b) 

A+W=O 

A 1 W°=O, 

A 1 W" = (A 1 -A+) W"- 1, n = 1, 2, ... , nIDec. 

where A 1 denotes the matrix resulting from the first-order discretization. Assuming A 1 

to be invertible, the corresponding amplification matrix M reads 

(2.15) M=l-Al 1A+. 

From (2.15) it is clear that to have convergence of IDeC, the spectral radius of M 
should be smaller than one. It is also clear that the better the resemblance between 
A1 and A+, the faster the convergence of IDeC. (Also important for good efficiency 
of IDeC is, of course, that A 1 can be inverted in an efficient way.) 

Instead of solving each W" from (2.14b) exactly, we approximate it by means of 
the explicit RK4 scheme (2.1) with 

(2.16a) W°·o= wn-1, 

(2.16b) R"·k-i =-(A1 W"·k- 1 -(A 1 -A+) w0•0). 
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With v the number of RK4 steps h" h 11 · · · 
,. . . w 1c a ows us to define an (approximate) solution 

W , we ~ow 1?vestigat_e how the corresponding amplification matrix M,. is related to 

the amphficat10n ~atnx M, which corresponds with the exact solution of W" from 
(2.14b). If we consider the approximate solution W''·4 , for v = 1 we have 

(2.17) W 1A=(P+Q(A 1 -A+))W" 1, 

with 

(2.18a) 

(2.18b) 

P = P(-LitA 1), 

Q=I-A) 1P, 

(2.18c) P(Z) =I+ Z + a 3Z 2 + a 3a 2Z 3 + a 3a 2 a 1Z 4 . 

We can easilyverifythat A, Q = QA 1 , and that A) 1 P = PA) 1• Hence, for M 1 we can write 

(2.19) M 1 = P + Q(A 1 -A+). 

For v > 1, we can easily find the recurrence relation 

(2.20) 

which leads to 

(2.21) 

THEOREM. Let II· II be some matrix norm. If JI Pll < 1 and if P is invertible, then 

lim •·-·x· M" = M. 
Proof For all v> 1, I+ P+ P 2 + · · · + P''-· 1 = (I-P)- 1(!-P''). If llPll < 1, then 

lim,._"" (I - P)- 1(!- P") =(I - P)- 1• Hence, 

Jim M,. =(I- Pr 1Q(A1 -A+)= (A1 Q)- 1Q(A, -A+) 
,,_<.'.'() 

=A) 1Q- 1 Q(A 1 -A+)=M. 0 

Local mode analysis, applied to (2.14b) with A 1 and A+ according to (2.10) and 

(2.11), respectively, yields for the maximally allowable value of 1r= c!::,.t/ Lix, a-,.=z = 2.21 

and a-lim ,,_,,"' = 2.12. Note that the difference between both values is very small. For an 

arbitrary v it is safe and still efficient to take u = 2.12. The value a= 2.12 is lower than 

that for the existing method applied to the first-order upwind system (a-= 2.5105), but 

higher than that for the existing method applied to the higher-order system (a= 1.9186 ). 

For a= 2.12 and for increasing v, Fig. 4 shows the behavior of the convergence 

factorµ,, versus the frequency 8 in the range [O, 7T ], for the new higher-order method. 

Already for v = 1, it appears that the convergence behavior of the new higher-order 

method is better than that of the existing higher-order method (Fig. 5). Clearly visible 

for increasing v is the rapid improvement of the smoothing (i.e., the convergence in 

the range e E [ 7T / 2, 7T]) and the tendency towards coincidence of the curves. The curves 

converge to the one that corresponds with the exact solution of (2.14b ): µ,=~sin e, 8 E 

[O, 7T]. In the next section we will further investigate the smoothing properties of IDeC. 

2.3.2. Smoothing analysis. Local mode analysis yields that with the new method, 

optimal smoothing of the highest frequency, e = 7T, is obtained for a= 1.8921 and 

a= 1.4869. Just as for a= 2.12 (Fig. 4), Figs. 6 and 7 give the convergence behavior 

for a= 1.8921 and a= 1.4869 with increasing v. For both values of a the smoothing 

is clearly better than for a= 2.12. For a-= 1.4869 it is best. 
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In Figs. 8, 9, and 10 we show the smoothing behavior for varying a, the 8-range 
considered being [ 7T /2, 7T ], and the quantity µ, along the vertical axis being the 
maximum smoothing factor found over this range. We consider successively: the 
first-order method (Fig. 8), the existing higher-order method (Fig. 9), and the new 
higher-order method (Fig. 10). When we compare the results of the existing higher-order 
method and the new higher-order method (Figs. 9 and 10), we find that the new method 
clearly has better smoothing properties. The new method appears to have even better 
smoothing properties than the first-order method (compare Figs. 8 and 10). Note in 
particular that the a-range over which its smoothing is good is much wider. 
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3. Numerical results. In order to verify the previously predicted better stability 
and convergence properties of the novel higher-order method, we compute the standard 
transonic channel flow from [21] with the two-dimensional Euler equations. Three 
finest grids are considered: a 161-vertices grid (Fig. 11), a 585-vertices grid that is about 
twice as fine (see [16]), and a 2225-vertices grid that is about four times as fine. The 
corresponding solution schedules applied are a four-, five, and six-level schedule 
(L=4, 5, 6), respectively, all with vpre= Vpost= 1, for all/. 

In Figs. 12(a)-12(c) we present various convergence histories as obtained for 
L = 4, 5, 6, respectively. The convergence results presented are those of (i) the first-order 
discretized Euler equations solved by means of the nonlinear multigrid iteration (dotted 
lines), and those of higher-order discretized Euler equations solved by means of (ii) 
the existing higher-order method (dashed lines), and (iii) the novel higher-order method 
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(solid lines). In all three graphs, the residual considered is the Lrnorm of the error 
in the conservation of mass over all the finest-grid cells. Furthermore, in all three 
graphs the number of cycles indicated along the horizontal axis is (i) the number of 
FAS cycles in case of both the first-order method and the existing higher-order method, 
and (ii) the number of IDeC cycles in case of the new higher-order method. Note that 
with the new higher-order method, for vr--As = 2, 5, 10 the number of inner FAS cycles 
is, respectively, 2, 5, and 10 times larger than the number of indicated IDeC cycles. 
(Only for vFAs= l does the number of FAS cycles equal the number of IDeC cycles.) 
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FIG. 11. Channelfrom [20], with 161-vertices grid. 
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All convergence histories start at the end of the FMG stage (Fig. 3). In agreement with 
the theoretical results found in § 2.3, for all four values of vFAS (so also for vFAS = 1), 
the new method does indeed give a better convergence than the existing higher-order 
method. For decreasing mesh width, the convergence of the new higher-order method 
becomes even relatively better than that of the first-order method. (For all four values 
of vFAS under consideration, the corresponding convergence histories in Fig. 12 show 
a better grid-independency than those of the multigrid method applied to the first-order 
discretized equations.) This better performance is probably due to better smoothing 
in the new method. (In § 2.3, by model analysis, we have found that the new method 
has better smoothing properties than the first-order method.) 

As for the actual order of accuracy, if we took the converged higher-order accurate 
solution obtained on the 2225-vertices grid as the reference solution, we measured 
local orders of accuracy in the range [ O(h1.4 ), O(h 2·3)] for the solutions on the coarser 
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grids (the 585-vertices grid and the 161-vertices grid). The global order of accuracy 
appears to be almost O(h 2). 

Finally, the important question of which of the various higher-order methods is 
the most efficient still remains. To answer this question, we give the higher-order 
efficiency histories in Figs. 13(a)-13(c). The indicated computing times have been 
obtained on a Sequent. (No efforts have been undertaken to make efficient use of the 
parallelization features of the machine. What interests us here is the relative efficiency 
of the higher-order methods only.) Since the sizes of the three grids considered are 
related to each other by approximately a factor 4, we have related the scales along the 
horizontal axes accordingly. Concerning the relative efficiency of the novel higher-order 
method, for the four values of vFAs considered, it appears that for all three grids the 
best efficiency is obtained with vFAs = 1 (so just as in [14], for the schedule with only 
a single FAS cycle per IDeC cycle). Furthermore, it is significant that the novel method 
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with vFAs = 1 appears to be more efficient than the existing higher-order method. Due 
to the better grid-independency of the novel method, this relatively better efficiency 
becomes even increasingly better with decreasing meshwidth. 

4. Conclusions. Fully implicit solution methods for higher-order discretized 
equations may strongly benefit from iterative defect correction when these systems of 
discretized equations are not easily invertible, which is often the case with higher-order 
accurate discretizations. Fully explicit solution methods may also profit from iterative 
defect correction. Here the profits are faster convergence and higher efficiency. The 
defect correction method appears to lead to greater stability (and hence to greater 
robustness) than the existing (standard) explicit method. Compared to the existing 
explicit method, it possesses remarkably good smoothing properties, in fact even better 
than the first-order method. Last but not least, its convergence rate appears to be 
grid-independent. For upwind discretizations, the "price" which has to be paid for 
using defect correction iteration, a slightly more complex algorithm, is negligible, 
because of the direct availability of an appropriate approximate operator; the first-order 
upwind operator. 
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