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ABSTRACT 

In applications, Rosenbrock-type Runge-Kutta methods for stiff differen­

tial equations usually require one Jacobian matrix evaluation and one 

matrix factorization per integration step. The costs of these computations 

usually form a large proportion of the total computation cost of one step. 

This paper investigates the use of time-lagged Jacobian matrices with the 

aim of reducing the overhead costs. The idea is to integrate with a 

fixed Jacobian, computed at some previous step, and to maintain the order 

of consistency by updating the scalar integration parameters. 
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1. INTRODUCTION 

Let 

( 1. 1) 

represent the initial value problem for a stiff system of ordinary 

differential equations, written in autonomous form, of which the real vec­

tor function f{y) is sufficiently differentiable. In this paper we are 

concerned with the numerical integration of (1.1) by means of a Rosenbrock­

type Runge-Kutta method. These particular Runge-Kutta methods are well-

known for the possibility to be A-stable and to be of high order. Since 

the original paper of Rosenbrock [15], several schemes have been proposed 

in the literature. All these schemes require at least one evaluation of 

the Jacobian matrix J(y) = 3f(y)/3y and one matrix factorization at each 

integration step. Since the costs of these computations usually form a 

large proportion of the total computation costs of one step, an interesting 

question is whether the costs, or the number of J(y)-evaluations and 

LU-decompositions can be reduced without a serious loss of accuracy and 

stability. Bearing this question in mind Steihaug & Wolfbrandt [16] 

investigated schemes based on non-exact Jacobians. The purpose of this 

paper is to investigate the application of exact, but time-lagged Jacobian 

matrices. The idea is to integrate, for some finite number of steps, with 

a fixed LTacobian computed at some previous time step and to maintain the 

order of consistency by updating the scalar integration parameters. 

Herewith we thus avoid a decrease in the order of consistency of the 

Rosenbrock method, which usually occurs as soon as the J{y)-evaluation is 

omitted. From a theoretical point of view the use of time-lagged Jacobian 

matrices is justified by the fact that in the non-transient region many stiff 

systems almost behave linearly. 

Some first theoretical results concerning Rosenbrock-type methods 

and time-lagged Jacobian matrices, have already been given in [17]. 

Encouraging numerical results obtained with a particular multistep 

Rosenbrock method, have already been reported in [21]. 
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2. A CLASS OF ROSENBROCK METHODS 

A numerical solution of the following type is studied: 

(2 .1) 

m 

= y + l w.k.(y) + km+l(yn), 
n i=l ii n 

k. (y ) 
J. n 

= hS(y )f(y + 
n n 

m 

i-1 
I 

j=l 
y .. k. (y ) ) , 

J.J J n 

km+l(yn) = S(y) l v.k.(y ), 
n i=l J. i n 

- - -1 
S(y) = (I-h6J(y )) • 

n n 

i=l(l)m, m:?: 1, 

The coefficients w., y .. , v. and Bare real parameters, h denotes the 
J_ J.J J_ 

stepsize, and I the identity matrix. The vectors k., i=l(l)m+l, are 
J_ 

computed by solving a linear system with m+l different right-hand sides. 

The vector y is assumed to be an approximation to an exact solution 
n 

y = y(x) at some fixed point x = x, such that 
n 

(2. 2) 

The reals n and~ are thus prescribed parameters which vary with n. 

For the moment it is not necessary to make an actual choice for y. In 
n 

applications, n and~ are always of the form 

(2.2') n = (x -x )h-l + n, ~ 
n n 

- 2 -2 - - -1 = ~(x -x) h + n(x -x )h + ~' 
n n n n 

where n and~ are fixed and satisfy 

(2. 2") 

Note that almost all Rosenbrock methods, as discussed in the literature, 

are applied with y = y. These methods thus require a J(y)-evaluation 
n n 

per step at the step point x = x. For methods where n = n f O and 
n 

~ = ~ = 0, see [18,20]. 

Because (2.1) requires m f(y)-evaluations per step, we call it an 

m-stage method. If v. = 0 for all i and y = y, (2.1) is in fact an 
i n n 



original Rosenbrock formula L15J where the number of J(y)-evaluations 

per step is limited to 1 (see also [1,2,4]). We added the vector k 1 in 
m+ 

order to obtain some more degrees of freedom in choosing the integration 

parameters. Two-stage and three-stage formulas of a type very similar to 

(2.1) have already been discussed in [17]. Papers which are concerned 
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with another modification of the original Rosenbrock method are, among 

others [8,9,10,14,22]. Finally we observe that in the literature Rosenbrock­

type methods are also referred to as generalized Runge-Kutta methods 

(cf. [6,7,9,20]). 

Introduce the abbreviations 

i-1 

Yi = I yij' sij = yij + Soij' 0 .. the Kronecker symbol, 
j=l 1] 

( 2. 3) 

Si = Yi + s, V, = V, + w., yij = 0 for j :::: i. 
1 1 1 

The consistency conditions for order p=l up to order p=4 can then be 

written as in table 2.1 (see e.g. [8,14,22] for a derivation of closely 

related conditions where n =, = 0). 

Table 2.1 Consistency conditions. Summation indices run from 1 tom. 

~ 
p=l t: V, = 1 1. f 

1 

~ 1 f fj p=2 Iv,y, + Siv. = --s 2. 
1 1 1 2 i 

~ 2 
2Sniv. 

1 3. f fjfk p=3 Iv,y, + = -- 2Sn 
1 1 1 3 jk 

~ 2 1 f fjfk LV. s .. s. + 2S Ev. + SEv,y, = - 4. 
1 1] J 1 1 1 6 j k 

p=4 
~ 3 2 1 2 5. f fjfk/. Iv,y. + 3Sn Ev i = 4 - 3Sn 

1 1 jkl 
~ ~ f fjfkfl 

Eviyiyiij + SnEv.y, + SnEv,y, + 6. 
1 1 1 1 jk l 

C3S 2n + 
1 2 

S~>Ev i = 8 - S n - s~ 

~ 2 ~ j k l 
Ev iSij yj + 2SnEv.y, + 7. f/klf f 

1 1 

2 2 1 2 
4S niv. + s Ev i y i = 12 - 2 s n 

1 

~ 3 2 f fjfkfl Ev. S .. S . kSk + 2S Ev. + S Ev,y, + 8. 
1 1] J 1 1 1 j k l 

Siv. S .. S. 
1 

= -
1 1] J 24 
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To study the stability of (2.1) we use the scalar test-equation 

(2. 4) 

When applied to (2.4) scheme (2.1) yields y 1 = R(z)y, z = ho, where 
n+ n 

the stability function Risa rational function of the form 

(2.5) R(z) 
s . 
l N.zJ/(1-Sz)s, 

j=0 J 

Jm+l, if vm-/-0, 
s = 

Lm, if v =0. 
m 

It has been proved (see [13]) that the order, say q, of this approximation 

z · 1 11 h 1 h toe is a ways sma er tan or equal to s+ . Furt er, if q ~ s, the 

coefficients N. are determined by B (cf. [12], Proposition 6). We then 
J 

have 

( 2. 6) R(z) 
s . j 
l ZJ l (~) 

j=0 i=0 1 

i 
(-/3) s 

( •• ) 1 )/(l-Sz) J-l . 

Thus, if p=q ands::; q::; s+l, the linear stability of (2.1) is completely 

determined by S. Ranges of B which produce A-stable methods have, for 

1 ~ s::; 6 and under the condition thats::; q::; s+l, been given in [3] 

(see also [10,22 ]) . 

REMARK 2.1. For a discussion on S-stability [11] of generalized Runge­

Kutta methods, see [20]. Using the results of [20] it is immediate that 

(2.1) is S-stable if R is strongly A-acceptable. In the present paper we 

therefore prefer to use the simple test equation (2.4) D 

REMARK 2.2. In the non-transient region many stiff systems almost behave 

linearly. In such a situation it is expected that, with respect to 

accuracy as well as stability, we can fix the Jacobian matrix during a 

fairly large number of integration steps. Consequently, when solving 

the order conditions, we have to take into account large negative values 

for n and large positive values for~ (see (2.2')). Hence, it is of 

importance to find integration parameters which are bounded functions of 

n and~ (n and~ restricted to the domain of definition (2.2')). Else 

we have to reckon with inaccuracies, and probably instabilities, which 



can easily annul the expected advantage of using a time-lagged Jacobian 

matrix. To support this view, consider the internal stability functions 

(cf. [20]) 

(2.6') = 1, R(i) (z) = i=2 (1) m. 

In [20] it was observed that, for highly non-linear problems, it pays 

to require properties like A-acceptability for these internal stability 

functions. Now suppose that the integration parameters are not bounded 

with respect ton ands- The coefficients N~i) in (2.6') then may 
J 

becom~ very large. This means that we have to reckon with large internal 

amplification factors which grow with n ands- Even in case of weak 

non-linearities, such a behaviour cannot be recommended. Therefore, in 

the following, much attention is paid to finding bounded parameter 

solutions D 

3. METHODS OF ORDER p = 3 

In the present section we shall concentrate on 2-stage methods of 

order p=3 (p=3 cannot be obtained if m=1). For m=2 the third order 

consistency conditions can be simplified to 

( 3. 1) v1 + v2 = 1 , 

(3. 2) v 2y2 + S(v1+v2) 
1 

= 2 - S, 

( 3. 3) 
2 

2Sn (v 1 +v2) 
1 

v2y2 + = 3 - 2Sn, 

(3. 4) 
1 2 

Sv2y2 = 6 - s + s . 

A necessary condition for the existence of bounded parameters is that 

v 1 + v2 + -1 if n + -~. This means that the original Rosenbrock 

formulas [15] cannot be adapted to time-lagged Jacobians if we also want 

to fulfil the requirement of boundedness. 

The solution of equations (3.1) - (3.4), where Sand y2 are still 

5 
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free parameters, is given by 

(3.5) 

Substitution of some bounded function y2=y2 (n), leads to a set of 
2 

bounded integration parameters. If we substitute y2 = 3, we obtain, 

somewhat surprisingly, parameters which are independent of n. 
If v 2~o, the stability function of a 2-stage method of order 3 is 

given by (see (2.6)) 

(3. 6) R(z) = 
1 2213 2 33 

1+(1-38)z+(2 -38+38 )z +(6 - 2 f3+3S -8 )z. 

3 0-8z) 

This rational function is A-acceptable for all 8 E [½,1.06858] and can 

be made L-acceptable by requiring 83-382+ ¾s-¼ = 0 (see [3], table 1 

and 2). The internal stability function R( 2) reads 

(3. 7) 
R (2) (z) = _1_+_(Y_2_-_8_)_z_ 

1-8z 

This function is A-acceptable if y2 E [0,28]. 

In section 5 we shall present numerical results of the scheme 

defined by the parameter solution (3.5), where 

(3. 8) 
2 

y2 = 3 , 8 = 0.4358665216. 

Solution (3.8) yields parameters independent of n. Further, the resulting 

scheme is L-stable and.its internal stability function R( 2) is strongly 

A-acceptable. A third order scheme which is closely related to the 

scheme presented here, has been given in [17]. 

4. METHODS OF ORDER p = 4 

To begin with we prove the following theorem: 



THEOREM 4.1. Let in (2.1) the order p ~ 4. A necessary condition for 

boundedness of the integration parameters with respect ton ands is 
1 ' 

then B = 2 . 

PROOF. Consider equation 7 in table 2.1. By making use of equations 2 

and 3 of the same table, equation 7 can be rewritten as 

l.,,, 2 I~ 2 I 2 1 1 2 v B y B v y + B v y = -12 - -3- B _+ < 2 B - B > n . i ij j - i i . i i 

As n does not appear in the left-hand side, n has to vanish in the 

right-hand side in order to obtain bounded parameters 0 

This theorem has two consequences. The first is that the order q of the 

stability function is always smaller than or equal to the degrees of 

its denominator. The second is that, to a certain extent, the boundedness 

requirement is the determining factor for the A-stability of methods of 

order p ~ 4. 

7 

Let us proceed with the construction of a 3-stage, 4-th order method. 

We then have q = s = 4, while B =½lies in the A-acceptability range 

(cf.[3], table 1). Form= 3 and B =½the consistency conditions can be 

simplified to 

3 
( 4 .1) I 

i=l 
3 

( 4. 2) 1 
i=l 

3 
(4.3) 1 

( 4. 4) 

(4.5) 

( 4. 6) 

( 4. 7) 

(4. 8) 

V, 
1. 

= 1, 

1 3 
v,y, + - l v. = 0, 

1. 1. 2 i=l 1. 

2 3 1 
v.Y. + n 1 v. = -3 - n, 

1. 1. i=l 1. 

3 

l V, = 
i=l 1. 

1 3 
+ 2 s l V, 

i=l 1. 

1 
4 

1 
24 
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We have 9 unknowns and 8 conditions. By a tedious calculation, which is 

otherwise elementary and thus not reproduced here, it can be shown that 

for any solution of (4.1) - (4.8), the parameters y 2 and y 3 have to 

satisfy the relation 

(4. 9) 

1 1213 7 1 13213 21 1 12 
(-1;--n --n )+y (---1;+-n+-n +-n )+y (-1;--n --n > 
4 8 2 2 12 24 24 4 2 3 12 6 • 

1 2 
However using the asymptotic relation I; ~ 2 n , as n ➔ - 00 , we must 

conclude from (4.9) that equations (4.1) - (4.8) do not possess a 

solution which is bounded with respect ton and I;. In the foregoing 

we thus proved the following negative result: 

THEOREM 4.2. Any 3-stage, 4-th order method belonging to class (2.1) 

possesses integration parameters which are unbounded with respect to 

n and I; D 

No attempt has been made to construct 4-th order methods from class 

(2.1) where the number of stages is larger than 3. Because in our opinion, 

if one succeeds in finding bounded integration parameters form> 3, it 

is doubtful whether such a method will be significantly more efficient 

than the 2-stage, 3-rd order schemes (3.5). Of course, it remains of 

interest to think about other types of Rosenbrock methods than class 

(2.1). In this respect it is of importance to remark that the 3-stage, 

4-th order scheme developed in [17] also possesses unbounded parameters. 

5. SOME NUMERICAL EXAMPLES 

To get insight into the practical use of time-lagged Jacobian 

matrices for Rosenbrock-type integration methods, we applied the third 

order method defined by (3.5), (3.8) to problem class D of the test 

set given by Enright, Hull & Lindberg [5]. Altogether 72 integrations have 

been carried out, each integration with a prescribed step size sequence 

{h} defined by 
n 



( 5. 1) 

N 
h /2 , n a:: 0, 

max 
h = h /2N+l-n n = 1,2, ••. ,N, 

n max ' 

h , n = N+1, N+2, ... , 
max 

where h is a constant which may differ per integration. Thus apart 
max 

from the initial phase, all integrations have been performed with a 

constant stepsize h Note that we used N+1 steps for the initial 
max 

interval [x0 ,x0 + h ]. The integer N will be specified at the examples. 
max 

To get insight into the behaviour of the integration formula when 

using a time-lagged Jacobian, we added to each step size sequence {h} 
n 
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a parameter s~~EPS. This parameter defines the number of integration steps 

with constant step size h = h per Jacobian evaluation. During the 
max 

initial phase, i.e. n ~ N, the Jacobian was always evaluated. All 

evaluations of J(y) were performed at step points (n = l; = 0, see (2.2")). 

In the tables of results we give SD= - 1010g (maximum error of 

the solution components at the end of the given interval), FEV = the 

number of f(y)-evaluations, and JEV = the number of J(y)-evaluations. 

Note that if STEPS= 1, the number of Jacobian evaluations is equal to 

the number of integration steps. All computations were performed on a 

CDC Cyber 73/28 computer which has an arithmetic precision of 

approximately 14 decimals. 

Problem D1: N = 10 

Y1 = 0.2(y2-y1), 

y2 = 10y1 - (60-y3/8)y2 + y 3/8, 

-
STEPS 1 

h FEV SD JEV SD 
max 

0.5 1620 3.88 810 2.45 

1.0 820 3.40 410 1. 75 

2.0 420 2.78 210 1.26 

5 

y 1 (0) = 0, y 1 (400) = 22.242211, 

y 2 (0) = 0, y 2 (400) = 27.110701, 

0, y 3 (400) 400. 

10 20 

JEV SD JEV SD JEV 

171 2.12 91 2.01 51 

91 1.56 51 1.46 31 

51 1.14 31 0.58 21 
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Problem D2: N = 10 

Yi= -0.04y1 + 0.01y2y3 , 

2 
y2 = 400y1 - 100y2y3 - 3000y2 , 

STEPS 1 5 

h FEV SD JEV SD 
max 

0.25 340 4.82 170 3.44 

0.5 180 4.10 90 2.59 

1.0 100 3.31 50 1. 79 

Problem D3: N = 20 

y' 
1 = Y3 - 100y1y2 , 

y' + 2y4 - 100y1y2 
2 

2 = Y3 - 20000y2, 

y' = -y + 100yly2, 3 3 
2 

y' = -y + 10000y2, 4 4 

STEPS 1 

h FEV SD JEV SD 
max 

0.5 120 >10.0 60 >10.0 

1.0 80 >10.0 40 >10.0 

2.0 60 >10.0 30 >10.0 

Yl (0) = 1, y 1 (40) = 0.7158271, 

y2 (0) = 0, y2 (40) = 0.09186, 

y 3 (0) = 0, y3 (40) = 28.41637. 

10 20 

JEV SD JEV SD JEV 

5 

43 

27 

19 

2.80 27 2.16 19 

1.94 19 1.26 15 

1.11 15 0.27 13 

Yl (0)=1,y1 (20)=0.639760447, 

y2 (0)=1,y2 (20)=0.5630850708 10-2, 

y3 (0)=0,y3 (20)=0.3602395553, 

y4 (0)=0,y4 (20)=0.3170647970. 

10 20 

JEV SD JEV SD JEV 

29 >10.0 25 >10.0 23 

25 >10.0 23 >10.0 22 

23 >10.0 22 >10.0 22 
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Problem D4: N = 10 

Yi= -0.013y1 - 1000y1y3 , y 1 (0)=1,y1 (50)=-0.189338654 10-5, 

y2 = -2500y2y3 , y 2 (0)=1,y2 (50)=0.597654698, 

y3 = -0.013y1 - 1000y1y3 - 2500y2y3 , y 3 (0)=0,y3 (50)=1.402343409. 

STEPS 1 

h FEV SD JEV SD 
max 

0.25 420 >8.0 210 >8.0 

0.5 220 >8.0 110 7.23 

I 1.0 120 >8.0 60 6.32 

Problem D5: N = 10 

Yi = 0.01 - [l+(y1+1000) (y1+1) ]* 

(0.0l+yl+y2), 
2 

y 2 = 0 • 0 1 - (1 +y 2 ) ( 0 • 01 +y 1 +y 2 ) ' 

STEPS 1 

h FEV SD JEV SD 
max 

0.25 820 5.76 410 4.81 

0.5 420 4.29 210 3.86 

1.0 220 I 4.10 110 3.15 

5 

I 
I 

I 
I 

5 10 20 

JEV SD JEV SD I JEV 

51 7.53 31 6.89 I 21 

I I 31 6.60 21 5.97 16 

I 21 5.68 16 5.05 14 

y 1 (0)=0,y1 (100)= -0.99164207, 

y2(0)=0,y2(100)= 0.98333636. 

10 20 

JEV SD JEV SD JEV 

91 4 .12 51 I 3.62 31 

51 3.35 31 2.99 21 

31 2.79 21 2.56 16 



Problem D6: N = 10 

y' = 
1 

8 
-y 1 + l 0 y 3 (1-y 1) ' Y1 (0)=1,y1 (1) = 0.8523997, 

y2(0)=0,y2(1) = 0.1476001, 

y 3 (0)=0,y3 (1) = 0.577308 10-7. 

7 
y' - -10y2+3x10 y 3 (1-y2 ), 

2 

y' -- -yi-y2, 3 

STEPS 1 5 10 20 

h FEV SD JEV SD JEV SD I JEV SD JEV 
max -

0.025 100 4.93 50 4.94 19 4.94 15 4.96 13 

0.05 60 4.56 30 4.57 15 4.58 13 4.60 12 

0 .1 

I 
40 4 .12 20 4 .14 13 4 .16 12 4 .16 12 

The results of the numerical experiments lead us to the following 

observations: 

(i) In the present section 72 numerical integrations are reported. In 

all integrations the algorithm delivers a stable result, which, 

once more, illustrates the excellent stability behaviour of 

Rosenbrock-type Runge-Kutta methods. 

(ii) Generally, as to be expected, the accuracy decreases as soon as 

thei Jacobian is kept fixed. For problems D1 and D2 this decrease 

is significant. On the other hand, the results obtained for 

problems D3-D6 justify the conclusion that with respect to 

computational efficiency the application of time-lagged Jacobians is 

of use in connection with a certain class of practical problems, 

viz. problems for which the costs of J(y)-evaluations + LU­

decompositions are dominating. 

(iii) In practice Rosenbrock algorithms are usually provided with step­

size and local error control [2,4,6,7,9,10,16]. To implement 

time-lagged Jacobians in such algorithms in a successful way, it 

is necessary to have some detailed understanding of the non-linear­

ity of the problem and of the "non-linear behaviour" of the 

integration formulas being used for step continuation and error 
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estimation. In the near future we intend to carry on our research in 

this direction. 
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