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Abstract. A fast and accurate method for pricing early exercise options
in computational finance is presented in this paper. The main idea is to
reformulate the well-known risk-neutral valuation formula by recognizing
that it is a convolution. This novel pricing method, which we name the
‘CONV’ method for short, is applicable to a wide variety of payoffs and
only requires the knowledge of the characteristic function of the model.
As such the method is applicable within exponentially Lévy models,
including the exponentially affine jump-diffusion models. For an M -times
exercisable Bermudan option, the overall complexity is O(MN log(N))
with N grid points used to discretize the price of the underlying asset.
It is also shown that American options can be very efficiently computed
by combining Richardson extrapolation to the CONV method.

Keywords: Option pricing, Lévy Process, Convolution, FFT,
Transform.

1 Introduction

When valuing and risk-managing exotic derivatives, practitioners demand fast
and accurate prices and sensitivities. As the financial models and option con-
tracts used in practice are becoming increasingly complex, efficient methods have
to be developed to cope with such models. Aside from non-standard exotic deriv-
atives, plain vanilla options in many stock markets are actually of the American
type. As any pricing and risk management system has to be able to calibrate
to these plain vanilla options, it is of the utmost importance to be able to value
these American options quickly and accurately.

In the past couple of years a vast body of literature has considered the model-
ing of asset returns as infinite activity Lévy processes, due to the ability of such
processes to adequately describe the empirical features of asset returns and at
the same time provide a reasonable fit to the implied volatility surfaces observed
in option markets. Valuing American options in such models is however far from
trivial, due to the weakly singular kernels of the integral terms appearing in the
PIDE, as reported in, e.g., [2,6,10,11].
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In this paper we present a novel FFT-based method for pricing options with
early exercise features. The only requirement of the method is that the charac-
teristic function of the underlying asset is known, which is the case for many
exponential Lévy model, with the popular exponentially affine jump-diffusion
(EAJD) models of [7] as an important subclass. In contrast to the PIDE meth-
ods, our method has no difficulty in handling processes of infinite activity, such
as the Variance Gamma (VG) or CGMY models. A real benefit of this class of
methods is, next to its flexibility, the impressive computational speed, as the
FFT algorithm is employed.

2 FFT-Based Methods for Option Pricing in Literature

All transform methods depart from the risk-neutral valuation formula that, for
a European option, reads:

V (t, S(t)) = e−rτE[V (T, S(T ))] , (1)

where E denotes the operator of taking expectation of some random variable
w.r.t. risk-neutral probability measure, V denotes the value of the option, r is
the risk-neutral interest rate1, t is the current time point, T is the maturity of
the option and τ = T − t. The variable S denotes the underlying asset price.

Since for many models the density is not available in closed-form whereas
the characteristic function is, a number of papers starting from Heston [9] have
attacked the problem via another route. Focusing on a plain vanilla European call
option, note that for dividend-protected assets (1) can be written very generally
as:

V (t, S(t)) = S(t) · Δ − Ke−r(T−t)IP(S(T ) > K), (2)

where IP(S(T ) > K) is the risk-neutral probability of ending up in-the-money
and Δ is the delta of the option, the sensitivity of the option with respect
to changes in the stock price. Both IP(S(T ) > K) and Δ can be recovered
by inverting techniques, e.g., by Gil-Palaez inversion [8]. Carr and Madan [4]
considered another approach by directly taking the Fourier transform of the
damped option price with respect to k, the logarithm of the strike price. Pre-
multiplying the option price with a damping function exp (αk) to ensure the
existence of the Fourier transform, Carr and Madan ended up with

F{eαkV (t, k)}= e−rτ

∫
IR
eiukE

[
(S(T ) − ek)+

]
dk=

e−rτφ(u − (α + 1)i)
−(u − αi)(u − (α + 1)i)

,(3)

where i the imaginary unit, k is the logarithm of the strike price K and φ is
the characteristic function of the log-underlying, i.e., φ(u) = E

[
eiu ln S(T )

]
. The

methods considered up till here can only handle the pricing of European options.
1 Throughout the paper we assume that interest rates are deterministic, this assump-

tion can be relaxed at the cost of increasing the dimensionality of some of the
methods.
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Define the set of exercise dates as T = {t0, . . . , tM} and assume the exercise
dates are equally spaced: tk+1 − tk = Δt. The best known examples of early
exercise options are the American and Bermudan options. American options
can be exercised at any time prior to the option’s expiry; Bermudan options can
only be exercised at certain dates in the future. The Bermudan option price can
then be found via backward induction as

{
C(tk, S(tk)) = e−rΔtE [V (tk+1, S(tk+1))]
V (tk, S(tk)) = max{C(tk, S(tk)), E(tk, S(tk))},

k = M − 1, . . . , 0, (4)

where C denotes the continuation value of the option and V is the option value
on the very next exercise date. Clearly the dynamic programming problem in (4)
is a successive application of the risk-neutral valuation formula, as we can write
the continuation value as

C(tk, S(tk)) = e−rΔt

∫
IR

V (tk+1, y)f(y|S(tk))dy, (5)

where f(y|S(tk)) represents the probability density describing the transition
from S(tk) at tk to y at tk+1. Based on (4) and (5) the QUAD method was
introduced in [1]. The method requires that the transition density is known in
closed-form. This requirement is relaxed in [12], where the QUAD-FFT method
is introduced and the underlying idea is that the transition density can be re-
covered by inverting the characteristic function. But the overall complexity of
both methods is O(MN2) for an M -times exercisable Bermudan option with N
grid points used to discretize the price of the underlying asset.

3 The CONV Method

One of the refining properties of a Lévy process is that its increments are inde-
pendent of each other, which is the main premise of the CONV method:

f(y|x) = f(y − x). (6)

Note that x and y do not have to represent the asset price directly, they could
be monotone functions of the asset price. The assumption made in (6) therefore
certainly holds when the asset price is modeled as a monotone function of a
Lévy process, since one of the defining properties of a Lévy process is that its
increments are independent of each other. In this case x and y in (6) represent
the log-spot price. By including (6) in (5) and changing variables z = y − x the
continuation value can be expressed as

C(tk, x) = e−rΔt

∫ ∞

−∞
V (tk+1, x + z)f(z)dz, (7)

which is a cross-correlation of the option value at time tk+1 and the density f(z).
If the density function has an easy closed-form expression, it may be beneficial
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to compute the integral straight forwardly. However, for many exponential Lévy
models we either do not have a closed-form expression for the density (e.g. the
CGMY/KoBoL model of [3] and many EAJD models), or if we have, it involves
one or more special functions (e.g. the Variance Gamma model).

Since the density is hard to obtain, let us consider taking the Fourier trans-
form of (7). In the remainder we will employ the following definitions for the
continuous Fourier transform and its inverse,

ĥ(u) := F{h(t)}(u) =
∫ ∞

−∞
e−iuth(t)dt, (8)

h(t) := F−1{ĥ(u)}(t) =
1
2π

∫ ∞

−∞
eiutĥ(u)du. (9)

If we dampen the continuation value (7) by a factor exp (αx) and subsequently
take its Fourier transform, we arrive at

erΔtF{eαxC(tk, x)}(u) =
∫ ∞

−∞
e−iuxeαx

∫ ∞

−∞
V (tk+1, x + z)f(z)dzdx. (10)

Changing the order of the integrals and the variables by x = y − z, we obtain

erΔtF{eαxC(tk, x)}(u) =
∫ ∞

−∞

∫ ∞

−∞
e−i(u+iα)yV (tk+1, y)dy ei(u+iα)zf(z)dz

=
∫ ∞

−∞
e−i(u+iα)yV (tk+1, y)dy

∫ ∞

−∞
ei(u+iα)zf(z)dz

= F{eαyV (tk+1, y)}(u) φ(u + iα). (11)

In the last step we used the fact that the complex-valued Fourier transform of
the density is simply the extended characteristic function

φ (x + yi) =
∫ ∞

−∞
ei(x+yi)zf(z)dz, (12)

which is well-defined when φ(−yi) < ∞, as |φ(x+yi)| ≤ |φ(−yi)|. Inverse Fourier
transform and undamping on (11) yield the CONV formula:

C(tk, x) = e−rΔt−αxF−1
{

F{eαyV (tk+1, y)}(u) · φ(u + iα)
}

. (13)

To value Bermudan options, one can recursively call (13) and (4) backwards
in time: First recover the option values on the last early-exercise date; then
feed them into (13) and (4) to obtain the option values on the second last
early-exercise date; · · ·, continue the procedure till the first early-exercise date
is reached; for the last step, feed the option value on the first early-exercise date
into (13) and there we obtain the option values on the initial date.

To value American options, there are two routes to follow: they can be ap-
proximated either by Bermudan options with many early exercise dates or by
Richardson extrapolation based on only a series of Bermudan options with an
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increasing number of early exercise dates. In the experiments we evaluated both
approaches and compared their CPU time and the accuracy. As for the approach
via Richardson extrapolation, our choice of scheme is the one proposed by Chang,
Chung, and Stapleton [5].

4 Implementation

Let’s ignore the damping factor in this section, for the ease of analysis, and
simplify the notations as: e−rΔtC(x, tk) → C(x) and V (y, tk+1) → V (y).

Suppose that we are only interested in a portion of C(x) that lies in TL :=[
−L

2 , L
2

]
. Assume that f(z) ≈ 0 for z outside TA :=

[
−A

2 , A
2

]
. Both L and A

denote positive real numbers. Then we may re-write the risk-neutral valuation
formula as

C(x) =
∫

IR
V (x + z)f(z)dz =

∫
TA

V (x + z)f(z)dz, (14)

which indicates that if values of C(x) are wanted on TL then values of V (y) that
we need for computation lie in TA+L :=

[
−L+A

2 , L+A
2

]
.

Remark 1 (Value of A). When working in the log-stock domain (e.g. x :=
log(S)), we approximate the standard deviation of the density function by the
volatility of its characteristic function, therefore approximate A by 10 times
volatility. The approximation gives good results in series of experiments.

4.1 Discrete CONV Formula

Recall that functions on compact supports can be represented by their Fourier
series, it then follows that we may rewrite V (y) as

V (y) =
∑

k∈ZZ

vkeik 2π
A+L y, with vk =

1
A + L

∫
TA+L

V (y)e−ik 2π
A+L ydy. (15)

Substitute the Fourier series of V (y) in (14) and interchange the summation and
the integration (allowed by Fubini’s theorem) to result in

C(x) =
∑

k∈ZZ

vk

[∫
TA

f(z)eik 2π
A+L zdz

]
eik 2π

A+L x, (16)

where the integration inside the brackets is precisely the definition of the char-
acteristic function at u = k 2π

A+L . Truncate the series in (16) to yield

C̃(x) =
∑

k∈ZN

vk · φ
(

k
2π

A + L

)
· eik 2π

A+L x, (17)
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where ZN = {n|− N
2 ≤ n < N

2 , ∈ ZZ}. Up to this point, (17) is almost ready for
the implementation, were vk to be obtained numerically as well. To recover vk,
quadrature rules are employed. With composite mid-point rule one obtains

ṽk =
Δy

L + A

∑
j∈ZN

e−ik 2π
L+A yjV (yj), (18)

where Δy = L+A
N , {yj := jΔy + yc|j ∈ ZN} and yc denotes the grid center.

It then yields the discrete version of the CONV formula after substituting (18)
into (17):

Cm =
1
N

∑
k∈ZN

eiukxmφ(uk)
∑

j∈ZN

e−iukyj V (yj), (19)

where uk = k 2π
L+A and {xm := mΔy + xc|m ∈ ZN} with grid center xc. Note

that the x- and y-grids share the same mesh size so that the same u-grid can be
used in both the inner and the outer summations.

4.2 Computational Complexity and Convergence Rate

The pleasing feature of (19) is that both summations can be fast resolved by
existing FFT algorithms. Therefore, the overall computational complexity is
O(N log(N)) for European options, and O(MN log(N)) for an M -times exercis-
able Bermudan options.

In the mean while, it can be proven analytically that the convergence rate of
the method is O( 1

N2 ) for both vanilla European and Bermudan options. Though
we’ll not include the error analysis in this paper, the regular point-wise conver-
gence rate of the method can be well observed in the experiment results.

5 Numerical Results

By various numerical experiments we aim to show the speed of the computations
and the flexibility of the CONV method. Three underlying models are adopted in
the experiments: Geometric Brownian Motion (GBM), Variance Gamma (VG),
and CGMY. The pricing problems are of Bermudan and American style.

The computer used for the experiments has a Intel Pentium 4 CPU, 2.8 GHz
frequency and a total 1011 MB physical memory. The code is programmed in
Matlab.

Results for 10-times exercisable Bermudan options under GBM and VG are
summarized in table 1, where the fast computational speed (e.g. less than 1 sec-
ond for N = 216), the high accuracy (e.g. with only 26 grid points the error is
already of level 10−2) and the regular convergence rate (e.g. the convergence rate
is 4 for Bermudan payoff) are shown. Results for American options under VG and
CGMY are summarized in table 2, where ‘P(N/2)’ denotes the results obtained
by approximating the American option values directly by N/2-times exercisable
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Table 1. CPU time, errors and convergence rate in pricing 10-times exercisable Bermu-
dan put under GBM and VG with the CONV method

GBM: Reference= 10.4795201; VG: Reference= 9.04064611;
N = 2d time(sec) absolute error convergence time(sec) absolute error convergence

6 0.002 9.54e-02 0.001 7.41e-02
7 0.002 2.44e-02 3.91 0.002 5.42e-03 1.37
8 0.003 6.45e-03 3.78 0.003 2.68e-03 2.02
9 0.010 1.69e-03 3.81 0.006 6.10e-04 4.39
10 0.011 4.47e-04 3.79 0.015 1.38e-04 4.40
11 0.021 1.12e-04 3.97 0.022 3.16e-05 4.38
12 0.043 2.83e-05 3.97 0.042 7.92e-06 3.99
13 0.091 7.09e-06 4.00 0.096 1.99e-06 3.97
14 0.210 1.76e-06 4.04 0.208 5.15e-07 3.88
For GBM: S0 = 100, K = 110, T = 1, σ = 0.2, r = 0.1, q = 0;
For VG: S0 = 100, K = 110, T = 1, σ = 0.12, θ = −0.14, ν = 0.2, r = 0.1, q = 0;
Reference values are obtained by the PIDE method with 4 million grid points.

Table 2. CPU time, errors and convergence rate in pricing 10-times exercisable Bermu-
dan put under VG and CGMY with the CONV method

CGMY(Y < 1) CGMY(Y > 1)
Reference= Reference=

VG: Reference= 0.800873607 0.112171 [2] 9.2185249 [13]
P(N/2) Richardson Richardson Richardson

N = 2d time(sec) error time(sec) error time(sec) error time(sec) error
7 0.01 4.61e-02 0.03 4.51e-02 0.02 1.37e-02 0.02 5.68e-01
8 0.04 6.47e-03 0.05 1.36e-02 0.04 2.08e-03 0.04 2.78e-01
9 0.11 6.78e-03 0.07 2.69e-03 0.07 4.83e-04 0.08 1.29e-01
10 0.45 5.86e-03 0.14 1.43e-03 0.12 9.02e-05 0.14 8.68e-03
11 1.73 2.87e-03 0.28 2.71e-04 0.26 4.21e-05 0.28 6.18e-04
12 7.18 1.03e-03 0.57 5.76e-05 0.55 2.20e-05 0.59 6.14e-03

For VG: S0 = 100, K = 90, T = 1, σ = 0.12, θ = −0.14, ν = 0.2, r = 0.1, q = 0;
Reference value from PIDE implementation with about 65K × 16K grid points
For CGMY(Y < 1): Y = 0.5, C = 1, G = M = 5, S0 = 1, K = 1, T = 1, r = 0.1, q = 0;
For CGMY(Y > 1): Y = 1.0102, C = 0.42, G = 4.37, M = 191.2, S0 = 90, K = 98, T =
0.25, r = 0.06, q = 0;

Bermudan options, and ‘Richardson’ denotes the results obtained by the 6-times
repeated Richardson extrapolation scheme. For the VG model, the extrapolation
method turns out to converge much faster and spend far less time than the direct
approximation approach (e.g., to get the same 10−4 accuracy, the extrapolation
method is more than 20 times faster than the direct-approximation method). For
CGMY model, results by the extrapolation approach are given. They demon-
strate that the CONV method can be well combined with the extrapolation
technique as well as any models with known characteristic functions.
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6 Conclusions and Future Works

The CONV method, like other FFT-based methods, is quite flexible w.r.t the
choice of asset process and also the type of option contract. It can be applied if
the underlying follows a Lévy processe and its characteristic function is known.
The CONV method is highly accurate and fast in pricing Bermudan and Amer-
ican options. It can be used for fast option pricing and for parameter calibration
purposes.

The future works include thorough error analysis and application of the
method to exotic options. Generalization of the method to high-dimensions
and incorporation of the method with sparse grid method are also of our great
interest.
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