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Abstract

In the Netherlands, for coastal and inland water applications, wave modelling with SWAN has
become a main ingredient. However, computational times are relatively high. Therefore we
investigated the parallel efficiency of the current MPI and OpenMP versions of SWAN. The
MPI version is not that efficient as the OpenMP version within a single node. Therefore, in this
paper we propose a hybrid version of SWAN. It combines the efficiency of the current OpenMP
version on shared memory with the capability of the current MPI version to distribute memory
over nodes. We describe the numerical algorithm. With initial numerical experiments we show
the potential of this hybrid version. Parallel I/O, further optimization, and behavior for larger
number of nodes will be subject of future research.
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1 Introduction

In the Netherlands, for assessments of the primary water defences (for instance [7]), operational
forecasting of flooding [6, 9], and water quality studies in coastal areas and shallow lakes (for
instance [4]) waves are modelled with the third generation wave simulation software SWAN [1].
However, computational times of SWAN are relatively high. Operational forecasting of flooding
and water quality studies require a faster SWAN, at the moment this is a major bottleneck.
Assessments of the primary water defences require both a fast and efficient SWAN: in 2011 the
assessments needed more than 10000 productions runs, resulting in more than 1500 days of
computational time on a single node with 2 Intel quad-core Xeon L5520 processors.
Therefore, extensive benchmarks on different architectures have been performed to investigate
the parallel efficiency of the current MPI and OpenMP versions of SWAN on structured com-
putational grids. A small, but typical selection of the results of these benchmarks is reported in
this paper (§ 4.1). To understand these results, we studied the numerical algorithm of both the
MPI and OpenMP version (§ 3.1 and § 3.2, respectively). The MPI and OpenMP versions do
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not change the original serial numerical algorithm for parallelization. The numerical algorithm
applies a Gauss-Seidel iteration or sweep technique, which may look old-fashioned. However,
for this specific application in SWAN, given the processes incorporated and model equations,
the approach is a well balanced compromise between broad application range, efficiency, and
robustness. Based on the study we propose a hybrid version of SWAN (§ 3.3). This hybrid
version combines the efficiency of the current OpenMP version on shared memory with the
capability of the current MPI version to distribute memory over nodes. With initial results for
real life applications we show the potential of this hybrid version (§ 4.2). Parallel I/O, further
optimization, and behavior for larger number of nodes will be subject of future research.

2 SWAN

The simulation software package SWAN (Simulating WAves Nearshore) [1], developed at Delft
University of Technology, computes random, short-crested wind-generated waves in coastal ar-
eas and inland water systems. It solves a spectral action balance equation that incorporates
spatial propagation, refraction, shoaling, generation, dissipation, and nonlinear wave-wave in-
teractions. The coupling of wave energy via the spectral action balance equation is global over
the entire geographical domain of interest. Compared to spectral methods for oceanic scales
that can use explicit schemes, SWAN has to rely on implicit upwind schemes to simulate wave
propagation for shallow areas in a robust and economic way. This is because typical scales (both
spatial, temporal, and spectral) may have large variations when, for instance, waves propagate
from deep water towards the surf zone in coastal areas.
For spectral and temporal discretization fully implicit techniques are applied. As a consequence
the solution procedure of SWAN is computationally intensive. For typical applications these
computations dominate other processes like memory access and file I/O.
In the present paper we consider SWAN for structured computational grids (both rectangular
and curvilinear) that cover the geographical domain. The spectral space is decomposed into
four quadrants. In geographical space a Gauss-Seidel iteration, or sweep technique is applied
for each quadrant. This serial numerical algorithm is based on the Strongly Implicit Procedure
(SIP) by Stone [11]. Fig. 1 illustrates the sweep technique.

3 Parallel implementation

Given a serial numerical algorithm, in general two parallelization strategies can be followed [3]:
type (1): change the algorithm for a high degree of parallelism or type (2): do not change the
algorithm but try to implement it in parallel as much as possible. For the serial numerical
algorithm of SWAN based on implicit schemes with sweep technique, a strategy of type (2) has
an upperbound of maximal parallelism for the computations. For each of the four sweeps of the
sweep technique this upperbound is related to a hyperplane ordering [3, § 4.1]. This depends
on the stencil that couples the points in the computational grid: a new value at a point in the
computational grid cannot be computed before values are known at neighbouring points that
are coupled via this stencil. If computations proceed via some ordering (for instance the natural
ordering for sweep 1 as shown in Fig. 2) then the corresponding hyperplane ordering shows those
points in the computational grid for which new values can be computed simultaneously (i.e.
concurrent computations, in parallel, with opportunity for fine-grained synchronization). These
points have the same number in the ordering (a hyperplane), points on which they depend via
the coupling stencil have a lower number (data dependency).

2



A hybrid SWAN version for fast and efficient practical wave modelling Genseberger and Donners
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Figure 1: Illustration of the sweep technique for the four quadrants. For every quadrant the
arrow indicates the sweep direction and the black bullet represents a computational grid point
that is being processed for which information comes from the two grey bullets via the upwind
coupling stencil.
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Figure 2: Natural ordering and corresponding hyperplane ordering for sweep 1 of the sweep
technique. The black bullet represents a point in the computational grid that is being processed
for which information comes from the two grey bullets via the upwind coupling stencil.

3.1 Distributed memory

To reduce computational times of SWAN, Zijlema [13] considered parallelization approaches for
distributed memory architectures. The current MPI version of SWAN is based on this work.
The approach followed is of type (2): a block wavefront approach for which the author was
inspired by a parallelization of an incomplete LU factorization.

In fact, it is based in a more coarse-grained way on the hyperplane ordering for the sweeps of the
sweep technique from § 3. For this purpose, the computational grid is decomposed into strips
in one direction. The number of computational grid points in this direction is equal or higher
than the number of computational grid points in the other direction. Fig. 3 illustrates the block
wavefont approach for sweep 1 of the sweep technique (the idea for the other sweeps is similar).
In iteration 1, following the dependencies of the upwind stencil, processor 1 updates the values
at the computational grid points in the lowest row of strip 1. All other processors are idle in
iteration 1. When sweep 1 arrives at the right-most point in the lowest row of strip 1, after the
update the corresponding value is communicated to strip 2. Then processor 2 is activated. In
iteration 2, processor 1 performs sweep 1 on the next row of strip 1, processor 2 performs sweep
1 on the lowest row of strip 2. Etcetera. Note that not all processors are fully active during start
and end phase of this approach. However, for a larger number of computational grid points
(compared to the number of processors) this becomes less important. The block wavefront
approach is implemented in the current editions of SWAN with MPI [10, 8]. Data is distributed
via the decomposition in strips. For each sweep, at the end of every iteration communication
between adjacent strips is needed to pass updated values. This global dependency of data may
hamper good parallel performance on distributed memory architectures. Note that the MPI
version can run on shared memory multi-core architectures too. Furthermore, this approach
can be seen as a block (or strip) version of the approach that will be discussed next.
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Figure 3: Illustration of the block wavefront approach for sweep 1 of the sweep technique.
Shown are succeeding iterations in case of three parallel processing units (proc1, proc2, and
proc3). The black bullets represent computational grid points that are being updated in the
current iteration. The grey bullets were updated in a previous iteration.
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Figure 4: Illustration of the pipelined parallel approach based on the hyperplane ordering for
sweep 1 of the sweep technique. Shown are succeeding steps in case of three parallel processing
units (proc1, proc2, and proc3). The black bullets represent computational grid points that are
being updated in the current step. The grey bullets were updated in a previous step.

3.2 Shared memory

In [2], Campbell, Cazes, and Rogers considered a parallelization strategy of type (2) for SWAN.
The approach is based in a fine-grained way on the hyperplane ordering for the given sweep from
§ 3. This ordering determines the data dependency and enables concurrent computations with
maximal parallelism for type (2). For the implementation with fine-grained synchronization,
[2] uses pipelined parallel steps in one direction of the computational grid. The number of
computational grid points in this direction is equal or higher than the number of computational
grid points in the other direction. Lines with computational grid points in the other direction
are assigned to the available processors in a round-robin way. Fig. 4 illustrates the pipelined
parallel approach based on the hyperplane ordering for sweep 1 of the sweep technique (the idea
for the other sweeps is similar). In the current editions of SWAN, this approach is implemented
on shared memory multi-core architectures (or SM-MIMD, [12, § 2.4, 2012] with OpenMP [5].

3.3 Hybrid version

Further inspection of the approaches used by the MPI and OpenMP versions of SWAN learned
us that, conceptually, a combination should be quite straightforward. We illustrated the concep-
tual approaches for both versions in Fig. 3 and Fig. 4, respectively. Both illustrations were for
the same computational grid. Let us reconsider the situation for the approach of the OpenMP
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Figure 5: Illustration of the hybrid approach based on a combination of the block wavefront
approach and the pipelined parallel approach for sweep 1 of the sweep technique. Shown are
succeeding steps in case of three OpenMP processes (thread 1, thread 2, and thread 3) within
two MPI processes (node 1 and node 2). The black bullets represent computational grid points
that are being updated in the current step. The grey bullets were updated in a previous step.

version in § 3.2. As the approach is based on the hyperplane ordering for the given sweep,
the approach also holds for the transpose of the situation shown in Fig. 4. (In fact [2] uses
this transposed situation as illustration.) In this transposed situation lines with computational
grid points perpendicular to the other direction are assigned to the available processors in a
round-robin way. Now, the point is that this transposed situation for the pipelined parallel
approach fits nicely in one strip of the block wavefront approach of § 3.1. The block wavefront
approach distributes the strips and for each strip the grid lines are processed efficiently by the
pipelined parallel approach within shared memory. In this way the part of the sweeps inside
the strips are built up by the pipelined parallel approach and the block wavefront approach
couples the sweeps over the strips. Again, all computations can be performed without changing
the original serial numerical algorithm. Note that, for one strip the hybrid approach reduces
to the pipelined parallel approach, whereas for one processor per strip it reduces to the block
wavefront approach.

In Fig. 5 we illustrate this hybrid version for sweep 1 of the sweep technique. To make the
link with the actual implementation we give a short description in terms of OpenMP and MPI
processes. Shown are succeeding steps in case of three OpenMP processes (thread 1, thread 2,
and thread 3) within two MPI processes. The black bullets represent computational grid points
that are being updated in the current step. The grey bullets were updated in a previous step.
Note that, the OpenMP processes on node 1 and node 2 are different processes. With MPI
two strips are created: strip 1 is located on node 1, strip 2 on node 2. On node 1, OpenMP
starts with the pipelined parallel approach for strip 1. Lines (horizontal for this example) with
computational grid points are assigned to the three OpenMP processes in a round-robin way.
Node 2 stays idle until sweep 1 arrives at the right-most point in the lowest row of strip 1,
after the update the corresponding value is communicated to node 2. Then on node 2 OpenMP
starts with the pipelined parallel approach on strip 2. Etcetera.

4 Benchmarks

As a central case for the benchmarks a SWAN model is used that has been developed for
the assessment of the primary water defences in the northern part of the Netherlands [7]. In
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Figure 6: Bathymetry (mainly blue) of the SWAN model for the Wadden Sea projected on a
satellite image of the northern part of the Netherlands (satellite image: ESA). Shown are also
lakes IJssel and Marken and a small part of the North Sea.

2011 the assessments needed 5400 productions runs with this model, resulting in 1000 days of
computational time on a single node with 2 Intel quad-core Xeon L5520 processors (see also
§ 1). Here the model settings are slightly changed resulting in a wall clock time of about 1/7 of
a single production run of the assessments. The model covers the Dutch part of the Wadden
Sea, a complex area of tidal channels and flats sheltered by barrier islands from the North
Sea. Fig. 6 shows the bathymetry of this SWAN model projected on a satellite image of the
Netherlands. The model is relatively large with a 2280 × 979 curvilinear computational grid
for the geographical domain, resulting in more than 2 million active computational grid points
and a required working memory of about 6 GB.

In addition, benchmarks are performed for a SWAN model of the North Sea (1318 × 317
curvilinear computational grid), see Fig. 6 for the location. This model has been developed for
operational forecasting of flooding near the Dutch coast [9].

Benchmarks are performed on the following hardware:

• Huygens: 16 socket IBM dual 4.7 GHz core Power6 nodes, InfiniBand, IBM PE MPI
(IBM pSeries 575 system [12, § 9.2, 2010], SURFsara, the Netherlands),

• Lisa: 2 socket Intel quad-core Xeon L5420 “Harpertown” [12, § 2.8.6, 2008] nodes, 2.50
GHz core, InfiniBand, OpenMPI (SURFsara, the Netherlands),

• WDNZ: 2 socket Intel six-core Xeon E5645 “Westmere-EP” [12, § 2.8.5.2, 2011] nodes,
2.40 GHz core, Gigabit Ethernet, MPICH2 (Deltares, the Netherlands),

• H5: 1 socket Intel quad-core i7-2600 “Sandy Bridge” [12, 2011, § 2.8.5.3 and 2012,
§ 2.8.4.1] nodes, 3.40 GHz core (hyperthreading: 8 computational threads on 4 cores
per node), Gigabit Ethernet, MPICH2 (Deltares, the Netherlands), and

• Curie: 2 socket Intel eight-core Xeon E5-2680 “Sandy Bridge-EP” nodes, 2.70 GHz core,
InfiniBand, Bull X MPI (Bull B510 bullx system [12, § 3.1.1.1, 2012], CEA, France).
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Figure 7: Parallel performance of the MPI and OpenMP versions of SWAN for the Wadden
Sea case on Curie, Huygens, and Lisa. Abbreviations used: mpi for the MPI version, omp for
the OpenMP version, x12 for the XL Fortran 12 compiler, i11 for the Intel 11 compiler, and i12
for the Intel 12 compiler.

Benchmarks have been performed for MPI, OpenMP, and hybrid implementations of SWAN
edition 40.72ABCDE for Linux 64 bits platforms. Note that for one computational process
with one thread, the OpenMP, MPI, and hybrid version are functionally identical to the serial
version of SWAN. Standard compiler settings are used as supplied with the Fortran source code
at the SWAN website [1]. (Resulting in XL Fortran 12 compiler with level 3 optimization for
the Power6 processor and Intel Fortran 11 and 12 compiler with level 2 optimization for the
Intel processors.).

During the benchmarks it was checked for both cases that the different combinations (MPI
version, OpenMP version, hybrid version, hardware, number of processes) show the same con-
vergence behavior of SWAN. Timings of the wall clock time have been performed three times.
Results presented here are averages of these timings. To have an indication of the variance (i.e.
measurement error), also the average minus the standard deviation and the average plus the
standard deviation are included. Shown are double logarithmic plots for wall clock time as a
function of the number of computational cores. In case of linear parallel scaling, lines will have
a downward slope of 45◦.

4.1 MPI version versus OpenMP version

Extensive benchmarks on different architectures have been performed to investigate the parallel
efficiency of the current MPI and OpenMP versions of SWAN. A small, but typical selection of
the results of these benchmarks is reported here.
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Figure 8: Parallel performance of the MPI, OpenMP, and hybrid versions of SWAN for the
Wadden Sea case on H5. Abbreviations used: mpi for the MPI version, omp for the OpenMP
version, mpi omp for the hybrid version, and i11 for the Intel 11 compiler.

Fig. 7 shows benchmark results for both MPI and OpenMP version of SWAN for the Wadden
Sea case on the same hardware. It can be observed that already within a single node wall
clock times for the MPI version start to deviate from the OpenMP version (which stays close
to the line for linear parallel scaling). This trend goes on for larger numbers of computational
cores. For instance, the MPI version on 2 nodes with 2 socket Xeon E5-2680 with in total 32
computational cores has about the same wall clock time as the OpenMP version on 1 node with
2 socket Xeon E5-2680 with 16 computational cores. So, for this hardware the OpenMP version
is twice as efficient as the MPI version.

4.2 MPI together with OpenMP: hybrid version

The hybrid version naturally evolves from the MPI and OpenMP versions (§ 3.3). Therefore
we expect that it inherits positive performance properties from the OpenMP version as shown
in § 4.1. Here, we will end with some initial numerical experiments to illustrate this.
Fig. 8 shows the parallel performance of the MPI, OpenMP, and hybrid versions of SWAN for
the Wadden Sea case on H5. Note that H5 has hyperthreading switched on: in Fig. 8 results
with hyperthreading used 8 processes per node with 4 computational cores. Similar to what
was observed in § 4.1, we see that the MPI version starts to deviate from the OpenMP version
within a single node. Resulting in a gap of the OpenMP version with the MPI version for 1
node. The hybrid version shows the same gap with the MPI version for 2 and 4 nodes.
In Table 1 we show the corresponding numbers of Fig. 8 for 1 node and 4 nodes. There we
also split the wall clock time in the time needed for the iterations of the solution procedure
during and the I/O at the end of the simulation. Time needed for the initialization, before the
iterations of the solution procedure start, is several seconds for this Wadden Sea case and is
therefore not considered separately. In Table 2 we show results for the same Wadden Sea case,
but now for 1 node and 3 nodes of WDNZ. On WDNZ we run 12 processes per node with 12
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computational cores. From both tables we conclude that the hybrid version indeed combines
the efficiency of the OpenMP version per node with the MPI version to use more than one
node. This results in a hybrid version that is faster than the MPI version.
The widening of the gap for more cores per node (see end of § 4.1) can also be observed for
the hybrid version: compare Table 1 and Table 2 for the MPI and hybrid versions on multiple
nodes. This is of importance as the current trend is that the number of cores per node increases
for new hardware. Furthermore, Table 1 and Table 2 indicate that the current implementation
of I/O should be further investigated for possible improvements. If we concentrate only on the
wall clock time needed for the iterations then we also see that the gap increases when going to
more nodes. This is confirmed also for the case of the North Sea on H5 in Table 3.

1 node, 8 processes MPI version (t1) OpenMP version (t2) t1 / t2
wall clock time full simulation (m) 33.31 ± 0.07 30.28 ± 0.10 1.1000
wall clock time iterations (m) 26.59 ± 0.03 24.80 ± 0.04 1.0724
wall clock time I/O at end (m) 6.71 ± 0.11 5.48 ± 0.14 1.2247
4 nodes, 32 processes MPI version (t1) hybrid version (t2) t1 / t2
wall clock time full simulation (m) 12.32 ± 0.13 10.81 ± 0.03 1.1398
wall clock time iterations (m) 8.98 ± 0.06 7.79 ± 0.06 1.1527
wall clock time I/O at end (m) 3.33 ± 0.18 3.01 ± 0.09 1.1066

Table 1: Wall clock time of the MPI, OpenMP, and hybrid versions on 1 node (top) and 4
nodes (bottom) of H5 (4 cores per node and hyperthreading) for the Wadden Sea case.

1 node, 12 processes MPI version (t1) OpenMP version (t2) t1 / t2
wall clock time full simulation (m) 33.31 ± 0.04 22.75 ± 0.22 1.4643
wall clock time iterations (m) 24.35 ± 0.10 18.26 ± 0.06 1.3335
wall clock time I/O at end (m) 8.96 ± 0.14 4.49 ± 0.28 1.9962
3 nodes, 36 processes MPI version (t1) hybrid version (t2) t1 / t2
wall clock time full simulation (m) 14.77 ± 0.13 11.27 ± 0.02 1.3110
wall clock time iterations (m) 9.84 ± 0.12 7.08 ± 0.07 1.3891
wall clock time I/O at end (m) 4.93 ± 0.25 4.18 ± 0.08 1.1789

Table 2: Wall clock time of the MPI, OpenMP, and hybrid versions on 1 node (top) and 3
nodes (bottom) of WDNZ (12 cores per node) for the Wadden Sea case.

1 node, 8 processes MPI version (t1) OpenMP version (t2) t1 / t2
wall clock time iterations (m) 62.28 +/- 0.03 52.82 +/- 0.08 1.1790
4 nodes, 32 processes MPI version (t1) hybrid version (t2) t1 / t2
wall clock time iterations (m) 22.65 +/- 0.05 18.28 +/- 0.06 1.2389

Table 3: Wall clock time of the MPI, OpenMP, and hybrid versions on 1 node (top) and 4
nodes (bottom) of H5 (4 cores per node and hyperthreading) for the North Sea case.

5 Conclusions and outlook

Because of the importance for real life applications in the Netherlands, we investigated the
parallel efficiency of the current MPI and OpenMP versions of SWAN. In this paper we proposed
a hybrid version of SWAN that naturally evolves from these versions. It combines the efficiency
of the OpenMP version with the capability of the MPI version to use more nodes. We described
the numerical algorithm and showed its potential. The initial numerical experiments indicate
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that the hybrid version will improve the parallel performance of the current MPI version even
more for larger number of cores per node and/or larger number of nodes. Given the current
trends in hardware this is important. Parallel I/O, further optimization, and behavior for larger
number of nodes will be subject of future research.

Acknowledgements

We acknowledge PRACE for supporting a part of this research and the use of the PRACE
Research Infrastructure resource Curie based in France at CEA.

References

[1] N. Booij, R. C. Ris, and L. H. Holthuijsen. A third-generation wave model for coastal regions,
part i, model description and validation. J. Geoph.Research, 104(C4):7649–7666, 1999. (Software
(GNU GPL) can be downloaded from http://swanmodel.sourceforge.net).

[2] T. Campbell, V. Cazes, and E. Rogers. Implementation of an important wave model on parallel
architectures. In Oceans 2002 MTS/IEEE Conference, pages 1509–1514. IEEE, 2002. Online at
http://www7320.nrlssc.navy.mil/pubs/2002/Campbell.etal.pdf.

[3] T. C. Chan and H. A. van der Vorst. Approximate and incomplete factorizations. In Parallel Nu-
merical Algorithms, ICASE/LaRC Interdisciplinary Series in Science and Engineering, volume 4,
pages 167–202. Kluwer Academic, 1997.

[4] J. Donners, M. Genseberger, B. Jagers, C. Thiange, M. Schaap, P. Boderie, A. Emer-
son, M. Guarrasi, T. de Kler, and M. van Meersbergen. Using high performance com-
puting to enable interactive design of measures to improve water quality and ecological
state of lake Marken. In Proceedings 15th World Lake Conference, 2014. Online at
http://www.unescowaterchair.org/activities/publications.

[5] OpenMP Forum. OpenMP application interface, version 2.5. [online], May 2005.
http://www.openmp.org.

[6] M. Genseberger, A. Smale, and H. Hartholt. Real-time forecasting of flood levels, wind driven
waves, wave runup, and overtopping at dikes around Dutch lakes. In 2nd European Conference on
FLOODrisk Management, pages 1519–1525. Taylor & Francis Group, 2013.

[7] J. Groeneweg, J. Beckers, and C. Gautier. A probabilistic model for the determination of hy-
draulic boundary conditions in a dynamic coastal system. In International Conference on Coastal
Engineering (ICCE2010), 2010.

[8] W. Gropp, S. Huss-Ledermann, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir, and M. Snir.
MPI: The Complete Reference Vol. 2. MIT Press, 1998.

[9] S. H. De Kleermaeker, M. Verlaan, J. Kroos, and F. Zijl. A new coastal flood forecasting system
for the Netherlands. In Hydro12 Conference. Hydrographic Society Benelux, 2012. Online at
http://proceedings.utwente.nl/246.

[10] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI: The Complete Reference
Vol. 1, The MPI Core. MIT Press, 1998.

[11] H. L. Stone. Iterative solution of implicit approximations of multidimensional partial differential
equations. SIAM J. Numer. Anal., 5:530–558, 1968.

[12] A. J. van der Steen. Overview of recent supercomputers. Technical report, 2008, 2010, 2011,
2012. Online at http://www.euroben.nl/reports.php. 2010 version appeared in J. J. Dongarra
and A. J. van der Steen. High-performance computing systems. Acta Numerica, 21:379–474, 2012.

[13] M. Zijlema. Parallelization of a nearshore wind wave model for distributed memory architectures.
In Parallel Computational Fluid Dynamics - Multidisciplinary applications, pages 207–214. Elsevier
Science, 2005.

10

http://swanmodel.sourceforge.net
http://www7320.nrlssc.navy.mil/pubs/2002/Campbell.etal.pdf
http://www.unescowaterchair.org/activities/publications
http://www.openmp.org
http://proceedings.utwente.nl/246
http://www.euroben.nl/reports.php

	Introduction
	SWAN
	Parallel implementation
	Distributed memory
	Shared memory
	Hybrid version

	Benchmarks
	MPI version versus OpenMP version
	MPI together with OpenMP: hybrid version

	Conclusions and outlook

