
Numerical Methods

Lecture Notes 2014–2015

Willem Hundsdorfer

CWI / Radboud Universiteit Nijmegen

Updates will be made available at:
www.cwi.nl/˜willem

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301658768?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Preface

In these notes some basic numerical methods will be described. The construc-
tion of numerical methods and the study of these methods is called numerical
mathematics.

Numerical mathematics goes back a long time, as will become clear from
the names of famous mathematicians associated with some well-known numerical
methods, such as Newton, Euler, Lagrange, Gauss. Today, numerical mathemat-
ics is still a very active branch of mathematics. Numerical simulations are more
and more used by scientists to study problems from physics, chemistry, biology,
medicine, finance, and by engineers to design planes, chips, and many other appli-
cations. The combination of numerical mathematics and mathematical modelling
with sophisticated computing platforms is often called computational science.

In these notes some numerical methods are discussed and analyzed. Increas-
ingly such methods are incorporated into numerical software, in packages like
Matlab and Mathematica, but still the limitations of the various methods
have to be understood.

Material: The material for these notes has been primarily taken from the following
books

• W. Gautschi, Numerical Analysis : an Introduction, Birkhäuser, 1997.

• J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, 3th ed., Springer,
2002,

and the lecture notes

• E.Hairer, Introduction à l’ Analyse Numérique, University of Geneva, 2001.

Also available on the internet, and in Dutch, are the lecture notes

◦ M.N. Spijker, J.A. van de Griend, Inleiding tot de Numerieke Wiskunde, Uni-
versity of Leiden, 2008.

Each section of these notes finishes with a number of exercises. Some of them
are programming exercises. The choice of programming language or system is
free. It is easiest to choose a system where some standard numerical subroutines
(e.g. solving linear systems) and plotting is directly available. Examples of such
systems areMatlab, orOctave/Scilab, andMathematica. For programming
with Python the extensions NumPy and Matplotlib can be used.

Subsections and exercises marked with an asterisk ⋆ are not required for the
examination, and the same applies to the numbered remarks. Those parts are
mainly included to make the text self-contained. Most of the exercises having
an asterisk elaborate statements appearing in the text but not proven there, and
these statements may be taken for granted.

Typing errors: This text will, unfortunately, contain a number of smaal erorrs.
If you find some, please let me know (willem.hundsdorfer@cwi.nl).

Some notations and Taylor expansions: For given real functions ϕ1, ϕ2 we will
write

ϕ1(t) = ϕ2(t) +O(tn) (t→ 0)(0.1)

if there are δ, C > 0 such that |ϕ1(t)− ϕ2(t)| ≤ C|t|n for all |t| < δ.

This notation will often be used in Taylor expansions:

f(x+ h) = f(x) + f ′(x)h+
1
2f

′′(x)h2 + · · ·+ 1
k!f

(k)(x)hk +O(hk+1)(0.2)

for h→ 0, where the function f : R → R is assumed to be k+1 times continuously
differentiable around x. The series

∑ k
j=0

1
j! f

(j)(x)hj is called a truncated Taylor
series.

The expansion (0.2) follows from Taylor’s theorem with remainder term:

f(x+ h) =
k

∑

j=0

1
j! f

(j)(x)hj +
∫ 1

0

(1−t)k
k! f (k+1)(x+ th) dt hk+1 .(0.3)

The remainder term can also be expressed with an intermediate value as

f(x+ h) =
k

∑

j=0

1
j! f

(j)(x)hj +
1

(k+1)!f
(k+1)(x+ θh)hk+1(0.4)

with some θ ∈ (0, 1). So ξ = x+θh is an intermediate point, between x and x+h,
and for k = 1 this is just the mean-value theorem, f(x+ h)− f(x) = f ′(ξ)h.

The formulas (0.2) and (0.3) remain valid for functions f : R → R
m and

f : Rm → R
m, m > 1, with proper interpretation of the terms f (j)(x)hj and norms

instead of absolute values. Formula (0.4), on the other hand, only holds for real,
scalar functions. For example, if f : R → R

m then (0.4) holds for each component
fi individually, but all these components may have different intermediate points
ξi = x+ θih.

Contents

1 Nonlinear Equations 1
1.1 Bisection . 1
1.2 Fixed Point Iteration . 2
1.3 Newton’s Method . 3
1.4 Systems of Equations . 6
1.5 Exercises . 8

2 Linear Systems 10
2.1 Gaussian Elimination and LU -Decomposition 10
2.2 Positive Definite Matrices and Band Matrices 13
2.3 Overdetermined Systems : the Normal Equations 15
2.4 The Condition Number of a Matrix 16
2.5 Exercises . 17

3 Polynomial Interpolation and Approximation 20
3.1 Interpolation Formulas . 20
3.2 The Interpolation Errors . 21
3.3 Piecewise Polynomials and Splines 25
3.4 Exercises . 27

4 Trigonometric Interpolation with DFT and FFT 30
4.1 Fourier Series and Fourier Transforms 30
4.2 Approximation Properties . 32
4.3 Trigonometric Interpolation . 33
4.4 Fast Fourier Transforms . 35
4.5 Exercises . 37

5 Numerical Integration 38
5.1 Composite Integration Schemes . 38
5.2 Super-convergence and Gauss Quadrature 41
5.3 Practical Error Estimation and Partitioning 45
5.4 Exercises . 46

6 Initial Value Problems for ODEs 48
6.1 Runge-Kutta Methods . 48
6.2 Consistency . 52
6.3 Convergence . 55
6.4 Step-size Selection . 57
6.5 Exercises . 59

7 Stiff Initial Value Problems 61
7.1 Explicit and Implicit Euler Method for Stiff Problems 61
7.2 Stability Regions and Implicit Methods 64
7.3 Example: the θ-Method for Stiff Problems 68
7.4 A Semi-discrete Initial-Boundary Value Problem 70
7.5 Exercises . 72

8 Two-Point Boundary Value Problems 73
8.1 Shooting Methods . 73
8.2 Sturm-Liouville Problems and Weak Forms 74
8.3 Galerkin Methods and Finite Elements 77
8.4 Exercises . 80

1 Nonlinear Equations

A basic numerical problem is: find an x satisfying the nonlinear equation f(x) = 0,
where f is a given function. Such problems arise very frequently. Sometimes the
function f is given in analytical form, but there are also many applications where
that is not the case. In fact, evaluation of function values f(x) may require itself
some numerical procedure.

Example 1.1 Let

f(x) =

∫ x

0
ϕ(s) ds− µ ,

with given µ > 0 and ϕ a continuous real function. If this function ϕ is compli-
cated, we will not have an explicit expression for the integral, and a numerical
procedure may be needed to compute the value of f(x) for given x. On the other
hand, certain properties of f may be known. For instance, if 0 < α ≤ ϕ(s) ≤ β
(for all s ≥ 0), then f(x) is monotonically increasing and αx−µ ≤ f(x) ≤ βx−µ
for x ≥ 0. Therefore we know that the equation f(x) = 0 has a unique solution x∗
in [µ/β, µ/α]. The question is now: how can this solution x∗ be computed with
some prescribed accuracy ? ✸

In this section we will discuss several numerical methods for finding approxi-
mations to the solution of f(x) = 0, or the related fixed point equation g(x) = x.
First the methods are considered for scalar equations with one real variable. Ex-
tensions to systems are given afterwards.

1.1 Bisection

Suppose f : R → R is continuous on the interval [a, b]. If f(a) and f(b) have
opposite signs we know there is an x∗ ∈ (a, b) such that f(x∗) = 0. Such x∗ is
called a zero of f or root of the equation. Let us assume for the moment that x∗
is the only root in [a, b].

One of the most simple methods from numerical mathematics is bisection,
where the interval is repeatedly halved, such that each new interval still contains
a root. First we initialize a1 = a, b1 = b, and then for k = 1, 2, 3, . . . we take























xk = 1
2
(ak + bk) ;

if f(xk) = 0 we are done; otherwise

· · · if sign(f(xk)) = sign(f(ak)) , set ak+1 = xk , bk+1 = bk ,

· · · if sign(f(xk)) = sign(f(bk)) , set ak+1 = ak , bk+1 = xk .

(1.1)

It is clear that each interval [ak, bk] contains a zero of f , and bk−ak = 21−k(b−a),
because the interval is halved each time. Consequently

|xk − x∗| ≤ 2−k(b− a) (k ≥ 1) .(1.2)

1

If we want an approximation xk to x∗ with an error less than a given tolerance
Tol , which is a desired accuracy, then we can terminate the algorithm as soon as
2−k < Tol/(b− a).

Bisection guarantees convergence of xk towards x∗. However, this convergence
is rather slow. For example, if b − a = 1 and we want to approximate x∗ up to
12 decimal places, then we need in general k = 40 steps to achieve this. An other
drawback of the bisection method is that it cannot be extended to systems of
equations. For the other methods treated in this section such extensions do exist.

Remark 1.2 In theory we could choose Tol arbitrarily small. However, on com-
puters it is standard to use finite precision representations of real numbers. Any
non-zero x ∈ R can be written as x = ± d · 10m with 0.1 ≤ d < 1, integer m and
with ± either plus or minus. The truncated or rounded version is

x̂ = ± 0.d1d2 . . . dn · 10m,

where n ∈ N is the number of digits, and dj ∈ {0, 1, . . . , 9}, d1 6= 0. This fixed
number n, say n = 16, determines the relative precision of the representation. 1

As a result, any arithmetic operation (addition, multiplication, division) will
have some small error, called the round-off error. This is due to the fact that a
product x̂ · ŷ or sum x̂+ ŷ of two rounded numbers x̂, ŷ will be rounded again to
n significant digits to fit it in the computer memory. ✸

1.2 Fixed Point Iteration

Let us consider the fixed point problem

g(x) = x ,(1.3)

where g : R → R is given. Starting with an initial guess x0, we can compute
successive approximations x1, x2, . . . by the iteration

xk+1 = g(xk) (k = 0, 1, . . .) .(1.4)

This is called fixed point iteration, or functional iteration.

Theorem 1.3 Let g : [a, b] → [a, b] be continuously differentiable, and suppose
there is a number θ < 1 such that |g′(x)| ≤ θ for all x ∈ [a, b]. Then there is a
unique fixed point x∗ of g in [a, b]. Moreover, for any x0 ∈ [a, b] the fixed point
iteration converges, and

|xk − x∗| ≤ θ |xk−1 − x∗| (k ≥ 1) .(1.5)

1Actually, computers do not use a decimal, base 10 representation, but base 2 (or a power
of 2). A common value for the precision is 2−52 ≈ 2 · 10−16.

2

Proof. Let f(x) = x− g(x). This function is continuous with f(a) ≤ 0, f(b) ≥ 0,
because g(a) ≥ a and g(b) ≤ b. Hence there is a zero of f in [a, b], and this is a
fixed point of g.

According to the mean value theorem, for any pair x, x̃ ∈ [a, b] there is a point
ξ between x and x̃ such that g(x)− g(x̃) = g′(ξ)(x− x̃). Hence

|g(x)− g(x̃)| ≤ θ |x− x̃| .

This shows that a fixed point is unique, and it gives the estimate for the error. ✷

Corollary 1.4 Let g : [a, b] → R be continuously differentiable, and suppose that
x∗ ∈ [a, b] satisfies g(x∗) = x∗ and |g′(x∗)| < 1. Then, there is a δ > 0 such that
the fixed point iteration converges whenever |x0 − x∗| < δ.

Proof. Let θ ∈ (|g′(x∗)|, 1), and take δ > 0 small enough to have |g′(x)| ≤ θ for
all x ∈ [x∗ − δ, x∗ + δ]. For x in this interval we have |g(x)− g(x∗)| ≤ θ|x− x∗|, so
the interval is mapped into itself. The result now follows by applying Theorem 1.3
with a, b replaced by α = x∗ − δ and β = x∗ + δ, respectively. ✷

From (1.5) we directly obtain the error bound

|xk − x∗| ≤ θk |x0 − x∗| (k ≥ 1) .(1.6)

Since the size of |x0−x∗| is not known, this seems of little practical value. However,
we also have

|xk − x∗| ≤ θ|xk−1 − x∗| ≤ θ (|xk−1 − xk|+ |xk − x∗|) ,

and therefore (1.5) also gives the bound

|xk − x∗| ≤ θ
1− θ |xk − xk−1| (k ≥ 1) ,(1.7)

which provides a stopping criterion during the iteration process.

1.3 Newton’s Method

Suppose f : R → R is differentiable, and we want to find a root x∗ of the equation

f(x) = 0 .(1.8)

Given an approximation xk, we can locally linearize the function f by

f(x) ≈ f(xk) + f ′(xk)(x− xk) ,

and then find a new approximation xk+1 which is a zero of the linearized function.
This procedure leads to the iteration

xk+1 = xk −
1

f ′(xk)
f(xk) (k = 0, 1, 2, . . .) .(1.9)

3

This is known as Newton’s method or
Newton-Raphson iteration. In general, the
convergence of this iteration is much faster
than for the methods of the previous sec-
tions. However, convergence is only guar-
anteed if the initial value x0 is sufficiently
close to x∗.

Theorem 1.5 Let f : [a, b] → R be twice continuously differentiable, and assume
that x∗ ∈ [a, b] satisfies f(x∗) = 0 and f ′(x∗) 6= 0. There is a δ > 0 such that
the Newton iteration converges whenever |x0 − x∗| < δ. Moreover, then there is a
γ > 0 such that

|xk − x∗| ≤ γ |xk−1 − x∗|2 (k ≥ 1) .(1.10)

Proof. For x close to x∗ we have f ′(x) 6= 0. Let g(x) = x− (f ′(x))−1f(x). Then
x∗ is a fixed point of g, and we have g′(x) = (f ′(x))−2f ′′(x)f(x). So, in particular
g′(x∗) = 0. It follows that for δ > 0 sufficiently small, and α = x∗ − δ, β = x∗ + δ,
the interval [α, β] is mapped to itself under g. The fixed point iteration for g,
which is the same as the Newton iteration for f , thus converges to x∗ if our initial
value x0 lies in [α, β].

Further we have

0 = f(xk) + f ′(xk)(xk+1 − xk) ,

0 = f(x∗) = f(xk) + f ′(xk)(x∗ − xk) +
1
2
f ′′(ξk)(x∗ − xk)

2

with ξk between x∗ and xk (Taylor’s theorem). By subtraction it is seen that

xk+1 − x∗ =
1
2
(f ′(xk))

−1f ′′(ξk)(x∗ − xk)
2 ,

from which the proof follows with γ = 1
2 maxξ,η∈[α,β] |f ′′(ξ)| / |f ′(η)|. ✷

Illustration. Consider the equation f(x) = 0 with

f(x) = x− (cosx)3 .

By drawing the graphs of x and (cosx)3

it is clear that the equation will have a
unique solution in the interval [0, 1]. 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x(cos x)3

First we try to solve the equation with Newton’s method. Using the starting
value x0 = 0 the iterates x1, x2, . . . , x6, are found to be:

x0 x1 x2 x3 x4 x5 x6

0.000000 1.000000 0.515084 0.583029 0.582440 0.582440 0.582440

In this table, only the first six decimal digits are presented, and for the digits that
are not yet correct a small font is used. After a somewhat hesitant start, with

4

initial overshoot, the Newton iterates converge very rapidly to the correct value
x∗ which is computed with fifteen digits accuracy as x∗ = 0.58244007115820.

For this problem we can also try fixed point iteration. A natural choice for
the iteration function is g(x) = (cosx)3. However, with this choice we have
g′(x) = −3 sinx (cosx)2, which happens to be larger than one in modulus near x∗.
Indeed, the iteration does not converge:

x0 x1 x2 x3 x4 x5 x6

0.000000 1.000000 0.157728 0.963220 0.186051 0.949115 0.197546

Convergence can be achieved with another fixed point iteration function. Con-
sider g(x) = x− c f(x) with c ∈ R still to be determined. It is clear that for any
c 6= 0 the fixed point of g will be the zero of f . To chose a suitable value of c, note
that f ′(x) = 1 + 3 sinx (cosx)2 ∈ [1, 4] if x ∈ [0, 1]. Therefore g′(x) = 1 − c f ′(x)
will assume values between 1− c and 1− 4c. For c = 2

5 we thus have |g′(x)| ≤ 3
5 .

With this choice the iteration converges:

x0 x1 x2 x3 x4 x5 x6

0.000000 0.400000 0.552554 0.578212 0.581848 0.582357 0.582428

In fact the rate of convergence is faster than might be expected. That is caused
by the fact that |g′(x∗)| turns out to be approximately 0.14. The value 3

5 found
above is a rather crude over-estimation.

Remark 1.6 There are many variants of Newton’s method, obtained by approx-
imating the derivative f ′(xk). For example, replacing f ′(xk) by the difference
quotient (f(xk)− f(xk−1))/(xk − xk−1) leads to the secant method

xk+1 = xk −
xk − xk−1

f(xk)− f(xk−1)
f(xk) .(1.11)

Here xk+1 depends on the two previous
values xk and xk−1, so we now need two
starting values x0 and x1. Computation
of the derivative is here avoided. This can
be an advantage, for example if f is not
given in closed form, but only a recipe is
provided to compute f(x) for given x by
some (numerical) procedure.

The convergence of this secant method is in general slower than for Newton’s
method. If xk−1 and xk are close to x∗ it can be shown under the conditions of
the previous theorem that

|xk+1 − x∗| ≤ γ̃ |xk − x∗||xk−1 − x∗| ,

with a positive constant γ̃. If |xk − x∗| is much smaller than |xk−1 − x∗| this is
obviously not as good as the quadratic bound in (1.10). In fact, in computations
it is often observed that |xk+1 − x∗| is proportional to |xk − x∗|p with order p =
1
2(1 +

√
5) ≈ 1.62. (This can be proven under suitable technical assumptions.) ✸

5

1.4 Systems of Equations

The fixed point iteration and Newton’s method can be used to solve systems of
nonlinear equations, where we work with vectors v ∈ R

m instead if scalars x ∈ R.
For F : Rm → R

m we will use the notation

F (v) =







F1(v)
...

Fm(v)






for v =







v1
...
vm






∈ R

m.

The m×m Jacobian matrix, containing all partial derivatives ∂Fi(v)
∂vj

, is denoted
as

F ′(v) =









∂F1(v)
∂v1

· · · ∂F1(v)
∂vm

...
...

∂Fm(v)
∂v1

· · · ∂Fm(v)
∂vm









.

This will also be written more compactly as v = (vj), F (v) = (Fj(v)) ∈ R
m and

F ′(v) = (∂Fi(v)/∂vj) ∈ R
m×m. Thus, subindices are used for the components.

Of course, a vector itself may have a subindex already. For a sequence of vectors
u0, u1, u2, . . ., the j-th component of uk ∈ R

m can be denoted as (uk)j . It should
always be clear from the context whether vj is a vector itself or a component of a
vector v.

Let F : R
m → R

m. We want to find u∗ ∈ R
m that solves the system of

equations
F (u) = 0 .(1.12)

Newton’s method for this system reads

uk+1 = uk − (F ′(uk))
−1F (uk) (k = 0, 1, 2, . . .) .(1.13)

This produces vectors uk ∈ R
m that converge – hopefully – towards u∗.

It should be noted that (1.13) should not be implemented this way. Computing
the inverse of a matrix is very expensive in terms of computing time. Instead, first
the linear system F ′(uk)vk = F (uk) is to be solved, and then uk+1 = uk − vk.

For systems with a large dimension m it can be advantageous not to work
with the exact Jacobian matrix F ′(uk), but with an approximation A(uk). The
iteration then becomes

uk+1 = uk − (A(uk))
−1F (uk) (k = 0, 1, 2, . . .) .(1.14)

In general, the convergence will become slower, but each iteration step in (1.14)
may be cheaper than in (1.13).

There are possible choices for such modification. For example, (i) the par-
tial derivatives ∂Fi(v)/∂vj in the Jacobian matrix can be replaced by difference
quotients 1

h(Fi(v + hej) − Fi(v)), where ej is the j-th unit vector in R
m (i.e.,

all components of ej are 0 except for the j-th component which equals 1). An

6

other possibility, that can be used if u0 is known to be close to u∗, is to take
(ii) A(v) = F ′(u0), so that the partial derivatives only need to be computed once.
This may also reduce the work needed to solve the linear systems in the iteration
(because only one LU -decomposition will be needed; see next section).

The fixed point iteration to find an approximate solution for the system G(u) = u
reads uk+1 = G(uk). This corresponds to (1.14) with F (v) = v − G(v) and
A(v) = I, the identity matrix. The result of Theorem 1.3 remains essentially
valid: if G maps a closed set D ⊂ R

m into itself and ‖G(u) − G(v)‖ ≤ θ‖u − v‖
for all u, v ∈ D with θ ∈ (0, 1) in some suitable norm, then the iteration converges
to the unique fixed point u∗ in D. This result – and its generalization to Banach
spaces – is known as the contraction mapping theorem. The contraction property
of G can be established by verifying that its partial derivatives are continuous and
‖G′(u)w‖ ≤ θ‖w‖ for all u ∈ D and w ∈ R

m.
In the same way, the result of Theorem 1.5 on convergence of Newton’s method

generalizes, ensuring local convergence, starting sufficiently close to a root u∗. Of
course, it would be very desirable to have knowledge on the regions of attraction
D(u∗) consisting of those u0 for which we have convergence towards u∗. However,
these sets are complicated in general.

Example 1.7 As an interesting illustration, consider the Newton iteration zk+1 =
zk + f(zk)/f

′(zk) in the complex plane C for the function f(z) = z3 − 1, leading
to

zk+1 =
2
3
zk +

1
3
z−2
k .

This iteration in C is the same as for the corresponding function F : R2 → R
2

with F1(x, y) = Ref(x+ iy) and F2(x, y) = Imf(x+ iy) (see Exercise 1.6).

−1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

−1 −0.95 −0.9 −0.85 −0.8 −0.75 −0.7 −0.65 −0.6 −0.55 −0.5
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 1.1: Domains of attraction of the Newton iteration. The right panel contains a
zoom of the left panel around z = −0.75.

The domains of attraction for the three roots z∗ = 1 and −1
2 ± 1

2 i
√
3 are shown

in Figure 1.1 as white, gray and black regions. The plot in the left panel extends
to −1 ≤ x ≤ 1.5, −1.25 ≤ y ≤ 1.25. The right panel, containing an enlargement
around x = −0.75, y = 0, reveals the fractal structure of the sets. ✸

7

Remark 1.8 If we want to find all zeros in C of a polynomial P , the scalar
complex version of Newton’s method can be used with f(z) = P (z) to find a first
zero, say z1. Next, we can set f(z) = Q1(z) = P (z)/(z − z1), find a zero z2 of
this new function, and continue with f(z) = Q2(z) = P (z)/((z− z1)(z− z2)), etc.
This technique is called deflation.

To avoid inaccuracies, due to the fact that the computed zj will only be ap-
proximations to the genuine roots, it is generally recommended to perform one
or two additional Newton iterations with the original polynomial P after having
found an approximation with the deflated function Qj . ✸

1.5 Exercises

Exercise 1.1. Suppose |g′(x∗)| > 1. Is it then possible to have local convergence
of the fixed point iteration (1.4) ?

Exercise 1.2. In practice, one would like to terminate the Newton iteration if
some specified level of accuracy has been achieved, say |xk−x∗| ≤ Tol , with given
desired accuracy Tol .

Assume x∗ ∈ [α, β] and |f ′(x)|−1 ≤ γ for all x ∈ [α, β]. Show, from the mean-
value theorem, that if xk is in this interval and |f(xk)| ≤ ε, then |xk − x∗| ≤ γ · ε.

Exercise 1.3. The equation x + log x = 0 with x ∈ [0, 1] can be written in the
following ways: (i) x = − log x, (ii) x = e−x, (iii) x = 1

2(x + e−x). Each
possibility gives rise to a different fixed point iteration. Which one do you prefer?
Show that with the last option |xk − x∗| < 3−k for k ≥ 1.

Exercise 1.4. To compute p
√
c for a positive number c and integer p ≥ 2, we

consider Newton’s method with x0 > 0, giving

xk+1 =
p−1
p xk +

c
p x

1−p
k (k = 0, 1, 2, . . .) .

(a) Show that the sequence {xk} is monotonically decreasing for k ≥ 1 with
limit p

√
c.

(b) Consider the convergence for c = 0, and compare this with the result of
Theorem 1.5.

Exercise 1.5. How does Newton’s method read for a linear system of equations
Av = b.

Exercise 1.6.⋆ Let the components of F : R2 → R
2 be defined by

F1(x, y) = x3 − 3xy2 − 1 , F2(x, y) = 3x2y − y3 .

Show that the Newton iteration for this function coincides with the one for the
complex map f(z) = z3 − 1 used in the Example 1.7.

8

Exercise 1.7 (programming). Compute the fixed point of the cosine function x∗ =
cosx∗ up to 12 decimal places using (i) bisection on [0, 1], (ii) fixed point iteration
with x0 = 0, (iii) Newton’s method with x0 = 0.

Exercise 1.8 (programming). Let

F (v) =

(

v 2
1 + 4v1v2 − 3
v1 − v 2

2 − 3

)

for v =

(

v1
v2

)

∈ R
2.

Compute the {uk} from Newton’s method starting with u0 = (1,−1)T . Discuss
possibilities to stop this iteration.

9

2 Linear Systems

In this section we will discuss some basic numerical methods to solve linear systems
of equations

Av = b ,(2.1)

with given matrix A = (aij) ∈ R
m×m and vector b = (bi) ∈ R

m. The solution
v ∈ R

m exists and is unique if and only if the matrix A is nonsingular.
Overdetermined systems, with more equations than unknowns, will also be

briefly considered in this section. Then a least-squares solution can be found by
the so-called normal equations.

Finally we will discuss the influence on v of small errors in b. The components
of this vector may have been obtained, for instance, by some measurement, with
a certain error. Also the rounding of numbers on a computer will lead to small
errors in the data.

2.1 Gaussian Elimination and LU-Decomposition

A straightforward –but still popular – method to solve linear equations is Gaussian
elimination. The system (2.1), written out, reads

a11v1+ a12v2+ · · ·+a1mvm = b1 ,

a21v1+ a22v2+ · · ·+a2mvm = b2 ,

...
...

...
...

am1v1+am2v2+· · ·+ammvm = bm .

(2.2)

Assume a11 6= 0. Then we can eliminate v1 from the last m − 1 equations by
subtracting from the i-th equation the first equation multiplied by λi1 = ai1/a11.
After this, the system becomes

a11v1+a12v2+ · · ·+a1mvm = b1 ,

a
(2)
22 v2+· · ·+a(2)2mvm = b

(2)
2 ,

...
...

...

a
(2)
m2v2+· · ·+a(2)mmvm = b

(2)
m ,

(2.3)

where a(2)

ij = aij − λi1a1j and b(2)i = bi − λi1b1. This provides a system of m−1

equations for v2, · · · , vm, with an extra equation that determines v1. If a(2)

22 6= 0
we can proceed in the same way to obtain a system of m − 2 equations in the
unknowns v3, · · · , vm with coefficients a(3)

ij = a(2)

ij − λi2a
(2)

2j and b(3)i = b(2)i − λi2b
(2)

2 ,

λi2 = a(2)

i2 /a
(2)

22 . Repeating thism−1 times we are finally left with a single equation
a(m)
mmvm = b(m)

m . Then, collecting the first equation from each step gives

a
(1)
11 v1+a

(1)
12 v2+· · ·+a(1)1mvm = b

(1)
1 ,

a
(2)
22 v2+· · ·+a(2)2mvm = b

(2)
2 ,

. . .
...

...

a
(m)
mmvm = b

(m)
m ,

(2.4)

10

where we denoted a(1)

ij = aij and b(1)i = bi. This system is now easily solved:

vm =
1

a
(m)
mm

b(m)
mm and vi =

1

a
(i)
ii

(

b
(i)
i −

∑

j>i

a
(i)
ij vj

)

(i = m−1, . . . , 2, 1) .(2.5)

The elements a(k)

kk are called the pivot elements. If in the k-th step a(k)

kk = 0,
then there is some other a(k)

lk 6= 0, because otherwise the first k columns are
linearly dependent, and A is singular. Hence we can perform a simple permutation,
interchanging the rows k and l, and then continue the procedure. In practice, it
will be necessary to perform such a row interchange not only if a(k)

kk is precisely
zero, but also if it is nearly zero, because division by a very small number can
lead to large round-off errors. We then select the index l ≥ k such that a(k)

lk has
the largest modulus. This is called Gaussian elimination with partial pivoting.
(One can also use complete pivoting, where also columns are interchanged, but in
practice the partial row pivoting is usually sufficient.)

The permutations are done during the process. Afterwards all these row per-
mutations together are described by a permutation matrix P such that for the
permuted system PAv = Pb the Gaussian elimination can proceed without addi-
tional row permutations.

Setting A(1) = PA and b(1) = Pb the total process thus can be described
formally as

[PA,Pb] = [A(1), b(1)] → [A(2), b(2)] → · · · → [A(m), b(m)] = [U, b(m)] ,

where the first k−1 columns of A(k) have zero entries below the diagonal, and U
is the resulting upper triangular matrix.

In the following, let I stand for the m × m identity matrix, and let Eij be
the m×m matrix that has entry 1 at the i, j-th position and entries 0 elsewhere.
Then EijA is the matrix with all rows zero, except for the i-th row which is just
the j-th row of A. The steps in the Gaussian elimination can be described as

A(k+1) = LkA
(k) , b(k+1) = Lkb

(k) with Lk = I −
∑

j>k

λjkEjk .

These matrices Lk have the form

L1 =















1
−λ21 1
−λ31 1
...

. . .

−λn1 1















, L2 =















1
1

−λ32 1
...

. . .

−λn2 1















,

etc., with numbers zero on the empty positions.

Theorem 2.1 Suppose A is nonsingular. Then Gaussian elimination gives

PA = LU , L =
(

I +
∑

i>j

λij Eij

)

,

with permutation matrix P and upper triangular matrix U .

11

Proof. It is clear that U = A(n) equals U = Lm−1Lm−2 · · ·L1PA, that is,

PA = (Lm−1Lm−2 · · ·L1)
−1U .

It remains to show that this inverse equals L.
To see this we can apply the same procedure to L. Multiplication of L by L1

from the left eliminates the elements of the first column below the diagonal, then
multiplication by L2 from the left clears the elements of the second column below
the diagonal, and so on. Therefore (Lm−1Lm−2 · · ·L1)L = I. ✷

Such decomposition of PA into a lower triangular L and upper triangular
U is called a LU -decomposition or LU -factorization. Solving Av = b amounts to
(i) compute the LU -decomposition, and (ii) solve the triangular systems Lw = Pb,
Uv = w.

Saving the factors L and U is useful if we need to solve, one after the other, a
number of linear systems Av = b with different vectors b. An example is provided
by the modified Newton iteration (1.14) with fixed matrix A = F ′(u0), where we
will get a right hand side vector b = −F (uk−1) in the k-th iteration step.

Further we note that, for a given permutation, the factors L and U are unique.
For, if we have a second decomposition PA = L̃Ũ , then L̃−1L = ŨU−1. Since
L̃−1L is lower triangular and ŨU−1 is upper triangular, there is a diagonal D such
that L = DL̃−1 and Ũ = DU . The requirement that the diagonal elements of L
and L̃ are 1 specifies D = I.

Computational costs. To estimate the computational costs of Gaussian elimina-
tion, first note that the computation of A(2) from A(1) = A requires (m−1) divisions
and (m−1)2 multiplications and additions. So for largem this takes approximately
(m−1)2 operations, where an ’operation’ is defined as one multiplication and one
addition. Then to find A(3) we need (m−2)2 operations. In total, finding the LU
decomposition will require approximately

∑m−1
j=1 j2 ∼

∫m
0 x2dx = 1

3m
3 operations.

The computation of b(2) will take (m−1) operations, and we get b(m) with
(m−1) + · · · + 2 + 1 = 1

2m
2 operations. Likewise solving the triangular system

will take 1
2m

2 operations and m divisions. For large m this negligible compared
to the 1

3m
3 operations for finding L and U .

Gaussian elimination to solve (2.1) thus takes approximately 1
3m

3 operations.
Estimating the computational costs this way, by counting the number of oper-
ations, only gives a rough indication for the actual computation time. Memory
handling is not taken into account and computers increasingly possess vector and
parallel capacities. Still, it gives an indication.

Round-off errors. It was stated above that pivoting is necessary to avoid round-
off errors. To illustrate this we consider the following example.

Example 2.2 Consider

A =

(

0.005 10
1 1

)

, b =

(

10
2

)

.

12

Then performing Gauss elimination with exact arithmetic gives

λ21 =
1

0.005 = 200 , a
(2)
22 = 1− λ21 · 10 = −1999 , b

(2)
2 = 2− λ21 · 10 = −1998 ,

and v2 =
1998
1999 , v1 =

1
0.005 · (10− 10 · v2) = 2000

1999 .

In decimal representation v2 = 1.0005... and v1 = 0.99949... .
Now let us simulate floating point arithmetic with three digits accuracy by

rounding any real number x to x̃ = ±0.n1n2n3 · 10m with integer m and integers
nj between 0 and 9 (and n1 6= 0). Then we get

λ̃21 = 200 , ã
(2)
22 = −2000 , b̃

(2)
2 = −2000 ,

and ṽ2 = 1 , ṽ1 = 0 .

The reason for this bad result is the relation v1 = − 10
0.005v2 +

10
0.005 . The small

error in v2 will be amplified, due to the fact that the pivot element a11 = 0.005
is small. If we repeat the process, starting with an interchange of the first and
second rows, then this problem will not arise. ✸

Standard computations are nowadays usually done with 16 digits in floating
point representation. In the above example, without pivoting, that would give an
accuracy around 10−13. This will deteriorate if we take a11 is closer to zero. More-
over, if there are many steps in a process, repeated loss of three digits accuracy
easily leads to a bad overall result.

2.2 Positive Definite Matrices and Band Matrices

If A = (aij) is a realm×nmatrix (m rows and n columns) we will write A ∈ R
m×n.

Interchanging rows for columns, and vice versa, gives the transpose matrix AT =
(aji) ∈ R

n×m. Likewise, the transpose vT of a (column) vector v ∈ R
m = R

m×1 is
the corresponding row vector in R

1×m.
The real m × m matrix A is called symmetric if AT = A, and a symmetric

matrix is called positive definite if vTAv > 0 for any nonzero v ∈ R
m. Positive

definite matrices arise in many applications. The next result shows that then the
resulting systems can be solved with Gaussian elimination without permutations,
and in the LU -decomposition we have U = DLT with a diagonal matrix D that
has positive diagonal entries. Writing C =

√
DLT gives A = CTC.

Theorem 2.3 Let A be symmetric and positive definite. Then there is an upper
triangular matrix, with positive diagonal entries, such that A = CTC.

Proof. To prove this result we can use induction with respect to the dimension
m. The statement of the theorem is obviously true if m = 1. Now let m > 1 and
write

A =

(

Ā ā
āT α

)

, C =

(

C̄ c̄
ōT γ

)

,

13

with scalars α, γ, and with Ā, C̄ ∈ R
m̄×m̄, ā, c̄ ∈ R

m̄, m̄ = m−1, and zero vector
ō ∈ R

m̄. Since A is positive definite, the same holds for Ā.
Suppose that Ā = C̄T C̄ and C̄ is upper triangular with positive diagonal

entries (induction assumption). Then A = CTC iff ā = C̄T c̄ and α = c̄T c̄ + γ2.
So, we can compute c̄ by solving the lower triangular system C̄T c̄ = ā and then
set γ =

√
α− c̄T c̄. It seems this γ might be purely imaginary. However we have

det(A) = det(CT) det(C) = (γ det(C̄))2, and since the determinant of the positive
definite matrix A is positive (it is the product of the eigenvalues and these are all
positive) we must have γ2 > 0. ✷

The decomposition A = CTC for positive definite A is called a Cholesky decom-
position. It can be seen from the construction used in the above proof –with the
repeated lower triangular systems– that the number of operations in a Cholesky
decomposition is roughly 1

6m
3, which is significantly lower than for a general LU -

decomposition.

The m ×m matrix A is called a band matrix if there there is an integer k < m
such that aij = 0 whenever |i− j| > k. The number 2k+1 is called the bandwidth
of the matrix. Familiar examples are diagonal matrices (k = 0) and tri-diagonal
matrices (k = 1).

If Gaussian elimination can be performed without permutations, then the cost
is greatly reduced for banded matrices, because L and U will also be banded. In
terms of operations, it becomes of the order of k2m, instead ofm3 for a full matrix.
Moreover, and often more importantly, storage is greatly reduced if k ≪ m.

Example 2.4 Let

A =









α1 β2
γ2 α2

. . .
. . .

. . . βm
γm αm









, L =









1
λ2 1

. . .
. . .

λm 1









, U =









ρ1 σ2
ρ2

. . .

. . . σm
ρm









.

We have A = LU iff α1 = ρ1 and γj = λjρj−1, αj = λjσj+ρj , βj = σj (2 ≤ j ≤ m).
Assuming that Gaussian elimination can be applied to A without permutations,
we can thus compute the λj , ρj , σj recursively as ρ1 = α1,

λj = γj/ρj−1 , ρj = αj − λjβj , σj = βj (2 ≤ j ≤ m) .

This requires m−1 divisions and m−1 multiplications with addition, say 2(m−1)
operations. Finally, solving Av = b reduces to Lw = b, Uv = w, and these two
bi-diagonal systems together require 3m−2 operations. In total we therefore just
need 5m−4 operations. Storage of L and U takes 3m−2 positions. ✸

14

2.3 Overdetermined Systems : the Normal Equations

Let ‖u‖ =
√
uTu be the Euclidian norm on R

m. If A is an m × n matrix with
m > n and b ∈ R

m, then the system Av = b reads

a11v1+ a12v2+ · · ·+a1nvn = b1 ,

a21v1+ a22v2+ · · ·+a2nvn = b2 ,

...
...

...
...

am1v1+am2v2+· · ·+amnvn = bm .

(2.6)

This has in general no solution v ∈ R
n. But we can find a v such that

‖Av − b‖ = min
w∈Rn

‖Aw − b‖ .(2.7)

Such a v is called a least squares solution of (2.7).
Let ϕ(v) = ‖Av − b‖2 = vTATAv − 2bTAv + bT b. Then

1
h

(

ϕ(v + hw)− ϕ(v)
)

= 2(vTATA− bTA)w + h · wTATAw ,

and taking h → 0 we see that ϕ′(v) = 2(vTATA − bTA). Consequently, the least
squares solution satisfies

ATAv = AT b .(2.8)

These linear equations, with n× n matrix ATA, are called the normal equations.
The matrix ATA is obviously symmetric. Moreover, it is easily seen that if the

columns of A are linearly independent, then ATA is positive definite, so then the
least squares solution is unique and it can be found by a Cholesky decomposition.

Least-squares problems often arise when one wants to fit some simple function
to given (measured) data.

Example 2.5 Let points (xi, yi) ∈ R
2 (1 ≤ i ≤ m) be given. We want to find the

coefficients of the polynomial p(x) = αx2 + βx+ γ such that

m
∑

i=1

|p(xi)− yi|2 is minimized.

This is a least squares problem with aij = x j−1
i , bi = yi and v = (α, β, γ)T ∈ R

3.
Let us take as a simple illustration

xi =
i−1
k
, yi = x3i

for i = 1, . . . , k + 1 with k = 10. The
values p(xi) of the quadratic polyno-
mial with best least-squares fit is shown
in the plot on the right. 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

yi

p(xi)

A more interesting illustration is provided by the result of Exercise 2.6. ✸

15

2.4 The Condition Number of a Matrix

To measure the length of a vector we will use a norm ‖ · ‖ on the vector space Rm.
Recall that a function ϕ : Rm → R is called a norm if (i) ϕ(v) ≥ 0 and ϕ(v) = 0
only if v = 0, (ii) ϕ(cv) = |c|ϕ(v), and (iii) ϕ(v + w) ≤ ϕ(v) + ϕ(w), for any
v, w ∈ R

m and c ∈ R. Some common norms are



















‖v‖1 =
∑m

j=1 |vj | , the sum norm or l1-norm,

‖v‖2 =
√

∑m
j=1 |vj |2 , the Euclidian norm or l2-norm,

‖v‖∞ = max1≤j≤m |vj | , the maximum norm or l∞-norm,

(2.9)

for v = (vj) ∈ R
m. The Euclidian norm of v equals ‖v‖2 =

√
vT v, and we have

the Hölder inequality ‖v‖ 2
2 ≤ ‖v‖1 · ‖v‖∞ (for any v ∈ R

m).
Given a vector norm ‖ · ‖ on R

m the induced matrix norm for m×m matrices
A is defined by

‖A‖ = max
v 6=0

‖Av‖
‖v‖ ,(2.10)

that is, ‖A‖ is the smallest number α such that ‖Av‖ ≤ α‖v‖ for all v ∈ R
m. The

induced matrix norm for the three norms in (2.9) are (see exercise below)















‖A‖1 = max1≤j≤m
∑m

i=1 |aij | ,

‖A‖2 =
√

max. eigenvalue of ATA ,

‖A‖∞ = max1≤i≤m
∑m

j=1 |aij | .
(2.11)

An important property is ‖AB‖ ≤ ‖A‖‖B‖ for any two matrices A,B ∈ R
m×m.

For the identity matrix I we have the norm ‖I‖ = 1.
As we will see shortly, the condition number

cond(A) = ‖A‖ · ‖A−1‖(2.12)

indicates how well a linear system Av = b can be solved.
Let us consider, along with the linear system Av = b, the approximate system

Ãṽ = b̃. Suppose that

‖Ã−A‖ ≤ ǫA ‖A‖ , ‖b̃− b‖ ≤ ǫb ‖b‖ .(2.13)

For example, Ã, b̃ may stand for the computer representations of the exact A and
b, with relative errors ǫA and ǫb. We want to know how much such errors will
influence the outcome.

Theorem 2.6 Suppose A is nonsingular, κ = cond(A) and ǫA · κ < 1. Then

‖ṽ − v‖
‖v‖ ≤ κ

1− ǫA κ
· (ǫA + ǫb) .

16

Proof. Since b̃− b = Ãṽ −Av = (Ã−A)ṽ +A(ṽ − v), we have

ṽ − v = A−1
(

− (Ã−A)ṽ + (b̃− b)
)

.

Taking norms, and using ‖ṽ‖ ≤ ‖v‖+‖ṽ−v‖ and ‖b‖ = ‖Av‖ ≤ ‖A‖‖v‖, it follows
that

‖ṽ − v‖ ≤ ‖A−1‖
(

ǫA‖A‖ (‖v‖+ ‖ṽ − v‖) + ǫb‖A‖‖v‖
)

,

from which the proof is now directly obtained. ✷

The above result show that solving a linear system where the matrix has a
large condition number may lead to a loss in accuracy. Such systems are called
ill-conditioned. This is not related to the numerical procedure that is used to solve
the system. The matrix in Example 2.2 has a moderate condition number in any
of the norms (2.9), and in that example we just had to change the computation a
bit (by a permutation) to avoid large round-off errors.

Example 2.7 A notorious example for ill-conditioned systems involves the Hilbert
matrix H = (hij), hij =

∫ 1
0 x

i−1xj−1dx = 1
i+j−1 for 1 ≤ i, j ≤ m. The condition

number of this matrix quickly becomes large.
In the following table the condition numbers cond∞(H) for the maximum norm

are given, together with the errors ‖v−e‖∞ for the problem Hv = b where b = He
with e = (1, . . . , 1)T in R

m.

m 4 6 8 10 12 14

cond∞(H) 2.84 · 104 2.91 · 107 3.39 · 1010 3.54 · 1013 3.71 · 1016 4.08 · 1018

‖v − e‖∞ 2.96 · 10−13 4.29 · 10−10 5.46 · 10−7 4.51 · 10−4 3.04 · 10−1 5.23 · 101

The entries for this table have been computed with Matlab; a warning was issued
for m ≥ 12 stating that the “Matrix is close to singular or badly scaled. Results
may be inaccurate.” It is clear from the table that already the results for lower m
are not very accurate. ✸

2.5 Exercises

Exercise 2.1. This first exercise is intended as a little refresher from your linear
algebra course.

(a) A matrix U ∈ R
m×m is called orthogonal if UTU = I. Clearly UT is then

also orthogonal. For such a matrix, show that ‖Uv‖ 2
2 = ‖v‖ 2

2 for all v ∈ R
m and

‖UA‖2 = ‖AU‖2 for any A ∈ R
m×m.

(b) If A is symmetric, then it is known that A = UΛU−1 with real diagonal
Λ = diag(λi) and orthogonal U . Show that for a symmetric matrix we have
‖A‖2 = maxi |λi|. Also ‖A−1‖2 = maxi 1/|λi| if A is nonsingular.

(c) Let P be an m × m permutation matrix: Pv = (vk1 , . . . , vkm)
T for v =

(v1, . . . , vm)T , with ki 6= kj if i 6= j. Show that for all three norms (2.9) and for
any v ∈ R

m, A ∈ R
m×m we have ‖Pv‖ = ‖v‖ and ‖PA‖ = ‖A‖.

17

Exercise 2.2. Prove the expression for the induced matrix norms ‖A‖1, ‖A‖2 and
‖A‖∞ in (2.11). (Hint: to find ‖A‖2, use the fact that ATA is symmetric.)

Exercise 2.3. Show that for any nonsingular matrix A we have

‖A−1‖ =

(

min
v 6=0

‖Av‖
‖v‖

)−1

, cond(A) =
(max‖v‖=1 ‖Av‖)
(min‖v‖=1 ‖Av‖)

≥ 1 .

Exercise 2.4. For the 3× 3 matrix

A =





1 4 7
2 5 8
3 6 10



 ,

the LU decomposition can be computed by hand. What are the matrices L1 and
L2 in this process ? What happens if we change a33 = 10 to a33 = 9 ?

Exercise 2.5. A matrix A is called negative definite if −A is positive definite. Let

A =











−2 1

1 −2
. . .

. . .
. . . 1
1 −2











∈ R
m×m.

(a) Show that A is negative definite. (Hint: write (Av)j = (vj−1−vj)−(vj−vj+1)
with v0 = vm+1 = 0, and then consider vTAv =

∑m
j=1 vj(Av)j .) As a consequence,

we know that Av = b can be solved with (5m−4) operations as in Example 2.4.

(b) The inverse B = A−1 can be computed exactly. Consider Av = ek, with
ek = (0, . . . , 0, 1, 0, . . . , 0)T the k-th unit vector. The solution v will be the k-th
column of B, that is, bjk = vj . To compute v, introduce again v0 = vm+1 = 0, so
that

vj−1 − 2vj + vj+1 =

{

0 if j 6= k,
1 if j = k.

Hence, if j 6= k, then vj is the average of vj−1 and vj+1, that is, vj =
1
2(vj−1+vj+1).

Use this property to find

vj =
j
k
vk (j = 1, . . . , k − 1) ,

vj =
m+1−j
m+1−k

vk (j = k + 1, . . . ,m) ,

and then show that

vk = −
(

1
k
+ 1

m+1−k

)−1
.

j=1 j=k j=m

(c) Suppose B = A−1 has been computed and stored. Then the solution of Av = b
can simply be obtained from v = B b. How many operations are required for this
matrix-vector product? How does this compare with Example 2.4 ?

18

Exercise 2.6 (programming). Let xi = (i− 1)/k for i = 1, . . . , k + 1 with k = 10.
Let yi = f(xi) with a damped oscillating function f(x) = e−2x sin(3πx). We
want to find from the normal equations the polynomial of degree ≤ s such that
∑

i |p(xi) − yi|2 is minimal, with s = 2, 3, 4, 5. There is some freedom for doing
that.

(a) Let φj(x) = xj and compute the coefficients αj such that p(x) =
∑s

j=0 αjφj(x).

Compute also the condition number of B = ATA for the normal equations.

(b) Do the same but now with basis functions φ0(x) = 1, φ1(x) = 2x − 1 and

φj(x) =
2j−1
j (2x−1)φj−1(x)− j−1

j φj−2(x) for j ≥ 2 .

(These are the so-called Legendre polynomials, shifted to [0, 1]).

19

3 Polynomial Interpolation and Approximation

Suppose the set of distinct real points x0, x1, . . . , xm in [a, b] is given together
with corresponding numbers f0, f1, . . . , fm. We want to find a function P that
interpolates these data,

P (xi) = fi (i = 0, 1, . . . ,m) .(3.1)

In this section we will consider polynomial interpolation, where P is a polynomial
of degree m or less.

In general, the values fi may originate from measurements or they can be
output of some other numerical procedure. When we want to assess the quality
of the interpolation scheme, it will be assumed that the interpolation points are
on the graph of a smooth function f , that is, fi = f(xi).

We may also try to approximate a given function f by an interpolating poly-
nomial, in which case we are free to choose the nodes xj . Such polynomial ap-

proximations have many applications. For example, the integral
∫ b
a f(x) dx can

then be approximated by
∫ b
a P (x) dx.

3.1 Interpolation Formulas

For given nodes x0, x1, . . . , xm, let the polynomials Li be defined by

Li(x) =
∏

j 6=i

x−xj
xi −xj

=
(x−x0) ··· (x−xi−1)(x−xi+1) ··· (x−xm)

(xi −x0) ··· (xi −xi−1)(xi −xi+1) ··· (xi −xm)(3.2)

for i = 0, 1, . . . ,m.

Theorem 3.1 Assume the nodes x0, x1, . . . , xm are distinct. Then the unique
interpolation polynomial of degree ≤ m is given by

P (x) =
m
∑

i=0

Li(x) fi .(3.3)

Proof. The polynomial Li has value 1 in xi and value 0 in the other nodes xj ,
j 6= i. It is therefore clear that P provides an interpolation polynomial of degreem
at most.

Moreover, it is the only interpolation polynomial of degree ≤ m. To see this,
suppose Q is an other one. Then R = P −Q is a polynomial of degree ≤ m with
m+ 1 zeros xj , j = 0, . . . ,m, which implies that R is identically equal to zero. ✷

Formula (3.3) is called the Lagrange interpolation formula. In this form it is
not directly suited to evaluate the polynomials numerically. It can be rewritten
in various ways to make it more suitable for computations. Of course, in view of
the uniqueness, the formulas are mathematically equivalent.

Usually one wants to find P (x) for a number of different values x. A popular
way for multiple output values is the Newton divided difference formula, where

20

the interpolating polynomial is computed recursively (somewhat related to Exer-
cise 3.2). This is extensively treated in the book of Stoer&Bulirsch, for example.

Another way of rewriting the Lagrange formula leads to the so-called barycen-
tric formulas. For this, we introduce the polynomial

M(x) = (x− x0)(x− x1) · · · (x− xm) ,(3.4)

and the factors

wi =
1

M ′(xi)
=

1
∏

j 6=i(xi − xj)
(i = 0, 1, . . . ,m) .(3.5)

Then we have Li(x) =M(x)wi (x− xi)
−1, and therefore

P (x) = M(x)

m
∑

i=0

wi

x− xi
fi .(3.6)

This can be further rewritten in the form of a weighted average of the fi values;
see Exercise 3.1.

Computing the factors w0, w1, . . . , wm requires order m2 operations, and after
that we can evaluate P (x) for any given x with additional order m operations.
This is much better than with direct use of (3.3).

3.2 The Interpolation Errors

To derive an expression for the error made by interpolation, we assume that the
distinct nodes xj are in the interval [a, b], but also that the points (xj , fj) are on
the graph of a smooth function f . Let the polynomial M be as in (3.4).

Theorem 3.2 Suppose f : [a, b] → R is (m+1) times differentiable, and let P be
the polynomial of degree ≤ m that passes through (xj , f(xj)) for j = 0, 1, . . . ,m.
Then for any x ∈ [a, b] there is a ξ ∈ [a, b] such that

f(x)− P (x) =
1

(m+1)! M(x) f (m+1)(ξ) .

Proof. Suppose x 6= xj for j = 0, 1, . . . ,m; otherwise there is nothing to prove.
For this fixed x, let κ ∈ R be such that f(x)− P (x) = κM(x), and consider

Q(y) = f(y)− P (y)− κM(y) (for y ∈ [a, b]) .

We have Q(y) = 0 if y = x or y = xj , j = 0, . . . ,m. Therefore, Q has at least
m+2 zeroes in [a, b]. Between any two zeroes of Q there is a zero of Q′ (Rolle’s
theorem), so we know that Q′ has at least m+1 zeroes in [a, b]. Subsequently, Q′′

has at least m zeroes in [a, b], and so on. Finally, Q(m+1) has at least one zero in
[a, b], which we call ξ. But then 0 = Q(m+1)(ξ) = f (m+1)(ξ)− (m+ 1)!κ, that is,
κ = 1

(m+1)!f
(m+1)(ξ). ✷

21

Corollary 3.3 Under the assumptions of the previous theorem, we have

|f(x)− P (x)| ≤ 1
(m+1)! sup

ξ∈[a,b]
|f (m+1)(ξ)| · |M(x)| .

✷

Illustration. Suppose x0 = mini xi and xm = maxi xi. We can use the interpo-
lation formulas outside [x0, xm], but this is not recommended. It will usually lead
to large errors, due to the fact that the function values |M(x)| quickly become
very large outside the interval [x0, xm].

An illustration with m = 10 is given in the left panel of Figure 3.1 for
f(x) = cos(5x − 1) with equally spaced points xj = −1 + 2j/m ∈ [−1, 1]. Then

1
(m+1)! |f (m+1)(ξ)| ≤ 1

(m+1)!5
m+1, which is small for large m. Indeed with increas-

ing m, the interpolation error becomes very small on [−1, 1]. However outside the
interpolation interval we see that the error on the left becomes large right away.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

Figure 3.1: Interpolation with polynomials of degree m = 10, equidistant nodes
xi = −1 + 0.2i in [−1, 1] with fi = f(xi), where f(x) = cos(5x − 1) (left panel) and
f(x) = 1/(1 + 25x 2) (right panel). The graph of f is given by the dashed line, the
interpolating polynomial is the solid line.

A more serious problem arises when 1
(m+1)! |f (m+1)| is not small. Then the error

can exhibit large oscillations towards the endpoints of the interpolation interval.
This is called the Runge phenomenon. An illustration is presented in the right
panel of Figure 3.1 for f(x) = (1+25x2)−1 with the same grid spacing and m = 10
as before. In the middle of the interpolation interval the result is not too bad, and
this would in fact become better with larger m but then also the oscillations near
the endpoints become worse.

Chebyshev nodes. To some extent the bad result in Figure 3.1 is due to the
equal spacing of the nodes xj used for that computation. A natural question
is how to chose these nodes in [a, b] such that max[a,b] |M(x)| is minimized. To
answer this question, let us first take [a, b] = [−1, 1]; later it can be transformed
back to arbitrary intervals.

22

Consider the Chebyshev polynomials, defined for n = 0, 1, 2, . . . by

Tn(x) = cos(n arccos(x)) (−1 ≤ x ≤ 1) .(3.7)

It is not obvious that these are polynomials. However it is easy to see (by setting
x = cos θ and using cos((n+1)θ) + cos((n− 1)θ) = 2 cos(θ) cos(nθ)) that we have
the recursion

T0(x) = 1 , T1(x) = x , Tn(x) = 2xTn−1(x)− Tn−2(x) (n ≥ 2) .(3.8)

This makes it clear that Tn is indeed a polynomial of degree n, and the factor
for the leading power xn is 2n−1. Note also that formula (3.8) can be used for all
x ∈ R. Moreover, if n > 0, we have |Tn(x)| = 1 for n+1 distinct points in [−1, 1]:

Tn(ηk) = (−1)k for ηk = cos
(

kπ
n

)

, k = 0, 1, . . . , n ,(3.9a)

and all roots of Tn are in the interval (−1, 1):

Tn(ξk) = 0 for ξk = cos
(

(k + 1
2
)
π
n

)

, k = 0, 1, . . . , n− 1 .(3.9b)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

T1

T2

T3 T4

Figure 3.2: Chebyshev polynomials T1, T2, T3, T4 on [−1, 1].

Lemma 3.4 We have |Tn(x)| ≤ 1 for all x ∈ [−1, 1]. Moreover, if Sn is an-
other polynomial of degree n with factor 2n−1 for the leading power xn, then
maxx∈[−1,1] |Sn(x)| ≥ 1.

Proof. The property max[−1,1] |Tn(x)| ≤ 1 follows directly from (3.7). Now
suppose Sn has the same leading coefficient and max[−1,1] |Sn(x)| < 1. Then
R(x) = Sn(x)− Tn(x) is a polynomial of degree n−1, because the highest powers
cancel. We know that Tn(x) oscillates between the values −1 and 1. It follows
from (3.9a) that R has a zero on each interval (ηk, ηk−1), k = 1, 2, . . . , n. Therefore
R has at least n zeroes on [−1, 1]. But this implies R ≡ 0, which contradicts the
assumption max[−1,1] |Sn(x)| < 1. ✷

Remark 3.5 By counting the zeros a bit more carefully, it is also easy to show
that maxx∈[−1,1] |Sn(x)| > 1 if Sn 6= Tn. ✸

23

Now, returning to our problem, we see that if we want to make max[−1,1] |M(x)|
minimal, then the choice is M(x) = 2−mTm+1(x). This means that the nodes xj
should coincide with the zeroes of Tm+1, that is, xj = cos((j + 1

2)π/(m+ 1)).
For an arbitrary interval [a, b] we can use the translation x 7→ 1

2(a+b)+
1
2(b−a)x

to map [−1, 1] onto [a, b]. It follows that max[a,b] |M(x)| is minimal for the nodes

xj = 1
2
(a+ b) + 1

2
(b− a) cos

(

(j + 1
2
)

π
m+1

)

(j = 0, 1, . . . ,m) .(3.10)

Illustration. The results for these Chebyshev nodes on [−1, 1] with m = 10 are
shown in Figure 3.3, with the lay-out as before for the equally spaced nodes. The
very large oscillations at the endpoints for f(x) = 1/(1 + 25x 2) have become less
severe, but it is clear that the interpolation is there still inaccurate. However, with
these Chebyshev nodes the interpolation will improve quickly if we increase m, in
contrast to the case with equidistant nodes.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

Figure 3.3: Interpolation with polynomials of degree m = 10, Chebyshev nodes in [−1, 1]
with fi = f(xi), where f(x) = cos(5x − 1) (left panel) and f(x) = 1/(1 + 25x 2) (right
panel). This is to be compared with Figure 3.1.

For the smooth function f(x) = cos(5x − 1) the errors are not visible inside
the interpolation interval, but they are actually much smaller for the Chebyshev
points (maximal error 7.09 · 10−4 on [−1, 1]) than for the uniformly distributed
points (maximal error 6.74 · 10−3).

Although the result for f(x) = 1/(1 + 25x 2) is now much better than for the
uniformly distributed points, there are obviously still relatively large errors with
m = 10. Increasing m leads rapidly to small errors, as shown in Table 3.1.

Table 3.1: Maximal error maxx∈[−1,1] |f(x)−P (x)| for increasingm with the Chebyshev
nodes and f(x) = 1/(1 + 25x 2).

m 10 20 30 40 50 60

Max. err. 1.09 · 10−1 1.53 · 10−2 2.04 · 10−3 2.86 · 10−4 3.96 · 10−5 5.18 · 10−6

24

Remark 3.6 It can be shown (but this is quite difficult) that the interpolation
polynomials with Chebyshev nodes will converge for increasing m to f(x), uni-
formly on [a, b], provided that f is continuously differentiable.

A famous theorem of Weierstass states that any continuous function f can
be approximated by polynomials with arbitrary high accuracy, uniformly on the
interval [a, b]. A constructive proof of this result can be given using the Bernstein

polynomials Bn(x) =
∑n

j=0

(

n
j

)

xj(1− x)n−jf(j
n
) with interval [a, b] = [0, 1].

These polynomials Bn(x) will converge uniformly to f(x) for increasing n, but
the convergence is very, very slow. From a practical numerical point of view these
Bernstein polynomials are therefore not suited to approximate functions. ✸

3.3 Piecewise Polynomials and Splines

Assume from now on a = x0 < x1 < . . . < xm = b, and let hi = xi − xi−1

for i = 1, 2, . . . ,m. To avoid the oscillatory behaviour that can be encountered
with high-order interpolation, we can consider interpolation on each sub-interval
[xi−1, xi] with a low order polynomial Pi.

The most simple interpolation of this kind is piecewise linear interpolation,

Pi(x) =
x− xi−1

hi
fi −

x− xi
hi

fi−1 for xi−1 ≤ x ≤ xi .(3.11)

From Corollary 3.3 it follows that if fi = f(xi) with a function f that is twice
differentiable, then

|f(x)− Pi(x)| ≤ 1
8
h2i sup

xi−1≤ξ≤xi

|f ′′(ξ)| for all x ∈ [xi−1, xi] .(3.12)

To increase the accuracy we can take Pi to be a polynomial of higher degree,
for example, of degree 3 passing through (xj , fj), j = i−2, i−1, i, i+1. However, at
the nodes we will then have merely continuity of our interpolant. To get a good
looking output, for example for plotting, more smoothness is often required.

A very popular choice is to take the interpolant as a cubic spline function S,
where S is a polynomial of degree ≤ 3 on each sub-interval [xi−1, xi] and S is twice
continuously differentiable on [a, b].

Consider a piecewise cubic polynomial given on [xi−1, xi] by S(x) = Si(x),
with

Si(x) = fi + ui(x− xi) + vi(x− xi)
2 + wi(x− xi)

3 ,(3.13)

for i = 1, 2, . . . ,m. Here it is already ensured that Si(xi) = fi. The remaining
conditions are

{

Si(xi−1) = fi−1 (i = 1, 2, . . . ,m) ,

S′
i−1(xi−1) = S′

i(xi−1) , S′′
i−1(xi−1) = S′′

i (xi−1) (i = 2, 3, , . . . ,m) .
(3.14)

This gives 3m−2 conditions for the free parameters ui, vi, wi. Therefore, two extra
conditions are needed. Common choices are

S′′(a) = S′′(b) = 0 the so-called natural or free splines ,(3.15a)

S′(a) = f ′0 , S
′(b) = f ′m the so-called clamped splines ,(3.15b)

25

where for the last choice we need of course the additional data f ′0, f
′
m at the

endpoints. It will be shown below that this leads to a tri-diagonal system, which
is easily solved.

Illustration. One of the motivations to look at splines was the oscillating be-
haviour of the high-order interpolants for the function f(x) = 1/(1 + 25x 2) on
[−1, 1]. The right panel of Figure 3.4 shows the cubic natural spline interpolating
this function at the equally spaced points xi = −1 + 0.2i, i = 0, 1, . . . ,m = 10.
The results are now satisfactory, in particular when compared the the previous
results with the interpolants of degree 10. The spline produces indeed a ‘good
looking’ interpolant.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

Figure 3.4: Spline interpolation with nodes xi = −1+ 0.2i in [−1, 1] for fi = f(xi), with
f(x) = cos(5x − 1) (left panel) and f(x) = 1/(1 + 25x 2) (right panel). As before, the
graph of f is given by the dashed line, the interpolating polynomial is the solid line.

For the smooth function f(x) = cos(5x − 1) the maximal error on [−1, 1] of
the interpolating natural spline is 2.72 · 10−2; for the clamped spline this error
is somewhat smaller, 3.08 · 10−3. Here the high-order polynomial interpolation
with Chebyshev points is more accurate. The same happens with the function
f(x) = 1/(1 + 25x 2) if the number of points m gets larger. The maximal errors
with increasing m are given in Table 3.2, which is to be compared with Table 3.1.

Table 3.2: Maximal error maxx∈[−1,1] |f(x)−P (x)| for increasingm with the free splines
and f(x) = 1/(1 + 25x 2).

m 10 20 30 40 50 60

Max. err. 2.20 · 10−2 3.20 · 10−3 8.24 · 10−4 2.77 · 10−4 1.11 · 10−4 5.25 · 10−5

Construction. As already mentioned above, construction of a spline merely
requires solving a tri-diagonal linear system. This is shown here for a natural
spline; for a clamped spline it is similar. Denote hi = xi − xi−1. Elaboration of

26

(3.13), (3.14) gives

fi − hiui + h2i vi − h3iwi = fi−1 (i = 1, . . . ,m) ,

ui − 2hivi + 3h2iwi= ui−1 (i = 2, . . . ,m) ,

vi − 3hiwi = vi−1 (i = 2, . . . ,m) .

Moreover we have for the natural spline v1 − 3h1w1 = 0 and vm = 0. It is
convenient to introduce v0 = 0. Then

hiwi =
1
3
(vi − vi−1) (i = 1, . . . ,m) ,

hiui = fi − fi−1 +
1
3
h2i (2vi + vi−1) (i = 1, . . . ,m) ,

and then for the v1, v2, . . . , vm−1 it is finally found that

1
3
hivi−1 +

2
3
(hi + hi+1)vi +

1
3
hi+1vi+1 = bi (i = 1, . . . ,m− 1) ,(3.16)

with right-hand side terms bi = (h−1
i (fi−1− fi)−h−1

i+1(fi− fi+1)). This is a linear
system for the vi with a symmetric positive-definite tri-diagonal matrix, that can
be solved very quickly.

Properties.⋆ Splines have interesting mathematical properties. Here we only
mention two such properties, without proof. For a given function f , let S be a
cubic spline that interpolates (xi, f(xi)) (0 ≤ i ≤ m).

First, if f is four times differentiable, and S is the clamped spline with S′(a) =
f ′(a) and S′(b) = f ′(b), then the interpolation error satisfies

max
x∈[a,b]

|f(x)− S(x)| ≤ 5
384
h4 max

ξ∈[a,b]
|f (4)(ξ)|(3.17)

where h = maxi hi. A similar O(h4) error bound holds for the natural spline in
the interior of the domain.

Secondly, splines have an interesting minimization property with respect to the
integral

∫ b
a |f ′′(x)|2 dx, which can be viewed as a measure for the total bending

of f on [a, b]. If f is two times continuously differentiable, and the interpolating
spline is such that and S′′(a)(f ′(a) − S′(a)) = S′′(b)(f ′(b) − S′(b)) –which holds
for both the natural and the clamped spline – then

∫ b

a
|S′′(x)|2 dx ≤

∫ b

a
|f ′′(x)|2 dx .(3.18)

3.4 Exercises

Exercise 3.1. Show that
∑m

i=0 Li(x) ≡ 1 for the Lagrange polynomials (3.2). Hint:
what happens if all fi = 1 in (3.3) ?

Next, show that formula (3.6) can be written as

P (x) =

∑m
i=0 Qi(x) fi
∑m

i=0Qi(x)
, Qi(x) =

wi

x− xi
(i = 0, 1, . . . ,m) .(3.19)

27

Exercise 3.2. Suppose P0,···,m−1(x) interpolates (x0, f0), . . . , (xm−1, fm−1), and
P1,···,m(x) interpolates (x1, f1), . . . , (xm, fm). Show that

P0,1,···,m(x) =
1

xm −x0

(

(xm − x)P0,···,m−1(x) + (x− x0)P1,···,m(x)
)

then passes through all data points (xj , fj), j = 0, 1, . . . ,m.

Exercise 3.3. Suppose f is twice continuously differentiable, and let P be the
linear interpolant with nodes x0 and x1 = x0 + h. Show that

|f(x)− P (x)| ≤ 1
8
h2 max

ξ∈[x0,x1]
|f ′′(ξ)| (for all x ∈ [x0, x1]) ,

and
∣

∣

∣

∫ x1

x0

f(x) dx −
∫ x1

x0

P (x) dx
∣

∣

∣
≤ 1

12
h3 max

ξ∈[x0,x1]
|f ′′(ξ)| .

Exercise 3.4. We can modify the proof of Theorem 3.2 to obtain an expression
for the error of the first derivative at the nodes. Show that for each node xj there
is a ξj ∈ [a, b] such that

f ′(xj)− P ′(xj) =
1

(m+1)! M
′(xj) f

(m+1)(ξj) .

Hint: consider Q(y) = f(y)− P (y)− κM(y) with κ = 1
M ′(xj)

(f ′(xj)− P ′(xj)) .

Exercise 3.5 (Product formulas). Let xi and yj be given for 0 ≤ i, j ≤ m together
with values fij in R. We want a polynomial P (x, y) of degree ≤ m in x and y that
interpolates these data:

P (xi, yj) = fij (0 ≤ i, j ≤ m) .

(a) Derive the two-dimensional linear interpolation formula, m = 1, from the one-
dimensional formulas.

(b) Discuss generalization to m > 1.

Exercise 3.6.⋆ Consider [a, b] = [−1, 1] with equidistant nodes xj = a+ jh, where
h = (b−a)/m = 2/m, and let M(x) = (x− x0)(x− x1) · · · (x− xm). Show that

1
4
(m−1)!hm+1 ≤ max

x∈[a,b]
|M(x)| ≤ 1

4
m!hm+1 .

Hint: to derive the upper bound, first consider x ∈ (x0, x1), and to derive the
lower bound consider x = 1

2(x0 + x1).
Note: the factorial term m! can be well approximated by Stirling’s formula

m! ∼
√
2πm (m/e)m. Using this, the size of the upper bound becomes more clear

for large m:

max
x∈[a,b]

|M(x)| . 1
2

√

2π
m

(

2
e

)m
.

28

Exercise 3.7.⋆ Consider the interval [a, b] = [−1, 1]. Show that for the Chebyshev
nodes (3.10) we have

max
x∈[a,b]

|M(x)| ≤ 2−m .

Exercise 3.8. Suppose the data fj are obtained from measurements which have a
relative error ε or less. This means that, instead of the exact values fj , we have
to work with perturbed values f̃j = (1 + εj) fj with |εj | ≤ ε. This leads to a
perturbed interpolant P̃ (x), with P̃ (xj) = f̃j for j = 1, 2, . . . ,m. Show that

|P̃ (x)− P (x)| ≤ ε max
0≤i≤m

|fi| · Λm , Λm = max
x∈[a,b]

m
∑

i=0

|Li(x)| .

Note: the value Λm is called the Lebesgue constant for the nodes x0, x1, . . . , xm.
It has been studied extensively. It is known that for equidistant nodes, Λm grows
exponentially with m. For the Chebyshev nodes, Λm behaves much nicer: it grows
only as log(m). So also in this respect there is a clear advantage for the Chebyshev
nodes over the equidistant nodes.

Exercise 3.9 (programming). Write a program for the interpolation problem (3.1)
with a polynomial of degree ≤ m.

(a) Use equidistant nodes and verify Figure 3.1. What happens if m is increased ?

(b) Use Chebyshev nodes and verify Figure 3.3. What happens if m is increased ?

(c) Do the same for the natural cubic splines and Figure 3.4.

Exercise 3.10 (programming). Splines can be used to draw smooth curves in R
2.

Suppose points (xj , yj) ∈ R
2 are given for j = 0, 1, . . . ,m. Consider tj = j/m.

We can compute the natural splines X(t) interpolating (tj , xj) and Y (t) inter-
polating (tj , yj). Plot Y (t) versus X(t) for {xj} = {−1, 0, 1, 0,−0.5, 0.5} and
{yj} = {0, 1, 0.5, 0, 1.5, 1.5}.

29

4 Trigonometric Interpolation with DFT and FFT

In this section2 we will study interpolation and approximation of periodic functions
f : R → R. It will be assumed for convenience, but without loss of generality, that
the period is 2π, that is, f(x+2π) = f(x) for all x ∈ R. The approximations will
consist of trigonometric polynomials

ϕ(x) = a0 + 2
m−1
∑

k=1

(

ak cos(kx) + bk sin(kx)
)

+ am cos(mx) ,(4.1a)

with coefficients

ak =
1
2m

2m−1
∑

j=0

f(xj) cos(kxj) , bk =
1
2m

2m−1
∑

j=0

f(xj) sin(kxj) ,(4.1b)

where xj = πj/m. We will see that for smooth functions, this interpolation
formula gives a very accurate approximation to f already for rather modest values
of m.

Instead of using expressions with cos(kx) and sin(kx) terms as in (4.1), it is
easier to work with complex exponentials eikx, i =

√
−1, and it is then also natural

to let f : R → C.
To derive (4.1), we will first consider discrete Fourier transforms (DFT), which

is an important subject on its own with many applications; for example in signal
analysis and data compression. There are very efficient implementations of these
discrete Fourier transforms, known as fast Fourier transforms (FFT), which will
be briefly discussed later.

4.1 Fourier Series and Fourier Transforms

Let f : R → C be a 2π-periodic function. The Fourier transform of f is the
sequence {. . . , c−1, c0, c1, c2, . . .} given by

ck =
1
2π

∫ 2π

0

f(x) e−ikx dx (k ∈ Z) ,(4.2)

where Z stands for the set of all integers. Conversely, under mild smoothness
assumptions, f can be represented by the Fourier series

f(x) =
∑

k∈Z

ck e
ikx (x ∈ R) .(4.3)

For the main estimates in this section it will be assumed that the function f is
piecewise continuously differentiable. This is sufficient to justify (4.3).

The problem that will be addressed in this section is the following. Suppose
that f is only known on the set of discrete, equidistant points

xj =
2πj
n , j = 0, 1, . . . , n .(4.4)

2The presentation in this section is mainly based on the lecture notes of E.Hairer. The other
references listed in the Preface cover this material only partially.

30

Then we can consider

vk =
1
n

n−1
∑

j=0

f(xj) e
−ikxj (k ∈ Z)(4.5)

to approximate the integral in (4.2). We will see that with these coefficients vk
we can construct an interpolant for f on the points x0, . . . , xn. This interpolant
will be a complex trigonometric polynomial, consisting of linear combinations of
powers of eix.

Discrete Fourier Transforms. We denote by Πn the set of complex sequences
u = {. . . , u−1, u0, u1, u2, . . .} that are n-periodic, that is, uk ∈ C and uk = uk+n

for all k ∈ Z. The discrete Fourier transform (DFT) is the linear map Fn defined
for any u ∈ Πn by:

v = Fnu if vk =
1
n

n−1
∑

j=0

uj e
−ikxj (k ∈ Z) .(4.6)

Lemma 4.1 The discrete Fourier transform Fn maps Πn into itself. This linear
mapping is invertible, and its inverse is given by:

u = F−1
n v if uk =

n−1
∑

j=0

vj e
ikxj (k ∈ Z) .(4.7)

Proof. Introducing ω = e2πi/n, we can write eikxj = ωkj . Since ωn = e2πi = 1,
we have ωnj = 1 for any j ∈ Z. Hence

vk+n =
1
n

n−1
∑

j=0

ujω
−(k+n)j =

1
n

n−1
∑

j=0

ujω
−kj = vk ,

which shows that v ∈ Πn.
Now let F−1

n be defined as in (4.7). To show that this is the inverse of Fn,
consider

(F−1
n Fnu)l =

n−1
∑

k=0

(Fnu)k ω
kl =

1
n

n−1
∑

k=0

n−1
∑

j=0

uj ω
−kjωkl

=
1
n

n−1
∑

j=0

uj

(n−1
∑

k=0

ωk(l−j)

)

= ul .

Here the last equality follows from

n−1
∑

k=0

ωkd =
n−1
∑

k=0

(ωd)k =

{

n if d = 0 (modn) ,
ωnd−1
ωd−1

= 0 otherwise ,

due to the fact that ωd = 1 if d = 0 (modn). ✷

31

Since any u ∈ Πn is determined by n components, we can identify Πn with
C
n. Among the other properties of the discrete Fourier transform, we mention the

discrete Parseval identity:
∑n−1

j=0 |vj |2 = 1
n

∑n−1
j=0 |uj |2.

4.2 Approximation Properties

For a 2π-periodic function f : R → C, we consider the Fourier coefficients ck from
(4.2), together with the coefficients vk from the discrete Fourier transform (4.5).
We want to know how well vk approximates ck.

Lemma 4.2 Suppose the series
∑

k∈Z ck is absolutely convergent. Then

vk − ck =
∑

j 6=0

ck+jn .(4.8)

Proof. As before, let ω = e2πi/n. Inserting (4.3) into (4.5) gives

vk =
1
n

n−1
∑

j=0

(

∑

l∈Z

cl ω
lj

)

ω−kj =
∑

l∈Z

cl

(

1
n

n−1
∑

j=0

ω(l−k)j

)

.

Here changing the order of the summation is justified because of the absolute
convergence of the Fourier series. Since 1

n

∑n−1
j=0 ω

(l−k)j equals 1 if l = k (modn)
and 0 otherwise, the result (4.8) follows. ✷

For a 2π-periodic function f : R → C we will write f ∈ E0 if there is a
finite partitioning 0 = θ0 < θ1 < θ2 < · · · < θs = 2π of the interval [0, 2π] such
that the derivative f ′ is continuous and bounded on each sub-interval (θj−1, θj),
j = 1, 2, . . . , s. So, discontinuities of f are allowed at the points θj , but the
left and right limits limx↑θj f(x) and limx↓θj−1 f(x) exist. For p ≥ 1 we will

write f ∈ Ep if f (p) ∈ E0 and f (p−1) is continuous on R. We may then take
∫ 2π
0 f (p)(x)e−ikx dx =

∑s
j=1

∫ θj
θj−1

f (p)(x)e−ikx dx.

Lemma 4.3 Suppose f ∈ Ep. Then there is a γ > 0 such that the Fourier
coefficients ck satisfy

|ck| ≤ γ |k|−(p+1) (for all k ∈ Z) .(4.9)

Proof. Using periodicity of f (j)(x) e−ikx for j < p, it follows by repeated partial
integration that

ck =
1
2π

∫ 2π
0 f(x) e−ikx dx =

1
2πik

∫ 2π
0 f ′(x) e−ikx dx = . . .

=
1

2π(ik)p
∫ 2π
0 f (p)(x) e−ikx dx =

−1
2π(ik)p+1

∫ 2π
0 f (p)(x) d(e−ikx) .

On each sub-interval (θj−1, θj), 1 ≤ j ≤ s+1, we have

∫ θj
θj−1

f (p)(x) d(e−ikx) = limε↓0
(

f (p)(x)e−ikx
∣

∣

θj − ε
θj−1+ε

)

+
∫ θj
θj−1

f (p+1)(x)e−ikx dx ,

and this is well-defined. The bound (4.9) thus follows with a constant γ > 0 given

by γ = 1
2π

∑s
j=1 |

∫ θj
θj−1

f (p)(x) d(e−ikx)|. ✷

32

Corollary 4.4 Suppose f ∈ Ep with p ≥ 1. Then there is an α > 0 such that

|vk − ck| ≤ αn−(p+1) for |k| ≤ 1
2
n .(4.10)

Proof. We have |vk − ck| ≤
∑

j 6=0 |ck+jn| ≤ γ
∑

j 6=0 |k + jn|−(p+1). Moreover, for

|k| ≤ 1
2n it holds that |k+ jn| ≥ (|j|− 1

2)n. The upper bounds (4.10) are therefore

obtained with α = 2γ
∑

j≥1(j − 1
2)

−(p+1). ✷

From (4.9) we see that the ck rapidly tend to zero as k → ∞, whereas the
sequence {vk} is n-periodic. Therefore, for large |k|, say |k| ≥ n, vk will not be
a good approximation to ck. On the other hand, if |k| ≤ 1

2n it is in general very
good, as expressed by (4.10).

Remark 4.5 In particular, for k = 0 we find from (4.10) that

∣

∣

∣ h
n−1
∑

j=0

f(xj) −
∫ 2π

0

f(x) dx
∣

∣

∣ ≤ 1
(2π)pαh

p+1 ,(4.11)

where h = 2π/n. When discussing numerical quadrature in the next section we
will see that this result is actually quite amazing. ✸

4.3 Trigonometric Interpolation

To construct an interpolant for f , using the discrete values f(xj) with xj = 2πj/n
for j = 0, 1, . . . , n − 1, we will use the coefficients vk from the discrete Fourier
transform (4.5). It will be convenient to take n even and let m = 1

2n. Then the
trigonometric polynomial

ϕ(x) = 1
2
v−m e

−imx +
∑

|k|<m

vk e
ikx + 1

2
vm e

imx(4.12)

satisfies ϕ(xj) = f(xj) for j = 0, 1, . . . , n − 1. By considering u ∈ Πn with
uj = f(xj), this interpolation property follows from the observation that {vk eikxj}
is an n-periodic sequence, and therefore

ϕ(xj) =
n−1
∑

k=0

vk e
ikxj = (F−1

n v)j = (F−1
n Fnu)j = uj .

Our previous estimates now give the following result on the interpolation errors
for trigonometric polynomials:

Theorem 4.6 Suppose f : R → C is 2π-periodic and its Fourier series is abso-
lutely convergent. Then the trigonometric polynomial (4.12) satisfies

∣

∣f(x)− ϕ(x)
∣

∣ ≤ |c−m|+ |cm|+ 2
∑

|k|>m

|ck| (for all x ∈ R) .

33

Proof. Subtraction of (4.12) from (4.3) gives

f(x)− ϕ(x) =
(

1
2
c−m e

−imx +
∑

|k|>m

ck e
ikx + 1

2
cm e

imx
)

+
(

1
2
(c−m − v−m) e−imx +

∑

|k|<m

(ck − vk) e
ikx + 1

2
(cm − vm) eimx

)

.

The proof now follows from (4.8) and the triangle inequality. ✷

Corollary 4.7 Assume f ∈ Ep with p ≥ 1. Then the error with trigonometric
interpolation satisfies maxx∈R |f(x) − ϕ(x)| ≤ C m−p with C > 0 independent
of m.

Proof. Since p ≥ 1, the estimate (4.9) shows that the Fourier series of f will
converge absolutely, and we obtain

|f(x)− p(x)| ≤ 2γm−(p+1) + 4γ
∑

k>m

k−(p+1)

Since
∑

k>m k
−(p+1) ≤

∫∞
m t−(p+1) dt = 1

pm
−p, the error bound of the corollary

follows with C = 2γ + 4γ/p. ✷

For many functions an even better bound exists: it is known that if f can be
extended to a function of the complex variable z = x+ iy which is analytic in the
strip −γ ≤ y ≤ γ, then the ck can be bounded in modulus as β e−γ|k|, which leads
to the exponential bound C e−γm for the interpolation errors.

For real 2π-periodic functions f : R → R we can rewrite the the trigonometric
interpolant (4.12) in terms of cosine and sine functions. Since v−k and vk are
then complex conjugate according to (4.5), and v−m = v−m+n = vm, we obtain
by setting vk = ak + ibk the formulas (4.1) with m = 1

2n. This is the usual form
of trigonometric interpolation formulas for real functions found in the literature.
Similar formulas can also be derived for n odd.

Illustration. Trigonometric interpolation of smooth functions is very accurate.
To illustrate the behaviour for a non-smooth example, let us consider f(x) =
1 + x/π − x2/π2 (for −π < x ≤ π). This function is of course arbitrarily often
differentiable on (−π, π], but when it is extended to the whole real line by periodic
continuation, f(x + 2π) = f(x), discontinuities are created at x = ±π,±3π, . . .,
resulting in f ∈ E0.

The trigonometric interpolants with m = 4 and m = 8 are shown in the left
panel of Figure 4.1. Oscillations arise at the points x = ±π; this is known as
the Gibbs phenomenon. These oscillations will persist for larger m but they do
become more and more localized around the discontinuities.

If we take f(x) = 1− x2/π2 (for −π < x ≤ π), then the periodic continuation
is continuous but not differentiable at x = ±π,±3π, . . ., resulting in f ∈ E1.
Already with m = 8 a rather accurate approximation is found, as can be seen in

34

−4 −3 −2 −1 0 1 2 3 4

−1

−0.5

0

0.5

1

1.5

−4 −3 −2 −1 0 1 2 3 4
−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.1: Interpolation with trigonometric polynomials with m = 4 and m = 8 for the
functions f(x) = 1 + x/π − x2/π2 (left panel) and f(x) = 1 − x2/π2 (right panel). The
graph of f is given by the dashed lines. The solid lines correspond with m = 4 and the
dash-dotted lines with m = 8.

the right panel of Figure 4.1. The individual lines in this plot are not so easy to
distinguish anymore, but that just illustrates the accuracy.

Needless to say, the above functions f are only intended as numerical illustra-
tion. In practice, we will not try to interpolate simple polynomials.

4.4 Fast Fourier Transforms

The discrete Fourier transform v = Fnu arises in many applications. Direct com-
putation of all components v0, v1, . . . , vn−1 in (4.6) requires n2 multiplications and
additions. This can be done better. With the fast Fourier transform algorithm
(FFT) it can be done in n log2 n operations if n is a power of 2. The same applies
to the computation of the inverse F−1

n v. Since discrete Fourier transforms arise
so often, this is a very important practical result.

In the following, it will be more natural to work with nFn instead of Fn. We
will use the notation ωn = e2πi/n, and it is assumed that n is even, n = 2m.

The key to FFT is the realization that one transform 2mF2m of dimension 2m
can be computed by doing two transformsmFm of dimensionm. More specifically:
suppose u = {uj} and v = {vj} are in Πm, and define

y = {. . . , u0, v0, u1, v1, . . . , um, vm, . . .} ∈ Π2m .(4.13)

Then we have, for k = 0, 1, . . . ,m,






2m (F2my)k = m (Fmu)k + ω−k
2mm (Fmv)k

2m (F2my)m+k = m (Fmu)k − ω−k
2mm (Fmv)k .

(4.14)

To prove the first relation, note that

2m (F2my)k =
2m−1
∑

j=0

yj ω
−jk
2m =

m−1
∑

l=0

y2l ω
−2lk
2m +

m−1
∑

l=0

y2l+1 ω
−(2l+1)k
2m .

35

Using y2l = ul, y2l+1 = vl and ω−2lk
2m = ω−lk

m , ω
−(2l+1)k
2m = ω−lk

m · ω−k
2m, we thus

obtain

2m (F2my)k =
m−1
∑

l=0

ul ω
−lk
m + ω−k

2m

m−1
∑

l=0

vl ω
−lk
m = m (Fmu)k + ω−k

2mm (Fmv)k

The second relation follows in the same way, using ωm
2m = −1.

The relations (4.14) can be applied recursively. If n = 2j this leads in j steps
to the trivial problems of the form F1w = w. For example, with n = 8 = 23 we
get schematically:

nFn

























y0
y1
y2
y3
y4
y5
y6
y7

























��✒

❅❅❘

n
2Fn

2









y0
y2
y4
y6









��✒

❅❅❘

n
2Fn

2









y1
y3
y5
y7









��✒

❅❅❘

n
4Fn

4

(

y0
y4

)

��✒

❅❅❘

n
4Fn

4

(

y2
y6

)

��✒

❅❅❘

n
4Fn

4

(

y1
y5

)

��✒

❅❅❘

n
4Fn

4

(

y3
y7

)

��✒

❅❅❘

n
8Fn

8
y0 = y0

n
8Fn

8
y4 = y4

n
8Fn

8
y2 = y2

n
8Fn

8
y6 = y6

n
8Fn

8
y1 = y1

n
8Fn

8
y5 = y5

n
8Fn

8
y3 = y3

n
8Fn

8
y7 = y7

The computation is now done by going in this scheme from right to left. We first
have to perform a permutation so that the ordering on the right is obtained. This
can be done easily with binary representation of the indices, using the so-called
’bit-reversal’ trick:

index left binary reversed index right

0 → (0,0,0) → (0,0,0) → 0
1 → (0,0,1) → (1,0,0) → 4
2 → (0,1,0) → (0,1,0) → 2
3 → (0,1,1) → (1,1,0) → 6
4 → (1,0,0) → (0,0,1) → 1
5 → (1,0,1) → (1,0,1) → 5
6 → (1,1,0) → (0,1,1) → 3
7 → (1,1,1) → (1,1,1) → 7

Using these ideas, the discrete Fourier transform Fn can be performed with
just n log2 n complex multiplications and 1

2n log2 n complex additions if n is a
power of 2. For the inverse F−1

n this is the same, of course.

36

Similar ideas can be used if n is not a power of 2, by decomposing n in its prime
factors. The FFT procedures then do become somewhat less effective. If n = 2j ·p
with prime p > 2, then after j steps of ’halving’ we are left with j problems of
size p. Standard FFT subroutines to compute Fn and F−1

n are available on many
computer systems for n arbitrary. These work most efficiently if n is a power of 2
(∼ n log2 n operations), and least efficiently if n is a prime (∼ n2 operations).

4.5 Exercises

Exercise 4.1 (fast convolution evaluations). For u, v ∈ Πn, the convolution u ∗ v
is defined by (u ∗ v)k =

∑n−1
j=0 uk−jvk (for k ∈ Z). Show that u ∗ v ∈ Πn and

Fn(u ∗ v) = n Fnu · Fnv

where the multiplication on the right is component-wise. How can we compute a
convolution u ∗ v efficiently for large n ?

Exercise 4.2. Let f(x) = 1 − x2/π2 for x ∈ (−π, π]. We extend this function to
R by periodic continuation, f(x + 2π) = f(x). Compute the Fourier coefficients
ck of this periodic function. How fast will the trigonometric interpolant converge
towards f for increasing m (c.f. Figure 4.1) ?

Exercise 4.3. In signal analysis, a 2π-periodic function f represents a periodic
signal, and the values f(xk), k = 0, 1, . . . , n − 1, are called samples of the signal.
The signal is said to have maximal frequency N if its Fourier coefficients ck are
zero for |k| > N . The sampling theorem states that for an exact reconstruction of
such a signal from its samples, at least n = 2N samples are needed. Explain this
result.

Exercise 4.4.⋆ The trigonometric polynomial (4.12) interpolates the data (xj , fj)
with fj = f(xj), j = 0, 1, . . . , n− 1. Show that

ϕ(x) =
n−1
∑

j=0

fj ψ(x− xj)

where ψ(z) = 1
n sin(12nz) cot(

1
2z).

Exercise 4.5 (programming). The basic idea for FFT was already present in a
work of Gauss, who wanted to predict the orbit of the asteroid Pallas from some
observations. The data used by Gauss consisted of 12 points (θj , fj) with angles
θj in degrees:

θj 0 30 60 90 120 150 180 210 240 270 300 330

fj 408 89 -66 10 338 807 1238 1511 1583 1462 1183 804

Interpolate these data by a trigonometric polynomial (4.1) with m = 6 and xj =
2πθj/360. Plot the data points and the interpolant. [Gauss did these calculations
by hand. If you don’t like programming, you can try to do the same.]

37

5 Numerical Integration

5.1 Composite Integration Schemes

In this section we discuss numerical quadrature, that is, numerical approximation
of integrals I =

∫ b
a f(x) dx with given function f : [a, b] → R. This function may

exhibit different behaviour on different parts of the integration interval, so then it
is natural to break down the integration into these parts.

x0 x1 xj−1 xj xj+1 xm

Let us assume that we have some suitable partitioning

x0 = a < x1 < x2 < · · · < xm = b ,

which divides the integration interval [a, b] into m sub-intervals [xk−1, xk]. Then,
of course, I =

∑m
k=1 Ik with

Ik =

∫ xk

xk−1

f(x) dx .(5.1)

It remains to find suitable approximations Ĩk for the sub-integrals Ik. Let us first
consider some simple examples, where we denote hk = xk − xk−1.

On each sub-interval we can approximate f(x) by a linear
interpolation polynomial

f(x) ≈ xk−x
hk

f(xk−1) +
x−xk−1

hk
f(xk) .

Integrating this linear interpolant leads to the trapezoidal
rule

Ĩk = 1
2
hk

(

f(xk−1) + f(xk)
)

.(5.2)

Better accuracy can be obtained by using a quadratic
interpolant on [xk−1, xk] with nodes xk−1, xk and xk−1/2 =
1
2(xk−1 + xk). A little calculation shows that this leads to
the Simpson rule

Ĩk = 1
6
hk

(

f(xk−1) + 4f(xk− 1
2
) + f(xk)

)

.(5.3)

For the approximation of the integral I =
∑m

k=1 Ik application of such a
quadrature rule leads to a composite integration scheme Ĩ =

∑m
k=1 Ĩk. For ex-

ample, if we have hj = h for all j, then the trapezoidal rule gives

Ĩ = 1
2
hf(x0) + hf(x1) + hf(x2) + . . . + hf(xm−1) + 1

2
hf(xm) ,(5.4)

38

and Simpson’s rule leads to

Ĩ = 1
6
hf(x0) + 2

3
hf(x 1

2
) + 1

3
hf(x1) + 2

3
hf(x 3

2
) + . . .

. . . + 1
3
hf(xm−1) + 2

3
hf(xm− 1

2
) + 1

6
hf(xm) .

(5.5)

Illustration. As a simple illustration of the performance of the composite for-
mulas we compute approximations to

I =

∫ 1/2

0
sin(πx) dx =

1
π ,

with a uniform partitioning xj = jh, h = 1/(2m). Along with the results ĨT for
the trapezoidal rule (5.4) and ĨS for the Simpson rule (5.4), we also consider the
result of the simple Riemann sum

ĨR = hf(x0) + hf(x1) + · · ·+ hf(xm−1) .(5.6)

The performance of these composite formulas is given in the following table, and
it is obvious that the Riemann sum gives larger errors than the trapezoidal rule,
whereas the composite Simpson rule gives the most accurate results, by far, in
this example.

Table 5.1: Errors |I − Ĩ| for the composite Riemann sum ĨR, the composite trapezoidal

rule ĨT and the composite Simpson rule ĨS , with I =
∫ 1/2

0
sin(πx) dx.

m 1 2 4 8 16

|I − ĨR| 3.2 · 10−1 1.4 · 10−1 6.6 · 10−2 3.2 · 10−2 1.6 · 10−2

|I − ĨT | 6.8 · 10−2 1.6 · 10−2 4.1 · 10−3 1.0 · 10−3 2.6 · 10−4

|I − ĨS | 7.2 · 10−4 4.2 · 10−5 2.6 · 10−6 1.6 · 10−7 1.0 · 10−8

General Quadrature Formulas. To simplify the notation let us first look at
the integral

J =

∫ h

0
ϕ(x) dx .(5.7)

Later this can be transformed back to Ik by setting ϕ(x) = f(xk−1 + x). We
approximate J by the general quadrature formula – also called quadrature method –

J̃ = h
s

∑

i=1

bi ϕ(cih)(5.8)

with bi, ci ∈ R and with s ≥ 1 an integer. These bi and ci are called the weights
and nodes ci of the quadrature formula. For example, with the trapezoidal rule we

39

have s = 2, b1 = b2 =
1
2 , c1 = 0, c2 = 1, and Simpson’s rule has s = 3, b1 = b3 =

1
6 ,

b2 =
4
6 , c1 = 0, c2 =

1
2 , c3 = 1.

We will say that the quadrature formula has order p if J̃ = J whenever ϕ is a
polynomial of degree ≤ p−1. To express the order conditions in a simple algebraic
way, we use the convention c0i = 1, also if ci = 0.

Theorem 5.1 The quadrature formula (5.8) has order p if and only if

s
∑

i=1

bi c
j−1
i =

1
j for j = 1, 2, . . . , p .(5.9)

The proof of this result easily follows by considering ϕ(x) = xj−1 for j = 1, . . . , p
to show necessity of (5.9), and then ϕ(x) =

∑p−1
j=0 αjx

j to show sufficiency.
For a method of order p we denote

Cj =
1

(j−1)!

(

1
j −

s
∑

i=1

bi c
j−1
i

)

(j ≥ p+ 1) .(5.10)

If the method has order p, but not p+1, then Cp+1 6= 0 is called the error constant
of the method.

If p = s and the nodes ci are distinct, the relation (5.9) can be viewed as an
s× s linear system for the weights bi,









1 1 . . . 1
c1 c2 . . . cs
...

...
...

cs−1
1 cs−1

2 . . . cs−1
s



















b1
b2
...
bs











=











1
1
2
...
1
s











.(5.11)

The matrix for this linear system is a so-called Vandermonde matrix, and such a
matrix is nonsingular if the ci are distinct; see Exercise 5.2. As a consequence, for
given distinct nodes ci we can always find corresponding unique weights bi such
that we have order p = s (at least). A natural question is whether the order can
be larger than s.

Example 5.2 The trapezoidal rule has order p = s = 2 and C3 = − 1
12 . The

fact that we have order two is not very surprising: we used linear interpolation
to construct it. A little more surprising is the fact that Simpson’s rule has order
p = s+ 1 = 4 and C5 = − 1

2880 . The underlying reason for having order s+ 1 will
be explained in the next section. ✸

The Error for Composite Integration. To derive an error bound for the
composite integration scheme, we first take a look at the error for J =

∫ h
0 ϕ(x) dx.

It will be assumed that ϕ is a smooth function so that all derivatives appearing
in the analysis exist and are bounded. We will use the Taylor expansion

ϕ(h) = ϕ(0) + ϕ′(0)h+ · · ·+ 1
r!ϕ

(r)(0)hr +Rr+1 .

40

The remainder term Rr+1 can be bounded as |Rr+1| ≤ 1
(r+1)!h

r+1max[0,h] |ϕ(r+1)|.
Omitting for the moment this remainder term, or setting r = ∞, it follows that

J − J̃ = h
(

∫ 1

0

ϕ(th) dt −
s

∑

i=1

bi ϕ(cih)
)

=
∑

q≥0

1
q! h

q+1
(

∫ 1

0

tq dt−
s

∑

i=1

bic
q
i

)

ϕ(q)(0)

= Cp+1 h
p+1 ϕ(p)(0) + Cp+2 h

p+2 ϕ(p+1)(0) + · · · .

This series can be terminated with an O(hr+2) remainder term if ϕ is r+1 times
differentiable.

Now, let us consider the error I − Ĩ =
∑m

k=1(Ik − Ĩk) for the composite inte-
gration scheme. Then we directly obtain

|I − Ĩ| ≤
m
∑

k=1

(

|Cp+1|hp+1
k max

x∈[xk−1,xk]
|f (p)(x)| + O(hp+2

k)
)

.(5.12)

In terms of the maximal mesh-width h = maxk hk, this can be estimated by

|I − Ĩ| ≤ (b− a) |Cp+1| hp max
x∈[a,b]

|f (p)(x)| + O(hp+1) .(5.13)

This shows convergence with order p upon refinement of the partitioning, h → 0,
under the assumption that the relevant derivatives of f are bounded by some
moderate constant.

5.2 Super-convergence and Gauss Quadrature

As we already saw, for given distinct nodes ci it is always possible to select the
weights bi such that the order is p = s. This does not exclude the possibility of
having a larger order. Methods with p > s are often called super-convergent.

A quadrature formula is said to be symmetric if bi = bs+1−i and ci = 1−cs+1−i

for i = 1, 2, . . . , s. Having symmetry is quite natural; it means that
∫ h
0 ϕ(x) dx is

approximated the same way as the mirror integral
∫ h
0 ϕ(h−x) dx, and in general

there is no reason to have a directional preference.
When studying the order of a quadrature formula it is convenient to take h = 1.

The factor h is just a scaling in (5.7) and (5.8). So we consider in this section

J =

∫ 1

0
ϕ(x) dx , J̃ =

s
∑

i=1

bi ϕ(ci) ,(5.14)

and we wonder for what degree polynomials we will have J = J̃ .

Theorem 5.3 A symmetric quadrature formula has an even order p : if the for-
mula is exact for any polynomial of degree ≤ 2k− 2 then it also exact for polyno-
mials of degree 2k − 1.

41

Proof. Any polynomial ϕ on [0, 1] of degree 2k − 1 can be written as

ϕ(x) = α
(

x− 1
2

)2k−1
+R(x)

with R a polynomial of degree ≤ 2k− 2 and α ∈ R the leading coefficient of ϕ. If
the order of the quadrature formula is 2k−1 at least, then R is integrated exactly.
If the formula is symmetrical, then also
∫ 1
0 (x − 1

2)
2k−1 dx = 0 will be inte-

grated exactly by the quadrature rule,
because each term bi(ci− 1

2)
2k−1 in the

quadrature formula is cancelled by its
counterpart bs+1−i(cs+1−i − 1

2)
2k−1 =

bi((1− ci)− 1
2)

2k−1 = −bi(ci − 1
2)

2k−1.

ci

cs+1−i

✷

This explains why the Simpson rule has order four: it clearly has order three,
at least, because it is based on quadratic interpolation, but the method is also
symmetric.

As we will see shortly, orders larger than s+1 are possible with suitable choices
of the nodes.

Theorem 5.4 Suppose the quadrature formula (5.8) has order p ≥ s, and let

M(x) = (x− c1)(x− c2) · · · (x− cs) .(5.15)

Then we have order p ≥ s+ q if and only if
∫ 1

0
M(x)Q(x) dx = 0 for any polynomial Q of degree ≤ q − 1 .(5.16)

Proof. If ϕ is a polynomial of degree ≤ s+ q − 1, we can write it as

ϕ(x) = M(x)Q(x) +R(x)

with deg(R) ≤ s − 1 and deg(Q) ≤ q − 1. This decomposition of ϕ (which is
polynomial division with remainder) follows by taking R to interpolate ϕ at the
points c1, . . . , cs. Then deg(ϕ − R) ≤ s + q − 1 and since ϕ(ci) − R(ci) = 0, the
polynomial ϕ(x)−R(x) will be of the form M(x)Q(x) with deg(Q) ≤ q − 1.

From the decomposition of ϕ we see that the exact integral and numerical
approximation satisfy

∫ 1

0

ϕ(x) dx =
∫ 1

0

M(x)Q(x) dx+
∫ 1

0

R(x) dx ,

s
∑

i=1

biϕ(ci) =
s

∑

i=1

biM(ci)Q(ci) +
s

∑

i=1

biR(ci) =
s

∑

i=1

biR(ci) .

Since the quadrature formula has order s at least, it is exact for R, that is
∫ 1
0 R(x) dx =

∑s
i=1 biR(ci). Therefore the quadrature formula will also be ex-

act for ϕ if
∫ 1
0 M(x)Q(x) dx = 0 holds. So we see that (5.16) implies p ≥ s+ q.

On the other hand, if p ≥ s+q and deg(Q) ≤ q−1, then deg(M ·Q) ≤ s+q−1
and therefore

∫ 1
0 M(x)Q(x) dx =

∑

i biM(ci)Q(ci) = 0. ✷

42

A direct consequence of this lemma is that the order of a quadrature method can
not exceed 2s (because if it were larger than 2s we would have

∫ 1
0 M(x)2 dx = 0

according to (5.16), which is not possible).

The Gauss methods. The condition (5.16) is equivalent to

∫ 1

0
M(x)xj−1 dx = 0 for j = 1, . . . , q .(5.17)

This constitutes a system of q equations for c1, . . . , cs. As we will see this can be
solved with q = s, leading to the Gauss quadrature methods of order 2s. Note that
we need to consider here only the choice of the nodes ci, because the weights bi
are determined by (5.11) once the ci have been chosen.

If we take s = 1, it is directly seen that the method has order 2 iff c1 =
1
2 with

weight b1 = 1. This is the one-stage Gauss method, better known as the midpoint
rule. It is somewhat related to the trapezoidal rule, but the error constant of the
midpoint rule is smaller in absolute value.

The nodes and weights of the first three Gauss methods are given by Table 5.2.
As we will see shortly, the nodes ci of the Gauss methods are the zeros of Legendre
polynomials. For the higher order methods these coefficients ci and corresponding
bi can be found in tables or computed numerically.

Table 5.2: Coefficients and error constants for the Gauss methods with s = 1, 2, 3.

p (b1, . . . , bs) (c1, . . . , cs) Cp+1

s = 1 2 1 1
2

1
24

s = 2 4
(

1
2 ,

1
2

)

(

1
2 −

√
3
6 , 1

2 +
√
3
6

)

1
4320

s = 3 6
(

5
18 ,

8
18 ,

5
18

)

(

1
2 −

√
15
10 , 1

2 ,
1
2 +

√
15
10

)

≈ 4.96 · 10−7

In view of the high accuracy of the Gauss methods with large s it is tempting
to apply them directly on the interval [a, b] without any partitioning. However,
usually the size of the higher derivatives appearing in error bounds are difficult to
estimate, and then it is not clear a-priori how large s should be taken to get an
error below a given tolerance Tol . Moreover, if the behaviour of f is changing over
the integration interval, for instance smooth in one region but rapidly varying in
other regions, then partitioning of the interval will be needed anyway to get an
efficient integration.

43

Legendre polynomials.⋆ To obtain the coefficients of the Gauss methods we
consider the Legendre polynomials on the interval [−1, 1]. The Legendre polyno-
mial Pn of degree n is given by the formula

Pn(x) =
1

2n n!

dn

dxn
(x2 − 1)n (n = 0, 1, 2 . . .) ,(5.18)

where the multiplying factor is chosen such that Pn(1) = 1. The important prop-
erty for us is

∫ 1

−1

Pn(x)Pj(x) dx = 0 (j = 0, 1, . . . , n− 1) .(5.19)

This can be shown, by a somewhat tedious calculation, using (j+1) times integra-
tion by parts (each time with differentiation for Pj), and using the fact that the
k-th derivative of (x2 − 1)n is zero at x = ±1 when k < n.

The property (5.19) implies that {P0, P1, . . . , Pn} form a basis for the polyno-
mials of degree n, and we have

∫ 1
−1 Pn(x)Q(x) dx = 0 whenever Q is a polynomial

of degree less than n.
The Legendre polynomials satisfy recursively P0(x) = 1, P1(x) = x and

Pn(x) =
2n−1
n xPn−1(x)− n−1

n Pn−2(x) (n ≥ 2) ,(5.20)

see Exercise 5.7. The first few polynomials are displayed in Figure 5.1.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

P1

P2

P3 P4

Figure 5.1: Legendre polynomials P1, P2, P3, P4 on [−1, 1].

Finally, we mention the property that all roots of the polynomials Pn are in
(−1, 1). To see this, let r1, . . . , rk be the points in (−1, 1) where Pn changes sign,
and let Q(x) =

∏k
i=1(x−ri). Then it is clear that Pn(x)Q(x) does not change sign

on [−1, 1], but if k < n we also know that
∫ 1
−1 Pn(x)Q(x) dx = 0. It thus follows

that we must have k = n, and hence Pn has n distinct roots in (−1, 1).

Returning to our quadrature methods, we see that if we takeM(x) to be a multiple
of Ps(2x−1) then (5.16) is satisfied with q = s. Hence the Gauss methods of order
2s are such that the nodes ci are the zeros of Ps(2x− 1), and the weights are then
defined by (5.11).

44

Remark 5.5 For some applications it is natural to have either c1 = 0 or cs = 1.
This leads to the Radau quadrature methods with order 2s − 1. If both c1 = 0
and cs = 1 are prescribed, then an order 2s− 2 can be reached, and this is called
Lobatto quadrature.

Other popular methods are obtained by basing the nodes on the zeros or ex-
trema of Chebyshev polynomials. The resulting methods are known as Clenshaw-
Curtis formulas. They only have order s, but are still very accurate due to very
small error constants.

Finally we mention that for the integration of a periodic function over one
period, the most simple choice ci = (i− 1)/s, bi = 1/s (equidistant nodes and
equal weights) is optimal. This surprising result is explained by (4.11). The
composite trapezoidal rule (5.4) has the same optimal form, due to f(x0) = f(xm)
by periodicity. ✸

5.3 Practical Error Estimation and Partitioning

To find an approximation Ĩ of the integral I =
∫ b
a f(x) dx we will usually employ

a partitioning of [a, b] in sub-intervals [xk−1, xk]. As before, let hk = xk − xk−1.
Suppose that Tol is a given tolerance. If we can ensure that

| Ik − Ĩk | ≤ hk · Tol (k = 1, . . . ,m) ,

then the total error will be bounded by

| I − Ĩ | ≤
m
∑

k=1

| Ik − Ĩk | ≤ (b− a) · Tol .

Embedded methods. To find upper bounds for |Ik− Ĩk| in a strict mathematical
sense is often difficult or impossible in practical problems. Instead, we therefore
look for heuristic bounds that are easy to compute.

Suppose that along with our method (bi, ci)
s
i=1 of order p we consider a second

method (b̂i, ĉi)
ŝ
i=1 of order p̂ < p. Then the difference between the two quadrature

methods

Êk = hk

s
∑

i=1

bif(xk−1 + cihk) − hk

ŝ
∑

i=1

b̂if(xk−1 + ĉihk)

can be used to get a heuristic upper bound for Ek = Ik − Ĩk on the sub-interval
[xk−1, xk], because we know |Ek| = O(hp+1

k), |Êk| = O(hp̂+1
k), and therefore |Ek| ≤

|Êk| as hk → 0. So, although this heuristic bound is valid only if hk is ‘sufficiently
small’, we shall simply use |Êk| as an error estimator without questioning how
small ‘sufficiently small’ is.

To compute |Êk| cheaply it is advantageous to have the same nodes in the
two methods, ĉi = ci, because then no new f -evaluations are needed for the error
estimator. Of course we should have b̂i 6= bi for at least one index i. Such a
combination is called an embedded method.

45

Example 5.6 For the trapezoidal rule Ĩk = 1
2hk(f(xk−1)+ f(xk)) we can use the

simple method
Îk = hkf(xk−1)(5.21)

of order p̂ = 1 to estimate the error.
An embedded method for Simpson’s rule Ĩk = 1

6hk(f(xk−1)+4f(xk− 1
2
)+f(xk))

is obtained by using either the trapezoidal rule or the midpoint rule (one-stage
Gauss method) as low-order method, p̂ = 2. ✸

Remark 5.7 In general, |Êk| will be a rather poor estimate for the error |Ek| =
|Ik − Ĩk| over the sub-interval [xk−1, xk]. Actually, it usually is a good estimate
for the error of the secondary method (b̂i, ĉi)

ŝ
i=1, but that makes it too pessimistic

for our original, primary method. A possible remedy for this is to consider a third
method (b̌i, či)

š
i=1 with order p̌ < p̂, and

Ěk = hk

s
∑

i=1

bif(xk−1 + cihk) − hk

š
∑

i=1

b̌if(xk−1 + čihk)

and then use, with q = (p− p̂)/(p̂− p̌),

Ēk = Êk · (Êk / Ěk)
q

(

∼ hp̂+1
k (hp̂+1

k / hp̌+1
k)q = hp+1

k

)

as a better estimate for the error. ✸

A simple automatic partitioning. If we accept one of the above estimates |Êk|
or |Ēk| as an error estimate, then this can be used in a variety of ways to find a
partitioning of the integration interval [a, b].

A very simple procedure is as follows: start with the whole interval, apply the
quadrature method, and estimate the error. If the estimated error is larger than
(b − a)Tol then divide the interval in two and repeat the procedure on the two
sub-intervals. Continuing this way, we eventually end up with a partitioning for
which the estimated error is less than the acceptable error level.

This procedure is in fact a bit too simple. For example, with f(x) = sin(2π)2

it might be concluded that the integral
∫ 1
0 f(x) dx is zero if the initial estimate

only uses function values at x = 0, 12 , 1. The initial partitioning should somewhat
match the variations in f .

There are other partitioning strategies. In the next section we will come back
to this issue in connection with step-size selection for ODE solvers.

5.4 Exercises

Exercise 5.1. Derive the trapezoidal rule (5.2) and Simpson’s rule (5.3) from the
corresponding Lagrange interpolation formulas. (It is easiest to first consider the
interval J = [0, h] instead of Ik = [xk−1, xk].)

46

Exercise 5.2. Assume ci 6= cj if i 6= j. Show that the Vandermonde matrix
(5.11) is non-singular, by considering the transpose matrix and the interpolating
polynomial P (x) =

∑s
j=1 ajx

j−1 such that P (cj) = fj (1 ≤ j ≤ s).

Exercise 5.3. For the general quadrature formula (5.8): assume that the method
is obtained by interpolation through (cih, ϕ(cih)), i = 1, . . . , s with a polynomial
of degree ≤ s − 1, and subsequently we solve the integral for this polynomial
interpolant exactly. Show that the order of this method will be s (at least), and

bi =

∫ 1

0
Li(x) dx , Li(x) =

s
∏

j = 1
j 6= i

x− cj
ci − cj

.

Exercise 5.4. Suppose the quadrature formula has order p ≥ s, and ci = 1−cs+1−i

for i = 1, . . . , s (symmetry of the nodes). Show that then bi = bs+1−i for all i
(symmetry of the weights), using the result of the previous exercise.

Exercise 5.5. Derive the coefficients of the Gauss method with s = 2 from (5.17).

Exercise 5.6 (2D integration). Consider a two-dimensional integral

I =

∫ 1

0

∫ 1

0
g(x, y) dy dx .

Give a composite quadrature formula for this integral based on the trapezoidal
rule with equidistant nodes xi = ih and yj = jh in the x- and y-direction, with

h = 1/m. (Hint: Define f(x) =
∫ 1
0 g(x, y) dy.)

Exercise 5.7.⋆ Consider the Legendre polynomials Pn on [−1, 1].

(a) Show that Pn(−x) = (−1)nPn(x), and therefore Pn(−1) = (−1)n.

(b) Write xPn−1(x) as a linear combination
∑n

j=0 αjPj(x). Show that αj = 0 if
j ≤ n− 2. The remaining coefficients αn, αn−1, αn−2 can be found by considering
x = 1, x = −1 as well as the coefficients in front of the highest powers. Show that
(5.20) is the result.

Exercise 5.8. Consider embedded methods with Simpson’s rule (p = 4) as primary
method and with p̂ = 2. Which methods are suited as secondary methods ?
Explain why it is not possible to get p̂ = 3 if we want to avoid new function
evaluations.

Exercise 5.9 (programming). Approximate the integral I =
∫ 5
0 (sinx

2)e−x/3 dx
with the composite formulas (5.4) and (5.5). To get a feeling for the number of
points needed to get an accuracy of 10−3, experiment with increasing m, keeping
track which decimal digits change.

Exercise 5.10 (programming). Write a program for solving I =
∫ b
a f(x) dx with au-

tomatic partitioning using Simpson’s rule as primary method and the trapezoidal
rule as secondary method (for error estimation). To test the program, apply it
with a = 0, b = π

2 and f(x) = e2x cosx, for which we know that I = 1
5(e

π − 2).

47

6 Initial Value Problems for ODEs

In this section we will discuss some numerical methods for the solution of systems
of ordinary differential equations (ODEs)



















u′1(t) = f1(t, u1(t), u2(t), . . . , um(t)) ,

u′2(t) = f2(t, u1(t), u2(t), . . . , um(t)) ,
...

u′m(t) = fm(t, u1(t), u2(t), . . . , um(t)) ,

with time t ∈ [0, T]. In vector notation, this will be written as u′(t) = f(t, u(t))
with unknown u(t) = (ui(t)) ∈ R

m and given function f : R × R
m→R

m. It will
be assumed that u(t) is specified at initial time t = 0. We then have an initial
value problem for a system of ODEs,

u′(t) = f(t, u(t)) , u(0) = u0 ,(6.1)

with given initial value u0 ∈ R
m.

Let ‖ · ‖ be a vector norm on R
m. The function f is said to satisfy a Lipschitz

condition if

‖f(t, ṽ)− f(t, v)‖ ≤ L ‖ṽ − v‖ for all t ∈ [0, T] and ṽ, v ∈ R
m ,(6.2)

with L > 0 called the Lipschitz constant. If this holds and f is continuous in t, then
it is known (Picard’s theorem) that for any given u0 ∈ R

m the initial value problem
(6.1) has a unique solution on [0, T]. Moreover, if f is q times differentiable, then
the solution u will be q+1 times differentiable on [0, T]. If the Lipschitz condition is
only valid for ṽ, v on some bounded subset D ⊂ R

m, then existence and uniqueness
of solutions is guaranteed locally. For the theoretical results in this section it will
be assumed for convenience that the global Lipschitz condition (6.2) is satisfied.

In the following, we consider numerical
approximations un ≈ u(tn) at the points
tn = nτ, n = 0, 1, 2, . . ., with τ > 0 being
the step-size. For the moment this step-
size τ is assumed to be constant; variable
steps will be discussed later. t0 t1 tn

un

u(tn)

6.1 Runge-Kutta Methods

We will first consider some simple methods, and then we will see that they all fall
in the class of Runge-Kutta methods. Note that the solution of the initial value
problem (6.1) satisfies

u(tn) = u(tn−1) +

∫ tn

tn−1

f(t, u(t)) dt ,(6.3)

for n = 1, 2, . . . , N with number of steps N such that Nτ = T . This will provide
a connection with the quadrature methods of the previous section.

48

Euler’s Method. The most simple numerical method for solving the initial value
problem is Euler’s method

un = un−1 + τf(tn−1, un−1) .(6.4)

It will be shown later that Euler’s method does convergence to the exact solution
on any bounded time interval [0, T] if f satisfies a Lipschitz condition. However,
the error will be proportional with τ only (convergence with order one).

Trapezoidal Rule. Applying the trapezoidal quadrature rule (5.2) to (6.3) gives
the following ODE method, called the implicit trapezoidal rule,

un = un−1 +
1
2
τf(tn−1, un−1) +

1
2
τf(tn, un) .(6.5)

This method is called implicit because to find the new approximation un we need
to solve a system of equations.

Such an implicit system is avoided if we first compute a predictor u∗n by Euler’s
method and substitute this in the right-hand side. The resulting method becomes

u∗n = un−1 + τf(tn−1, un−1) ,

un = un−1 +
1
2
τf(tn−1, un−1) +

1
2
τf(tn, u

∗
n) .

(6.6)

This method is known as the explicit trapezoidal rule or the modified Euler method.
As we will see below, both (6.5) and (6.6) are convergent with an error pro-

portional to τ2 (convergence with order two). Of course, computing the new
approximation un from (6.6) is much easier than from its implicit counterpart
(6.5). Nevertheless, we will see later that there is an important class of initial
value problems – the so called stiff problems – for which (6.5) is to be preferred.

In this section we will mainly discuss explicit methods, but the theoretical
results on convergence are also valid for implicit methods.

Illustration. We consider the following initial value problem with two compo-
nents, u(t) = (v(t), w(t))T in R

2,

{

v′(t) =
(

1− w(t)
)

v(t) , v(0) = 0.1 ,

w′(t) =
(

− 1 + 1.2 v(t)
)

w(t) , w(0) = 1 ,
(6.7)

describing population densities in a simple predator-prey (Lotka-Volterra) model.
The time runs from t = 0 till t = T with end-point T = 15. The solution is
known to be periodic in time, even though the solution itself and its period are
not known. But we can compute an accurate approximation by any of the above
methods by choosing a very small time step.

Figure 6.1 contains plots of an accurate approximation. The left panel of the
figure shows v(t) and w(t) as function of t ∈ [0, 15]. The right panel gives a plot
of the trajectory (v(t), w(t)) in the (v, w)-plane, the so-called phase plane. The
periodic nature is then more clear.

49

0 5 10 15
0

1

2

3

4
Solution components versus time

0 1 2 3
0

1

2

3

4
Solution in phase plane

Figure 6.1: Solution for the Lotka-Volterra problem (6.7). Left panel: components
v(t) (solid line) and w(t) (dashed line) as function of time t. Right panel: trajectory
(v(t), w(t))t∈[0,T] in the phase plane.

Now we try to compute the solution with the Euler method (6.4) and the
explicit trapezoidal rule (6.6), first using N = 100 steps and then repeatedly
doubling the number of steps. This gives for both methods the error ‖u(tN)−uN‖2
at the end point tN = T as function of the step-size τ = T/N (for u(tN) a very
accurate reference value was computed numerically). The result is presented in
Table 6.1.

Table 6.1: Errors for the Lotka-Volterra problem (6.7) at time T = 15, with number of
steps N = 100, 200, 400, . . . and τ = T/N .

N 100 200 400 800 1600 3200

Err. (6.4) 1.78 4.12 9.87 · 10−1 3.64 · 10−1 1.59 · 10−1 7.49 · 10−2

Err. (6.6) 1.19 · 10−2 5.30 · 10−3 1.60 · 10−3 4.34 · 10−4 1.13 · 10−4 2.88 · 10−5

The results with Euler’s method are very inaccurate for N ≤ 400. If more
steps are taken, we see that the error halves (approximately) when the number
of steps is doubled. It seems that the error is proportional to τ ∼ 1/N for τ > 0
sufficiently small.

The results with the explicit trapezoidal rule (6.6) are much better. The error
now appears to be proportional to τ2 if τ > 0 is sufficiently small. Even though
this method requires per step twice as much work as the forward Euler method,
this extra effort per step clearly pays of. As we will see later, in Table 6.3, the
results can still be considerably improved using higher-order methods.

Runge-Kutta methods. The above methods, and many others, fall in the class
of the (general) Runge-Kutta methods, where we work successively towards the
approximation un at the new time level tn by way of intermediate approximations
vn,1, vn,2, . . . , vn,s, starting from un−1. A step with a Runge-Kutta method is

50

given by

vn,i = un−1 + τ
s

∑

j=1

aijf(tn−1 + cjτ, vn,j) (i = 1, 2, . . . , s) ,(6.8a)

un = un−1 + τ
s

∑

i=1

bif(tn−1 + ciτ, vn,i) .(6.8b)

The method is specified by the coefficients aij , bi, ci, (1≤ i, j≤s) where the bi are
called the weights, the ci are the nodes, and s is the number of stages. The nodes
are usually assumed to be in [0, 1], and they are related to the coefficients aij by

ci =
s

∑

j=1

aij .(6.9)

The above methods all fit in this frame-
work. Several other examples will be given
later. Runge-Kutta methods can be con-
veniently represented by the tableau of co-
efficients.

c1 a11 · · · a1s
...

...
...

cs as1 · · · ass
b1 · · · bs

The Runge-Kutta method (6.8) method is called explicit if aij = 0 whenever
j ≥ i, and otherwise it is called implicit. With an explicit method we get an
explicit expression for vn,i in terms of already computed un−1 and vn,j , j < i. If the
method is implicit it will be tacitly assumed that the implicit relations are uniquely
solvable (which can be proven for sufficiently small τ if (6.2) holds). Finally we
mention that the intermediate vectors vn,i are approximations to u(tn−1 + ciτ),
but in general less accurate than the approximation un to u(tn).

Example 6.1 An explicit two-stage Runge-Kutta method can be represented by
the tableau

c1 0 0
c2 a21 0

b1 b2

with c1 = 0 and c2 = a21. The choice of the coefficients a21, b1, b2 determines the
method. For autonomous differential equations, u′(t) = f(u(t)), the method reads







v1 = un−1 ,
v2 = un−1 + τa21f(v1) ,
un = un−1 + τb1f(v1) + τb2f(v2) ,

with intermediate vectors v1 and v2 changing from step to step –which can be
emphasized, by giving v1, v2 an extra subindex n, as in (6.8). The method can
also be written, more compactly, as

un = un−1 + τb1f(un−1) + τb2f
(

un−1 + τa21f(un−1)
)

.(6.10)

If a21 = 1, b1 = b2 = 1
2 we retrieve the explicit trapezoidal rule (6.6). Another

popular choice is a21 =
1
2 , b1 = 0, b2 = 1. ✸

51

6.2 Consistency

To compute approximations un ≈ u(tn) over the whole interval [0, T] we can take
N steps with step-size τ = T/N . In each of these steps, bringing us from a point
tn−1 to tn, there will be some (small) error in approximating the exact solution
u(t). Such an error per step is called a local error. The error at the end-point
u(tN)− uN , which is called a global error, is build-up by N of these local errors.
The global errors are studied in the next section. Here we will derive bounds for
the local errors.

To get an upper bound on this accumulated global error we need to have a
bound for the local errors, but we also need to estimate how these local errors will
affect the final result. In this section we will study bounds for the local errors.

Consider a Runge-Kutta method, written in a compact way as

un = un−1 + τ Φτ (tn−1, un−1) ,(6.11)

with an increment function Φτ . See for instance, formula (6.10) for explicit two-
stage methods. For an implicit method this increment function will be defined
implicitly.

If we insert exact solution values into this formula, we get

u(tn) = u(tn−1) + τ Φτ (tn−1, u(tn−1)) + τ dn ,(6.12)

with a residual τdn called the local error. The method is said to be consistent of
order p for the solution u if dn = O(τp) as τ → 0, uniformly for tn ∈ [0, T]. Below
we will discuss the order of consistency for specific Runge-Kutta methods in some
detail.

The local error τdn = O(τp+1) can be interpreted as the error introduced
in one step: it is the difference between the exact solution at time tn and the
numerical approximation that would have been obtained if we had started with
un−1 = u(tn−1) at time tn−1.

Example 6.2 The increment function for Euler’s method is simply given by
Φτ (t, v) = f(t, v). The local errors are

τdn = u(tn)− u(tn−1)− τf(tn−1, u(tn−1)) .

By Taylor expansion of u(tn) = u(tn−1 + τ) we get

u(tn) = u(tn−1) + τu′(tn−1) +
1
2
τ2u′′(tn−1) +O(τ3) .

Since f(tn−1, u(tn−1)) = u′(tn−1), it follows that

dn =
1

2
τu′′(tn−1) +O(τ2) ,

assuming that f is twice continuously differentiable. This gives a bound ‖dn‖ ≤ Cτ
for τ ∈ (0, τ

∗
] for τ

∗
sufficiently small, with C = max[0,T] ‖u′′(t)‖. The method is

therefore consistent of order p = 1. ✸

52

Order Conditions. To obtain a Runge-Kutta method with order of consistency
p for arbitrary, smooth solutions u – simply called a method of order p – there are
a number of algebraic conditions on the coefficients of the method that must be
satisfied. When deriving these so-called order conditions it will always be tacitly
assumed that f is p+1 times differentiable. The way to derive the order conditions
is by making Taylor expansions in powers of τ of one step of the numerical method
and the exact solution.

Example 6.3 (Conditions for order one and two) Without loss of general-
ity, we can study the local error in the first step, setting n = 1, that is, we study
τd1 = u(t1) − u1 starting with u(0) = u0. Moreover, it is convenient to restrict
ourselves to autonomous differential equations u′(t) = f(u(t)), where f does not
depend explicitly on t. Actually, this does not lead to a loss of generality, as will
be seen in Exercise 6.4.

We want to find the order p such that u(t1)− u1 = O(τp+1), and we consider
here the conditions for having p = 1 and p = 2. For this we will make a Taylor
series development of u(t1) and u1 in powers of τ .

The first two derivatives of u at t = 0 are found (chain rule) to be

u′(0) = f0 , u′′(0) = f ′0 · f0 ,

where f0 = f(u0) and f ′0 = f ′(u0). Hence for the exact solution we obtain the
Taylor expansion

u(t1) = u0 + τ f0 + 1
2
τ2f ′0 ·f0 + O(τ3) .(6.13)

For the first Runge-Kutta step (6.8) we have vi = u0 + τ
∑

j aijf(vj)s, with
summations in this example ranging from 1 to s. This gives

f(vi) = f(u0) + f ′(u0) · τ
∑

j

aijf(vj) +O(τ2) .

Since vj = u0 +O(τ), f(vj) = f(u0) +O(τ) and
∑

j aij = ci, it follows that

f(vi) = f0 + τcif
′
0 · f0 +O(τ2) .

Finally, from u1 = u0 + τ
∑

i bif(vi) we now obtain

u1 = u0 +
(
∑

i

bi
)

τf0 +
(
∑

i

bici
)

τ2f ′0 ·f0 + O(τ3) .(6.14)

Comparing (6.13) with (6.14), it is seen that we will have order p = 1 iff
∑

i bi = 1, and we have p = 2 iff the conditions
∑

i bi = 1 and
∑

i bici =
1
2 are

both satisfied. ✸

53

Table 6.2: Order conditions of Runge-Kutta methods for p = 1, 2, 3, 4, with the summa-
tions from 1 to s, and ci =

∑

j aij .

order p order conditions

1
∑

i bi = 1

2
∑

i bici = 1/2

3
∑

i bic
2
i = 1/3

∑

i,j biaijcj = 1/6

4
∑

i bic
3
i = 1/4

∑

i,j biciaijcj = 1/8
∑

i,j biaijc
2
j = 1/12

∑

i,j,k biaijajkck = 1/24

The conditions on the coefficients of a Runge-Kutta method (6.8) for having
order p = 1 up to p = 4 are listed in Table 6.2. These conditions can be derived
by comparing Taylor expansions of u(t1) and u1 in powers of τ , as in the previous
example. For increasing order p, the derivation of these order conditions does
become rather technical.

The order conditions in this table are cumulative. So, for order p = 4 there are
in total 8 conditions on the coefficients. The number of order conditions quickly
increases for higher orders. For example, to have p = 5 we get 9 new conditions
(giving in total 17 conditions); then, for order p = 6 there are 20 additional
conditions (in total 37 conditions). Nevertheless, many high-order methods have
been constructed which are used in popular codes.

For explicit methods it can be shown (see Corollary 7.3 in the next section)
that p ≤ s. Moreover, it is known that p = s can be achieved with explicit methods
only for s up to four.

Example 6.4 Typical, well-known examples of explicit methods of order three
and four are given by the following tableaus:

a)

0
1/3 1/3

2/3 0 2/3

1/4 0 3/4

b)

0
1/2 1/2

1/2 0 1/2

1 0 0 1

1/6 1/3 1/3 1/6

(6.15)

Method (6.15.a) with p = s = 3 is Heun’s third-order method. Method (6.15.b)
with p = s = 4 is known as the classical Runge-Kutta method. It can be seen as a
generalization of the Simpson quadrature rule. ✸

Illustration. Consider again the Lotka-Volterra model (6.7), but now solved with
the methods (6.15.a) and (6.15.b) with varying number of steps N and τ = T/N .
The errors ‖u(tN)− uN‖2 at the end point tN = T are given in Table 6.3. These

54

errors are to be compared with those in Table 6.1 for Euler’s method and the
explicit trapezoidal rule. We see that, in particular for the fourth-order classical
Runge-Kutta method (6.15.b), there is a spectacular improvement in the results
compared to the low-order methods (6.4) and (6.6).

Table 6.3: Errors for the Lotka-Volterra problem (6.7) at time T = 15, with number of
steps N = 100, 200, 400, . . . and τ = T/N .

N 100 200 400 800 1600 3200

Err. (6.15.a) 6.8 · 10−3 8.2 · 10−4 1.0 · 10−4 1.3 · 10−5 1.6 · 10−6 2.0 · 10−7

Err. (6.15.b) 9.7 · 10−5 8.7 · 10−6 6.3 · 10−7 4.2 · 10−8 2.7 · 10−9 1.7 · 10−10

6.3 Convergence

As starting point for deriving convergence results we consider again

un = un−1 + τ Φτ (tn−1, un−1) ,(6.16a)

u(tn) = u(tn−1) + τ Φτ (tn−1, u(tn−1)) + τ dn ,(6.16b)

for n = 1, 2, . . . , N , nτ = T . The local errors τdn provide a measure for the error
of the method, but we are actually interested in the global error en = u(tn)− un.
The method (6.11) is called convergent of order p for the solution u if en = O(τp)
as τ → 0, uniformly for tn ∈ [0, T].

These global errors can be related to the local errors under the assumption of
a Lipschitz condition for the increment function. In the following result we also
allow for an error e0 = u(0)− u0 in the initial condition.

Theorem 6.5 Assume there are τ
∗
, L

∗
> 0 such that

‖Φτ (t, ṽ)− Φτ (t, v)‖ ≤ L
∗
‖ṽ − v‖(6.17)

for all t = tn ∈ [0, T], ṽ, v ∈ R
m and τ ∈ (0, τ

∗
]. Then, for such τ and tn, the

global error satisfies

‖en‖ ≤ eL∗ tn‖e0‖ + 1
L
∗

(

eL∗ tn − 1
)

· max
1≤j≤n

‖dj‖ .(6.18)

Proof. Subtraction of (6.11) from (6.12) gives

‖en‖ ≤ (1 + L
∗
τ)‖en−1‖ + τ‖dn‖ (n = 1, 2, . . . , N) .(6.19)

Setting δ = 1
L
∗

max1≤j≤n ‖dj‖, it follows that (‖en‖+ δ) ≤ (1 + L
∗
τ)(‖en−1‖+ δ),

and hence
(‖en‖+ δ) ≤ (1 + L

∗
τ)n(‖e0‖+ δ) .

Using the fact that 1 + L
∗
τ ≤ exp(L

∗
τ) now directly leads to (6.18). ✷

55

Remark 6.6 The crucial inequality in this proof is (6.19), showing that the error
en at time level tn can be bounded in terms of the error en−1 at the previous
time level, multiplied by a factor ρ = 1 + L

∗
τ , together with the new error τdn

introduced in this step. If we apply this inequality recursively, it follows that

‖en‖ ≤ (1 + L
∗
τ)n‖e0‖+

n
∑

j=1

(1 + L
∗
τ)n−jτ‖dj‖ ,

which gives a more detailed estimate for the global error. ✸

It is clear from the above theorem that convergence of order p for the solution u
will hold provided (i) the method is consistent of order p, and (ii) the Lipschitz
condition (6.17) holds for the method. This Lipschitz condition is easy to establish
for any Runge-Kutta method.

Lemma 6.7 Suppose the Lipschitz condition (6.2) holds for the function f . Con-
sider a Runge-Kutta method (6.8), and let α = maxi

∑

j |aij |, β =
∑

j |bj |. Then
the Lipschitz condition (6.17) for the method holds with

L
∗
=

βL
1−αLτ∗

, 0 < τ
∗
<

1
αL .

Proof. Consider one step of the Runge-Kutta method (6.8) with intermediate
vectors vi, i = 1, . . . , s. The increment is

Φτ (tn−1, un−1) =
1
τ (un − un−1) .

Along with this, also consider a step starting from a ũn−1 with corresponding
intermediate vectors ṽi, and let ∆vi = vi − ṽi and ∆un = un − ũn. Then

‖∆vi‖ ≤ ‖∆un−1‖+ Lτ
∑

j

|aij |‖∆vj‖ ≤ ‖∆un−1‖+ αLτ max
j

‖∆vj‖ ,

which gives (1 − αLτ)maxi ‖∆vi‖ ≤ ‖∆un−1‖. Hence, if τ ∈ (0, τ
∗
] with τ

∗
> 0

such that 1− αLτ
∗
> 0, then

‖∆un − ∆un−1‖ ≤ Lτ
∑

j

|bj | ·max
i

‖∆vi‖ ≤ βLτ

1− αLτ
‖∆un−1‖ ,

from which the result follows. ✷

We thus see that for any Runge-Kutta method, consistency of order p implies
convergence of order p, under the assumption of the Lipschitz condition (6.2) for
the function f .

56

6.4 Step-size Selection

To solve an initial value problem numerically, we can take a method and apply it
on [0, T] with constant step-sizes τ = T/N . Repeating the computation with an
other step-size, for instance with 2τ , gives a fair indication of the error.

However, to get an efficient scheme it is important to adapt the step-sizes to
match the variations in the solution. This is similar to the case of quadrature
formulas, but with ODEs we have in general no idea in advance how the solution
will behave, or where it will exhibit rapid variations. In the following, let Tol be
a tolerance specified by the user. We will try to select the stepsizes such that the
(estimated) local errors are bounded by this number Tol.

Consider an attempted step from tn−1 to tn = tn−1 + τn with step-size τn.
Suppose the method has order p and we have an available estimate Ên for the
norm of the local error,

Ên = γn τ
p̂+1
n + O(τ p̂+2

n) ,

with p̂ ≈ p and some unknown constant γn > 0. Here p̂ = p if Ên is an estimate of
the genuine local error of the method, but often the estimate Ên is quite rough and
p̂ may be less than p. For example, the estimate may be obtained by comparing
un with the result ûn obtained from a lower-order method, say of order p̂ = p− 1,
embedded in the primary method, similar as for quadrature methods.

Having the estimate Ên two cases can occur: Ên > Tol or Ên ≤ Tol . In
the first case we decide to reject this step and to redo it with a smaller step-size
τn = τnew, where we aim at Ênew = Tol . In the second case the step is accepted,
and we continue the integration with τn+1 = τnew for the new step from tn to tn+1,
again aiming at Ênew = Tol .

The constant γn is not known, but we will have approximately Ên = γn τ
p̂+1
n

and Ênew = γn τ
p̂+1
new . If we require Ênew = Tol , we can eliminate γn to arrive at

τnew = r τn , r = (Tol / Ên)
1/(p̂+1) .(6.20)

Because rough estimates are used, the expression for the new step-size found
in most codes has the form

τnew = min (rmax,max (rmin, ϑr)) · τn ,(6.21)

where rmax and rmin are a maximal and minimal growth ration, and ϑ < 1 serves to
make the estimate conservative so as to avoid repeated rejections. Typical values
are ϑ ∈ [0.7, 0.9], rmin ∈ [0.1, 0.5] and rmax ∈ [1.5, 10].

Example 6.8 (p = 2, p̂ = 1). As an example we will provide the explicit trape-
zoidal rule (6.6) with a simple step-size control and illustrate the resulting solver.
Since the explicit Euler result u∗n = un−1 + τf(tn−1, un−1) is available already in
a step with (6.6), we can use

Ên = ‖un − u∗n ‖(6.22)

57

as an estimator for the norm of the local error. Notice that for un−1 = u(tn−1)
this estimator satisfies

Ên = 1
2
τ2 ‖u′′(tn−1)‖ + O(τ3) .

This provides an accurate estimator for the local error of Euler’s method, but
we will use this nevertheless for the second-order method, where we expect it to
give an upper bound. Then, in formula (6.20) we have p̂ = 1. By choosing an
appropriate norm for computing Ên and by making a choice for the parameters
in (6.21) the step-size control can now be used.

As an illustration, we apply this method with error estimator to the problem
{

v′(t) = 1 + v(t)2w(t)− 4v(t) , v(0) = 1.01 ,

w′(t) = 3v(t)− v(t)2w(t) , w(0) = 3 ,
(6.23)

with end time T = 20. It is a simplified chemical model with two chemical species.
With these initial values the variation of the solution is small at first. Around time
t = 8 and t = 15 there are large variations, and the step-size should then become
smaller.

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5
Solution

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1
Step−sizes

Figure 6.2: Variable step-sizes for (6.23). Top panel: the two solution components versus
time. Bottom panel: accepted and rejected (∗) step-sizes.

The results are shown in Figure 6.2, with plots of the solution components
vn ≈ v(tn), wn ≈ w(tn) versus tn, and also the step-sizes τn versus tn. These
results have been obtained with Tol = 10−2, ϑ = 0.85, rmin = 0.5, rmax =

58

1.5 and the maximum norm on R
2. As we see in the figure, there are quite a

number of rejections, so here it might be better to take ϑ slightly smaller, say 0.8.
More importantly, for smaller tolerances a large number of steps will be taken.
Better efficiency will then be obtained using methods with a higher order. (See
Exercise 6.5.) ✸

It should stressed that Tol is just an aim for the local errors; it is not a
guaranteed upper bound for the global errors. When an ODE code (no matter how
sophisticated) is used for a new class of problems some representative problems
should first be tried with different values of Tol to get a feeling of the actual global
accuracy.

Remark 6.9 A starting step-size for the first step on scale with the initial solution
variation must be prescribed. Sophisticated ODE codes do this automatically. It
can be based on the norms of ‖u0‖ and ‖f(t0, u0)‖, by requiring that an Euler
step u0 + τf(t0, u0) does not differ more than a certain percentage from u0.

Further we note that there are many variants for the step-size selection. For
instance, we may look at relative errors. Also, instead of Ên . Tol one can aim at
having Ên . (τn/T)Tol , which is called error control per unit step. That would be
similar to the strategy described in the previous section for quadrature methods
with automatic partitioning. ✸

6.5 Exercises

Exercise 6.1. For special differential equations u′(t) = f(t), the initial value prob-
lem reduces to a quadrature problem. What does the Runge-Kutta method (6.8)
give for such a problem ? What are the order conditions for this class of special
problems ?

Exercise 6.2. Show that there is a one-parameter class of explicit Runge-Kutta
methods with p = s = 2. What will be the result of one step with these methods
for the scalar linear differential equation u′(t) = λu(t) ? Show that order p > 2 is
not possible if s = 2, by considering this scalar linear equation.

Exercise 6.3. Consider the method, with parameter θ ∈ [0, 1], given by the formula

un = un−1 + (1− θ)τf(tn−1, un−1) + θτf(tn, un) .

It is known as the θ-method. Special cases are Euler’s method (θ = 0) and the
implicit trapezoidal rule (θ = 1

2). Insertion of exact solution values in this formula
gives

u(tn) = u(tn−1) + (1− θ)τu′(tn−1) + θτu′(tn) + τδn ,

with a residual term τδn.

(a) Show that this θ-method can be written in the form of a general Runge-Kutta
method with s = 2.

59

(b) Due to the special form of the θ-method, convergence can be demonstrated
in a rather direct way. For this, derive a Taylor expansion for the residuals δn,
assuming u(t) to be sufficiently smooth.

(c) Show convergence of the θ-method under assumption (6.2). What is the order
of the method ? (Hint: find L

∗
such that (1 − θτL)−1(1 + (1 − θ)τL) ≤ 1 + τL

∗

for θτL ≤ 1
2 .)

Exercise 6.4. Consider a solution u(t) of non-autonomous problem (6.1) in R
m,

i.e., with the function f(t, v) depending explicitly on t.

(a) Let ū(t) = (t , u(t)T)T . Show that ū is the solution of an autonomous initial
value problem ū′(t) = f̄(ū(t)), ū(0) = ū0 in R

m+1.

(b) Show that any Runge-Kutta method of order p ≥ 1, satisfying (6.9), produces
the same results for these two formulations of the problem.

Exercise 6.5 (programming). Write a program for the problem (6.7) with the Euler
method (6.4), the explicit trapezoidal rule (6.6) and the fourth-order Runge-Kutta
method (6.15.b), using fixed step-sizes τ = T/N . When plotting the results in the
phase-plane with Euler’s method for moderate values of N you will see that the
solutions spiral outward, instead of staying close to the periodic exact solution.
Can you explain this behaviour by looking at the vector field for this differential
equation in the phase-plane ?

Exercise 6.6 (programming). The program with variable step-sizes made for Fig-
ure 6.2 can be found on the web-site for this course. Modify this program by
using method (6.15.a) with p = s = 3. For this, find an embedded method with
coefficients aij , b̂i, ci and p̂ = 2, by taking, for example, b̂2 = b̂3.

60

7 Stiff Initial Value Problems

In practice, initial value problems (6.1) with high dimension m appear very often.
Usually such problems are stiff. In this section the concept of stiffness will be
discussed. As we will see, for stiff problems numerical methods should have suit-
able stability properties, and implicit Runge-Kutta methods (6.8) then become
important.

7.1 Explicit and Implicit Euler Method for Stiff Problems

Euler’s method (6.4) is often called the forward or explicit Euler method. This to
distinguish it from the backward or implicit Euler method, which reads

un = un−1 + τf(tn, un) .(7.1)

This is also a method of order one, so it seems to have no advantage over its
forward counterpart (6.4). There is an obvious disadvantage: being implicit, it
takes more work per step. Nevertheless, there is an important class of initial value
problems where (7.1) is to be preferred over (6.4).

Example 7.1 As an illustration, consider the simple linear problem

v′(t) = λ1 v(t) − λ2w(t) , v(0) = v0 ,
w′(t) = λ2w(t) , w(0) = w0 ,

(7.2)

with time interval t ∈ [0, 1], v0 = 1, w0 = 0.1 and λ1 = −1, λ2 = −(1+κ), κ≫ 1..
The differential equation is of the form u′(t) = Au(t) with a 2 × 2 matrix A and
λ1, λ2 are the eigenvalues of A. The exact solution is given by

v(t) = eλ1t
(

v0 +
λ2

λ2−λ1
w0

)

− λ2

λ2−λ1
eλ2tw0 , w(t) = eλ2tw0 .(7.3)

Since λ2 ≪ −1, the terms with eλ2t become negligible after a short while, but we
will see that having λ2 ≪ −1 will cause difficulties for explicit methods.

In Figure 7.1 the numerical approximations vn for the first solution component
are plotted versus tn for the explicit Euler method with step-size τ = 1

50 and with
increasing κ. It is clear from these pictures that the explicit Euler method cannot
be used with this step-size if κ gets large.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
x 10

6

Figure 7.1: Results vn for the explicit Euler method with τ = 1/50 and κ = 10 (left),
κ = 100 (middle), κ = 1000 (right). The exact solution is indicated with dashed lines.

61

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 7.2: Results vn for the implicit Euler method with τ = 1/50 and κ = 10 (left),
κ = 100 (middle), κ = 1000 (right). The exact solution is indicated by the dashed lines.

The behaviour of the implicit Euler method is very different. Figure 7.2 con-
tains the same plots, again with increasing κ, but here the numerical approxima-
tions stay close to the exact solution no matter how large κ becomes.

We note that the solution is smooth after a very short while, and the solution
is also not very sensitive for perturbations in the initial values v0 and w0. On the
other hand, for the Lipschitz constant it can be shown that L ≥ maxj |λj |, so L
becomes large for increasing κ. ✸

To understand the different behaviour of the explicit and implicit Euler method
observed in this example, let us consider a linear problem

u′(t) = Au(t) , u(0) = u0 ,(7.4)

with constant matrix A ∈ R
m×m. The Lipschitz constant (6.2) for this problem

equals L = ‖A‖. Assume the matrix A is diagonalizable,

A = V ΛV −1 , Λ = diag(λi) .(7.5)

Here the λi ∈ C are the eigenvalues of A and the i-th column of V ∈ C
m×m contains

the corresponding eigenvector. Then, for w(t) = V −1u(t) we have w′(t) = Λw(t),
and hence w(t) = exp(tΛ)w(0) where exp(tΛ) = diag(exp(tλi)). In terms of our
original u we thus get

u(t) = V exp(tΛ)V −1u0 .(7.6)

It is clear that u(t) stays bounded for all t > 0 with arbitrary initial value u0 ∈ R
m

if and only if
Reλi ≤ 0 for all 1 ≤ i ≤ m.(7.7)

Application of the explicit Euler method to (7.4) gives a different picture. We
then have un = (I + τA)un−1, and since I + τA = V (I + τΛ)V −1 this leads to

un = V (I + τΛ)n V −1u0 .(7.8)

To have boundedness of un uniformly for n ≥ 0 with arbitrary initial value u0 ∈ R
m

we now obtain the condition

|1 + τλi| ≤ 1 for all 1 ≤ i ≤ m.(7.9)

62

On the other hand, for the implicit Euler method we get un = (I−τA)−1un−1,
which gives

un = V (I − τΛ)−n V −1u0 .(7.10)

To have boundedness of un uniformly for n ≥ 0 with arbitrary initial value u0 ∈ R
m

we now have the condition

|1− τλi|−1 ≤ 1 for all 1 ≤ i ≤ m.(7.11)

Returning to our example, the matrix A for (7.2) has eigenvalues λ1 = −1
and λ2 = −L, where L = 1 + κ is the Lipschitz constant in the maximum norm.
Therefore, the boundedness condition (7.9) for the explicit Euler method reads
τL ≤ 2, and if this is not satisfied we can get exponential growth of the solutions,
‖un‖ ∼ ρn, with a growth factor ρ = |τL−1|. In Figure 7.1 this is ρ = 1.02 for the
middle panel, and ρ ≈ 19 for the right panel. So, even though the large negative
eigenvalue λ2 hardly influences the solution, it causes numerical difficulties with
the explicit Euler method. In contrast to this, for the implicit Euler method the
boundedness condition (7.9) is clearly satisfied for any step-size τ > 0.

The above considerations can also be applied to study the error propagation
in the numerical methods; this will be discussed below in Section 7.3.

Stiff problems. Consider a general initial value problem u′(t) = f(t, u(t)), u(0) =
u0, on a time interval [0, T]. Along with the solution u starting from u0 we also
consider a perturbed initial value ũ0 with corresponding solution ũ. The sensitivity
of u with respect to this initial perturbation is measured by

M = max
t∈[0,T]

‖u(t)− ũ(t)‖
‖u0 − ũ0‖

.(7.12)

If f is continuously differentiable with Lipschitz constant L, we know that the
explicit Euler approximations un, ũn will converge to u(tn) and ũ(tn), respectively,
as τ → 0, and also ‖un − ũn‖ ≤ (1 + τL)n‖u0 − ũ0‖. It follows that we always
have the upper bound M ≤ exp(LT), but M may be much smaller.

There are many problems with a smooth solution and moderate sensitivity
factors M for arbitrary initial perturbations, but with a large value LT . Such
problems are called stiff. Problem (7.1) is an example.

Stiffness is not a precisely defined mathematical concept, because no quan-
tification is given for ‘large’ or ‘moderate’. Instead it is an operational concept,
indicating the class of problems for which implicit methods can perform (much)
better than explicit methods. For any explicit method a moderate value LT is
needed to have a favourable error growth in the numerical procedure, whereas
with a suitable implicit method this numerical error growth will in general not
depend on LT but on the moderate quantity M .

A large percentage of initial value problems arising in practice is stiff, in par-
ticular for problems with large dimension m. In general, large problems contain
many different time scales. A process with short time scale can be associated with

63

eλt where Reλ ≪ 0. Because the short time scale effects quickly disappear, the
overall behaviour of the solution is determined by the long time scales. However,
when we apply a method like explicit Euler to such a problem, the step-size has
to be adjusted to these short time scales, even after their effect has died out in
the exact solution, because otherwise errors will be greatly amplified in each step.

7.2 Stability Regions and Implicit Methods

To find methods suitable for stiff problems we will first look again at the simple
test equation

u′(t) = λu(t)(7.13)

with λ ∈ C. Application of a Runge-Kutta method to the test equation will give

un = R(τλ)un−1(7.14)

with a function R determined by the coefficients of the method. This function R
is called the stability function of the method. As we will see shortly, for explicit
methods it is a polynomial. For implicit methods it will be a rational function.
The set

S = {z ∈ C : |R(z)| ≤ 1}(7.15)

is called the region of absolute stability or simply the stability region of the method.
If the whole left half-plane {z ∈ C : Re z ≤ 0} is contained in S, the method is
called A-stable.

Some properties of stability functions are summarized in the following result.

Theorem 7.2 If the Runge-Kutta method has order p ≥ 1, then

R(z) = ez + O(zp+1) as z → 0 .

Moreover, if the method is explicit with s stages, then R is a polynomial of degree
≤ s, and the method cannot be A-stable.

Proof. Consider fixed λ and denote z = λτ . The local error in the first step is

τd1 = u(t1)− u1 = (ez −R(z))u0 .

The first statement thus follows from the requirement ‖τd1‖ = O(τp+1) as τ → 0.
The Runge-Kutta method applied to (7.13) reads

vn,i = un−1 + z
s

∑

j=1

αijvn,j , un = un−1 + z
s

∑

i=1

bivn,j .

If the method is explicit it is seen by induction that vn,i equals un−1 multiplied by
a polynomial of degree i−1 in z, and therefore in the final stage un equals un−1

multiplied by R(z), with a polynomial R of degree s, at most. Since the method

64

has order p ≥ 1, this R is not constant. Consequently |R(z)| > 1 when |z| gets
large, so the method cannot be A-stable. ✷

Explicit methods. As we saw in Theorem 7.2, the stability function of an explicit
s-stage method is a polynomial of degree s or less. It is therefore not possible to
satisfy R(z) = ez +O(zp+1) for z → 0 with an order p > s. As a consequence, we
have the following result:

Corollary 7.3 For an explicit Runge-Kutta method with s stages, the order p
cannot be larger than s. ✷

For explicit methods with p = s the stability function is given by

R(z) = 1 + z + 1
2!
z2 + · · ·+ 1

s! z
s.(7.16)

We saw already in the previous section that having p = s is possible for explicit
methods with s up to four. The stability regions of these methods are displayed
in Figure 7.3.

−4 −3 −2 −1 0 1 2
−3

−2

−1

0

1

2

3

−4 −3 −2 −1 0 1 2
−3

−2

−1

0

1

2

3

s=1

s=2
s=3

s=4

Figure 7.3: Stability regions S for the stability functions (7.16) of degree s = 1, 2, 3, 4.

If we apply one of these explicit method to (7.13) with Reλ < 0, then the step-
size τ should be chosen such that τλ ∈ S. Otherwise the numerical approximations
un will exhibit an exponential growth (due to |R(τλ)| > 1) whereas the exact
solution values u(tn) tend to zero for increasing n. If the modulus of λ is very
large, the requirement τλ ∈ S will lead to a very small step-size τ , and this will
make the method inefficient. The same happens for linear and nonlinear systems
of ODEs (with λ an eigenvalue of A, and A a Jacobian matrix of f). We will
therefore look at implicit methods, for which such severe step-size restrictions can
be avoided.

Implicit methods. Implicit methods can be A-stable. Examples are the implicit
Euler method (7.1) with

R(z) =
1

1− z
,(7.17)

65

−4 −3 −2 −1 0 1 2
−3

−2

−1

0

1

2

3

−4 −3 −2 −1 0 1 2
−3

−2

−1

0

1

2

3

Impl. Trap.Rule Impl. Euler

Figure 7.4: Stability regions S (shaded areas) for the implicit trapezoidal rule (left) and
the implicit Euler method (right).

and the implicit trapezoidal rule (6.5) with

R(z) =
1 + 1

2z

1− 1
2z

.(7.18)

The corresponding stability regions are shown in Figure 7.4. Note that the stability
region of the implicit trapezoidal rule is precisely the left-half plane which nicely
agrees with the set z ∈ C for which |ez| ≤ 1. On the other hand, for the exponential
function we also have |ez| → 0 if z → −∞. This property is mimicked by the
implicit Euler method but not by the trapezoidal rule.

Another simple implicit method is implicit midpoint rule,given by

un = un−1 + τf(tn− 1

2

, 1
2
un−1 +

1
2
un) .(7.19)

Its stability function is (7.18), the same as for the implicit trapezoidal rule. This
implicit midpoint rule is the first member of a larger class of methods, the Gauss
methods, which will be derived below using the idea of collocation.

Collocation methods.⋆ Several interesting classes of implicit methods can be
obtained by using collocation, where we are looking for a polynomial of degree s
such that the differential equation is satisfied at s discrete points. This is closely
related to numerical quadrature and polynomial interpolation.

The collocation method is described here for the first step, taking us from
t0 = 0 to t1 = τ . For given distinct nodes c1, c2, . . . , cs, the collocation polynomial
v of degree s is defined by

v(0) = u0 , v′(ciτ) = f(ciτ, v(ciτ)) (i = 1, . . . , s) ,(7.20)

and the new approximation u1 ≈ u(t1) is then taken as u1 = v(τ). This applies to
systems as well as for scalar problems. (For the arguments in the following proof
it is easiest to think first about scalar problems.)

66

Proposition 7.4 Let Li(t) =
∏

j 6=i(t − cj)/(ci − cj) for i = 1, . . . , s. Then the
collocation method given by (7.20) with u1 = v(τ) is equivalent to a Runge-Kutta
method (6.8) with coefficients

aij =
∫ ci
0 Lj(t) dt , bj =

∫ 1
0 Lj(t) dt .

Proof. Setting fi = f(ciτ, v(ciτ)) = v′(ciτ), we have according to the Lagrange
interpolation formula

v′(θτ) =
∑ s

j=1 Lj(θ)fj .

Using v(0) = u0, integration thus gives

v(ciτ) = u0 + τ
∫ ci
0 v′(θτ) dθ = u0 + τ

∑ s
j=1(

∫ ci
0 Lj(θ) dθ)fj ,

which gives the Runge-Kutta formula (6.8) with vi = v(ciτ). ✷

If the nodes c1, . . . , cs are chosen as in the Gauss quadrature rule (zeros of
shifted Legendre polynomials), then the resulting Runge-Kutta methods are called
Gauss methods, or Gauss-Legendre methods. These methods turn out to have order
2s (not proven here), and they are A-stable, as will be shown next.

Proposition 7.5 For any number of stages s, the Gauss method is A-stable.

Proof. In this proof we will use the fact that Gauss quadrature is exact for poly-
nomials of degree 2s− 1 or less. It follows that all weights bi in Gauss quadrature
are positive, because

bi =
∑s

j=1 bjLi(cj)
2 =

∫ 1
0 Li(θ)

2 dθ > 0 .

Application of the collocation method to our complex test problem u′(t) =
λu(t) with Reλ ≤ 0, leads for µ(t) = |v(t)|2 = v(t) · v(t) to

µ′(ciτ) = 2Re
(

v(ciτ) v
′(ciτ)

)

= 2Reλ · µ(ciτ) ≤ 0 .

But since µ′ is a polynomial of degree 2s− 1 at most, it follows that

µ(τ) = µ(0) +
∫ τ
0 µ

′(t) dt = µ(0) + τ
∑m

i=1 biµ
′(ciτ) ≤ µ(0) ,

showing that |u1| ≤ |u0|. ✷

Relevance of the test equation. We started out in (6.1) with general initial
value problems, probably of high dimension, nonlinear and with difficult solutions.
But the concepts of stability region and A-stability are related to the simple scalar
test equation u′(t) = λu(t), for which we know already the solution u(t) = eλtu(0).

It turns out that the linear scalar stability concepts are very relevant for general
nonlinear systems. If we want to know how numerical solutions for a general ODE
system u′(t) = f(t, u(t)) react to perturbations, a first step is to consider the
local influence of small perturbations. But that can be studied for a linearized

67

problem u′(t) = Au(t). Then if A is diagonalizable we are led to the test problem
u′(t) = λu(t), with λ eigenvalues of A.

There many theoretical results in the opposite direction: starting from as-
sumptions on the numerical method for the test equation (e.g. A-stability) one
can show stability and convergence results for interesting classes of linear and
nonlinear systems. For such results we refer to the specialized books given at the
end of these notes.

7.3 Example: the θ-Method for Stiff Problems

To discuss some important issues for stiff problems, we will consider here a simple
class of methods. For the general class of Runge-Kutta methods such a discussion
would become too technical.

In this section we consider the following methods, with parameter θ ∈ [0, 1],

un = un−1 + (1− θ)τf(tn−1, un−1) + θτf(tn, un) .(7.21)

This contains the explicit Euler method (θ = 0), the implicit Euler method (θ = 1)
and the implicit trapezoidal rule (θ = 1

2) as special cases. With unspecified θ, the
method (7.21) is simply known as the ‘θ-method’. The stability function of the
θ-method is R(z) = (1− θz)−1(1+ (1− θ)z) and the method is A-stable for θ ≥ 1

2
(see Exercise 7.3).

Implementation aspects. To discuss implementation of the implicit methods,
with θ > 0, we can consider autonomous problems, where f(t, v) = f(v). Then,
in the step (7.21), starting from a known un−1, the vector un ∈ R

m is the solution
of the system w = g(w) with

g(w) = un−1 + (1− θ)τf(un−1) + θτf(w) .

If f satisfies the Lipschitz condition (6.2), then we have

‖g(w̃)− g(w)‖ ≤ θτL · ‖w̃ − w‖ .

Therefore the system could be solved by fixed point iteration provided that θτL < 1.
However, we want to use the implicit methods for stiff problems with τL≫ 1. This
can be done, but instead of fixed point iteration we need a Newton type iteration.
Note that un−1 will in general already be a reasonably good first approximation
to un. It is common practice to apply a modified Newton iteration where the
Jacobian matrix is held fixed during the iteration. Assuming we have a tolerance
Tol used for step-size selection, a simple computational scheme for the n-th step
becomes:










Compute An = f ′(un−1), set w
0 = un−1. Then iterate, for k = 1, 2, . . . ,

wk = wk−1 − (I − θτAn)
−1

(

wk−1−un−1−(1− θ)τf(un−1)−θτf(wk−1)
)

,

until the displacement ‖wk − wk−1‖ is less than a fraction (say 1
10) of Tol .

68

Here the stopping criterion aims at solving the system of equations with an error
less than the (estimated) local error due to discretization. There are many variants
on this simple scheme.

On top of this, one has to decide how the linear algebraic equations with matrix
I−θτAn are to be solved in each Newton iteration. For ‘small’ problems this can be
done with LU -decomposition, but for ‘big’ problems this is often done iteratively.
So then we get another iteration, within the Newton iteration! It will be clear
that writing a good code for (a class of) stiff problems can be a challenging task.

Convergence and error propagation for linear problems. In the above we
only looked at the behaviour of the modulus or norm of the solutions, but the
same can be done for differences of solutions with perturbations. Along with the
(unperturbed) θ-method (7.21) we can consider

ũn = ũn−1 + (1− θ)τf(tn−1, ũn−1) + θτf(tn, ũn) + τδn .(7.22)

These residuals τδn may arise from various error sources, for instance round-
off errors or errors due to not solving the implicit relations exactly. We can
also describe discretization errors in this way, by putting ũn = u(tn), leading to
convergence results similar to Exercise 6.3 but now without Lipschitz conditions
on f . This will be described here for linear problems.

Consider the θ-method applied to a linear inhomogeneous system

u′(t) = Au(t) + g(t) ,

with diagonalizable matrix A = V ΛV −1 ∈ R
m×m, Λ = diag(λk), such that

Reλk ≤ 0 for all 1 ≤ k ≤ m. If no bound for the moduli |λk| is specified this
problem can be arbitrarily stiff, but for the A-stable methods, θ ≥ 1

2 , we know
that |R(τλk)| ≤ 1 for all k and τ > 0. As in (7.8), this gives

‖R(τA)n‖ ≤ κ , ‖R(τA)n−j(I − θτA)−1‖ ≤ κ ,(7.23)

where κ = ‖V ‖‖V −1‖, and R(Z) = (I + (1 − θ)Z)−1(I − θZ) is the stability
function with matrix argument Z ∈ R

m×m.
Let εn = ũn − un. Then subtraction of (7.21) from (7.22) gives

εn = R(τA)εn−1 + (I − θτA)−1τδn .(7.24)

Recursive application of this relation leads to

εn = R(τA)nε0 +
n
∑

j=1

R(τA)n−j(I − θτA)−1τδj .(7.25)

If θ ≥ 1
2 , then (7.23) gives

‖εn‖ ≤ κ‖ε0‖+ κτ
n
∑

j=1

‖δj‖ .(7.26)

69

If we apply this with ũn = u(tn), a convergence result is obtained for θ ≥ 1
2 ,

where the upper bound for the global errors will depend only on the condition
number κ, on tn and bounds for the derivatives of the exact solution, but not on
the Lipschitz condition or the size of the moduli of the eigenvalues of A. Compare
this with Exercise 6.3.

For the explicit Euler method, on the other hand, we do need a bound on
the |λk|, and the stepsize τ should be such that |1 + τλk| ≤ 1 for all eigenvalues
λk. Otherwise all errors made during the process can be amplified with a large
constant, leading to a fast exponential growth of errors.

7.4 A Semi-discrete Initial-Boundary Value Problem

Many stiff initial value problems for ODEs have their origin in partial differential
equations (PDEs). As an illustration we consider the ODE system

u′j(t) =
γ
h2

(

uj−1(t)− 2uj(t) + uj+1(t)
)

+ κuj(t) (1− uj(t)) ,(7.27)

with component index j = 1, 2, . . . ,m, and with u0(t) = um+1(t) = 0. Here
γ = 1

10 , κ = 10 and h = 1
m+1 . Moreover, initial values uj(0) will be prescribed for

all components.
This problem is obtained from the partial differential equation

∂
∂tw(x, t) = γ

∂2

∂x2w(x, t) + κw(x, t) (1− w(x, t)) ,(7.28)

where w(x, t) stands for a concentration of a biological species that varies over
space and time. This combines the simple model w′ = κw(1 − w) for population
growth with spatial diffusion. If w(x, 0) ∈ (0, 1) in a given point x at time t = 0,
then the ODE part will initiate a growth towards w = 1, but at the same time the
diffusion will cause a flow from regions with high w towards regions with lower w.
We consider equation (7.28) for t ∈ [0, T] and 0 < x < 1. Together with the initial
condition w(x, 0) = w0(x), we also impose the boundary conditions w(0, t) = 0,
w(1, t) = 0,3 giving an initial-boundary value problem for a PDE.

Now suppose we impose a spatial grid xj = jh, j = 1, . . . ,m, with h the
mesh-width in space, and use the approximate spatial derivatives

∂2

∂x2w(x, t) ≈ 1
h2

(

w(x− h, t)− 2w(x, t) + w(x+ h, t)
)

at the grid points xj . Then we obtain the ODE system (7.27) where the compo-
nents uj(t) approximate the PDE solution at the grid points, uj(t) ≈ w(xj , t). It
can be shown (beyond scope of these notes) that the error in this approximation
will be O(h2) provided w is smooth. So we will take m large, giving h > 0 small.

Figure 7.5 shows the solution of (7.27) at various times, starting with the
initial profile uj(0) = w(xj , 0) = 1

10 exp(−100(xj − 1
4)

2) + 1
4 exp(−100(xj − 3

4)
2)

and m = 100.
3Actually, these boundary conditions are not very realistic for a biological model, but they

are taken here for simplicity.

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

t=0

t=T

Figure 7.5: Time evolution for (7.27) with m = 100 : solutions versus x at the start
t = 0 and final time t = T = 1

4 (fat lines), and intermediate t = 1
16 ,

2
16 ,

3
16 (thin lines).

The resulting ODE system is often called a semi-discrete system because space
has been discretized but time is still continuous. We can write the system in vector
form as u′(t) = Au(t) + g(u(t)), with matrix A ∈ R

m×m and nonlinear function g
defined by

A =
γ
h2











−2 1

1 −2
. . .

. . .
. . . 1
1 −2











, g(v) = κ











v1(1−v1)
v2(1−v2)

...
vm(1−vm)











(7.29)

for v = (vj) ∈ R
m. We already saw (Exercise 2.5) that this tri-diagonal matrix A is

negative definite. Therefore, A = V ΛV −1 where V is orthogonal and Λ = diag(λi)
contains the eigenvalues λi < 0. The eigenvalues of A are known to be in the
interval [−4γ/h2, 0], with the most negative ones close to −4γ/h2.

This initial value problem with large m can be efficiently solved with suitable
implicit methods. Then the step-size needs only to be adjusted to the smoothness
to keep the local errors small. On the other hand, when using an explicit method
like the Euler’s method (6.4) or the explicit trapezoidal rule (6.6), very small step-
sizes are necessary if the mesh-width h becomes small. The requirement that the
segment [−4γ/h2, 0] of the negative real axis fits in the stability regions (left panel
of Figure 7.3) leads for these explicit methods to the time step restriction

γ τ
h2 ≤ 1

2
.(7.30)

The nonlinear term g(u) only contains moderate contributions, and therefore the
stability restriction (7.30) will give a fair estimate of the possible time step-sizes.
To find accurate approximations to the PDE the mesh-width h must be small,
and therefore the explicit methods are not suited for this problem.

71

7.5 Exercises

Exercise 7.1. Show that the implicit midpoint rule (7.19) can be written as a
Runge-Kutta method:

un− 1

2

= un−1 +
1
2
τf(tn− 1

2

, un− 1

2

) ,

un = un−1 + τf(tn− 1

2

, un− 1

2

) .

Show that the collocation procedure (7.20) with s = 1 and c1 = 1
2 produces this

method.

Exercise 7.2. Which Runge-Kutta method is produced by the collocation proce-
dure (7.20) with s = 2 and c1 = 0, c2 = 1 ?

Exercise 7.3. Consider the θ-method (7.21) with parameter θ ≥ 0. This method
was also studied in Exercise 6.3.

(a) Determine the stability region of the method. For which values of θ is the
method A-stable ?

(b) If we apply such an A-stable method to the linear system u′(t) = Au(t) with
matrix A given by (7.29), with orthogonal V and all eigenvalues real and negative,
show that then ‖un‖2 ≤ ‖un−1‖2 in the Euclidian norm. (Remember that for an
orthogonal V we have ‖V u‖2 = ‖u‖2.)

Exercise 7.4. Consider an autonomous differential equation u′(t) = f(u(t)). Show
that if we apply only one Newton iteration to the θ-method (7.21) with initial
iteration guess un−1 and Jacobian An ≈ f ′(un−1), the result will be

un = un−1 + (I − θτAn)
−1τf(un−1) .(7.31)

Determine the order of consistency of the method with An = f ′(un−1), by inserting
exact solution values as in (6.11), (6.12). Determine the stability region of this
linearly implicit method.

Exercise 7.5 (programming). The above linearly implicit method (7.31) with θ = 1
2

was used to produce Figure 7.5. The program can be found on the web-site for
this course.

(a) Modify this program such that the explicit Euler method will be used as time
stepping method. Verify the stability bound (7.30) experimentally.

(b) Do the same for the explicit trapezoidal rule (6.6).

72

8 Two-Point Boundary Value Problems

In this section we will study boundary value problems for ordinary differential
equations, also known as two-point boundary value problems. First we will briefly
outline the use of initial value problem techniques via the ”shooting” method.
Although this procedure can be formulated for general two-point boundary value
problems, the actual implementation is not straightforward, and theory is compli-
cated.

In the main part of this section we will therefore consider a more restricted
class of problems, the so-called Sturm-Liouville problems. For such problems we
will study Galerkin methods, leading to simple finite element methods. These
methods are very important because of the possible extensions to boundary value
problems for partial differential equations.

8.1 Shooting Methods

A general form of a two-point boundary value problem on an interval [a, b] is

u′(t) = f
(

t, u(t)
)

, ϕ
(

u(a), u(b)
)

= 0 ,(8.1)

with given functions f : [a, b]×R
m → R

m and ϕ : Rm×R
m → R

m. We will consider
arbitrary m ≥ 1, but to make the essential points of the following procedure more
transparent it can first be assumed that m = 1.

Along with the boundary value problem (8.1), we also consider the initial value
problem

v′(t) = f
(

t, v(t)
)

, v(a) = ξ ,(8.2)

where ξ ∈ R
m is still undetermined. To make the explicit dependence on ξ more

clear, we will denote the solution of this initial value problem as v(t) = v(t; ξ).
Now, if we define F (ξ) = ϕ

(

ξ, v(b; ξ)
)

, then it is seen that u is a solution of the
boundary value problem iff

u(t) = v(t; ξ
∗
) , F (ξ

∗
) = 0 .(8.3)

This means that we have reduced the problem to a system of equations F (ξ) = 0
in R

m, where the function values F (ξ) can be computed by solving numerically
the initial value problem (8.2).

One can try to solve this system of equations by a functional iteration, for
instance ξk+1 = ξk − F (ξk) for k = 0, 1, 2, . . . , starting from a guess ξ0. However,
this will only work for restricted classes of boundary value problems, because
G(ξ) = ξ − F (ξ) then needs to be a contraction.

Better convergence of the sequence ξk is obtained in general by a Newton
iteration ξk+1 = ξk − (F ′(ξk))−1F (ξk). But then we need to be able to compute
not only the function values F (ξ) but also the derivative F ′(ξ).

This is possible. Introducing them×m Jacobian matrices of partial derivatives

A(t, v) =
∂f(t,v)
∂v , B1(ξ, v) =

∂ϕ(ξ,v)
∂ξ , B2(ξ, v) =

∂ϕ(ξ,v)
∂v , V (t; ξ) =

∂v(t;ξ)
∂ξ ,

73

we obtain by the chain rule

F ′(ξ) = B1

(

ξ, v(b; ξ)
)

+ B2

(

ξ, v(b; ξ)
)

· V (b; ξ) ,(8.4)

and finding V (t) = V (t; ξ) amounts to solving (numerically)

V ′(t) = A
(

t, v(t; ξ)
)

· V (t) , V (a) = I .(8.5)

This differential equation for the matrix V (t) ∈ R
m×m is equivalent to m differ-

ential equations in R
m for the columns of V (t).

The above procedure is called shooting : with the shooting parameter ξ we aim
at the ’target’ ϕ

(

ξ, v(b; ξ)
)

= 0. Turning these ideas into a working computer
code requires resolving a number of technical issues. Theoretical statements on
convergence are quite difficult in general. That is not surprising since statements
about existence and uniqueness of solutions of the boundary value problem (8.1)
are already much more complicated than for initial value problems.

8.2 Sturm-Liouville Problems and Weak Forms

In practice, boundary value problems often appear for scalar second-order differ-
ential equations w′′ = g(t, w, w′) with boundary conditions w(a) = α, w(b) = β.
By rewriting this differential equation to a system of two first-order differential
equations, it is seen that we are still formally in the framework of (8.1). In such
second-order problems the independent variable is often a space coordinate, and
it will therefore be denoted by x instead of t.

In the remainder of this section we will restrict ourselves to two-point boundary
value problems of the form

−
(

p(x)w′(x)
)′

+ q(x)w(x) = r(x) ,(8.6a)

w(a) = 0 , w(b) = 0 ,(8.6b)

where p, q, r : [a, b] → R are given, q and r are continuous and p is continuously
differentiable. Linear boundary value problems of this type are called Sturm-
Liouville problems. We call w a solution if it is twice differentiable, (8.6a) is
satisfied for all x ∈ [a, b], and w(a) = w(b) = 0. It is known (theory of differential
equations) that (8.6) has a unique solution under the assumption

p(x) ≥ p0 > 0 , q(x) ≥ 0 (for all x ∈ [a, b]).(8.7)

With p strictly positive, we can also write w′′ = 1
p(qw − p′w′ − r), and therefore

the second derivative w′′ of the solution will be continuous.

A finite difference method. Before going to some (mathematically) more ad-
vanced methods to solve (8.6), we first describe briefly a simple finite difference
method on uniform grids. It will be based on the fact that if v is a smooth func-
tion, then we can approximate the derivative in a point x by a finite difference
quotient:

v′(x) = 1
h

(

v(x+ 1
2
h)− v(x− 1

2
h)
)

+O(h2) .

74

Using this, we can make a ’discrete version’ of the boundary value problem
(8.6). We will use a uniform grid on the interval [a, b] consisting of the grid points
xi = a + ih for i = 0, 1, . . . ,m + 1, where h = (b − a)/(m + 1) is called the mesh
width, or grid distance. This grid is called uniform because the distance between
the points is the same, xi+1 − xi = h.

| • • • • • • • |
a x1 x2 xm b

Let xi+1/2 =
1
2
(xi + xi+1). Setting v(x) = p(x)w′(x) we now first approximate

v′(xi) by 1
h
(v(xi+1/2)− v(xi−1/2)) for 1 = 1, 2 . . . ,m ,

and then we approximate the terms

v(xi+1/2) by 1
h
p(xi+1/2) (w(xi+1)− w(xi)) for 1 = 0, 1 . . . ,m .

In both of these approximation steps we will make O(h2) errors. Applying these
steps to (8.6) leads to a linear system for approximations wi ≈ w(xi). Let pi±1/2 =
p(xi±1/2) and qi = q(xi), ri = r(xi). The resulting tri-diagonal linear system for
the approximations wi is

1
h2

(

− pi−1/2wi−1 + (pi−1/2 + pi+1/2)wi − pi+1/2wi+1

)

+ qiwi = ri(8.8)

for i = 1, 2, . . . ,m, with w0 = wm+1 = 0.
It can be shown, under suitable assumptions, that we will have an error

maxi |w(xi) − wi| = O(h2). Related results can be found in Sect. 7.3 of the book
of Gautschi (1997) listed in the preface of these notes.

This finite difference method, whereby (8.6) is replaced by (8.8), is concep-
tually easy. However, generalizations to non-uniform grids are not so easy. In
practical applications non-uniform grids are often crucial to get an efficient nu-
merical scheme, just as for quadrature problems and initial value problems. For
this we will consider so-called finite element methods, which need some mathe-
matical preparations.

Weak forms. Before introducing the numerical methods, we will first rewrite
the problem (8.6) in a more abstract way with operators on function spaces. Let
Ck[a, b] stand for the set of real functions on [a, b] that are k times continuously
differentiable, and let Ck

0 [a, b] = {v ∈ Ck[a, b] : v(a) = v(b) = 0}. The operator
L : C2

0 [a, b] → C0[a, b] is defined by

(Lw)(x) = −
(

p(x)w′(x)
)′

+ q(x)w(x) .

Then (8.6) can be written compactly as: Lw = r with w ∈ C2
0 [a, b].

On any of these function spaces we can consider the standard inner-product
and norm:

(u, v) =
∫ b
a u v dx , ‖u‖ =

√

(u, u) ,

75

where
∫

u v dx stands for
∫

u(x)v(x) dx. It will also be convenient to introduce

[u, v] =
∫ b
a

(

p u′ v′ + q u v
)

dx , ‖u‖∗ =
√

[u, u] .

This bilinear form [u, v] is defined for u, v ∈ C1[a, b]. It is also an inner-product.
The norm ‖u‖∗ is often called the energy norm for our boundary value problem.

Let v ∈ C1
0 [a, b]. Multiplication of (8.6a) by v(x) and integration by parts over

[a, b] gives

∫ b
a

(

− (pw′)′v + q w v
)

dx =
∫ b
a

(

pw′v′ + q w v
)

dx =
∫ b
a r v dx .

We therefore have the relation

(Lw, v) = [w, v] = (r, v) for any v ∈ C1
0 [a, b].(8.9)

If w ∈ C2
0 [a, b] we can also follow these arguments backwards to arrive again

at (8.6). So, at first sight, little seems to have been gained by this abstract
reformulation. However, the bilinear form is also defined for a function w which
is merely differentiable, and this will create the possibility to allow, for example,
some discontinuities in the source function r.

More general, let H1[a, b] be the set of functions v ∈ C0[a, b] for which there
is a finite partitioning a = θ0 < θ1 < · · · < θn = b such that the derivative v′ is
continuous and bounded on each sub-interval (θj−1, θj). Then the integral over v′

still exists:
∫ b
a v

′ dx =
∑n

j=1

∫ θj
θj−1

v′ dx .

We also define H1
0 [a, b] = {v ∈ H1[a, b] : v(a) = v(b) = 0}.

Instead of (8.6) or (8.9), we will look for a function w ∈ H1
0 [a, b] such that

[w, v] = (r, v) for any v ∈ H1
0 [a, b] .(8.10)

This is called the weak form of the boundary value problem (8.6), and the function
w ∈ H1

0 [a, b] that satisfies (8.10) is called a weak solution.
Any solution w of (8.6) will also be a weak solution. Conversely, it can be

shown that if w is a weak solution and w ∈ C2
0 [a, b], then it will also be a solution

of (8.6). As mentioned before, we can have weak solutions that are not in C2
0 [a, b]

when p′, q or r are allowed to be discontinuous in some points. In the following we
will retain our assumptions q, r ∈ C0[a, b] and p ∈ C1[a, b]; the additional freedom
offered by the weak form will be used in the construction of numerical methods.

Both bilinear forms (u, v) and [u, v] are inner products on H1
0 [a, b], and we

therefore have the Cauchy-Schwarz inequalities

(u, v) ≤ ‖u‖ ‖v‖ , [u, v] ≤ ‖u‖∗ ‖v‖∗ (for all u, v ∈ H1
0 [a, b]) ,(8.11)

see e.g. Exercise 8.2. To get some more insight in the energy norm, and its relation
to the standard norm ‖ · ‖, the following lemma will be useful.

76

Lemma 8.1 Assume (8.7). Let p1 = maxx∈[a,b] |p(x)|, q1 = maxx∈[a,b] |q(x)|, and
denote γ0 =

√
p0, γ1 =

√

p1 + (b−a)2q1. Then
γ0
b−a ‖v‖ ≤ γ0 ‖v′‖ ≤ ‖v‖∗ ≤ γ1 ‖v′‖ for all v ∈ H1

0 [a, b] .

Proof. Since v(x) =
∫ x
a v

′(y) dy, we obtain by the Schwarz inequality

v(x)2 = (
∫ x
a 1 · v′(y) dy)2 ≤ (

∫ x
a (1)

2 dy) · (
∫ x
a (v

′)2 dy) ≤ (b− a) ‖v′‖2 .
Hence

‖v‖ ≤ (b− a) · ‖v′‖ .(8.12)

Further we have ‖v‖2∗ ≥
∫ b
a p v

′v′ dx ≥ p0 · ‖v′‖2, from which the second inequality
follows. Finally, it is easily seen that ‖v‖ 2

∗ ≤ p1‖v′‖2 + q1‖v‖2, which gives the
third inequality. ✷

Remark 8.2 Using w′′ = 1
p(qw − p′w′ − r), it follows from the previous lemma

that ‖w′′‖ ≤ κ1‖w‖∗ + κ2‖r‖ with constants κ1, κ2 > 0 determined by p, q. Since
‖w‖2∗ = [w,w] = (r, w) ≤ ‖r‖‖w‖, it also follows that

‖w′′‖ ≤ κ0 ‖r‖(8.13)

with constant κ0 > 0 determined by the given functions p and q. ✸

8.3 Galerkin Methods and Finite Elements

To obtain numerical approximations we will use the weak form (8.10) of the Sturm-
Liouville problem (8.6). It is assumed throughout this section that (8.7) holds
with q, r ∈ C0[a, b] and p ∈ C1[a, b]. This ensures that the solution w is twice
continuously differentiable.

Let Vh be a finite dimensional subspace of H1
0 [a, b], with basis φ1, φ2, . . . , φm.

In the Galerkin method we look for an approximation wh ∈ Vh such that

[wh, vh] = (r, vh) for any vh ∈ Vh .(8.14)

The choice of Vh and its basis functions φj determines the numerical method.
If we write our approximate solution in terms of these basis functions as wh =
∑m

j=1 ξjφj , that is,

wh(x) =
m
∑

j=1

ξj φj(x) ,

then (8.14) is equivalent to finding ξ = (ξj) ∈ R
m from the linear system

S ξ = η(8.15)

with matrix S = (sij) ∈ R
m×m, sij = [φi, φj], and η = (ηi) ∈ R

m, ηi = (r, φi).
The matrix S is called the stiffness matrix; it is non-singular, even positive definite
(see Exercise 8.3). Therefore, the Galerkin approximation wh is well-defined. A
simple choice for Vh and its basis is discussed below.

The following result gives an error estimate for the Galerkin approximation in
the energy norm:

77

Theorem 8.3 The error w − wh of the Galerkin method satisfies

‖w − wh‖∗ = min
vh∈Vh

‖w − vh‖∗ .(8.16)

Proof. Since Vh ⊂ H1
0 [a, b], it is seen by (8.10), (8.14) that we have the orthogo-

nality relation

[w − wh, uh] = 0 for any uh ∈ Vh .(8.17)

By considering arbitrary vh ∈ Vh, and applying (8.17) with uh = wh − vh, it is
seen that

‖w − wh‖ 2
∗ = [w − wh, w − wh] = [w − wh, w − vh] ≤ ‖w − wh‖∗‖w − vh‖∗ .

Consequently, ‖w − wh‖∗ ≤ infvh∈Vh
‖w − vh‖∗, but since the approximation wh

itself belongs to Vh the estimate (8.16) follows. ✷

We see from this theorem that, in the energy norm, the error w−wh between the
exact solution w and numerical approximation wh is determined by how well w
can be approximated in the space Vh.

By combining Theorem 8.3 with Lemma 8.1 we obtain the following estimate:

Corollary 8.4 The derivative of the error w−wh of the Galerkin method satisfies

‖w′ − w′
h‖ ≤ γ1

γ0
· inf
vh∈Vh

‖w′ − v′h‖ .(8.18)

Piecewise linear approximations. If the space Vh is spanned by basis functions
with a small support, then φi(x)φj(x) will be identically equal to zero for most
indices i, j. With suitable ordering, the stiffness matrix is then a band matrix
with small band width, which makes the linear system (8.15) easy to solve.

We introduce the grid points x0 = a < x1 < x2 < · · · < xm < xm+1 = b with
mesh widths hj = xj − xj−1. Further, let h = max1≤j≤m+1 hj be the maximal
mesh width.

| • • • • • • • • • |
a x1 x2 xm b

For our approximation space we now take

Vh = {vh ∈ H1
0 [a, b] : vh is linear on each interval [xj−1, xj]} .(8.19)

On this space of piecewise linear functions, a basis is provided by the so-called
hat-functions, defined as

78

φj(x) =



















0 if x < xj−1 or x > xj+1 ,

x−xj−1

xj−xj−1
if xj−1 ≤ x ≤ xj ,

x−xj+1

xj−xj+1
if xj ≤ x ≤ xj+1 , xj xj+1xj−1

φj

for j = 1, 2, . . . ,m. With this basis it is obvious that φi(x) ·φj(x) ≡ 0 if |i−j| ≥ 2.
The stiffness matrix S is therefore tri-diagonal, which makes the system (8.15)
easy to solve.

Useful upper bounds for the errors in (8.16) and (8.18) are obtained by con-
sidering the piecewise linear interpolant vh of w, defined on each sub-interval
[xj−1, xj] by

vh(x) = w(xj−1) +
x−xj−1

xj −xj−1

(

w(xj)− w(xj−1)
)

.(8.20)

This piecewise linear interpolant does not necessarily minimize the right-hand
sides in (8.16) and (8.18), but it does give useful upper bounds. It can be shown
(Exercise 8.6) that ‖w′ − v′h‖ ≤ h‖w′′‖. Corollary 8.4 thus gives

‖w′ − w′
h‖ ≤ C ′ h · ‖w′′‖(8.21)

with a constant C ′ > 0. Since ‖w−wh‖ ≤ (b−a)‖w′−w′
h‖, as shown in Lemma 8.1,

we also obtain an O(h) estimate for the error ‖w − wh‖. However, this is not
optimal. It will be shown below that

‖w − wh‖ ≤ C h2 · ‖w′′‖(8.22)

with a constant C > 0, but the derivation of this result is more technical.

A refined error bound.⋆ To prove the error bound (8.22), consider the following
auxiliary problem: find u ∈ V = H1

0 [a, b] such that

[u, v] = (w − wh, v) for any v ∈ V .(8.23)

Here the error w − wh plays the role of a source term. Therefore, just as we had
(8.13) for the original problem, we now get ‖u′′‖ ≤ κ0‖w−wh‖. Taking v = w−wh

in (8.23), it follows from (8.17) that

‖w − wh‖2 = [u,w − wh] = [u− uh, w − wh] ≤ ‖u− uh‖∗‖w − wh‖∗

for arbitrary uh ∈ Vh. To get a useful upper bound, we can chose uh as the
linear interpolant of u. Using estimates for the interpolation errors (Exercise 8.6),
it then follows that ‖u − uh‖∗ ≤ γ1‖u′ − u′h‖ ≤ γ1h‖u′′‖, but this also implies
‖u− uh‖∗ ≤ κ0γ1h‖w − wh‖. Consequently

‖w − wh‖ ≤ κ0γ1h · ‖w − wh‖∗ .

79

Since we already had the bounds ‖w − wh‖∗ ≤ γ1‖w′ − w′
h‖ ≤ γ1C

′h‖w′′‖, the
refined estimate (8.22) is obtained.

Higher-order methods.⋆ To construct higher-order methods, the space Vh can
be chosen to consist of piecewise polynomials. For example, with quadratic poly-
nomials, we take Vh to be the set of functions vh ∈ H1

0 [a, b] such that vh is a
polynomial of degree 2 or less on each sub-interval [xj−1, xj].

To obtain a suitable basis for this space Vh, we
can start with the hat functions φj , j = 1, 2, . . . ,m,
and then add the piecewise quadratics

φj+1/2(x) =

{

4(x−xj)(xj+1−x) for x ∈ [xj , xj+1] ,

0 otherwise ,

j = 0, 1, . . . ,m. Then the set of functions ψj = φ2j ,
j = 1, 2, . . . , n, provides a basis with n = 2m+ 1.

xj xj+1xj+ 1

2

φj

φj+1

φj+ 1

2

These ideas extend to higher orders, taking Vh as the set of piecewise polyno-
mials with degree ≤ q on each sub-interval [xj , xj+1]. In the same way as for the
piecewise linear approximations, it can then be shown that the error will satisfy
bounds ‖w′ − w′

h‖ = O(hq) and ‖w − wh‖ = O(hq+1), under suitable smoothness
assumptions on the solution w.

Methods of this type, using Galerkin approximations with piecewise polyno-
mials, are known as finite element methods. The term ’elements’ here refers to
the sub-intervals [xj−1, xj] with the local basis functions. Finite element methods
are in particular important for boundary value problems for partial differential
equations, with spatial variable in R

d, for which (8.6) is an example with d = 1,

8.4 Exercises

Exercise 8.1. Consider the two-point boundary value problem u′(t) = λu(t) with
u(0)2+u(1)2 = 1. Find exact solutions using the concept of ’shooting’. What can
you say about uniqueness of solutions ?

Exercise 8.2. Suppose p, q, r are constant in (8.6), the grid is uniform, and we
use the simple finite element method obtained from the Galerkin method with
piecewise linear functions. Compute the stiffness matrix S and the inhomogeneous
term η in (8.15). Compare this with the finite difference system (8.8).

Exercise 8.3. Let φ1, φ2, . . . , φm be a basis for the approximation space Vh in the
Galerkin method.

(a) Show that (8.14) is equivalent to the linear system (8.15).

(b) Show that the stiffness matrix S =
(

[φi, φj]
)

in this linear system (8.15) is
positive definite, i.e., ξTS ξ > 0 for all nonzero ξ ∈ R

m.

80

Exercise 8.4.⋆ Consider the set of functions V = H1
0 [a, b].

(a) Show that V is a linear vector space. Also show that for u, v ∈ V the (point-
wise) product function y(x) = u(x)v(x) belongs to V .

(b) Show that the bilinear form [u, v] is an inner-product on V ; i.e., for any
u, v, w ∈ V and α, β ∈ R we have: (i) [u, v] = [v, u], (ii) [αu+ βv, w] = α[u,w] +
β[v, w], (iii) [u, u] ≥ 0 with equality only if u = 0.

(c) Prove the Cauchy-Schwarz inequality: [u, v] ≤ ‖u‖∗‖v‖∗ for any pair u, v ∈ V .
Hint: consider ‖αu+ βv‖2∗ = α2‖u‖2∗ + 2αβ[u, v] + β2‖v‖2∗ with α = −[u, v]/‖u‖∗
and β = ‖u‖∗.

Exercise 8.5. Let F (u) = [u, u]−2(r, u) for u ∈ V = H1
0 [a, b], and consider a finite

dimensional subspace Vh ⊂ V . Show that the Galerkin approximation wh ∈ Vh
minimizes the functional F (u) over the space Vh. Hint: consider F (u + tv) with
variable t ∈ R. Note: minimization of the functional F (u) over Vh is called the
variational form or Ritz form of (8.14).

Exercise 8.6.⋆ Consider the linear interpolant vh of w as given by (8.20), and let
hj = xj − xj−1, h = maxhj . For a real function u on [a, b], denote by uIj the
restriction of u to the sub-interval Ij = [xj−1, xj]:

uIj (x) =

{

u(x) if x ∈ [xj−1, xj] ,
0 if x /∈ [xj−1, xj] .

(a) Show that ‖(w − vh)Ij‖ ≤ h 2
j ‖w′′

Ij
‖ and ‖(w′ − v′h)Ij‖ ≤ hj‖w′′

Ij
‖.

(b) Show that ‖w − vh‖ ≤ h2‖w′′‖ and ‖w′ − v′h‖ ≤ h‖w′′‖.
Hints: part (a) is not straightforward; the main steps are

(s1)
∫ xj

xj−1
|w − vh|2 dx = h2j ·

∫ xj

xj−1
|w′ − v′h|2 dx ,

(s2)
∫ xj

xj−1
|w′ − v′h|2 dx =

∫ xj

xj−1
(w′′ − v′′h)(w − vh) dx ,

(s3)
∫ xj

xj−1
|w′ − v′h|2 dx ≤ (

∫ xj

xj−1
|w′′|2 dx)1/2(

∫ xj

xj−1
|w − vh|2 dx)1/2 .

Here (s1) is similar to (8.12); in (s2) integration by parts is used; and for (s3) the
Schwarz inequality is again applied.

Exercise 8.7 (programming). Write a program for piecewise linear Galerkin ap-
proximations on a uniform grid to solve w′′ + w = r with [a, b] = [0, π], r(x) =
(sinx−2 cosx)e−x and w(x) = e−x sinx. It is easiest here to calculate the integrals
[φi, φj] for the stiffness matrix by hand. Then for (r, φj) we can use trapezoidal
or Simpson quadrature, as in the formulas (5.2) and (5.3).

Test your program with these choices. To measure the error it it easiest to take
the Euclidian norm of e ∈ R

m with components ej = w(xj) − wh(xj). Explain
why the use of the trapezoidal rule would not be suited for the integrals [φi, φj].

81

