
Goal-oriented modelling-error estimation
for hierarchical models of a different type

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.dr.ir. J.T. Fokkema,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op maandag 7 mei 2007 om 10:00 uur

door

Jelmer Mennolt CNOSSEN,
ingenieur Luchtvaart- en Ruimtevaarttechniek,

geboren te Nijland.



Dit proefschrift is goedgekeurd door de promotoren:

Prof.dr.ir.drs. H. Bijl
Prof.dr.ir. B. Koren
Prof.dr.ir. P.G. Bakker

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof.dr.ir.drs. H. Bijl, Technische Universiteit Delft, promotor
Prof.dr.ir. B. Koren, Technische Universiteit Delft, promotor
Prof.dr.ir. P.G. Bakker, Technische Universiteit Delft, promotor
Prof.dr.ir. P. Wesseling, Technische Universiteit Delft
Prof.dr.ir. C. Lacor, Vrije Universiteit Brussel
Prof.dr.ir. H. Deconinck, Von Karman Institute for Fluid Dynamics
Dr.ir. B.I. Soemarwoto, Nationaal Lucht- en Ruimtevaartlaboratorium NLR

Het onderzoek is gesteund door de Technologie Stichting STW onder pro-
jectnummer DMR.5670.

ISBN 978 90 8559 289 1



Summary

Nowadays, computer simulations of physical systems (e.g. a propulsion
system) or processes (e.g. combustion) play a very important role in science
and engineering. For many physical systems or processes mathematical
models have been derived (often in the form of partial differential equations)
with different levels of sophistication and accuracy. The collection of models
describing the same physical system or process is called a class of hierarchical
models. The hierarchy is determined by the level of sophistication of the
model. Considering two different models, the sophisticated model is referred
to as ‘fine model’ and the approximating model as ‘coarse model’.

In many classes of hierarchical models, solving a fine model is compu-
tationally costlier than solving a coarse model. Using the coarse model
however, introduces a so-called modelling error in the solution with respect
to the fine model solution. A new trend in computer simulations to reduce
computational time but to meet a certain required accuracy, is adaptive
modelling. This means that a computer simulation is started with a coarse
model which is adapted to a fine model when the required accuracy is not
achieved. This accuracy is, in many engineering applications, the accuracy
of a quantity of interest, such as the lift of an airfoil, instead of the local ac-
curacy of the solution. To drive an adaptive modelling process in which the
accuracy of a quantity of interest is the goal, an estimator of the modelling
error in the quantity of interest is required. Such an estimator is called a
goal-oriented modelling-error estimator.

An approach to derive a goal-oriented modelling-error estimator is the
Dual-Weighted Residual (DWR) method. This requires the solution of an
adjoint (or ‘dual’) problem that acts as weighting function for the modelling
residual. So far, the DWR method has not been applied to classes of hi-
erarchical models where the model equations are of different mathematical
type. With different type is meant in this case, that the models require
different boundary conditions. This can be caused by a different characteri-
sation of the partial differential equations (parabolic, hyperbolic or elliptic)
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or the order of the equations. When the fine and coarse models require
different boundary conditions, a modelling residual arises on the boundary
(called the ‘boundary residual’) in addition to the modelling residual on
the inner domain. Therefore, the main question of this thesis is whether or
not the DWR method is suitable for modelling-error estimation in classes
of hierarchical models in which the model equations are of a different type.

Two approaches to apply the DWR method are followed: a linear dif-
ferential approach and a variational approach. The first only applies to
linear(ised) problems but is a straightforward approach. The variational
approach, in which the model equations are considered in weak formulation,
is more complex but allows the derivation of high-order terms in nonlinear
problems. For successful use of the DWR method, it is found to be essen-
tial to incorporate boundary residuals explicitly in the error estimator. To
achieve this for the variational approach the boundary conditions need to
be imposed weakly.

An example of a class of hierarchical models where the model changes
type is a (nonlinear) convection-diffusion problem in which the convection-
diffusion equation is the fine model and the convection equation is the coarse
model. Omitting the diffusion in the coarse model means that the order of
the equation changes. Such a problem is known as a singular perturbation
problem in which the modelling error does not have to vanish for a vanishing
diffusion coefficient. The DWR method in the variational approach has
been successfully applied to steady and unsteady linear convection-diffusion
problems where the unsteady problem is solved by the Spectral Element
Method.

For the nonlinear Burgers problem an analysis is made of high-order
terms originating from the nonlinear convection term and from a nonlinear
quantity of interest. The analysis reveals computable high-order boundary
terms that can be of significant magnitude and should therefore be included
in the error estimator. To investigate goal-oriented modelling-error estima-
tor by means of the DWR method in the Burgers problem, computations
are performed using the Finite Volume Method. Although the solution re-
strictions according to the variational approach are violated in case of a
shock, the DWR performs well in the studied Burgers problems as well.

One can use the fine or the coarse dual solution as weighting function
in the DWR method. Using the coarse dual solution is essential for the
efficiency of the DWR method in adaptive modelling, since solving the fine
primal and dual problems is equally expensive in a computational sense.
Because of this, adaptive modelling becomes unusable to decrease compu-
tational time when using the fine dual problem. When the coarse dual
problem is used however, an additional error is introduced in the error es-
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timator. The cases studied show, as can be expected, that the quality of
the coarse dual-weighted estimator is lower than the fine dual-weighted es-
timator. In all cases the estimator improves when the diffusion coefficient
decreases.

Finally, a preliminary study is made of the DWR method in the lin-
ear differential approach, applied to a 2-D flow problem described by the
Navier-Stokes equations (the fine model) and the Euler equations (the coarse
model). From the cases studied, it is concluded that the DWR method is
suitable for classes of hierarchical models in which the model equations
are of a different type. The variational approach is preferred for nonlinear
problems.
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Samenvatting

Computersimulaties van fysische systemen of processen spelen tegenwoordig
een zeer belangrijke rol in wetenschap en techniek. Voor vele fysische sys-
temen of processen zijn verschillende wiskundige modellen (in de vorm
van partiële differentiaal vergelijkingen) afgeleid, vaak met een verschil-
lend niveau van verfijning en nauwkeurigheid. De verzameling van mod-
ellen die hetzelfde fysische systeem of proces beschrijven, wordt een klasse
van hiërarchische modellen genoemd. De hiërarchie wordt bepaald door
het niveau van verfijning van het model. Wanneer twee modellen worden
beschouwd, wordt het verfijnde model het ‘fijn model’ genoemd en het be-
naderende model het ‘grof model’.

In vele klassen van hiërarchische modellen is het oplossen van een fijn
model duurder in termen van computertijd dan het oplossen van een grof
model. Het gebruik van het grof model introduceert echter een modellerings-
fout in de oplossing ten opzichte van de oplossing van het fijn model. Een
nieuwe tendens in computersimulaties om rekentijd te verminderen maar
een bepaalde vereiste nauwkeurigheid te behalen is adaptief modelleren. Dit
houdt in dat een computersimulatie wordt gestart met een grof model welke
wordt verfijnd naar een fijn model, wanneer de vereiste nauwkeurigheid niet
wordt bereikt. In vele technische toepassingen is dit de nauwkeurigheid van
een bepaalde grootheid, bijvoorbeeld de lift van een vleugelprofiel, in plaats
van de gewenste lokale nauwkeurigheid van de oplossing. Voor het aans-
turen van een adaptief modelleringsproces met als doel de nauwkeurigheid
van een grootheid, is een schatter van de modelleringsfout in de grootheid
vereist. Een dergelijke schatter wordt een doelgerichte modelleringsfout-
schatter genoemd.

Een aanpak om een doelgerichte modelleringsfout-schatter af te leiden is
de zgn. Dual-Weighted Residual (DWR) methode. Hiervoor moet een gead-
jungeerd (ook wel ‘duaal’) probleem opgelost worden, waarvan de oplossing
als weegfunctie dient voor het modelleringsresidu. Tot op heden is de DWR
methode niet toegepast op klassen van hiërarchische modellen waarin de
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modellen van een verschillend wiskundig type zijn. Met verschillend type
wordt in dit geval bedoeld dat de modelvergelijkingen verschillende rand-
voorwaarden nodig hebben. Dit kan worden veroorzaakt door de karakter-
isatie van de partiële differentiaalvergelijking (parabolisch, hyperbolisch of
elliptisch) of de orde van de vergelijking. Wanneer het fijn en grof model
verschillende randvoorwaarden nodig hebben, onstaat er een modelresidu
op de rand (een ‘randresidu’ genoemd) naast het modelresidu op het bin-
nengebied. Daarom is de hoofdvraag van dit proefschrift of de DWR meth-
ode geschikt is voor het schatten van de modelleringsfout in klassen van
hiërarchische modellen waarin de modellen van een verschillend type zijn.

Twee verschillende benaderingen zijn gevolgd: een lineaire differentiële
benadering en een variationele benadering. De eerstgenoemde is geschikt
voor lineaire (en gelineariseerde) problemen en is een ongecompliceerde be-
nadering. De variationele benadering, waarin de modelvergelijkingen in een
zwakke formulering worden beschouwd, is complexer maar stelt ons in staat
om hoge-orde termen af te leiden in niet-lineaire problemen. Voor een suc-
cesvolle toepassing van de DWR methode is het essentieel gebleken om de
randresiduen expliciet in de foutschatter op te nemen. Om dit te bereiken
bij de variationele benadering, is het van essentieel belang gebleken om de
randvoorwaarden zwak op te leggen.

Een voorbeeld van een klasse van hiërarchische modellen waarin een fijn
en grof model van een verschillend type zijn, is een (niet-lineair) convectie-
diffusie probleem. Hierin is de convectie-diffusie vergelijking het fijn model
en de convectievergelijking het grof model. Het weglaten van de diffusie
term in het grof model betekent dat de orde van de vergelijking veran-
dert. Dit is een singulier storingsprobleem waarin de modelleringsfout niet
naar nul hoeft te gaan wanneer de diffusiecoëfficiënt naar nul gaat. De
DWR methode volgens de variationele benadering is succesvol toegepast op
stationaire en instationaire lineaire convectie-diffusie problemen. Het in-
stationaire probleem is opgelost met behulp van een Spectrale Elementen
Methode.

Voor het niet-lineaire Burgersprobleem is een analyse gemaakt van de
hoge-orde termen die voortkomen uit de niet-lineaire convectieterm en de
niet-lineaire grootheid. Deze analyse laat zien dat er berekenbare hoge-
orde randtermen bestaan die van significante grootte kunnen zijn en om die
reden in de foutschatter opgenomen moeten worden. Om de doelgerichte
modelleringsfoutschatter door middel van de DWR methode te bestuderen
in het Burgersprobleem, zijn berekeningen uitgevoerd met behulp van de
Eindige Volume Methode. Ondanks het feit dat hierbij oplossingsrestricties
volgens de variationele aanpak worden overtreden, zoals in het geval van
een schok, worden goede resultaten verkregen.



vii

Zowel de fijn als de grof geadjungeerde oplossing kan gebruikt worden als
weegfunctie in de DWR methode. Het gebruik van de grof geadjungeerde
oplossing is essentieel voor de efficiëntie van de DWR methode, omdat het
oplossen van het fijn geadjungeerde probleem even duur is in termen van
rekentijd als het fijn model. Hierdoor is het adaptief modelleren onbruikbaar
om rekentijd te verkorten wanneer het fijn geadjungeerde probleem gebruikt
wordt. Gebruiken we het grof geadjungeerde probleem, dan wordt er echter
wel een extra fout in de foutschatter gëıntro-duceerd. Zoals verwacht kan
worden, laten de gevallen die bestudeerd zijn zien dat de kwaliteit van de
foutschatter op basis van de grof geadjungeerde oplossing minder goed is dan
die op basis van de fijn geadjungeerde oplossing. In alle gevallen verbetert
de foutschatter wanneer de diffusiecoëfficiënt afneemt.

Tot slot is een voorstudie gemaakt hoe de DWR methode volgens de
lineaire differentiële benadering toegepast kan worden op een 2-D stro-
mingsprobleem beschreven door de Navier-Stokes vergelijkingen (het fijn
model) en de Euler vergelijkingen (het grof model). Op basis van de gevallen
die zijn bestudeerd, kan geconcludeerd worden dat de DWR methode geschikt
is voor klassen van hiërarchische modellen waarin de modellen van een ver-
schillend type zijn. Voor niet-lineaire problemen heeft de variationele be-
nadering de voorkeur.



viii Samenvatting



Contents

Summary i

Samenvatting v

1 Introduction 1

1.1 Background of the research . . . . . . . . . . . . . . . . . . . 1
1.2 Focus of the research . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . 5

I Theory 7

2 Linear differential approach 9

2.1 The fine and coarse models . . . . . . . . . . . . . . . . . . . 10
2.2 The dual problems . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 The error estimator . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Illustration: 1-D diffusion-reaction . . . . . . . . . . . . . . . 16

2.4.1 The model problem . . . . . . . . . . . . . . . . . . . 16
2.4.2 Finding the dual problem . . . . . . . . . . . . . . . . 18
2.4.3 The error estimator . . . . . . . . . . . . . . . . . . . 21

2.5 Discrete example with adaptive modelling . . . . . . . . . . . 22
2.5.1 Adaptive modelling algorithm . . . . . . . . . . . . . . 23
2.5.2 Discrete estimation and localisation of the error . . . . 23
2.5.3 Global and local refinement criteria . . . . . . . . . . 25
2.5.4 Numerical results . . . . . . . . . . . . . . . . . . . . . 26

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Variational approach 31

3.1 Preliminaries and comments . . . . . . . . . . . . . . . . . . . 32
3.2 The fine or sophisticated model . . . . . . . . . . . . . . . . . 32



x CONTENTS

3.3 The coarse models . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 The error estimator . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Treatment of boundaries . . . . . . . . . . . . . . . . . . . . . 38
3.6 Illustration: 1-D diffusion-reaction . . . . . . . . . . . . . . . 39

3.6.1 Weak formulation of the hierarchical models . . . . . . 40
3.6.2 The error estimator . . . . . . . . . . . . . . . . . . . 43

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

II Applications 49

4 Linear convection-diffusion 51

4.1 Approach for convection-diffusion problems . . . . . . . . . . 52
4.1.1 The fine model problems . . . . . . . . . . . . . . . . . 53
4.1.2 The coarse model . . . . . . . . . . . . . . . . . . . . . 55
4.1.3 The error estimator . . . . . . . . . . . . . . . . . . . 57
4.1.4 Coarse dual-weighted estimator . . . . . . . . . . . . . 58

4.2 Steady case 1: integral Q(u) . . . . . . . . . . . . . . . . . . . 59
4.2.1 The primal problems . . . . . . . . . . . . . . . . . . . 59
4.2.2 The dual problems . . . . . . . . . . . . . . . . . . . . 60
4.2.3 The error estimator . . . . . . . . . . . . . . . . . . . 61

4.3 Steady case 2: boundary derivative Q(u) . . . . . . . . . . . . 63
4.3.1 The dual problem . . . . . . . . . . . . . . . . . . . . 64
4.3.2 The error estimator . . . . . . . . . . . . . . . . . . . 67

4.4 Steady case 3: point Q(u) . . . . . . . . . . . . . . . . . . . . 68
4.4.1 The dual problems . . . . . . . . . . . . . . . . . . . . 69
4.4.2 The error estimator . . . . . . . . . . . . . . . . . . . 70

4.5 Unsteady discrete problem . . . . . . . . . . . . . . . . . . . . 73
4.5.1 The dual solutions . . . . . . . . . . . . . . . . . . . . 74
4.5.2 The error estimator . . . . . . . . . . . . . . . . . . . 74
4.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Nonlinear Burgers 83

5.1 Approach for Burgers problem . . . . . . . . . . . . . . . . . 83
5.1.1 The fine model problem . . . . . . . . . . . . . . . . . 84
5.1.2 The coarse model problem . . . . . . . . . . . . . . . . 85
5.1.3 The error estimator . . . . . . . . . . . . . . . . . . . 86

5.2 Discrete problem . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2.1 The dual initial and boundary conditions . . . . . . . 91
5.2.2 Discrete approach . . . . . . . . . . . . . . . . . . . . 92

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



CONTENTS xi

5.3.1 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.2 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 An approach for steady 2-D flow problems 109

6.1 The model equations . . . . . . . . . . . . . . . . . . . . . . . 110
6.1.1 The fine model: the Navier-Stokes equations . . . . . 110
6.1.2 The coarse model: the Euler equations . . . . . . . . . 111

6.2 Dual boundary operators . . . . . . . . . . . . . . . . . . . . 112
6.2.1 Solid wall boundary operators . . . . . . . . . . . . . . 117
6.2.2 Outflow boundary operators . . . . . . . . . . . . . . . 120

6.3 The error estimator . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.1 Inner domain contribution . . . . . . . . . . . . . . . . 123
6.3.2 Solid wall contribution . . . . . . . . . . . . . . . . . . 123
6.3.3 Outflow boundary contribution . . . . . . . . . . . . . 124

6.4 Overview of the approach . . . . . . . . . . . . . . . . . . . . 125
6.5 Conclusions and recommendations . . . . . . . . . . . . . . . 126

7 Conclusions and recommendations 127

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . 130

References 132

A Differentiation and linearisation of functionals 141

B The Galerkin spectral element method 143

C The finite volume method for the Burgers problem 147

C.1 The discrete primal problem . . . . . . . . . . . . . . . . . . . 147
C.2 The discrete dual problem . . . . . . . . . . . . . . . . . . . . 148

Dankwoord 153

Curriculum Vitae 155



xii CONTENTS



Chapter 1

Introduction

1.1 Background of the research

Nowadays, computer simulations of real physical systems or processes play
an indispensable role in science and engineering. For the simulation of a
physical system or process a simulation model or mathematical model needs
to be constructed. In this context the term model is defined following the
AIAA definitions (Oberkampf [1]) as being: ‘a representation of a physical
system or process intended to enhance our ability to understand, predict,
or control its behaviour‘. The ‘process of construction or modification of a
model’ is referred to as modelling (Oberkampf [1]).

For many physical systems or processes, various models have been devel-
oped, each with its own level of sophistication, i.e., the degree to which the
model is true to nature as it is observed. The collection of models describing
the same physical system or process is called a class of hierarchical mod-
els. The hierarchy is determined by the level of sophistication of the model,
with the most sophisticated model placed highest in the hierarchy, followed
by the approximating models of decreasing sophistication. Considering two
different models from the same class, the most sophisticated model is re-
ferred to as the ‘fine model’ and the other one as the ‘coarse model’. Often
a coarse model is obtained by simplifying a sophisticated model.

As mentioned before, the process of construction or modification of a
model is referred to as modelling. The error between a constructed or mod-
ified model and the reality is the modelling error. In computer simulations
the term modelling error is also used to refer to the error between two mod-
els of different level of sophistication. When a model is implemented in a
computer code, additional errors are introduced such as (possible) program-
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ming and discretisation errors. This requires the verification of models, see
for instance [2, 3], which is beyond the scope of this thesis.

The discrepancy between a model and real physics or between two mod-
els of different sophistication can only be determined when a model is ap-
plied to a specific problem. The ’process of determining the degree to which
a model is an accurate representation of real physics from the perspective of
the intended use of the model’ (Oberkampf [1]) is called model validation.
Since in computer simulations also other errors are introduced as explained
earlier, the verification and validation of the model (as applied to a specific
problem) often go hand in hand, see for instance [4, 5, 6, 7].

The relation between real physics, the class of hierarchical models and
the computer code is illustrated in figure 1.1. It is based on the phases
of modelling and simulation as identified and formulated by the Society for
Computer Simulation (SCS) [8] in 1979 and adopted by the AIAA [1]. Much
literature can be found on the definitions in modelling and simulation, many
of this literature extend the semantics of modelling and simulation. A ma-
jority of these studies are aimed at certain fields of science and engineering,
see for instance [2, 4, 9, 10]. For an extensive review of literature in the field
of verification and validation, see [11]. The work presented in this thesis
considers the modelling error of a coarse model with respect to a fine model.

COMPUTER
CODE

MODEL I MODEL II MODEL III
Model
validation

REAL
PHYSICS

Discretisation error

Class of hierarchical models

Modelling error

Decreasing level of sophistication

Model verification

Model development

Modelling error

Figure 1.1: Phases of modelling and simulation
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In many classes of hierarchical models the most sophisticated model
is also the computationally most expensive model. An example of such
a class is that consisting of, in ordering of decreasing sophistication: the
Navier-Stokes equations, the approximating Euler equations and potential
flow equations. A new trend in the field of computer simulations to reduce
computational costs but to meet a certain required accuracy is adaptive
modelling, see for instance [12, 13, 14, 15, 16]. Adaptive modelling means
a coarse model(s) is (are) used to decrease computational time and the fine
model is applied only when accuracy requires it. Accuracy can be studied in
a local sense but also be in a global sense, for instance, in a global quantity of
interest. In many engineering applications the goal of computer simulations
is to compute a certain quantity of interest, e.g., the lift of an airfoil or
the load on a structure. In that case the goal is to compute the quantity
of interest within a certain accuracy whilst minimising computer resources,
i.e., with as little use of the fine model as possible.

To drive an adaptive modelling process the modelling error needs to be
estimated, see for instance [14, 17] about local modelling error estimation.
When a specific quantity of interest is the goal of a computer simulation,
the modelling error in that quantity of interest needs to be estimated. This
is referred to as goal-oriented modelling-error estimation and is the field of
research of the work presented in this thesis.

A general approach for deriving a goal-oriented error estimator in finite
element approximations has been developed by Becker and Rannacher [18,
19] and is referred to as the Dual-Weighted Residual (DWR) method. Ap-
plications of the DWR method are given in [18, 19] for the goal-oriented
estimation of discretisation errors, which is also the subject of [20, 21, 22,
23, 24, 25, 26].

The work of Becker and Rannacher [18, 19] has been extended by Oden
and Prudhomme [21, 27] for goal-oriented modelling-error estimation in
computational mechanics. So far, the DWR method has been applied to
problems where the model complexity varies, for instance, due to differ-
ent forms of constitutive relations or modified properties of the medium
considered. In all these cases the hierarchical models are of the same math-
ematical character e.g., they are all elliptic partial differential equations.
(See [28, 29, 30] for the characterisation of partial differential equations.)
Examples are the modelling of heterogeneous materials [27, 31], structural
mechanics [32] and molecular systems [15]. Also in work on flow(-type)
problems [12, 13, 27, 33], the hierarchical models are all of the same math-
ematical type which means they require the same boundary conditions.

In the steady incompressible flow example by Oden and Prudhomme [27],
the incompressible Navier-Stokes equations are approximated by the Stokes
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equations in which the convective terms are neglected. In the adaptive
modelling of free-surface flows by Perotto [33] all hierarchical models main-
tain the hyperbolic type and require the same boundary conditions. In
the convection-diffusion problems considered by Braack and Ern [12, 13]
the level of sophistication is determined by the diffusion model, by applying
Fick’s law as an approximation of a more accurate multicomponent diffusion
model. In both cases, the problem is elliptic, such that the same boundary
conditions apply to both models.

So far, no work has appeared on the application of the DWR method
for the purpose of goal-oriented modelling-error estimation in a class of
hierarchical models where the type of the model equation changes. This
change in type can be due to a change in the characterisation (parabolic,
hyperbolic or elliptic) or the order of the partial differential equation. A
difference in type between the fine and the coarse model, is the case for
classes describing singular perturbation problems [34, 35] where the coarse
model is in fact the reduced problem. In this context, the reduced problem
(also referred to as ‘unperturbed’ problem) is described by the model in
which the term multiplied by the small perturbation parameter in the fine
model is neglected. Examples of such classes are fluid flow models and
convection-diffusion problems. In the class of fluid flow models, the solution
of the Navier-Stokes equations is often approximated by solving the Euler
equations in which viscosity and heat condution are neglected. This means
a change in type of the equation by omitting the highest order terms. This
change is also the case for convection-diffusion problems when diffusion is
neglected in the fine model to yield the coarse model. Therefore, the main
issue of this thesis is the following question:

Is the Dual-Weighted Residual method suitable for goal-oriented
modelling-error estimation in classes of hierarchical models where
the model equations are of a different type?

1.2 Focus of the research

We focus our research on classes of hierarchical models in which models are
of different type, since such classes play an important role in engineering.
For instance the earlier mentioned Navier-Stokes and Euler equations in the
class of fluid flow models. Another example is a convection-diffusion prob-
lem with the convection equation as approximating model of the convection-
diffusion equation. These problems are known as singular perturbation
problems. The work described in this thesis considers the application of
the DWR method for goal-oriented modelling-error estimation in singular
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perturbation problems. Singular perturbation problems differ from regular
problems where the hierarchical models are of equal type, due to the pos-
sible difference in behaviour near boundaries for the fine and coarse model.
Such a difference results in a modelling error or modelling residual on the
boundary. In this thesis two approaches for dealing with modelling errors on
a boundary, further referred to as boundary residuals, in the DWR method
are presented. The first approach is derived for linear problems whereas the
second approach is suitable for nonlinear problems.

Other approaches are also considered with varying degrees of success
(e.g., the augmented functional approach and a direct discrete approach).
In this thesis only the approaches with a proper foundation that have even-
tually led to a proper goal-oriented modelling-error estimator are described.

The DWR method to perform goal-oriented modelling-error estimation
requires the computation of the modelling residual in the coarse model solu-
tion with respect to the fine model and the solution of a dual problem, also
referred to as the adjoint problem. Another approach would be to derive
and solve the equation for the modelling error itself and substitute the result
in the quantity of interest. The advantage of the DWR method however,
is that the dual problem provides information on the influence of the local
modelling error on the (global) modelling error of the quantity of interest.
This information is required when the goal of error estimation is to drive a
local model adaptation algorithm.

It is important to emphasise that the work presented in this thesis con-
cerns the application of the DWR method for particular situations that are
relevant for fluid-flow related problems and does not strive for a general
framework for goal-oriented modelling-error estimation in classes of hierar-
chical models that are of different type.

1.3 Outline of the thesis

The thesis is divided into two parts: part I considers the theory of dual-
weighted residual modelling-error estimation including some simple exam-
ples and part II gives some applications of the DWR method to singular
perturbation problems.

In part I, chapter 2, an estimator for the modelling error in a quan-
tity of interest for linear problems is presented. This approach is referred
to as the linear differential approach, since the problems are described by
linear differential operators. In order to illustrate goal-oriented modelling-
error estimation an example is given in which the approach is applied to a
diffusion-reaction problem. To simplify the illustration, no boundary resid-
uals are present yet.



6 Introduction

For nonlinear problems, a possible approach is to linearise the consid-
ered hierarchical problems first, and then use the error estimator derived
for linear problems. In that case however, we have no insight in the high-
order contributions from the nonlinear operators. A variational approach
is therefore followed in chapter 3 based on the work by Oden and Prud-
homme [27]. In applying this approach to problems (written in a weak
formulation) where hierarchical models are of different type, we show that
it is essential to impose boundary conditions weakly in order to incorporate
boundary residuals in the error estimator. An example is given based on the
diffusion-reaction problem with different boundary conditions to illustrate
the role played by the boundary residuals.

After the theory presented in part I, applications of the DWR method are
given in part II beginning with the application to linear convection-diffusion
problems in chapter 4. The convection-diffusion equation is considered as
fine model and by omitting the diffusion operator, the coarse -reduced-
model is obtained. Some steady analytical cases, as well as an unsteady dis-
crete problem are studied. In chapter 5 the DWR method is applied to the
nonlinear Burgers problem, which differs from linear convection-diffusion
in the nonlinear convection term. An analysis is given of the high-order
contributions in the error estimator from the nonlinear model operator, as
well as a nonlinear quantity of interest. In chapter 6 a preliminary study
is made of the approach for steady 2-D flow problems where the Navier-
Stokes equations are considered as the fine model and the Euler equations
as the coarse model. Finally conclusions and recommendations for further
research are presented in chapter 7.



Part I

Theory





Chapter 2

Linear differential

approach

Two different approaches of the DWR method to perform goal-oriented
modelling-error estimation are possible that both have their advantages
and disadvantages. In this chapter the approach for linear(ised) models
in terms of linear differential operators is described. The derivation of the
modelling error in a quantity of interest is then relatively straightforward.
In chapter 3, the variational approach is described which is considered suit-
able for nonlinear problems and gives some insight in high-order terms in
the Dual-Weighted Residual method.

In the linear differential approach we consider problems with linear dif-
ferential operators. Particular attention is paid to the derivation of the
boundary operators for the dual problem. The linear differential approach
can also be followed for a nonlinear problem when it is first linearised.
This can be of particular interest for complex models such as the Euler
and Navier-Stokes equations, since such models are sometimes solved in
linearised form.

In section 2.1 the primal fine and coarse model equations are given and
the derivation of the corresponding dual problems are discussed in sec-
tion 2.2. The goal-oriented modelling-error estimator for linear problems is
derived in section 2.3. A 1-D illustration of the linear differential approach
is given in section 2.4 where the diffusion-reaction equation (representing
the fine model) is approximated by the diffusion equation (representing the
coarse model).

Finally, the application of the dual-weighted residual estimator in a
model-adaptation algorithm is illustrated using the same diffusion-reaction
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problem in section 2.5. For this purpose the problems are solved in a simple
finite element setting.

2.1 The fine and coarse models

Suppose we are interested in evaluating the quantity of interest Q(u) from
the solution u of the fine model on a domain Ω with boundary Γ:

Lu = f in Ω, (2.1a)

Bu = a on Γ, (2.1b)

where L and B are the linear differential operators governing the p.d.e. and
the boundary conditions, respectively. Problem (2.1) is also referred to as
the primal problem. The right-hand side term f is the source term and a
is the boundary condition which both may be functions of x ∈ Ω ∩ Γ and
time t ∈ R

+.
Now suppose that the fine model problem is computationally expensive

to solve, such that an approximating model, or the coarse model, is required.
This is given by:

L0u0 = f in Ω, (2.2a)

B0u0 = a0 on Γ, (2.2b)

assuming that both models have the same source term f . When the coarse
model has a different source term f0, the model equation L0u0 = f0 can
be rewritten, such that a different coarse model arises with again the same
source term f :

L0u0 − f0 + f = f.

Call L0u0−f0+f = L̃0u0 the new coarse model. Therefore we only consider
coarse models with the same source term f as the fine model equation.

When using the solution of the coarse problem (2.2) to evaluate the
quantity of interest Q(u0), the modelling error in the quantity of interest is
simply:

Q(u) − Q(u0).

Estimation of this modelling error without solving the fine model (2.1) is
now the goal.

As explained in the introduction, the approach to follow is to compute
the modelling residual in the primal problem which is weighted by the solu-
tion of the dual problem. Therefore first the derivation of the dual problem
is given.
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2.2 The dual problems

Following Giles and Pierce [36], we consider the case in which the quantity
of interest is an integral on the inner domain Ω and boundary Γ with u the
solution of (2.1):

Q(u) = (g, u)Ω + (h, Cu)Γ, (2.3)

with the inner product definitions:

(a, b)Ω =

∫

Ω

ab dΩ and (c, d)Γ =

∫

Γ

cd dΓ. (2.4)

The dual form (2.3) is given by the following theorem which is found in
Giles and Pierce [36]:

Theorem 1 In case a dual problem of (2.1) exists, it has the following
form:

L∗p = g in Ω, (2.5a)

B∗p = h on Γ, (2.5b)

where L∗ is a linear p.d.e. which is adjoint to L and B∗ is the boundary
condition operator of the dual problem. The solution p of (2.5) is the adjoint
variable or Lagrangian multiplier. The equivalent dual form of the quantity
of interest (2.3) is then:

Q(u) = Q(p) = (p, f)Ω + (C∗p, a)Γ. (2.6)

The existence of the dual problem (2.5) and (2.6) can be proved by
showing that the following primal-dual equivalence identity holds:

(p, f)Ω + (C∗p, a)Γ = (p, Lu)Ω + (C∗p, Bu)Γ (2.7)

= (L∗p, u)Ω + (B∗p, Cu)Γ

= (g, u)Ω + (h, Cu)Γ,

The first and last steps are straightforward substitutions, but the interme-
diate step requires the proof that the identity:

(p, Lu)Ω + (C∗p, Bu)Γ = (L∗p, u)Ω + (B∗p, Cu)Γ, (2.8)

has to hold for all u and p. Therefore integration by parts is performed of
the inner product of p and Lu on Ω which gives an identity of the form:

(p, Lu)Ω = (L∗p, u)Ω + (A1p, A2u)Γ, (2.9)
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where A1 and A2 are differential operators on the boundary Γ. Compar-
ing (2.9) with the identity (2.8) suggests that operators B∗ and C∗ exist
such that:

(A1 p, A2 u)Γ = (B∗p, Cu)Γ − (C∗p, Bu)Γ. (2.10)

If for a particular problem the pair of operators B∗ and C∗ can be found
from relation (2.10), the equivalence of the dual problem (2.5)–(2.6) and the
primal problem (2.1)–(2.3) is proved. Therefore theorem 1 emphasises that
equation (2.6) only exists when a dual problem exists. When the operators
B∗ and C∗ can not be determined, the dual problem is ill-posed and no
equivalent dual form of the quantity of interest (2.3) exists.

One of the great advantages of the dual (or adjoint) approach can be
illustrated by the following. Consider the application of aerodynamic design
optimisation for the quantity of interest Q(u) = (g, u). Then Lu = f is the
system of linearised flow equations with respect to a change in a design vari-
able and the source term f represents the linearisation of the flow equations
with respect to changes in a design variable. A change in the design vari-
able means a change in f , and to evaluate Q(u) the system Lu = f needs
to be re-evaluated. Once the dual problem L∗p = g is solved however, its
solution p can be used to evaluate the quantity of interest Q(u) = (p, f)
for every value of f . The advantage of the dual approach lies in the fact
that the system Lu = f does not have to be re-evaluated for every change
in design variable. Only one evaluation of the dual problem L∗p = g is
enough. Much literature is available on aerodynamic design optimisation
by the dual approach, see for instance [37, 38, 39, 40]. Furthermore, the
dual solution p gives information on the local sensitivity of the quantity of
interest for changes in the solution u. This aspect of the dual approach is
applied in goal-oriented model-adaptation.

One way to find and prove the existence of the operators B∗ and C∗

is given by Giles and Pierce [36]. This method is, however, restricted to
p.d.e.’s for which the boundary operators B, C, A1 and A2 involve only
the values of u and p and any of their normal derivatives. In this case the
vectors u and p are introduced which are composed of u and p together
with the normal derivatives of the appropriate degree, e.g.:

u = (u,
∂u

∂n
)T , p = (p,

∂p

∂n
)T .
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Assuming the dual problem is well-posed, the boundary operators can then
be rewritten as:

Bu ≡ Bu, Cu ≡ Cu, (2.11a)

B∗p ≡ B∗p, C∗p ≡ C∗p, (2.11b)

(A1 p, A2 u) ≡ pT Au, (2.11c)

where B and C are rectangular matrices and A is a square matrix. We need
to find and prove the existence of the matrices B∗ and C∗. An illustration
is given for the diffusion-reaction equation in section 2.4.

With the matrix notation of the boundary operators from (2.11) the
equivalence of relation (2.10) is written as:

∫

Γ

pT Au− (B∗p)T Cu + (C∗p)T Bu ds = 0.

This is true when the integrand is zero which yields:

A = (B∗)T C − (C∗)T B. (2.12)

This can be reformulated by defining the matrices T and T∗ as:

T =

[

B

C

]

, T∗ =

[

−C∗

B∗

]

, (2.13)

This allows to write identity (2.12) as a product of matrices:

A = (T∗)T T, (2.14)

from which the unknown T needs to be solved. When T is not singular,
solving this system yields the dual boundary operators C∗ and B∗ such
that the dual problem with appropriate boundary conditions can be derived
together with the dual form of the quantity of interest (2.6).

The dual problem for the coarse model (2.2) is also derived. This is
required for the goal-oriented modelling-error estimator, as will become clear
in the next section. For the coarse model (2.2) we find in a similar fashion
the dual problem and the corresponding boundary operators:

L0
∗p0 = g in Ω, (2.15a)

B0
∗p0 = h on Γ. (2.15b)

The quantity of interest based on the coarse model is simply found by
substituting the solution u0 into equation (2.3):

Q(u0) ≈ (g, u0)Ω + (h, Cu0)Γ. (2.16)
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For completeness the quantity of interest in dual form based on the coarse
problem is given:

Q(u0) ≈ (p0, f)Ω + (C0
∗p0, a0)Γ. (2.17)

For goal-oriented modelling-error estimation the coarse dual solution p0 is
of interest.

2.3 The error estimator

With the dual problem given, the (exact) modelling-error estimator for the
linearised problem in terms of the inner domain and boundary operators is
given in the following theorem:

Theorem 2 With u the solution of the linear fine model (2.1) and the
corresponding dual solution p of (2.5) we have the exact modelling-error
representation:

Q(u) − Q(u0) = R(u0, p) = (p, f − Lu0)Ω + (C∗p, a − Bu0)Γ. (2.18)

where R denotes the residual estimator, f−Lu0 is the inner domain residual
and a − Bu0 is the boundary residual.

Proof The proof of equation (2.18) is made by subtracting the general
expressions for Q based on the fine model (2.3) and coarse model (2.16) and
using (2.8):

Q(u) − Q(u0) = (g, u)Ω + (h, Cu)Γ − (g, u0)Ω − (h, Cu0)Γ (2.19)

= (g, u − u0)Ω + (h, Cu − Cu0)Γ

= (L∗p, u− u0)Ω + (B∗p, C(u − u0))Γ

= (p, L(u − u0))Ω + (C∗p, B(u − u0))Γ

= (p, f − Lu0)Ω + (C∗p, a − Bu0)Γ.

2

The error estimator in practice

In the estimator (2.18) the fine dual solution p is used as a weighting function
for the residuals. Solving the fine dual problem however, is equally expensive
in the sense of computational time as solving the fine primal problem. To
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reduce computational time the fine dual solution is replaced by the coarse
dual solution. Therefore the fine dual solution p is split into a coarse model
solution p0 and dual error ε0:

R(u0, p) =(p0 + ε0, f − Lu0)Ω + (C∗(p0 + ε0), a − Bu0)Γ (2.20)

=(p0, f − Lu0)Ω + (C∗p0, a − Bu0)Γ

+ (ε0, f − Lu0)Ω + (C∗ε0, a − Bu0)Γ,

and after neglecting the contribution from ε0 the coarse dual-weighted esti-
mator is given by:

Q(u) − Q(u0) ≈ R(u0, p0) = (p0, f − Lu0)Ω + (C∗p0, a − Bu0)Γ, (2.21)

Concerning the influence of neglecting the dual error we assume that in the
class of hierarchical models the primal error e0 = u− u0 as well as the dual
error ε0 = p − p0 are sufficiently small: e0 � u0 and ε0 � p0. This is
essential for the derivation of coarse models: for the (often bounded) range
of applicability of a coarse model the error with respect to the fine model
is assumed to be sufficiently small where ‘sufficiently’ from an engineering
point of view depends on the accuracy required.

When models are of a different type and require different boundary
conditions however, situations might occur that e0 and ε0 are indeed small
on the inner domain but large on a boundary. For the inner domain we
therefore assume:

ε0 � p0 ⇒ (ε0, f − Lu0)Ω � (p0, f − Lu0)Ω. (2.22)

This can not be said for the boundary contributions in (2.18) when the fine
and coarse dual equations show different behaviour on the boundaries. Fur-
thermore it also depends on the form of the boundary operator C∗. When,
for instance, ε0 increases rapidly in a small region adjacent to the boundary
due to boundary layer behaviour of p, and C∗ is a gradient operator, the
following does not hold:

C∗ε0 � C∗p0 ⇒ (C∗ε0, f − Lu0)Ω � (C∗p0, f − Lu0)Ω. (2.23)

In that case using only the coarse dual solution p0 in the estimator as in
equation (2.21) introduces a large error in the estimator and the reliability
of the estimator is much lower than using the fine dual solution p. Only
when the coarse and fine dual problem have the same type of boundary
condition inequality (2.23) might hold. It might, therefore, be advisable to
derive the boundary conditions for both the fine and coarse dual problem to
study the behaviour of the dual problem at the boundary and the influence
of (C∗ε0, a − Bu0)Γ.
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Correction by the estimator When the estimator is based on the coarse
dual model or, after adapting the model, a mix of the coarse and fine dual
models, the estimator can still be too inaccurate to be used as a correction.
The estimator used to drive the model adaptation algorithm is a single scalar
value instead of an estimate in terms of rigorous upper and lower bounds.
Therefore, using the estimator as correction on the computed quantity of
interest is considered unreliable when the coarse dual-weighted estimator is
used.

2.4 Illustration: 1-D diffusion-reaction

This section is based on the work presented in Cnossen [41]. The linear
model problem on the domain Ω = [0, 1] concerns the diffusion-reaction
equation representing the fine model with the coarse model represented by
diffusion equation.

First the details of the model problem are introduced in section 2.4.1
with the exact primal and dual solutions. The dual problems for the given
fine and coarse models are derived in section 2.4.2. Then the modelling
error in the quantity of interest is estimated in section 2.4.3 based on the
estimator (2.18).

2.4.1 The model problem

The fine model represented by the 1-D diffusion-reaction equation on the
unit interval domain Ω = (0, 1) with Dirichlet boundary conditions on x = 0
and x = 1 is given by:

Lu := −uxx + k2u = 0, x ∈ Ω, u(x) ∈ C2(Ω), (2.24a)

Bu := u =

{

a0 = 0, x = 0,
a1 = 1, x = 1.

(2.24b)

with L the diffusion-reaction operator, B the Dirichlet boundary operator
and k ∈ R+ the reaction coefficient. The exact solution of (2.24) is:

u(x) =
ekx − e−kx

ek − e−k
. (2.25)

Suppose now that fine problem (2.24) is approximated by the diffusion
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equation with Dirichlet boundary conditions:

L0u0 := −u0xx = 0, x ∈ Ω, u0(x) ∈ C2(Ω), (2.26a)

B0u0 := u =

{

a0 = 0, x = 0,
a1 = 1, x = 1.

(2.26b)

with L0 the diffusion operator and B0 the boundary operator. The solution
of (2.26) is given by:

u0(x) = x. (2.27)

The reaction coefficient k in (2.24) is used to simulate the difference between
both models with the special case k = 0 resulting in the coarse model. In
figure 2.1(a) the solutions of both the coarse and fine model for k = 1, 2, 4
are given, showing that the larger k the ’coarser’ the approximation of the
diffusion-reaction equation by the diffusion equation.
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(a) Primal solutions u, u0
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(b) Dual solutions p, p0

Figure 2.1: Primal and dual solutions for k = 1, 2, 4.

The quantity of interest Q considered is also linear and is chosen to be:

Q(u) =

∫

Ω

u(x)dx. (2.28)

The exact modelling error Q(u) − Q(u0) is found by substituting the solu-
tions of the fine and coarse model into (2.28) and subtracting the results:

Q(u) − Q(u0) =

∫

Ω

(

ekx − e−kx

ek − e−k
− x

)

dx =
ek + e−k − 2

k(ek − e−k)
−

1

2
. (2.29)

As expected, the modelling error Q(u)−Q(u0) in (2.29) is zero for the limit
of k → 0.
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2.4.2 Finding the dual problem

The dual problem of the fine problem (2.24) can be found by introducing
the inner product (as defined in (2.4)) of the Lagrangian multiplier p and
Lu and performing integration by parts as in equation (2.9):

(p, Lu) =

∫

Ω

p(−uxx+k2u)dx =

∫

Ω

u(−pxx+k2p)dx−pux|
1
0+pxu|10. (2.30)

We can directly find the dual equation L∗p = g from (2.30) and (2.28):

L∗p := −pxx + k2p = 1, x ∈ Ω. (2.31)

Knowing that the boundary terms of (2.30) have to satisfy relation (2.10)
the dual boundary conditions can be derived from (2.30):

(B∗p, Cu)Γ − (C∗p, Bu)Γ = −pux|
1
0 + pxu|10. (2.32)

Finding the dual boundary operators B∗ and C∗ is problematic, even for
the current illustrative 1-D problem. The starting point is that operator B
is known on both boundaries in (2.24) (Dirichlet boundary conditions). In
relation (2.32) the last term pxu|10 contains the Dirichlet boundary condition
Bu := u for the primal problem and therefore it remains that:

C∗p := px. (2.33)

Then, automatically the first term on the lefthandside of relation (2.32)
coincides with the first term on the right-hand side: (B∗p, Cu)Γ = −pux|

1
0

which yields the dual boundary operator:

B∗p := −p. (2.34)

Note also that a boundary operator belonging to the general quantity of
interest (2.3) is found: Cu := ux, although the quantity of interest (2.28)
has no boundary contributions. With the general (linearised) form in (2.3)
the value of h on both boundaries x = 0 and x = 1 can only be zero in this
case, yielding the boundary values for the dual equation (2.5). To conclude,
the complete dual problem for this diffusion-reaction problem is:

L∗p := −pxx + k2p = 1, x ∈ Ω, p(x) ∈ C2(0, 1), (2.35a)

B∗p := −p =

{

h0 = 0, x = 0,
h1 = 0, x = 1.

(2.35b)

Another approach is to follow Giles and Pierce [36] in proving the exis-
tence of the dual boundary operators B∗ and C∗. This proof immediately
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yields the operators when the dual problem is well-posed. This approach
is more straightforward than the derivation of the dual boundary operators
described above.

Following [36] identity (2.30) is written with the boundary terms in
vector form from (2.11c):

(p, Lu) − (L∗p, u) = [pT Au]10 (2.36)

with

u =

(

u

ux

)

, p =

(

p

px

)

and the matrix A which can be constructed using relation (2.32) as a result
from integration by parts:

A ≡

[

0 −1
1 0

]

.

The primal boundary operators are written in terms of u at both boundaries:

Bu := u ⇒ B ≡ (1 0),

Furthermore we find from the remaining boundary term in identity (2.30)
that Cu := ux. The matrix C is therefore given by:

Cu := u ⇒ C ≡ (0 1).

For identity (2.36) to satisfy (2.8) one has to find B∗ and C∗ on each
boundary Γ such that the following holds:

A = B∗T
C −C∗T

B. (2.37)

Since Bu and Cu are the same on both boundaries, also B∗ and C∗ are the
same on x = 0 and x = 1. By virtue of (2.13) and (2.14) equation (2.37) is
solved by:

[

−C∗

B∗

]

=

(

[

B

C

]−1
)T

AT =

(

0 1
−1 0

)

, (2.38)

and hence B∗p = −p and C∗p = −px at both boundaries as found earlier
in (2.34) and (2.33), respectively. With B∗p = h and h = 0 on both
boundaries, the boundary conditions for the dual problem become:

−p(0) = −p(1) = 0 ⇒ p(0) = p(1) = 0,

which is the same result as found earlier, given in (2.35).
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The solution of the dual problem (2.35) is given by:

p(x) =
1

k2

(

(e−k − 1)(ekx − e−kx)

ek − e−k
+ 1

)

, (2.39)

which is shown in figure 2.1(b) for k = 1, 2, 4.

For completeness, the quantity of interest is also computed by its dual
equivalent (2.9), although it is not of importance in goal-oriented modelling
error estimation. With f = 0 and a from the primal problem (2.24) one
finds:

Q = (C∗p, a)∂Ω = −pxu|10 = −px(1) =
ek + e−k − 2

k(ek − e−k)
, (2.40)

which is equal to substitution of u in (2.28). Note that in the primal case
the quantity of interest Q is an integral over the whole domain Ω = (0, 1)
and in the dual case Q depends solely on the derivative of the dual variable
at the boundary x = 1.

For the coarse model equation we can follow the same procedure to define
its corresponding dual problem, resulting in:

L∗
0p0 := −p0xx = 1, x ∈ Ω, p0(x) ∈ C2(0, 1), (2.41a)

B∗
0p0 := −p0 =

{

h0 = 0, x = 0,
h1 = 0, x = 1,

(2.41b)

of which the solution is given by:

p0(x) = −
1

2
x2 +

1

2
x, (2.42)

which is shown in figure 2.1(b) together with the fine dual solution for
k = 1, 2, 4. This figure shows, not surprisingly, that the the approximation
of the fine model solution (2.39) by the coarse model solution (2.42) improves
for a decreasing reaction coefficient k.

Based on the coarse dual solution (2.42) the quantity of interest Q can
be approximated by its dual equivalent as in (2.40) noting that C∗

0 is found
to be the same as C∗:

Q = (C∗
0p0, a)∂Ω = −p0x(1) =

1

2
, (2.43)

which is equal to substitution of the coarse model solution (2.27) in the
quantity of interest (2.28).
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2.4.3 The error estimator

The modelling-error estimator (2.20) for the diffusion-reaction problem us-
ing the fine dual solution and with the operator C∗ given in (2.33), becomes:

R(u0, p) = (p, f − Lu0)Ω + (C∗p, a − Bu0)Γ (2.44)

= (p,−Lu0)Ω + (px, a0 − Bu0)x=0 + (px, a1 − Bu0)x=1.

To compute the model residuals on Ω and Γ the fine model operators L and
B as given in (2.24) are applied to the coarse model solution u0(x) = x
(see (2.27)). This yields together with the dual solution (2.39):

R(u0, p) = (p,−k2 x)Ω + (px, a0 − x)x=0 + (px, a1 − x)x=1 (2.45)

= (p,−k2 x)Ω =

∫ 1

0

1

k2

(

(e−k − 1)(ekx − e−kx)

ek − e−k
+ 1

)

(−k2 x) dx

=
ek + e−k − 2

k(ek − e−k)
−

1

2
.

As expected, for a linear problem with use of the fine dual solution, the
result (2.45) is exact (see the real modelling error in (2.29)). There are
no boundary contributions to the error estimator since the fine and coarse
models have the same boundary conditions.

As mentioned before, when using the modelling-error estimator to drive
a model-adaptation algorithm, the efficiency of the algorithm lies in the use
of the coarse dual solution (2.42) in the estimator, see equation (2.21):

R(u0, p0) =(p0, f − Lu0)Ω = (p0,−k2 x)Ω (2.46)

=

∫

Ω

(

−
1

2
x2 +

1

2
x

)

(−k2 x) dx = −
1

24
k2.

The real error and the error estimators (2.45) and (2.46) are shown for
k = 0 . . . 4 in figure 2.2(a). The figure shows that R(u0, p0) follows closely
the real error (and the exact estimator R(u0, p)) for small k, but the over-
estimation grows rapidly for k & 2. This behaviour is emphasised by the
efficiency index shown in figure 2.2(b). The efficiency index is common for
indicating the quality of an error estimator, and is defined as the ratio of
the error estimator and the real error:

Ieff =
R(u0, ·)

Q(u) − Q(u0)
, (2.47)

where R(u0, ·) can be either the fine dual-weighted estimator R(u0, p) or
the coarse dual-weighted estimator R(u0, p0).
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Figure 2.2: The error estimators and efficiency index as function of k.

2.5 Discrete example with adaptive modelling

In this section, which is an extended version of the work presented in [42],
the illustration for the linear differential approach in section 2.4 is com-
puted by means of the finite element method (FEM). A local adaptation
of the model is applied to improve the approximation of the coarse model.
The problem is reformulated in a discrete way by a first-order finite ele-
ment approximation. This causes a discretisation error in the primal and
dual solutions which also affects the modelling-error estimator. Obtain-
ing estimates of the discretisation error in the quantity of interest in case
of adaptive modelling is however, beyond the scope of the present study.
See [43, 44, 12, 13, 14] for (goal-oriented) estimation and minimisation of
discretisation errors by mesh adaptation.

The case studied in this example is the same as in section 2.4 where the
linear differential approach is illustrated for a diffusion-reaction problem.
First the details of the applied adaptive modelling algorithm are given in
section 2.5.1. Then the details on the computation of the discrete modelling-
error estimator is given in section 2.5.2 followed by the refinement criteria in
the adaptation algorithm in section 2.5.3. The results of the computations
are given and discussed in the final section 2.5.4.
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2.5.1 Adaptive modelling algorithm

The implemented adaptive modelling algorithm is based on the work of
Oden and Vemaganti [31] on goal-oriented adaptive modelling of heteroge-
neous materials. Other similar algorithms can be found in [12, 33, 45]. The
algorithm consists out of a global and a local loop and is summarised as
follows:

do while |R(u0, p0)| > global tolerance level

• compute coarse model solutions u0 and p0

• estimate the global modelling error R(u0, p0)

• localise modelling error estimate by el
Q

• if |el
Q| > local tolerance level

– refine model of element l

In the global loop the coarse primal and dual solutions are computed and
the global modelling-error is estimated. When the estimated error is outside
a user-defined tolerance with respect to the quantity of interest (based on
the coarse model solution) Q(u0), the local loop is entered. In the local loop
the modelling error is localised and compared with a threshold value. In
case the threshold is exceeded, the model type (i.e. the element ‘stiffness’
matrix1) of the relevant element is modified to represent the fine model
equation.

In the following sections the computation of the discrete modelling-error
estimator and localisation of the estimator are discussed, as well as the
global and local refinement criteria used in the adaptation algorithm given
above.

2.5.2 Discrete estimation and localisation of the error

In the discrete approach the modelling-error estimator (2.18) in the quan-
tity of interest consists of contributions by the modelling error and the
discretisation error:

Q(u) − Q(u0) = R(u0, p) = R(uh
0 , ph) + R(u0 − uh

0 , p − ph), (2.48)

where uh
0 and ph are the discrete approximations (computed by any type

of discretisation, e.g. a finite element or finite volume approach) of u0

1The term ‘stiffness’ is commonly used in the FEM to refer to the coefficient matrix
for a single element since the FEM was first applied to structural analysis but it is used
in other applications as well.
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and p, respectively. The first term in equation (2.48), R(uh
0 , ph), is the

computed modelling-error estimate and the second term is the discretisation
error in the estimator. As can be seen in the adaptation algorithm in the
previous section and for reasons described in the theory in section 2.3, the
coarse dual-weighted estimator R(u0, p0) will be used in practice, so the real
modelling-error in Q is estimated by:

Q(u) − Q(u0) ≈ R(u0, p0) = R(uh
0 , ph

0 ) + R(δh
u , δh

p ), (2.49)

where δh
u = u0 − uh

0 and δh
p = p0 − ph

0 are the discretisation errors in the
primal and dual approximations, respectively. The discretisation error can
be computed by using the analytical solutions as computed in section 2.4.
After the model is (locally) adapted however, the coarse solution uh

0 is com-
puted by a mix of coarse and fine model elements. This also means that
besides the coarse primal solution uh

0 , the coarse dual solution ph
0 improves

after applying local adaptation of the model. Therefore the discretisation
error can only be computed by constructing an analytical solution on the
sub-domains where the fine and coarse models are used. This is however,
beyond the scope of the research. The discretisation error is computed for
the initial computation in the adaptive modelling algorithm when all the
elements are of diffusion type.

The estimator in the case discussed in section 2.4 only has a contribution
from the inner domain as can be seen in equation (2.46). With Nn the num-
ber of nodes in the finite element formulation the discrete implementation
for the estimator becomes:

R(uh
0 , ph

0 ) =

Nn
∑

i=1

ph
0 i

Nn
∑

j=1

(fh
i − Lh

i,ju
h
0 j), (2.50)

where Lh
i,j is the discrete operator (i.e. the global stiffness matrix) of the

fine model.

Localisation of the estimator For the adaptive modelling algorithm the
modelling-error estimator needs to be localised to yield el

Q in each individual

element (see the algorithm in section 2.5.1). The local error estimate el
Q

is derived from the global estimator (2.50) by considering the individual
contribution of each element to the global error estimator:

el
Q ≈ Ri(u

h
0 i, p

h
0 i) =

1

nl

nl
∑

i=1

ph
0 i

Nn
∑

j=1

(fi − Lh
i,ju

h
0 j) (2.51)

where nl is the number of nodes of the considered element l (nl = 2 for a
first-order one-dimensional element).
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2.5.3 Global and local refinement criteria

As given in the adaptation algorithm in section 2.5.1, the adaptation loop
is entered when the estimator R(uh

0 , ph
0) exceeds a tolerance level:

|R(uh
0 , ph

0 )| > αtol|Q(uh
0 )|.

The choice of αtol is determined by the required accuracy of the quantity
of interest and is therefore a user-defined parameter. One should be aware
however, that the required accuracy in this case is defined with respect to
the quantity of interest based on the coarse model solution Q(uh

0), since the
fine model-based quantity of interest Q(uh) is not available. After adapting
the model locally however, the quality of the approximation uh

0 improves
(i.e. converges to the fine model solution uh for increasing number of fine-
model elements) and therefore the approximation of the quantity of interest
Q(uh

0) as well.
When the error in the global quantity of interest exceeds the tolerance

level, the local refinement loop is entered. In this local refinement loop
the individual contribution of each element to the global error estimator is
considered. When the localised error exceeds a tolerance level, expressed
as:

|el
Q| >

1

Nn
βtol|R(uh

0 , ph
0 )|, (2.52)

the element stiffness matrix of the considered element is modified to repre-
sent the fine model equation. The choice of βtol is less simple and is more
or less problem dependent. The following general requirements determine
the bounds on βtol:

• Minimisation of the number of adaptation loops. This determines the
upper bound of βtol.

• Minimisation of the size of the sub-domain(s) in which the fine model
is applied. This determines the lower bound of βtol.

Note that both aspects focus on limiting the computational time but deter-
mine different bounds on βtol.

Additional notes: Braack and Ern [12] apply a slightly different adaptive
modelling strategy from the one described in section 2.5.1. They describe a
combined adaptive modelling and meshing strategy in which a balancing of
the sources of error (mesh and model) is used to determine when the mesh
and when the model is adapted. For the adaptation of the model the local
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modelling error is compared with a tolerance level related to the L1-norm
of the error estimators:

|el
Q| >

1

Nn
TOL, (2.53)

in which Braack and Ern choose TOL = 0.5‖eQ‖1. This strategy has been
applied successfully to convection-diffusion-reaction problems. Braack and
Ern [12] also mention that the strategy for refining the model depends
strongly on the problem. The choice to multiply the L1-norm of the es-
timated errors with 0.5 seems quite arbitrary though. One might compare
this with the βtol from the present refinement strategy. In fact, the refine-
ment strategy based on the L1-norm of the error is in practice equal to the
present refinement strategy:

‖eQ‖1 =

Nn
∑

i=1

|p0i|

Nn
∑

j=1

|fi − Li,ju0j |, (2.54)

which in this problem results in the absolute value of the global error es-
timate |Q(e0)|, equation (2.50), used in the adaptation algorithm with the
local refinement criteria of (2.52). When we choose βtol = 0.5 we indeed
get the same results as for the computations using the L1-norm based error
tolerance level.

2.5.4 Numerical results

In this section we present the results of the finite element approach with
linear first-order elements. The adaptation algorithm as described in sec-
tion 2.5.1 is implemented and the choice of the local adaptation threshold
βtol on the computations is investigated. Numerical tests are performed for
βtol=0.5, 1.0 and 1.5 where βtol=0.5 corresponds to the error tolerance level
according to [12]. The computations are performed with 10 elements, k =
2 and a global error tolerance level of αtol = 0.05. The efficiency index Ieff

of the estimator is defined as:

Ieff =
R(uh

0 , ph
0 )

Q(uh) − Q(uh
0)

,

for which uh is computed explicitly, which is an indication for the quality of
the estimator. An efficiency index of Ieff = 1 is the optimum. The discrete
as well as initial analytical primal solutions for the three test-cases βtol=0.5,
1.0 and 1.5 are shown in figure 2.3. In the figures ‘run 0’ is the initial run
before the adaptation algorithm is entered where all elements are of the
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coarse model (diffusion) type. The figures show that the coarse solution
approaches the fine model (analytical) solution, indicated by ‘u, k = 2’.

In table 2.1 the results from adaptation are given for the different values
of βtol. The ratio of fine-model elements over coarse-model elements is
indicated by L/L0. Furthermore the approximating quantity of interest
Q(uh

0), the discrete error estimator R(uh
0 , ph

0 ) and the discrete real error
Q(uh) − Q(uh

0 ) are given. Comparing the results for different βtol from
table 2.1 shows that with βtol = 0.5 and 1.0 the prescribed accuracy is
obtained after one adaptation step, but with βtol = 0.5 more elements have
been adapted. Although this simple example does not illustrate the saving of
computational time when adaptive modelling is applied, one can understand
that in complex problems adapting 60 or 80% of the domain could mean a
significant difference in computational time. Table 2.1 shows furthermore
that computations with βtol = 1.5 require 2 adaptation steps to meet the
required tolerance and therefore one can conclude that βtol = 1.5 is too
high. In this particular example βtol = 1.0 gives optimal results in the sense
of the requirements mentioned in section 2.5.3. The choice of βtol = 0.5
corresponds to the local refinement strategy by Braack and Ern [12], but in
the diffusion-reaction problem discussed in this section it is not the optimal.
Therefore no conclusions can be drawn on the optimal value for βtol in other
problems.

βtol run L/L0 Q(uh
0 ) R(uh

0 , ph
0 ) Q(uh) − Q(uh

0) Ieff

- 0 0 0.5 -1.6500e-01 -1.1920e-01 1.38
0.5 1 .8 0.38481 -4.2573e-03 -4.0111e-03 1.06
1.0 1 .6 0.39404 -1.3039e-02 -1.2330e-02 1.06
1.5 1 .3 0.43038 -5.8524e-02 -4.9587e-02 1.18

2 .6 0.39404 -1.3039e-02 -1.2330e-02 1.06

Table 2.1: Adaptation results for k = 2, αtol=0.05, βtol = 0.5, 1 and 1.5.

Quality of the modelling-error estimator The efficiency index Ieff

demonstrates the quality of the error estimator; in the ideal case it is equal
to unity. Table 2.1 shows that the efficiency index is equal to 1.38 for
the initial run with the coarse model. After locally adapting the model in
several elements Ieff improves drastically. Table 2.1 shows that the more
elements are adapted, the closer Ieff approaches unity. This improvement
of the estimator is caused by the improvement of the coarse primal as well
as the dual solution (i.e. uh

0 and ph
0 approach the fine model solutions uh

and ph, respectively).
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We see that the efficiency index for βtol = 0.5 and 1.0 in both cases is
1.06 although for βtol = 0.5 there are 80% of the elements modified to the
fine model vs. 60% in case of βtol = 1.0. This is due to the discretisation
error: when applying 100 elements for βtol = 1.0, Ieff =1.04 and 72% of
the elements are adapted. The overestimation of the coarse dual-weighted
estimator appears to grow with decreasing number of elements.

Influence of discretisation error The discretisation error in the
modelling-error estimator R(δh

u , δh
p ) is computed for the pre-adaptation so-

lution by using the exact analytical solutions. (See section 2.4.1.) This is
shown together with the computed modelling-error estimate for N = 10
and N = 100 in table 2.2. A comparison between the discretisation error
R(δh

u , δh
p ) and the estimator R(uh

0 , ph
0 ) shows that the discretisation error

is two orders of magnitude lower than the estimator in case of 10 elements
and four orders of magnitude lower with 100 elements.

N R(δh
u , δh

p ) R(uh
0 , ph

0)

10 1.2685e-3 -1.6500e-01
100 1.2693e-5 -1.6665e-01

Table 2.2: Discretisation error in the estimator.

The discretisation error in the modelling-error estimator might indirectly
influence the number of adaptation loops. Due to the discretisation error
in the estimated modelling error, the adaptive modelling threshold may (or
may not) just be exceeded. When it exceeds the adaptation threshold due to
discretisation error whilst the ‘real’ modelling error (in the limit of infinitely
small mesh-size) is below the adaptation threshold, a new computational
expensive adaptation loop is entered. Therefore, it is preferable to combine
model adaptation with mesh adaptation for global functionals as in [12].

Another advantage of combining adaptive modelling and meshing lies
in their common goal to minimise computational time. Minimising the
number of elements as well requires the decoupling of the model and dis-
cretisation error. It is then possible to balance adaption of the model and
mesh in an optimal way to minimise computational time. The necessity for
this balancing for flow problems can be illustrated by the following situa-
tion. If one solves the inviscid Euler equations and wants to determine the
modelling error in a quantity of interest with respect to the Navier-Stokes
equations, the residuals in viscous areas are strongly influenced by the mesh
size through artificial diffusion. In that case, the ‘Euler cells’ are adapted to
‘Navier-Stokes cells’ whilst instead the mesh should be adapted to decrease
the artificial diffusion. The model should be only modified in case the phys-
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ical diffusion is large. Therefore the modelling error should be separated
from the discretisation error.

2.6 Conclusions

In this chapter the linear differential approach is presented and illustrated
analytically for a linear problem. Also a discrete example is given of an
adaptive modelling process for a linear problem by means of a finite element
approach.

The analytical illustration shows that the goal-oriented modelling-error
estimator for a linear quantity of interest is exact when using the fine dual
solution. When the coarse dual solution is used as weighting function a dual
error is introduced. This results in an over-estimation of the real modelling
error in the quantity of interest.

In the discrete example the modelling-error estimator is combined with
an adaptive modelling algorithm. Numerical experiments show that the
coarse model is locally (i.e. in a discrete element) refined to the fine model
when the required accuracy for the quantity of interest is not achieved. The
refined elements are those that are of most influence on the accuracy of the
quantity of interest. After refinement and a new computation based on a
mix of fine and coarse model elements, the modelling error in the quantity
of interest decreases as can be expected.
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(a) Primal solutions for βtol = 0.5
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(b) Primal solutions for βtol = 1.0
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(c) Primal solutions for βtol = 1.5

Figure 2.3: Primal solutions during adaptation for βtol=0.5, 1.0 and 1.5



Chapter 3

Variational approach

To perform goal-oriented modelling-error estimation for nonlinear problems
a possible approach is to linearise the hierarchical models and then follow
the linear differential approach described in chapter 2. However, linearising
the model equations before deriving the modelling-error estimator, means
that all information contained by high-order terms in the modelling-error es-
timator is lost. To incorporate these terms in the estimator, now the general
variational approach to modelling-error estimation for nonlinear problems
is presented here. The variational approach, in which the problems are
considered in a weak formulation, is developed by J.T. Oden et. al. in
[17, 27, 31, 46] on modelling-error estimation and adaptive methods for hi-
erarchical modelling in computational mechanics. The DWR method in the
variational approach was introduced by Becker and Rannacher in [18, 19]
for the a-posteriori estimation of discretisation errors.

In applying the variational approach to problems with hierarchical mod-
els with different boundary conditions (due to a difference in the type of the
equations), it is shown that it is essential to impose boundary conditions
weakly. In this case the boundary operators are included in the model op-
erator explicitly such that boundary residuals can be included in the error
estimator explicitly.

Another advantage of the variational approach is the derivation of the
dual problem and its boundary conditions. One can determine whether or
not the dual problem is well-posed, as will be discussed later.

Firstly, some preliminaries and comments are given in section 3.1 re-
quired for a better understanding of the problem in variational form. Then,
the fine model and the derivation of its dual problem are presented in sec-
tion 3.2 after which the coarse problem is discussed in section 3.3. Addi-



32 Variational approach

tional comments are given on the treatment of boundary conditions in the
variational form in section 3.5. This section is followed by an illustration of
the variational approach by the diffusion-reaction problem. In this illustra-
tion, two aspects are discussed: the high-order term in the estimator in case
of a nonlinear quantity of interest and the occurrence of a boundary residual
in the estimator. The latter is caused by different boundary conditions for
the fine and coarse model.

3.1 Preliminaries and comments

The general theory of goal-oriented modelling-error estimation as derived by
Oden and Prudhomme [27] based on the Dual-Weighted Residual (DWR)
method developed by Becker and Rannacher [18, 19], is based on two as-
sumptions which must be stated before continuing:

• functionals are assumed to be differentiable up to sufficiently high
order,

• the semi-linear and possibly nonlinear differentiable forms used are
defined on a Banach space V .

This allows to represent nonlinear functions as Taylor or mean-value expan-
sions in certain function spaces in terms of abstract derivatives and (well-
defined) remainders which are described in more detail in the appendix A.
In that case, differentiability of an abstract form means the existence of a
limit of the Gâteaux derivative of that form (see appendix A).

3.2 The fine or sophisticated model

We want to find the solution of the fine (or sophisticated) model, i.e. find
u ∈ V such that:

N(u, q) = F (q), ∀q ∈ V,

where N(·, ·) : V × V → R is the fine model operator which is a bilinear or
semi-linear form on V . The right-hand side F (·) is a linear functional on V .
It is noticed that all nonlinear terms are assumed to be included in N(·, ·).
The quantity of interest Q(u) where Q : V → R is a possibly nonlinear
differentiable functional. Such an evaluation can be formulated as solving
the (trivial) constrained optimisation problem for u ∈ V (see Becker and
Rannacher [19]):
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Find u ∈ V such that:
Q(u) = inf

v∈M
Q(v), (3.1)

where M = {v ∈ V ; N(v; q) = F (q), ∀q ∈ V }.
The minimum u corresponds to the stationary point (u, p) ∈ V × V of

the Lagrangian (or modified functional):

L(u, p) := Q(u) + F (p) − N(u, p), (3.2)

with p the adjoint variable or Lagrangian multiplier. The dual problem is
now derived by considering the Lagrangian in the stationary point (u, p).
For the stationary point (u, p) applies that small perturbations in u and p
lead to insignificantly small perturbations in the Lagrangian L(u, p):

L′((u, p); (v, q)) = 0, ∀(v, q) ∈ V × V. (3.3)

Here v indicates the variation in the direction of u and q the variation in the
direction of p. For a particular problem the derivative of the Lagrangian
with respect to u and p can be found by using the Gâteaux derivative:

L′((u, p); (v, q)) = lim
ε1,ε2→0

1

ε1,2
[L(u + ε1v, p + ε2q) −L(u, p)] = 0, (3.4)

when applying small perturbations ε1v and ε2q to u and p. For the La-
grangian (3.2) this yields:

L′((u, p); (v, q)) = Q′(u; v) − N ′(u; v, p) + F (q) − N(u, q), (3.5)

where the semicolon indicates that Q might be nonlinear in u.
Since the Lagrangian derivative (3.5) has to be zero according to equa-

tion (3.3) the result is that we seek (u, p) ∈ V × V such that:

N(u; q) = F (q), ∀q ∈ V, (3.6a)

N ′(u; v, p) = Q′(u; v), ∀v ∈ V. (3.6b)

These equations are the primal and dual problem, respectively.
Since N(·; ·) is linear in the second argument1, but possibly nonlinear

in the first argument, we write N ′(·; ·, ·) to indicate its ’Gâteaux derivative’
(see appendix A for details on Gâteaux derivatives of the operator N).
In a similar fashion higher order derivatives of N can be found such as
N ′′(·; ·, ·, )̇ which is tri-linear in the arguments following the semicolon, see
also appendix A. Since the output functional Q(·) might be nonlinear as
well it can be linearised by the Gâteaux derivatives for functionals given
in (A.2), appendix A.

1Semi-linear forms such as N(·; ·) are linear in all arguments that follow the semicolon.
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3.3 The coarse models

Consider a coarse model with the subscript 0. The same procedure for
deriving the dual problem for the fine model is followed for the coarse model.
We seek (u0, p0) ∈ V0 × V0 from:

N0(u0; q) = F (q), ∀ q ∈ V0, (3.7a)

N ′
0(u0; v, p0) = Q′(u0; v), ∀ v ∈ V0, (3.7b)

with p0 the coarse-model adjoint variable. In case V0 = V , u0 corresponds
to an approximation of u. This is a general assumption in adaptive mod-
elling which is not a-priori valid anymore when hierarchical models are of a
different type. First we assume that indeed V0 = V and derive the residuals
required for the DWR method.

3.4 The error estimator

When solving the coarse model instead of the fine model, the modelling
error in the quantity of interest is defined as:

Q(u) − Q(u0). (3.8)

To find an estimate for this modelling error in the quantity of interest,
we consider the degree to which the coarse model solution (u0, p0) fails to
satisfy the fine problem (3.6a), which is characterised by the residuals:

R(u0; q) = F (q) − N(u0; q), (3.9a)

R̄(u0, p0; v) = Q′(u0; v) − N ′(u0; v, p0), (3.9b)

which are the primal and dual residuals, respectively.
A relation between the modelling error in the quantity of interest Q(u)−

Q(u0) and the residuals (3.9) is given by THEOREM 1 in Oden and Prud-
homme [27]:

Theorem 3 When (u0, p0) is an approximation of the solution (u, p) from
the system (3.6) the following a posteriori error representation is found:

Q(u)−Q(u0) = R(u0; p0) + 1
2 (R(u0; ε0) + R̄(u0, p0; e0)) + r(e0, ε0), (3.10)

with the primal and dual errors given by:

e0 = u − u0 and ε0 = p − p0. (3.11)
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and the term r(e0, ε0) containing integral remainders of order three:

r(e0, ε0) = 1
2

∫ 1

0

{Q′′′(u0 + se0; e0, e0, e0) − 3N ′′(u0 + se0; e0, e0, ε0)

− N ′′′(u0 + se0; e0, e0, e0, p0 + sε0)}(s − 1)s ds. (3.12)

Note that r(e0, ε0) is zero for linear problems together with a quadratic or
linear quantity of interest.

Since this estimator representation is essential for the work in this thesis,
we will give the proof of Theorem 1 for completeness.

Proof The goal is to express the modelling error in terms of a (com-
putable) residual. Therefore the quantity of interest based on the fine as
well as the coarse model should be expressed in terms of residuals for which
we use (3.2):

Q(u) = L(u, p) − (F (p) − N(u; p)) = L(u, p), (3.13a)

Q(u0) = L(u0, p0) − (F (p0) − N(u0; p0)) = L(u0, p0) − R(u0; p0), (3.13b)

where we use the fact that (u, p) is an exact solution of the system (3.6).
We now obtain:

Q(u) − Q(u0) = R(u0; p0) + L(u, p) −L(u0, p0). (3.14)

For the Lagrangian terms we can find an expression by using a particular
Taylor expansion with integral remainders (see appendix A) which yields:

L(u, p) −L(u0, p0) =
1

2
L′((u0, p0); (e0, ε0)) +

1

2
L′((u, p); (e0, ε0))+

1

2

∫ 1

0

L′′′((u0, p0) + s(e0, ε0); (e0, ε0), (e0, ε0)(e0, ε0)))(s − 1)s ds. (3.15)

Since (u, p) is a stationary point of L resulting in equation (3.3) it follows
that L′((u, p); (e0, ε0) = 0. Here we assume that (e0, ε0) are small as well
and that e0 ∈ V and ε0 ∈ V . The latter follows by virtue of (3.11) and the
assumption V0 = V (described in section 3.3). For L′((u0, p0); (e0, ε0)) we
can do the same but instead we will use (3.5) to incorporate the residuals:

L′((u0, p0); (e0, ε0)) = {Q′(u0; v) − N ′(u0; v, p0)} + {F (q) − N(u0; q)}

= R̄(u0, p0; v) + R(u0; q).



36 Variational approach

Finally, the tri-linear form of L in the integral of (3.15) is also written in
terms of derivatives of N and Q, of which the final result is:

L′′′((u0, p0) + s(e0, ε0); (e0, ε0), (e0, ε0)(e0, ε0)))(s − 1)s ds =

Q′′′(u0 + s e0; e0, e0, e0) − 3N ′′(u0 + s e0; e0, e0, ε0)−

N ′′′(u0 + s e0; e0, e0, e0, p0 + s ε0). (3.16)

This allows us to write for (3.15):

L(u, p) −L(u0, p0) = 1
2R(u0; ε0) + 1

2 R̄(u0, p0; e0) + r(e0, ε0), (3.17)

where r(e0; ε0) is given by (3.12) and the proof of Theorem 3 is complete. 2

To limit ourselves to a single residual evaluations, the dual residual
R̄(u0, p0; e0) in (3.17) is expressed in terms of the primal residual R(u0; ε0),
which is given in Lemma 1 in [27]:

Lemma 1 Given any approximation (u0, p0) of the solution (u, p) from the
system (3.6), the equality

R̄(u0, p0; v) = R(u0; ε0) + ∆R, (3.18)

holds where

∆R =

∫ 1

0

N ′′(u0+se0; e0, e0, p0+sε0)ds−

∫ 1

0

Q′′(u0+se0; e0, e0)ds. (3.19)

Proof The dual residual can be rewritten as follows:

R̄(u0, p0; v) = Q′(u0; v) − N ′(u0; v, p0)

= Q′(u0; v) − Q′(u; v) + Q′(u; v) − N ′(u0; v, p0)

= −[Q′(u; v) − Q′(u0; v)] + N ′(u; v, p) − N ′(u0; v, p0)

= −[Q′(u; v) − Q′(u0; v)]

+ [N ′(u; v, p) − N ′(u0; v, p)] + N ′(u0; v, ε0).

Using the following (exact) Taylor expansion with integral remainder de-
rived using appendix A:

Q′(u; v) − Q′(u0; v) =Q′(u0 + e0; v) − Q′(u0; v)

=

∫ 1

0

Q′′(u0 + se0; e0, v) ds,

N ′(u; v, p) − N ′(u0; v, p) =N ′(u0 + e0; v, p) − N ′(u0; v, p)

=

∫ 1

0

N ′′(u0 + s e0; e0, v, p) ds,
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we obtain:

R̄(u0, p0; v) = N ′(u0; v, ε0) −

∫ 1

0

Q′′(u0 + se0; e0, v)ds

+

∫ 1

0

N ′′(u0 + s e0; e0, v, p) ds. (3.20)

Furthermore the primal residual can be rewritten in terms of the first
derivate N ′(u0; v, ε0) as appears in equation (3.20) which would complete
the proof. Therefore we use that u is the solution of (3.6a) in order to
replace F (q) by N(u; q) in the residual (3.9a):

R(u0; q) =F (q) − N(u0; q) = N(u; q) − N(u0; q)

=N(u + e0; q) − N(u0; q), ∀q ∈ V,

for which we can write using Taylor expansion (A.3b) from appendix A:

R(u0; q) = N ′(u0; e0, q) +

∫ 1

0

N ′′(u0 + s e0; e0, e0, q)(1 − s) ds. (3.21)

Taking q = ε0 in (3.21) and v = e0 in (3.20) gives the relation:

R̄(u0, p0; e0) = R(u0; ε0) −

∫ 1

0

Q′′(u0 + se0; e0, e0)ds+

∫ 1

0

N ′′(u0 + s e0; e0, e0, p − (1 − s)ε0) ds,

which completes the proof from Lemma 1 since p− (1− s)ε0 = p0 + s ε0. 2

With Lemma 1 and Theorem 3 the goal-oriented modelling-error esti-
mator can now be given in terms of the primal residual:

Q(u) − Q(u0) = R(u0; p0) + R(u0; ε0) + 1
2∆R + r(e0; ε0). (3.22)

Since the residual R(u0; ·) is linear in the second argument, equation (3.22)
can be written as:

Q(u) − Q(u0) = R(u0; p) + 1
2∆R + r(e0; ε0). (3.23)

Observation of ∆R and r(e0; ε0) in equation (3.19) and (3.12), respec-
tively, shows that for linear problems with a quantity of interest which is
linear or quadratic in u, the estimator (3.23) reduces to the readily com-
putable residual R(u0, p) when the solutions u0 and p are known. For
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nonlinear problems the estimator (3.23) requires the computation of the
high-order terms ∆R and r(e0; ε0). When the errors (or residuals) e0 and
ε0 are known to be small however, these terms may be neglected. Note that
when the hierarchical models are of a different type however, this does not
have to be the case. Therefore, similar to the linear differential approach
in section 2.3, the primal residual e0 on the boundary has to be considered
explicitly. This will be discussed in section 3.5.

The error estimator in practice

As explained in section 2.3 for the linear differential approach, computations
of the fine dual solution p is undesirable. This is due to the fact that
solving the fine dual problem is equally expensive as solving the fine primal
problem. Therefore, in practice, the coarse dual solution instead of the fine
dual solution is used in the error estimator:

Q(u) − Q(u0) ≈ R(u0; p0) + 1
2∆R + r(e0; ε0). (3.24)

Neglecting the dual error ε0 can have a large effect on the quality of the
estimator. This effect however, depends on the dual boundary conditions
and is problem dependent. See section 2.3 for a discussion on possible effects
when neglecting the dual error.

For nonlinear problems the high-order terms ∆R and r(e0, ε0) are nonzero.
The error estimator (3.23) with the high-order terms ∆R and r(e0, ε0) re-
quires the computation or estimation of these high-order terms. Since the
primal and dual errors e0 and ε0 are unknown on the inner-domain, high-
order terms can not be computed on the inner-domain. An analysis of
the high-order terms on boundaries is required to find whether computable
high-order boundary terms are present. Possible high-order terms should
be included in the estimator when they are of significant magnitude.

3.5 Treatment of boundaries

In the theory derived above we assume V0 = V , which is not the case
when hierarchical models are of a different type. An example of this is
a convection-diffusion problem where the diffusion operator is omitted in
the coarse model. One way to circumvent this issue is to impose boundary
conditions weakly and imply additional restrictions to V0 such that V0 ⊂ V .
The problem concerning convection-diffusion is studied in chapter 4.

The case V0 6= V means that the assumption in the previous section that
the high-order terms ∆R and r(e0; ε0) can be neglected when the errors e0

and ε0 are known to be small, does not have to apply to such problems.
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When model equations are of a different type, the errors can be large on the
boundary. Consider, for instance, the solution u0 of the Euler equations for
a particular problem as an approximation of the Navier-Stokes solution u.
The required boundary conditions on a wall (slip versus no-slip) mean that
the error e0 is large (order of u) on the boundary! The same can be said for
the error ε0 of the corresponding dual problems. The errors e0 and ε0 on
the boundary are also mentioned as the boundary modelling residuals for
the primal and dual problem. In the next sections we mean the error e0 on
the boundary when we speak of the boundary residual.

By applying the DWR method to model problems where hierarchical
models are of a different type, such as the convection-diffusion problem, we
will study the influence of the boundary residuals on the modelling-error
estimator and its dependence on a control-parameter such as the diffusion
coefficient in convection-diffusion problems. Such a control parameter de-
termines the degree in which the approximation (u0, p0) differs from the fine
model solution (u, p).

Weakly imposing boundary conditions in the weak formulation of the
problems ensures the incorporation of boundary residual contributions in
modelling-error estimates by the DWR method. By weak implementation
of boundary conditions the boundaries are treated separately in the opera-
tor N(·, ·) in (3.6a) where the value assigned to the boundary condition is
substituted in the right-hand side F (q). A consequence is that the right-
hand side for the fine model (3.6a) and coarse model (3.7a) are different
which is indicated by using the subscript 0 for the right-hand side as well:

N0(u0; q) = F0(q), ∀ q ∈ V. (3.25)

The residual in the estimator (3.23) as given in (3.9a) is now modified by
adding N0(u0; p) − F0(p) = 0, which yields:

Q(u)−Q(u0) = F (p)−N(u0; p)+N0(u0; p)−F0(p)+ 1
2∆R+r(e0; ε0). (3.26)

Equation (3.26) allows us to split the contributions in the estimator into
contributions from the inner domain and the boundaries. A comparison
of equation (3.26) with the estimator (2.18) derived for linear problems
shows that both approaches separate the error estimator in inner-domain
and boundary contributions.

3.6 Illustration: 1-D diffusion-reaction

The variational approach is now applied to the diffusion-reaction problem
described in section 2.4 for the linear approach but with different bound-
ary conditions for the coarse model and a nonlinear quantity of interest.
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This demonstrates the inclusion of boundary residuals in the modelling-
error estimator and with this the importance of the weak implementation
of boundary conditions in a variational approach. The weak formulation
of the primal and dual equations of the diffusion-reaction problem is given
in section 3.6.1 after which the modelling-error estimator is derived in sec-
tion 3.6.2.

3.6.1 Weak formulation of the hierarchical models

The weak formulation of the fine model problem (2.24) with weakly imposed
boundary conditions is obtained by integration by parts and yields: find
u ∈ V such that

N(u, q) = F (q) ∀q ∈ V, (3.27)

where:

N(u, q) =

∫ 1

0

(

∂u

∂x

∂q

∂x
+ k2uq

)

dx −
∂u

∂x
q|10 + u(1)

∂q(1)

∂x
− u(0)

∂q(0)

∂x
,

F (q) = a1 ∂q(1)

∂x
− a0 ∂q(0)

∂x
,

with V = H1(Ω) and a0 = 0 and a1 = 1 the boundary conditions as
in (2.24). The solution to this primal problem is given in (2.25).

The nonlinear quantity of interest is the ‘energy measure’ on x ∈ (0, 1):

Q(u) =

∫ 1

0

u2

2
dx ⇒ Q′(u; v) =

∫ 1

0

uv dx, (3.28)

which is linearised using (A.2). The dual equation is derived according to
section 3.2:

N ′(u; v, p) = Q′(u; v), ∀v ∈ H1(0, 1) ⇒
∫ 1

0

(

∂p

∂x

∂v

∂x
+ k2pv

)

dx + v
∂p

∂x
|10 − p

∂v

∂x
|10 =

∫ 1

0

uv dx. (3.29)

Since (3.29) has to hold for all v the boundary conditions are found by:

−p
∂v

∂x
|10 = 0 ⇔ p(0) = p(1) = 0. (3.30)

Suppose now the coarse model has a different boundary condition a1
0 6=

a1 on x = 1 which ‘improves’ the approximation, especially for larger values
of k. What the exact value of the boundary condition a1

0 for the ‘optimal’
approximation should be, is not considered here and goes beyond the scope
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of the illustration. Due to the difference in boundary conditions between the
fine and the coarse model a boundary contribution appears in the modelling-
error estimator. On x = 0 the same values are assigned to the boundary
condition for both models: a0

0 = a0. The coarse model (2.2a) in variational
form is then written as:

N0(u0, q) = F0(q), ∀q ∈ H1(0, 1) ⇒
∫ 1

0

(

∂u0

∂x

∂q

∂x

)

dx −
∂u0

∂x
q|10 + u0(1)

∂q(1)

∂x
− u0(0)

∂q(0)

∂x

= a1
0

∂q(1)

∂x
− a0

0

∂q(0)

∂x
. (3.31)

The solution to this problem with a0
0 = 0 and a1

0 ∈ (0, 1) is given by:

u0(x) = a1
0 x. (3.32)

The fine and coarse model solutions from (3.27) and (3.32), respectively,
are given in figure 3.1(a). From this figure it is imaginable that the coarse
model with a1

0 = 0.5 is a better approximation of the fine model with k = 4
than the coarse model with a1

0 = 1 when the goal is to compute the given
quantity of interest (3.28).

The dual problem of the coarse model (3.31) is given as well in order to
compute both the fine and coarse dual-weighted estimator:

N ′
0(u0; v, p0) = Q′(u0; v), ∀v ∈ H1(0, 1) ⇒

∫ 1

0

(

∂p0

∂x

∂v

∂x

)

dx + v
∂p0

∂x
|10 − p0

∂v

∂x
|10 =

∫ 1

0

u0v dx. (3.33)

Equation (3.33) yields the same boundary conditions as found for the fine
dual problem (3.30):

p0(0) = p0(1) = 0.

Note that the coarse model dual boundary conditions have not changed
compared to (2.41b), although the boundary conditions of the primal prob-
lem have changed. This is due to the quantity of interest being an integral
over the domain and not over the boundary.

Without giving the complete analytical solutions here, the fine and
coarse dual solutions of (3.31) and (3.33), respectively, are given in fig-
ure (3.1(b)) for various k and a1

0. The fine dual solution shows that the
highest weight for the modelling residual moves to the right for increasing
k. This behaviour is expected since the quantity of interest is quadratic
in u and therefore a perturbation in u in the vicinity of x = 1 has more
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influence on the quantity of interest than a perturbation in the vicinity of
x = 0. This trend for increasing k lacks in the coarse dual solution which is
independent of k, although the coarse dual solution is also slightly ‘shifted’
to the right (compare with the solutions in figure 3.1(b)).

The derivation of the dual problems with their boundary conditions in
the variational form as described above is more straightforward than in the
linear differential approach as given in section 2.4.2. As will become clear in
the application to linear convection-diffusion, not every quantity of interest
leads to a well-posed coarse dual problem when terms are omitted in the
coarse models. In that case, it is impossible to use the coarse dual solution
in the error estimator. The variational form of the dual problem reveals
whether or not the dual problem is well-posed more easily than in case of
the linear differential approach.
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Figure 3.1: Primal and dual solutions for various k and a1
0.
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3.6.2 The error estimator

The modelling-error estimator is now derived according to the exact modelling-
error representation by (3.26):

Q(u) − Q(u0) = R(u0; p) + 1
2∆R + r(e0, ε0) (3.34)

= F (p) − N(u0; p) + N0(u0; p) − F0(p) + 1
2∆R + r(e0, ε0)

= a1 ∂p(1)

∂x
− a0 ∂p(0)

∂x

−

{∫ 1

0

(

∂u0

∂x

∂p

∂x
+ k2u0p

)

dx −
∂u0

∂x
p|10 + u0(1)

∂p(1)

∂x
− u0(0)

∂p(0)

∂x

}

+

{∫ 1

0

(

∂u0

∂x

∂p

∂x

)

dx −
∂u0

∂x
p|10 + u0(1)

∂p(1)

∂x
+ u0(0)

∂p(0)

∂x

}

− a1
0

∂p(1)

∂x
+ a0

0

∂p(0)

∂x
+ 1

2∆R + r(e0, ε0).

The expressions for the high-order terms ∆R and r(e0, ε0) can be found
by (3.19) and (3.12), respectively. One finds that r(e0, ε0) = 0 and for ∆R:

∆R = −

∫ 1

0

Q′′(u0 + se0; e0, e0)ds = −

∫

Ω

e2
0dx. (3.35)

Equation (3.35) is not a computable term however, since e0 is not known
on Ω. Using a0 = a0

0 = 0 and with cancellation of terms the modelling-
error (3.34) reduces to:

Q(u) − Q(u0) = −

∫ 1

0

(

k2u0p
)

dx + (a1 − a1
0)

∂p(1)

∂x
+ 1

2∆R, (3.36)

which is still exact. As mentioned in section 3.4, the high-order terms
from the inner domain are neglected in practice (it requires the solution
of the modelling-error equation). Also estimation of these contributions is
generally not straightforward. Therefore the fine dual-weighted estimator
is computed by R(u0; p):

R(u0; p) = −

∫ 1

0

(

k2u0p
)

dx + (a1 − a1
0)

∂p(1)

∂x
. (3.37)

In figure 3.2 the estimator R(u0; p) and the real error Q(u)−Q(u0) are given
by the upper two surfaces, respectively, for k = 0, . . . , 4 and a1

0 = 0.5, . . . , 1.
The difference between the real error and the estimator (i.e. the upper two
surfaces in figure 3.2) is the high-order term 1

2∆R with ∆R given in (3.35).
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Using the coarse dual solution p0 from (3.33) to estimate the modelling
error according to (3.24) gives:

R(u0; p0) = −

∫ 1

0

(

k2u0p0

)

dx + (a1 − a1
0)

∂p0(1)

∂x
, (3.38)

which is represented in figure 3.2 by the lower surface.
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Figure 3.2: The real error and error estimators as function of k and a1
0.

Since the reaction coefficient k does not appear in the coarse primal and
dual problems (equations (3.31) and (3.33), respectively) the derivative ∂p0

∂x
is also independent of k. As a consequence, the boundary contribution
in (3.38) is also independent of k for a1

0 6= 0, even when the models converge
for decreasing k, i.e.:

lim
k→0

N(u; q) = N0(u0; q). (3.39)

This means that the boundary contribution in the error estimator remains
while the inner-domain contribution approaches zero. The remaining bound-
ary contribution for k → 0 can also be observed in figure 3.2.
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Figure 3.3: The error estimators and efficiency index as function of k for
a1
0 = 1.
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Figure 3.4: The error estimators and efficiency index as function of k for
a1
0 = .75.

Three slices of figure 3.2 for a1
0 = .5, .75 and 1 are given in the fig-

ures 3.3–3.5 together with their corresponding efficiency index (defined by
equation (2.47)). The efficiency index indicates the quality of the error es-
timator with respect to the real error. The case for a1

0 = 1 (which means
no boundary residual at x = 1) as shown in figure 3.3 is very similar to
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Figure 3.5: The error estimators and efficiency index as function of k for
a1
0 = .5.

the illustration in section 2.4 shown in figure 2.2, except for the quantity
of interest ( compare (2.28) and (3.28)). The fine dual-weighted estimator
R(u0, p) is no longer exact due to the high-order term (3.35). As suggested
in section 3.6.1 based on the primal solutions shown in figure 3.1(a) the
coarse model improves for increasing k when the boundary condition a1

0 de-
creases. This behaviour is confirmed by the figures 3.3–3.5: for decreasing
a1
0 the best approximation of the error estimators moves to larger k. For

a1
0 = .75 this is at k ≈ 1, 5 and for a1

0 this point lies at k ≈ 2.5. The
singularity in the efficiency index in figure 3.4(b) is caused by the change in
sign of the real error around k ≈ 2.5.

3.7 Conclusions

In this chapter the variational approach is presented, which is suitable for
nonlinear problems since it allows to incorporate high-order terms originat-
ing from nonlinear terms in the model equations. An analytical illustration
of the application of the variational approach is given for a linear problem
but with nonlinear quantity of interest. Due to this nonlinear quantity the
fine-dual weighted modelling-error estimator is not exact as in the case for
a linear quantity of interest.

In the illustrative problem the boundary conditions for the coarse and
fine problem are different which results in a boundary residual. It is shown
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that this boundary residual needs to be incorporated explicitly in the
modelling-error estimator.
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Part II

Applications





Chapter 4

Linear

convection-diffusion

In the diffusion-reaction illustrations in the previous chapters the hierarchi-
cal models are of the same type. The difference between the fine and the
coarse model is controlled by the reaction coefficient k and characterised
by the convergence of the sophisticated model by the approximating model
for the limit of vanishing k. For several classes of hierarchical models such
as in fluid dynamics however, models are not of equal type and the afore-
mentioned convergence of the fine model to the coarse model is not present.
An example is the solution of the Navier-Stokes equations which for the
limit of zero viscosity is not automatically equal to the solution of the Euler
equations.

The solution of a convection-diffusion problem often approaches a dis-
continuous limit as µ approaches zero. When µ is small it is regarded a
perturbation parameter and the situation is characterised as a singular per-
turbation problem. The solution of a singularly perturbed boundary value
problem such as convection-diffusion is, except for small layers, very close to
the solution of the reduced or approximating problem in which the diffusion
term is omitted. Omitting the diffusion term in the convection-diffusion
equation means that the mathematical type changes. In case of unsteady
problems, the equations change type from parabolic to hyperbolic. The
change of type of the equations, is in this case caused by a change in the
order of the equations, since the highest-order term is omitted. For these
problems special attention needs to be paid to the construction of the dual
problems and the modelling-error estimator.

Numerous literature has appeared on error estimation in singular per-
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turbation problems and it is still topic of ongoing research. The error esti-
mation however, often considers the (local) estimation in approximations by
asymptotic expansions [47], (time-) averaging techniques [48] or a-posteriori
estimates in numerical approximations [49, 50, 51, 52]. No literature is avail-
able on goal-oriented modelling-error estimation in singular perturbation
problems where the reduced problem is considered as the coarse model.

The application of the DWR method for goal-oriented modelling-error
estimation in singular perturbation problems is not that straightforward as
in regular perturbation problems such as the diffusion-reaction problem de-
scribed in the section 2.4. As highlighted in the previous chapters, boundary
residuals need to be taken into account explicitly, when boundary conditions
for the sophisticated and approximating models are not the same. This is
the case in singular perturbation problems and will be shown for the linear
convection-diffusion problem in this chapter.

First the general approach to convection-diffusion problems is given in
section 4.1. Then the application of the error-estimator is illustrated by
steady 1-D problems. These problems are analysed in an analytical way in
sections 4.2 and 4.4. It is shown that in these steady 1-D problems, the error-
estimator has only contributions from the boundaries. This emphasises
that it is important include the boundary residuals explicitly in the error-
estimator. In the final section 4.5 an unsteady cases is studied using a
spectral element approach.

4.1 Approach for convection-diffusion prob-

lems

The general approach to goal-oriented modelling-error estimation in
convection-diffusion problems is based on the variational approach discussed
in chapter 3. In the next chapter a nonlinear convection-diffusion problem
is studied in the variational form. To make comparison between linear and
nonlinear convection-diffusion easier, also the linear problem in this chapter
is given in variational form. From the analysis in the variational formulation
it becomes apparent what the mathematical drawbacks are, when applying
the DWR method to a singular perturbation problem.
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4.1.1 The fine model problems

Consider the convection-diffusion equation in (x, t) ∈ Ω× (0, T ) where Ω is
a domain in R

d with boundary Γ and T ∈ R
+:

∂u

∂t
+ ∇ · (cu) − µ∇2u = 0, x ∈ Ω, t ∈ (0, T ), (4.1)

with c the constant convective velocity and µ > 0 the constant scalar dif-
fusion coefficient. The boundary Γ is divided into an inflow, outflow and
noflow boundary, Γ−, Γ+ and Γ0, respectively, which are defined by:

Γ− := {x|x ∈ Γ; c · n < 0},

Γ+ := {x|x ∈ Γ; c · n > 0},

Γ0 := {x|x ∈ Γ; c · n = 0}. (4.2)

Here, n is the outward unit normal vector. Due to the parabolic character of
equation (4.1), boundary conditions need to be imposed on all boundaries.
We restrict ourselves to Dirichlet boundary conditions u(x, t) = a(x, t), x ∈
Γ, which yield for the inflow, outflow and noflow boundaries, respectively:

u(x, t) = a−(x, t), x ∈ Γ−, t ∈ [0, T ],

u(x, t) = a+(x, t), x ∈ Γ+, t ∈ [0, T ],

u(x, t) = a0(x, t), x ∈ Γ0, t ∈ [0, T ]. (4.3)

With the initial condition u(x, 0) = φ(x), the initial boundary conditions
can be found, e.g.: a−(x, 0) = φ(x), x ∈ Γ−. The weak form of the problem
is found by introducing a test function q, without imposing restrictions for
q on the boundaries and at t = 0. Then, integration by parts is performed
after which the boundary and initial conditions are imposed weakly. With
u ∈ V , where V is the Sobolev space H1(Ω), this yields: find u ∈ V such
that

N(u; q) = F (q), ∀q ∈ V, (4.4)
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with

N(u; q) =

∫ T

0

∫

Ω

(
∂u

∂t
q + q∇ · (cu) + µ∇u∇q)dΩdt

−

∫ T

0

∫

Γ

µ
∂u

∂n
q dΓdt +

∫

Ω

u(x, 0)q(x, 0)dΩ

−

∫ T

0

∫

Γ

µu
∂q

∂n
dΓdt −

∫ T

0

∫

Γ

cnuq dΓdt, (4.5a)

F (q) =

∫

Ω

φ(x)q(x, 0)dΩ −

∫ T

0

∫

Γ

µa
∂q

∂n
dΓdt

−

∫ T

0

∫

Γ

cnaq dΓdt, (4.5b)

where ∂
∂n ≡ n · ∇ and cn ≡ c · n. It is mentioned that the last integral of

N(u; q) in (4.5a), is usually not included in the weak form. For a proper
inclusion of boundary residuals in the goal-oriented error-estimator how-
ever, the terms are included. This will become clear shortly when the error
estimator is derived.

Suppose one is interested in evaluating the functional Q(u) from the so-
lution u of (4.4). Following the variational approach in chapter 3, such an
evaluation can be formulated as solving the (trivial) constrained optimisa-
tion problem (3.1), yielding the primal and dual equations:

N(u; q) = F (q), ∀q ∈ V, (4.6a)

N ′(u; v, p) = Q′(u; v), ∀v ∈ V. (4.6b)

The dual operator N ′(u; v, p) for the convection-diffusion problem with p
the dual solution, is derived from N(u, q) as given in (4.4) using the limit
form (A.1) from appendix A. This yields:

N ′(u; v, p) =

∫ T

0

∫

Ω

(−v
∂p

∂t
−v(c ·∇p)+µ∇p∇v)dΩdt−

∫ T

0

∫

Γ

µv
∂p

∂n
dΓdt

+

∫

Ω

v(x, T )p(x, T )dΩ −

∫ T

0

∫

Γ

µp
∂v

∂n
dΓdt. (4.7)

In equation (4.7) the convective boundary terms and the initial condition
have cancelled. The operator N ′(u; v, p) in (4.7) shows that the character-
istic direction of the dual problem is exactly opposite of the primal charac-
teristic direction with the dual initial condition given on t = T . This means
that an outflow boundary for the primal problem, is an inflow boundary
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for the dual problem. The dual problem is solved backward in time. Since
equation (4.6b) has to hold for all v ∈ V the dual boundary conditions and
the dual initial condition can be derived for each specific quantity of interest
that leads to a well-posed dual problem. This is illustrated by the problems
studied later in this chapter.

4.1.2 The coarse model

The coarse model problem is the convection equation which is also referred
to as the unperturbed or reduced problem, since µ is zero (see for instance [52,
35]). The coarse model is then given in strong form by:

∂u0

∂t
+ ∇ · (cu0) = 0, x ∈ Ω, t ∈ (0, T ), (4.8)

with the same initial condition as the fine model problem: u0(x, 0) = φ(x).
Boundary conditions for the coarse model are only required on the inflow
boundary Γ−. The approximating model in weak form is then given by:
find u0 ∈ V0 such that

N0(u0; q) = F0(q), ∀q ∈ V0, (4.9)

where

N0(u0; q) =

∫ T

0

∫

Ω

∂u0

∂t
q + q∇ · (cu0)dΩdt +

∫

Ω

u0(x, 0)q(x, 0)dΩ

−

∫ T

0

∫

Γ−

cnu0q dΓdt, (4.10a)

F0(q) =

∫

Ω

φ(x)q(x, 0)dΩ −

∫ T

0

∫

Γ−

cna−q dΓdt, (4.10b)

with cn ≡ c · n. Note that F0(q) 6= F (q) because the boundary and initial
conditions are imposed weakly, see also section 3.5. When the hierarchical
models are of equal type, we would have F0(q) = F (q). Before continuing
with the dual problem, some remarks are given on the solution spaces V
and V0.

Remarks on solution spaces Considering only sufficiently smooth so-
lutions of equation (4.9) allows to consider V0 = V and therefore u0 ∈ V .
This is essential for the variational approach in deriving the error estima-
tor, as described in chapter 3 and Oden and Prudhomme [27]. This restricts
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the possible solutions of (4.9) drastically. The work presented in this thesis
however, concerns the application of the DWR method for particular situa-
tions that are relevant for fluid-flow related problems. We do not strive for a
general framework for goal-oriented modelling-error estimation in classes of
hierarchical models in which models are of a different type. In such classes
one can have u ∈ V and u0 ∈ V0 with V0 6= V which requires a new and
thorough mathematical basis in order to apply dual-weighted residual er-
ror estimation. This is however, a research on its own and therefore not
considered in this thesis.

Apart from ensuring the inclusion of boundary residuals in the modelling-
error estimator, another important reason to impose boundary conditions
weakly is the following. When Dirichlet boundary conditions are imposed
strongly, the solution space for the convection-diffusion problem in (4.6a)
and for the convection problem in (4.9) are not identical since additional
restrictions are required. This is shown by considering the convection equa-
tion with strongly imposed homogeneous Dirichlet boundary conditions:
find u0 ∈ V0 such that

N0(u0; w) = F (w), ∀w ∈ V0, (4.11)

where

N0(u0; w) =

∫ T

0

∫

Ω

u0tw + w∇ · (cu0)dΩ dt,

F (w) = 0,

with V0 = {u0, w ∈ H1(Ω); u0, w = 0 on Γ−}1. By imposing the bound-
ary conditions weakly as in (4.9) no restrictions on the test-function are
required such that V0 = {u0 ∈ H1(Ω)} and therefore the test-function w
for the convection equation can be chosen from V , the test space of the
convection-diffusion problem.

Continuing the equations with weakly imposed boundary conditions and
considering only sufficiently smooth solutions, the coarse dual problem is
given by (see (3.7)):

N ′
0(u0; v, p0) = Q′(u0; v), ∀v ∈ V, (4.12)

with p0 the coarse dual solution. The coarse dual model operator N ′
0(u0; v, p0)

is derived from N0(u0; q), given in (4.10a). Using the relations (A.1) from

1In case of non-homogeneous Dirichlet boundary conditions, the problem can be made
homogeneous by so called ‘lifting’, see for instance [53].
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appendix A and performing integration by parts to transfer derivatives from
the v to p0, yields:

N ′
0(u0; v, p0) =

∫ T

0

∫

Ω

−v
∂p0

∂t
− v(c · ∇p0)dΩdt +

∫

Ω

v(x, T )p0(x, T )dΩ

+

∫ T

0

∫

Γ+

cnvp0 dΓdt. (4.13)

Since equation (4.12) has to hold for all v ∈ V , the dual boundary conditions
and initial condition can be derived for each specific quantity of interest that
leads to a well-posed dual problem.

4.1.3 The error estimator

In deriving the goal-oriented modelling-error estimator to estimate Q(u) −
Q(u0), the approach described in section 3.4 is followed. The general error
estimator is based on the exact error representation given in equation (3.22):

Q(u) − Q(u0) = R(u0; p0) + R(u0; ε0) + 1
2∆R + r(e0; ε0),

with ∆R and r(e0; ε0) the high-order terms given in (3.19) and (3.12), re-
spectively. For linear problems such as the convection-diffusion problem,
these high-order terms depend only on the quantity of interest Q(u) (equiv-
alent to the linear diffusion-reaction problem, discussed in section 3.6). With
Q(u) linear in u, both terms ∆R and r(e0; ε0) are zero and we have the exact
a-posteriori error representation:

Q(u) − Q(u0) = R(u0; p0) + R(u0; ε0) = R(u0; p). (4.14)

With the residual defined in (3.9a) and adding N0(u0; p) − F0(p) = 0 fol-
lowing section 3.5, yields.

R(u0; p) = F (p) − N(u0; p) + N0(u0; p) − F0(p), (4.15)

This form allows to split the contributions in the estimator into a contri-
bution from the inner domain Ω and from the boundary Γ. For the goal-
oriented modelling-error estimator for the convection-diffusion problem, we
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then find:

Q(u) − Q(u0) = R(u0; p) = N0(u0; p) − N(u0; p) − (F0(p) − F (p))

= −

∫ T

0

∫

Ω

µ∇u0∇p dΩdt +

∫ T

0

∫

Γ

µ
∂u0

∂n
p dΓdt

−

∫ T

0

∫

Γ

µ(a − u0)
∂p

∂n
dΓdt

+

∫ T

0

∫

Γ+,0

cn(a+,0 − u0)p dΓdt, (4.16)

where contributions from the boundaries are separated in ‘convective’ (in-
volving c) and ‘diffusive’ contributions (involving µ). Note that the convec-
tive contribution is limited to outflow and noflow boundaries. This is caused
by the fact that the applied boundary conditions in the fine model (4.4),
involve all boundaries. The coarse model (4.9) however, only involves the
inflow boundary. Subtracting the model operators as done in (4.16), means
‘subtracting’ the boundaries: Γ−Γ− = Γ+,0. This result is obvious, since on
an inflow boundary both the fine and coarse model have the same boundary
condition. Therefore the residual a−u0 is zero on an inflow boundary and,
as a result, it does not contribute to the modelling error. This applies to
the diffusive contribution as well and therefore the inflow boundary Γ− can
also be left out of (4.16), which yields:

∫ T

0

∫

Γ

µ(a − u0)
∂p

∂n
dΓdt =

∫ T

0

∫

Γ+,0

µ(a+,0 − u0)
∂p

∂n
dΓdt. (4.17)

Thus, the error estimator has no contributions from an inflow boundary.

4.1.4 Coarse dual-weighted estimator

For reasons of efficiency, when applying the error estimator in adaptive mod-
elling, the coarse dual solution p0 should be used to compute the estimator:

Q(u) − Q(u0) ≈ R(u0; p0). (4.18)

This is explained in sections 2.3 and 2.4.3. (See also [12, 27, 32].) For the
linear convection-diffusion problem described above, where p0 is the solution
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of (4.12), we have:

R(u0; p0) = −

∫ T

0

∫

Ω

µ∇u0∇p0 dΩdt +

∫ T

0

∫

Γ

µ
∂u0

∂n
p0 dΓdt

−

∫ T

0

∫

Γ+,0

µ(a+,0 − u0)
∂p0

∂n
dΓdt

+

∫ T

0

∫

Γ+,0

cn(a+,0 − u0)p0 dΓdt. (4.19)

In the following sections, both analytical and numerical examples are given
in which the fine dual and coarse dual-weighted estimators are computed
and compared. Integral as well as point quantities of interest are studied.

4.2 Steady case 1: integral Q(u)

In this section, the goal-oriented modelling-error estimator is studied for an
integral quantity of interest evaluated from the solution of the steady 1-
D convection-diffusion equation. First the primal problems (both fine and
coarse) are given, from which the dual problems are derived.

4.2.1 The primal problems

The integral quantity of interest, given by:

Q(u) =

∫

Ω

u dx, (4.20)

is evaluated from the solution of the steady, linear 1-D convection-diffusion
equation2 on Ω = (0, 1), with the boundary conditions a0 = 0 and a1 = 1:

N(u; q) = F (q) ⇒
∫

Ω

(c uxq + µuxqx)dx − µuxq|10 + µu(0)qx(0) − µu(1)qx(1)+

c u(0)q(0) − c u(1)q(1) = µa0qx(0) + c a0q(0)µa1qx(1) − c a1q(1). (4.21)

A positive convective velocity c > 0 is considered. The solution of equa-
tions (4.21) is given by:

u(x) =
ec/µ − ec x/µ

ec/µ − 1
. (4.22)

2The equations are not made ‘dimensionless’ by introducing the Péclet number Pe =
c L
µ

since for the approximating model the convective velocity must be identical to that

of the sophisticated model. Only then a meaningful approximation is obtained which
leaves only the diffusion coefficient to be varied.
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For c = 1 and three values of µ, the fine model solution is given in fig-
ure 4.1(a). The quantity of interest is then given by:

Q(u) =

∫

Ω

u dx =
1 + ec/µ(c/µ − 1)

c/µ(ec/µ − 1)
. (4.23)

Now, we want to evaluate the quantity of interest based on the coarse model
in which the diffusion is omitted:

N0(u0; q) = F0(q) ⇒

∫

Ω

c u0xq dx + c u0(0)q(0) = c a0q(0), c > 0. (4.24)

The solution of this problem depends solely on the boundary conditions:

u0(x) = a0 = 1. (4.25)

This yields for the quantity of interest Q(u0) = a0 and for the real error in
Q(u0):

Q(u) − Q(u0) =
1 + ec/µ(c/µ − 1)

c/µ(ec/µ − 1)
− 1 =

−e−c/µ

e−c/µ − 1
−

µ

c
. (4.26)

On the inner domain, the limit of the fine model solution for vanishing
diffusion µ → 0, is equal to the coarse model solution:

lim
µ→0

u(x) = u0(x), ∀x ∈ (0, 1).

On the boundary, however, this is not the case:

lim
µ→0

u(1) 6= u0(1),

emphasising we are dealing with a singular perturbation problem.

4.2.2 The dual problems

In order to estimate the modelling error in the quantity of interest by the
DWR method, we first derive the dual problems. The fine dual problem in
weak form is given by:

N ′(v; p) = Q(u; v) ⇒

∫

Ω

(−c vpx + µvxpx)dx − µvpx|
1
0−

µvx(1)p(1) + µvx(0)p(0) =

∫

Ω

vdx. (4.27)
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Since equation (4.27) has to hold for all v, the boundary conditions are:
p(0) = p(1) = 0. The fine dual solution is then:

p(x) =
e−c x/µ − 1

e−c/µ − 1
−

x

c
, (4.28)

which is shown in figure 4.1(b) for three values of µ.

For the coarse dual problem we have:

N ′
0(v, p0) = Q(v) ⇒

∫

Ω

−c vp0xdx + c v(1)p0(1) =

∫

Ω

vdx. (4.29)

Since (4.29) has to hold for all v, the boundary condition is found to be
p0(1) = 0. The coarse dual solution is then given by p0(x) = (1 − x)/c.
This solution is shown together with the solution of the fine dual problem
for c = 1 and three values of µ in figure 4.1(b). Figure 4.1(b) shows that
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Figure 4.1: Primal and dual solutions for µ = 1, 0.1 and 0.01.

the dual problem is also a singular perturbation problem. The fine dual
solution approaches the coarse dual solution on (0, 1) for µ → 0, but on the
dual outflow boundary a residual remains: limµ→0 p(0) 6= p0(0).

4.2.3 The error estimator

The fine dual-weighted residual estimator, can now be evaluated according
to equation (4.16) for the steady case. The boundary residuals derived from
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the given boundary conditions and the computed coarse model solution are:

a0 − u0(0) = 0,

a1 − u0(1) = −1.

Using the dual boundary conditions found from (4.27), the fine dual-weighted
estimator yields:

R(u0; p) = N0(u0; p) − N(u0; p) − (F0(p) − F (p))

= −

∫

Ω

µu0xpx dx + µu0xp|10

− µ(a1 − u0(1))px(1) − c(a1 − u0(1)) p(1)

= −µ(a1 − u0(1)) px(1) =
−e−c/µ

e−c/µ − 1
−

µ

c
, (4.30)

which is exact (compare with the exact error Q(u)−Q(u0) in (4.23)). Note
that the error estimator in equation (4.30) only has a contribution from the
boundary residual.

Similarly, we find for the coarse dual-weighted estimator:

R(u0; p0) = N0(u0; p0) − N(u0; p0) − (F0(p0) − F (p0))

= −µ(a1 − u0(1))p0x(1) = −
µ

c
. (4.31)

Also the coarse dual-weighted estimator (4.31) has a contribution exclusively
from the boundary. The estimators R(u0; p) and R(u0; p0) and the real error
Q(u)−Q(u0), are shown in figure 4.2 for c = 1 together with the efficiency
index (defined in equation (2.47)). Note that the fine dual-weighted estima-
tor R(u0; p) is exact and therefore coincides with the real error Q(u)−Q(u0).
For µ & 0.3, the exact error is over-estimated by the coarse dual-weighted
estimator R(u0; p0). For small µ the coarse dual-weighted estimator (4.31)
approaches the fine dual-weighted estimator (4.30). Both estimators are of
order O(µ):

R(u0; p0) = −
µ

c
≡ lim

µ→0
R(u0; p), (4.32)

which is due to the derivative of p(x) at x = 1 that approaches the derivative
of the coarse dual solution: limµ→0 px(1) = p0x(1), see also figure 4.1(b).
Althought this is not the case at the other boundary x = 0, this has no
consequence, because it is an inflow boundary. In section 4.1.3 it is explained
that inflow boundaries have no contribution to the error estimator.
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Figure 4.2: The error estimators and efficiency index as function of µ for
c = 1.

4.3 Steady case 2: boundary derivative Q(u)

In this section, a point quantity of interest is discussed. Some of the limita-
tions of the DWR method will become clear when the coarse dual solution
is applied, despite only 1-D steady and linear problems are considered.

Again, the same fine model (4.21) and coarse model (4.24) as in sec-
tion 4.2 are considered. The solutions of these models are shown in fig-
ure 4.1(a). The quantity of interest considered now, concerns the solution
derivative at x = 1:

Q(u) = µ ux(1). (4.33)

Since the fine model solution has a boundary layer at x = 1, the quan-
tity of interest Q(u) = µux(1) can be seen as a ‘stress’ term. Through
differentiation of (4.22), we find:

Q(u) = µux(1) =
c

e−c/µ − 1
. (4.34)

The coarse model solution (4.25) is constant at Ω and has no boundary layer,
as expected from the ‘unperturbed’ or ‘reduced’ problem. The quantity of
interest based on the approximating solution is zero:

Q(u0) = µu0x(1) = 0.

This situation can be compared with the evaluation of the shear stress at
a wall in fluid dynamics. The shear stress based on the Euler equations
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is zero, contrary to the shear stress in the Navier-Stokes solution (‘slip’ vs
‘no-slip’).

In the following sections, the dual problems are derived and the goal-
oriented modelling-error estimator is evaluated based on both the fine and
coarse dual solution R(u0, p) and R(u0, p0), respectively.

4.3.1 The dual problem

The fine dual problem can be derived similar to the procedure described
in section 4.1.1, but for the steady case and with a different quantity of
interest:
∫

Ω

(−c vpx +µvxpx)dx−µvpx|
1
0−µvx(1)p(1)+µvx(0)p(0) = µvx(1). (4.35)

Since (4.35) must hold for all v, we find as boundary conditions p(0) = 0
and p(1) = −1. The solution to this dual problem for arbitrary c and µ is:

p(x) =
1 − e−c x/µ

e−c/µ − 1
, (4.36)

which is shown in figure 4.3 for c = 1 and three values of µ.
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Figure 4.3: Fine-model dual solutions for c = 1 and µ = 1, 0.1 and 0.01.

The coarse dual problem in weak form is given by:

N ′
0(p0; v) = Q(v) ⇒

∫

Ω

−c vp0xdx + c v(1)p0(1) = µvx(1). (4.37)

From equation (4.37) it is clear that this problem is ill-posed for µ > 0. Only
for the trivial case with −c p0x = 0, p0(1) = 0 and µ = 0, this is a well-posed
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problem, but useless for our purpose. A more physical explanation is the
following: the dual problem should give the sensitivity of the quantity of
interest Q for perturbations in the primal solution. However, the quantity
of interest is of a form that can not be represented by the coarse problem:
we want to evaluate a diffusive functional Q by use of a model that lacks
the presence of a diffusion.

Since we want to utilise the coarse dual solution in the modelling-error
estimator for reasons of efficiency (as mentioned earlier in chapters 2 and
3), we do not want to use the fine-model dual solution. At least not in the
whole domain. In the discrete approach one possible way to use the fine
model solution but to save computational time, is by solving the fine dual
problem on a coarse mesh to save computational time. This might give
rise to stability problems in solving the dual problem numerically, since the
fine dual solution might have boundary layers as well (as in the previous
case shown in figure 4.1(b)). Therefore another approach is studied to
construct an approximating solution for the coarse dual problem (4.37).
The sensitivity information provided by the fine dual solution, can then
also be used to decide where the fine dual problem should be used and
where the coarse dual problem can be applied.

Approximation by increasing the domain by size ε

A solution can be constructed by increasing the domain with a small pa-
rameter 0 < ε � 1. The quantity of interest is rewritten as a distribution on
the increased domain, and integration by parts is performed. This yields:

vx(1) =

∫ 1+ε

0

vx(x)δ(x − 1) dx = −

∫ 1+ε

0

v(x)δx(x − 1) dx, (4.38)

where δ(x − 1) is a Dirac delta function in x = 1. The coarse dual prob-
lem (4.37) on x ∈ (0, 1 + ε) becomes now:

∫ 1+ε

0

−c vp0xdx + c v(1 + ε)p0(1 + ε) = −µ

∫ 1+ε

0

v(x)δx(x − 1) dx. (4.39)

To let this equation hold for all v, the boundary condition is p0(1 + ε) = 0.
The quantity of interest ends up as right-hand side for the dual equation,
from which the solution follows:

∫ 1+ε

0

p0xdx =

∫ 1+ε

0

µ

c
δx(x − 1) dx ⇒ p0(x) =

µ

c
δ(x − 1). (4.40)

The solution on the original domain x ∈ (0, 1) is found by taking the limit
ε → 0, which yields the same solution for p0(x) as given in (4.40). The
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derivative of the dual solution appearing in the model-error estimator how-
ever, only exists in distributed sense as given in (4.40). Since the derivative
of the dual solution at the boundary x = 1 is required, the above described
approach to construct the dual solution (4.40) is not of much help.

Approximation by domain decomposition

To obtain an alternative dual problem instead of the ill-posed coarse-model
dual problem (4.37), we can apply the fine model dual problem in a small
region, close to the boundary where the quantity of interest is defined. This
approach is not the same as the method to construct an asymptotic expan-
sion to approximate the solution of singular perturbation problems involving
boundary layer behaviour. In the latter case, a region of size δ(µ) near the
point where the boundary layer arises, is ‘rescaled’ or ‘stretched’, see for
instance [35]. Our objective is however, not to construct an approximat-
ing solution of the fine dual equation, including its boundary layer by an
asymptotic expansion. Our objective is to construct an approximating dual
problem based on the fine and coarse dual problem, in order to have a well-
posed approximating dual solution with as little use of the fine model for
reasons of efficiency.

For this purpose, the domain is split into two non-overlapping sub-
domains Ωc and Ωf (Ω = Ωc + Ωf , Ωc ∩ Ωf = ∅) with interface I =
∂Ωc∩∂Ωf . On Ωc, the coarse dual model is applied and on Ωf the fine dual
model. Minimising computational time, means that the size of Ωf should
be as small as possible, for instance ε. In the present case, this means that
Ωc = (0, 1−ε) and Ωf = (1−ε, 1) with the interface I = 1−ε. The solutions
on both domains Ωc and Ωf are referred to as pc and pf respectively.

C0-continuity of the solution is required on the interface, which is en-
forced by adding an interface condition for the complete system (derived by
performing two times integration by parts):

∫

Ω1

−cvpc
xdx + cv

(

pc
R − pc(I)

)

+

∫

Ω2

(

− c vpf
x + µvxpf

x

)

dx

+cv
(

pf
L − pf (I)

)

+ µvx

(

pf
L − pf (I)

)

+ µvx

(

pf (1)R − pf (1)
)

= 0. (4.41)

The term pf
L is the value from the left of the interface, coming from the

solution on Ωc. The term pc
R is the value from the right of the interface,

coming from the solution on Ωf .The C0-continuity on the interface demands
that the terms pf

L − pf (I) and pc
R − pc(I) are zero. In equation (4.41),

pf (1)R is the boundary condition determined by the quantity of interest as
in equation (4.35), i.e. pf (1)R = −1 and can be written at the right-hand
side.
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A problem is now that the fine problem on Ωf needs the value from
the left and the coarse problem on Ωc needs information from the right
to be solved, but for either side it cannot be determined. Therefore no
solution can be constructed yet for equation (4.41). An additional condition
is needed, for which we take C1-continuity. This is achieved by rewriting
equation (4.41) by using integration by parts such that the second derivative
of p appears in the fine dual equation:

∫

Ω1

−cvpc
xdx + cv

(

pc
R − pc(I)

)

+

∫

Ω2

(

− c vpf
x − µvpf

xx

)

dx

+µv
(

(pf
L)x − px(I)

)

+ cv
(

pf
L − pf (I)

)

+µvx

(

pf
L − pf (I)

)

− µvxpf (1) = µvx(1). (4.42)

Now, the fine model solution on Ωf uses the derivative from the coarse
model solution on Ωc and the problem is well-posed. The overall solution
p̃ = pc ∩ pf is found to be:

p̃ = −c, x ∈ Ω. (4.43)

This is equal to the limit of the fine dual solution (4.36) on x = (0, 1), for
vanishing µ. Therefore the approximation solution (4.43) is considered a
useful coarse dual solution. Note that solution (4.43) is independent of the
size of Ωf .

4.3.2 The error estimator

The modelling-error estimator based on the fine dual solution is found
through evaluation of the estimator in equation (4.16) for the steady case:

R(u0; p) = N0(u0; p) − N(u0; p) − (F0(p) − F (p))

= −

∫

Ω

µu0xpxdx + µu0xp|10 − µ(a1 − u0(1))px(1)

− c (a1 − u0(1))p(1)

=
c

e−c/µ − 1
. (4.44)

This estimator is exact (compare (4.44) with Q(u) in (4.34), remembering
that Q(u0) = 0). Note that for the limit of vanishing µ the estimator (4.44)
approaches the negative convective velocity: limµ→0 R(u0; p) = −c. The
estimator and the efficiency index are shown in figure 4.4. Note that the
estimator is exact, therefore it coincides with the real error Q(u) − Q(u0).
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The error estimator based on the approximating dual solution

The error estimator based on the approximating dual solution p̃(x) = −c
from equation (4.42), is found by:

R(u0; p̃) = N0(u0; p̃) − N(u0; p̃) − (F0(p̃) − F (p̃))

= −

∫

Ω

µu0xp̃x dx + µu0xp̃|10 − µ(a1 − u0(1)) p̃x(1)

− c(a1 − u0(1)) p̃(1)

= −c(−1) p̃(1) = −c. (4.45)

This is equal to the limit of the fine dual-weighted estimator (4.44) for van-
ishing µ, which demonstrates that a reliable coarse dual-weighted estimator
is obtained. This is confirmed by figure 4.4 which shows the estimator and
the efficiency index.
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Figure 4.4: The error estimators and efficiency index as function of µ for
c = 1.

4.4 Steady case 3: point Q(u)

When one is interested in the solution in a point ξ ∈ Ω:

Q(u) = u(ξ), (4.46)

the DWR method can be of use again to estimate the modelling error when
utilising the coarse model to approximate the quantity of interest by Q(u0)
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(when ξ ∈ Γ, u is known and approximation by u0 is superfluous). We will
illustrate the use of the DWR method below for the case ξ = 1

2 .
We consider again the fine and coarse primal problems as defined in

equations (4.21) and (4.24), respectively. The solutions of these fine and
coarse problems are given in (4.22) and (4.25), respectively, and shown in
figure 4.1(a). From these solutions, the real error Q(u(ξ)) − Q(u0(ξ)) can
be computed which yields for ξ = 1/2:

Q(u(1/2)) − Q(u0(1/2)) =
−ec/2µ + 1

ec/µ − 1
. (4.47)

As in the previously studied case, the fine dual-weighted estimator R(u0; p)
is also derived to compare this with the coarse dual-weighted estimator
R(u0; p0).

4.4.1 The dual problems

The fine dual problem for this example is given by:

N(p; v) = Q(u; v) ⇒
∫

Ω

−c vpx + µvxpxdx + µvpx|Γ − µvx(1)p(1) + µvx(0)p(0) =

∫

Ω

v(x)δ(x − ξ)dx, ∀v ∈ H1, ξ ∈ Ω, (4.48)

where the quantity of interest is written in integral form, using the Dirac
delta function δ:

v(ξ) =

∫

Ω

v(x)δ(x − ξ)dx.

Since the problem (4.48) has to hold for all v, the boundary conditions are
p(0) = p(1) = 0. Integrating the dual equation yields a Heaviside function
in the right-hand side. This allows to separate the equation into two ODE’s
on x = (0, ξ) and x = (ξ, 1), which are solved using the boundary conditions
p(0) = p(1) = 0 and the fact that p(x) should be continuous in x = ξ. The
solution (without given the complete derivation) is given by:

p(x) =
1

c
H(x − 1/2)e(c(1−2x)/2µ) −

1

c
H(x − 1/2)

+
e−cx/µ(1 − e−c/2µ)

c(e−c/µ − 1)
+

e−c/2µ − 1

c(e−c/µ − 1)
, (4.49)

and is shown in figure 4.5 for three values of µ and convective velocity c = 1.
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For the coarse dual problem in weak form we have:

N0(p0; v) = Q(v) ⇒
∫

Ω

−c vp0xdx + c v(1)p0(1) =

∫

Ω

v(x)δ(x − ξ)dx, ∀v ∈ H1, ξ ∈ Ω, (4.50)

which has to hold for all v by virtue of which the boundary condition is
p0(1) = 0. The solution p0(x) is a Heaviside function:

p0(x) = −
1

c
(H(x − 1/2) + 1), (4.51)

and is shown in figure 4.5, together with the fine dual solution.
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Figure 4.5: Fine and coarse dual solutions for ξ = 1/2, c = 1, and µ = 1,
0.1 and 0.01.

4.4.2 The error estimator

With the dual solution available, the modelling-error estimator can be cal-
culated. With u0x = 0 (since u0(x) = 1) and p(0) = p(1) = 0, the estimator
becomes:

R(u0; p) = N0(u0; p) − N(u0; p) − (F0(p) − F (p))

= −

∫

Ω

µu0xpxdx + µu0xp|10 − µ(a1 − u0(1))px(1)

− c (a1 − u0(1))p(1)

= −µ(a1 − u0(1))px(1). (4.52)
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Note that in this case the estimator only has a contribution from the bound-
ary, although the quantity of interest is defined in a point in the domain.
Evaluating the derivative at x = 1 and substituting in (4.52), we obtain:

R(u0; p) = −µ(0 − 1)px(1) =
−ec/2µ + 1

ec/µ − 1
, (4.53)

which is equal to the exact error (4.47).

From figure 4.5 and from equation (4.51) ,it is clear that the derivative
of p0(x), given by p0x(x) = −δ(x− 1/2), is zero at x = 1. With u0x(x) = 0,
p0(1) = 0 and a0 ≡ u0(0), also the coarse dual-weighted estimator R(u0, p0)
is zero:

R(u0; p0) = N0(u0; p0) − N(u0; p0) − (F0(p0) − F (p0))

= −

∫

Ω

µu0xp0xdx + µu0xp0|
1
0 − µ(a1 − u0(1))p0x(1)

− c (a1 − u0(1))p0(1)

= −µ(a1 − u0(1))p0x(1) = −µ(0 − 1)0 = 0. (4.54)

The error estimators (4.52) and (4.54) are shown in figure 4.6 together
with the exact error. Although the error is small, and for µ . .1 approxi-
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Figure 4.6: Real error and estimators based on fine and coarse dual solution
(c = 1).

mately zero, the coarse dual-weighted residual estimator R(u0; p0) is useless
as error estimator for this case. This is easily explained from a ’physical’
point of view enforced by the fine and coarse dual solutions as shown in fig-
ure 4.5. The coarse model only incorporates convection which means that
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with c > 0 the coarse model solution u0 in a point ξ ∈ Ω only ’feels’ infor-
mation from the left. (For the unsteady case the characteristics dx/dt = c
travel from left to right.) Or in other words: there is no process involved
in the coarse model, that is able to transport disturbances in the solution
occurring at x > ξ through the domain to x = ξ. This is exactly what the
coarse dual solution p0 shows (see figure 4.5): at x ≤ 1/2 the dual solution
is one and at x > 1/2 it is zero.

For the fine dual problem this is different, since the diffusive part of
the fine model (4.1) is able to transport perturbations ’upstream’ i.e. in
the opposite direction of the convection. The higher µ, the stronger this
phenomenon is; this is exactly what the dual solution p in figure 4.5 is
showing. For the very diffusive case with µ = 1, the dual solution is almost
symmetric around x = ξ. This means that perturbations in u at equal
distances left or right from x = ξ, have approximately the same influence on
u(ξ) and therefore on Q(u(ξ)). Figure 4.5 also shows a decreasing sensitivity
of u(ξ) for the solution at the right side of ξ, but an increasing sensitivity
for the solution at the left of ξ. In fact, the fine dual solution p tends to p0

for small µ on the inner domain:

lim
µ→0

p(x) = lim
µ→∞

(1

c
H(x − 1/2)e(c(1−2x)/2µ) −

1

c
H(x − 1/2)+

+
e−cx/µ(1 − e−c/2µ)

c(e−c/µ − 1)
+

e−c/2µ − 1

c(e−c/µ − 1)

)

= 0−
1

c
H(x − 1/2) + 0 +

1

c
= −

1

c
(H(x − 1/2) + 1) = p0(x). (4.55)

On the left boundary a singular perturbation remains, with p(0) = 0 and
p0(0) = 1.

Remark on fine dual solution As can be seen in figure 4.5, the
maximum of p(x) decreases with increasing µ. This might look strange at
first glance, but it is explained easily. The fine model solution (4.22) has
the following limit for increasing µ:

lim
µ→∞

u(x) = lim
µ→∞

ec/µ − ecx/µ

ec/µ − 1
= 1 − x, x ∈ Ω. (4.56)

This limit solution is independent from µ (and c as well). So the more
diffusive the fine model is, the more it tends to a constant solution. There-
fore it will be less sensitive for perturbations anywhere in the domain. For
completeness, we also illustrate this by the limit for increasing µ of the
fine-model dual solution:
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lim
µ→∞

p(x) = lim
µ→∞

(1

c
H(x − 1/2)e(c(1−2x)/2µ) −

1

c
H(x − 1/2)

+
e−cx/µ(1 − e−c/2µ)

c(e−c/µ − 1)
+

e−c/2µ − 1

c(e−c/µ − 1)

)

=
1

c
H(x − 1/2) −

1

c
H(x − 1/2)−

1

2c
+

1

2c
= 0. (4.57)

4.5 Unsteady discrete problem

In this section, results are given for the unsteady convection-diffusion prob-
lem on (x, t) ∈ Ω × (0, T ) with Ω = (0, 1) and T = 0.5. The quantity of
interest is the solution integral on the final time T , as given by:

Q(u) =

∫

Ω

u(x, T )dx, (4.58)

for which the fine dual-weighted estimator should be exact. The fine and
coarse model dual equation for the quantity of interest (4.58), are derived
in section 4.1.1 and 4.1.2, respectively. Computations are performed with a
Galerkin spectral element method ([54, 55, 56, 57]). The initial solution is
given by:

φ(x) = 1 − cosπx, x ∈ [0, 1]. (4.59)

In the examples, a fixed convective velocity c = 1 is used. The boundary
conditions u(0, t) = a1 and u(1, t) = a0 for the fine model (4.1), are derived
from the initial condition: a0 = φ(0) = 0 and a1 = φ(1) = 2. The boundary
condition for the approximating model (4.8) with c > 0, is u0(0) = φ(0) = 0.
The estimators R(u0, p) and R(u0, p0) are evaluated for different values of
the diffusion coefficient µ.

In appendix B, some essential basics of the Galerkin spectral element
model are given, necessary for the understanding of the numerical solutions
and the derivation of the error estimator. For more details on the Galerkin
spectral element method, the reader is referred to, e.g., [54, 55, 56]. Since the
Galerkin method is unstable for convection (dominated) problems, a SUPG
stabilisation [58] in space-time is applied with a stabilisation parameter
τ = ∆x2.

For the given initial condition (4.59), the solutions of the fine and coarse
primal models (4.1) and (4.8), respectively, are shown in figure 4.7. These
solutions are computed on a uniform mesh with 128 elements of second
order in space and time. The diffusion coefficient used for the solution in
Figure 4.7(a) is µ = .1. The boundary layer near the boundary x = 1,
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becomes thicker/thinner with increasing/decreasing µ. As can be seen in
figure 4.7, the solution of the approximating convection problem (4.8) clearly
lacks the presence of a boundary layer. The scales of both images differ
somewhat ,since small overshoots exist in the convection solution. Due to
the applied SUPG the overshoots are non-increasing in time (see [58]).
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Figure 4.7: Solutions of the fine and coarse model, Nel = 128, P = 2, Q = 2.

4.5.1 The dual solutions

The fine and coarse dual solutions on (x, t) ∈ (0, 1) × (0, 0.5), are shown in
figure 4.8 for 128 elements and P = Q = 2 (second order in space and time).
Note that the dual problem is solved backward in time with initial condition
p(x, T ) = 1, x ∈ (0, 1). In the fine dual solution in figure 4.8(a), a boundary
layer is visible near the dual outflow boundary x = 0. The discontinuity
introduced at x = 1 is smeared out by the diffusion. The coarse dual solution
in figure 4.8(b), clearly lacks diffusion (apart from artificial diffusion from
the SUPG) and the discontinuity is transported unchanged into the domain.
The scales from both plots in figure 4.8 differ slightly, due to the overshoots
in the coarse dual solution. These overshoots are stable in time due to the
SUPG stabilisation ([58]).

4.5.2 The error estimator

The goal-oriented modelling-error estimator for a convection-diffusion prob-
lem is given by equation (4.16). Applied to the present unsteady 1-D prob-
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Figure 4.8: Fine and coarse dual solutions, Nel = 128, P = 2, Q = 2.

lem and using the derived homogeneous dual boundary conditions p(0, t) =
p(1, t) = 0, the estimator (4.16) becomes:

R(u0; p) = −

∫ T

0

∫

Ω

µu0xpxdxdt−

∫ T

0

µ
(

a1(t)− u0(1, t)
)

px(1, t)dt. (4.60)

The error estimator (4.60) is approximated in a discrete way using numerical
integration and differentiation for the spectral element approach, as given
by equations (B.3) and (B.5) in the appendix B. With e indicating the
element on time-level k, the estimator in a discrete form is given by:

R(uh
0 ; ph) = −µ

n
∑

k=1

Nel
∑

e=1

(Dx~uh
0 )T |keW

k(Dx~ph)|ke

− µ

n
∑

k=1

Q+1
∑

q=1

wq

(

~uR − ~uh
0 (ξP+1, ηq)|Nk

el

)

~ph
x(ξP+1, ηq)|Nk

el

∂y

∂η
|Nk

el
. (4.61)

In equation (4.61), ~uR is a vector with the boundary condition a1 in the
GLL-roots at ΩNk

el
(ξP+1, ηq) and ∂y

∂η is the determinant. Furthermore,

~ph
x(ξP+1, ηq)|

k
Nel

is the vector with the derivative of the dual solution, eval-
uated at the GLL-points on the right boundary (ξP+1, η) of element ΩNel

at time-level k. For computations which are first-order accurate in time,
the GLL-points are on both right corners of the space-time element ΩNel

,
or in local coordinates: (1,−1) and (1, 1). The derivative ~ph

x(ξP+1, ηq)|Nk
el
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is computed on element ΩNk
el

at the corresponding time-level k by:

~ph
x(ξP+1, ηq)|Nel

=
∂ph

∂ξ
(ξP+1, ηq)|Nel

∂ξ

∂x
|Nel

, (4.62)

where i = q(P + 1) and 1 < j < (Q + 1)(P + 1).

4.5.3 Results

The results are presented for µ = 10−2 to 1 by the numerical approxima-
tion of the real error Q(uh) − Q(uh

0), the estimated errors R(uh
0 , ph) and

R(uh
0 , ph

0). The inner domain and boundary contributions to the estimator,
as given in equation (4.61), are also given. The quantity of interest is com-
puted using the integration by Gaussian quadrature as in equation (B.2):

Q(uh) =

Nel
∑

e=1

∫ 1

−1

uh(ξ, ηQ+1)|edξ
∂x

∂ξ

≈

Nel
∑

e=1

P+1
∑

p=1

wpu
h(ξp, ηQ+1)|e

∂x

∂ξ
|Nel

. (4.63)

The efficiency index is used to indicate the quality of the estimator and is
computed for the discrete approximations by:

Ieff =
R(uh

0 ; ph)

Q(uh) − Q(uh
0)

. (4.64)

The homogeneous boundary conditions p(0, t) = p(1, t) = 0, together with
the dual initial condition p(x, T ) = 1, ∀x ∈ (0, 1), means that a discontinu-
ity is introduced at the boundaries. For the convection-diffusion problem we
experience numerical difficulties. Discontinuities do not exist in the solution
space of problems with a diffusion operator (this is in fact a non-physical
situation). It is however, important to have a good approximation of the
boundary values, since the error estimator requires the derivative of the dual
solution at the boundary x = 1 (see equation (4.60)). Increasing the order P
of the elements does not improve the resolution of the solution. To maintain
the situation that we have an infinite boundary derivative ph

x(1, T ), but to
make the initial condition more smooth (or in other words: more ‘diffusion’
friendly), the values of the initial condition are modified on the elements
neighbouring the boundaries, by a numerical ‘boundary fix’. Instead of the
value ph(ξp, T ) = 1 (p = 1 . . . P ), the values in the Gauss-Lobatto points

are computed according to a circle with its centre in ~ξ = (−1, η). This is
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illustrated in figure 4.9 for the right boundary element of order P = 4 in
space. Due to this modification of the dual initial condition at the bound-
ary elements, the derivatives px(0, T ) and px(1, T ) at the boundaries are
infinite. Furthermore, the oscillations of the polynomials are reduced since
the jump from the boundary point to the neighbouring point of the element
is eliminated.

PSfrag replacements

p(ξ, T )

ξ

modified
original

1

1

r = 1

0
-1

Figure 4.9: Original and modified dual initial condition at GLL-points of
boundary element, P = 4.

The approximation of the real error Q(uh) − Q(uh
0 ) and the estimated

errors by R(uh
0 , ph) and R(uh

0 , ph
0 ), are shown in Figure 4.10 for Nel = 128

elements and P = Q = 2. Also the absolute value of the individual con-
tributions to the estimator from the inner domain and the boundaries are
shown in Figure 4.10. Figure 4.10(a) shows that the boundary has a sig-
nificant contribution in the estimator. The coarse dual-weighted estimator
R(uh

0 ; ph
0) for µ = 1 is heavily over-estimated. This over-estimation can

be expected though, since in the steady analytical case the real error is
over-estimated as well for large µ, see figure 4.2.

The efficiency index is given in figure 4.11 with h-refinement and in
figure 4.12 for P -refinement, for both fine and coarse dual-weighted estima-
tors. Since R(u0; p) is exact for linear problems with a linear quantity of
interest, the numerical approximation R(uh

0 ; ph) should be close to unity,
see figure 4.11(a). Only for µ = 1 there is a slight deviation which decreases
to unity for increasing order P and Q.

It is found that the coarse dual-weighted estimator R(uh
0 , ph

0 ) is a good
approximation of the real error for µ ≤ .1, see figures 4.11(b) and 4.12(b).
For µ = 1, the error is highly over-estimated by the coarse dual-weighted
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Figure 4.10: Real and estimated errors, Nel = 128, P = Q = 2.

estimator R(uh
0 , ph

0 ), although the over-estimation decreases for increasing
order P and Q, see figure 4.12(b). The trend of over-estimation of the
coarse dual-weighted estimator for increasing µ, is also found in the steady
example in section 4.2 for a comparable quantity of interest Q(u) =

∫

Ω udx,
see figure 4.2.

Figure 4.11 shows furthermore, that the coarse dual-weighted estimator
depends less on the element size h than the fine dual-weighted estimator.
This is explained by the absence of boundary layers in the coarse dual so-
lution. The accuracy of the solution is not influenced by a good or bad
resolution of boundary layers. As mentioned before, the efficiency of the
DWR method requires the use of the coarse dual solution. In this exam-
ple, the coarse dual-weighted estimator is found to be a useful and reliable
estimator, since:

• it gives a good approximation for µ / 1,

• it shows a low mesh dependence,

• it over-estimates the real error.

The latter makes the coarse dual-weighted estimator more useful as driving
criterion in an adaptation algorithm than under-estimation of the real error.
Under-estimation might cause the adaptation process to stop too early, due
to which the required accuracy of the quantity of interest might not be
achieved.
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Figure 4.11: h-Refinement for efficiency index of R(u0; p) and R(u0; p0),
P = Q = 2.
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Figure 4.12: P-Refinement for efficiency index of R(u0, p) and R(u0, p0),
N = 128.

Comments on the results As mentioned before, the Gaussian quadra-
ture used for numerical integration is an accurate method to compute inte-
grals with a smooth integrand. In the dual problem however, discontinuities
are introduced at the boundaries. In the fine dual problem the diffusion
smears out the discontinuity, although in the first few iterations small in-
stabilities occur. These instabilities affect an accurate computation of the
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derivative of the dual solution and, consequently, also the accuracy of the
error estimator.

In case of the coarse-model dual problem, also a discontinuity is intro-
duced into the problem at the dual inflow boundary. Due to the artificial
diffusion caused by the SUPG used for stabilisation of the convection prob-
lem however, also in the coarse dual problem the discontinuity is smeared
out. The solution is more or less smooth again and Gaussian quadrature
can be applied for numerical integration.

Applying the DWR method in unsteady problems is fairly expensive,
since the dual problem needs to be solved on the whole space-time domain.
In an adaptive modelling procedure, this would imply that after evaluating
the quantity of interest based on the coarse model solution, the dual problem
has to be solved back in time to t = 0. This drawback of the DWR method
in unsteady problems is also mentioned by Perotto [33], considering adaptive
modelling for free-surface flows.

4.6 Conclusions

An approach is presented for the use of the DWR method for goal-oriented
modelling-error estimation in convection-diffusion problems, where the dif-
fusion term is omitted in the approximating or reduced model. Omitting
the diffusion term means that the mathematical type of the model equation
changes. Due to the change in mathematical type of the problem the re-
quired boundary conditions change and, consequently, boundary residuals
may arise between the fine and coarse model solutions.

Importance of boundary residual inclusion

The goal-oriented modelling-error estimator is derived according to the vari-
ational approach, described in chapter 3. By imposing the boundary con-
ditions weakly in the problem formulation, an estimator is obtained for
Q(u)−Q(u0) that includes both inner domain and boundary contributions.
The boundary residual in the modelling-error estimator has a significant
contribution, as shown by the steady (analytical) cases in which the bound-
ary contribution is the only contribution.

The boundary residual in the diffusive boundary contribution is weighted
by the derivative of the dual solution on the boundary. In numerical prob-
lems, this requires an accurate approximation of the derivative of the dual
solution at the boundary. For the fine dual problem this is complicated in
case the dual boundary conditions are zero while the dual initial condition
is not: this introduces a discontinuity at the boundary. A numerical ‘fix’ of
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the dual initial condition in the applied spectral element method is applied,
which improves the approximation of derivatives of the dual solution.

Applying the coarse dual solution

Inherent to the efficiency of the DWR method is the use of the coarse dual
solution as weighting function in the residual estimator. Especially in linear
problems where solving the fine dual problem requires equal numerical effort
as the fine primal problem (in nonlinear problems the linearised fine dual
problem is free of Newton-type linearisations). An advantage of the use of
the coarse instead of the fine dual solution, is that in neither the primal
nor the dual problem physical diffusion is present. In that case, no mesh
refinement is required to capture possible boundary layers. For the given
cases, the coarse dual-weighted estimator is a good approximation of the fine
dual-weighted estimator and also of the real error. Numerical computations
show that the coarse-dual based estimator is less mesh dependent than the
fine dual-weighted estimator.

In all cases studied (steady and unsteady), the coarse dual-weighted
estimator R(u0; p0) approaches the fine dual weighted estimator R(u0; p)
for vanishing diffusion coefficient µ. However, since the type of the model
equation changes when diffusion is omitted, not every quantity of interest
leads to a well-posed coarse dual problem. This is the case in the example
with a solution derivative at a boundary as quantity of interest.

Approach for ill-posed coarse dual problem

From the studied steady cases with different quantities of interest, the solu-
tion derivative at the boundary results in an ill-posed coarse dual problem.
A domain decomposition approach is presented in which the fine dual prob-
lem is applied in a small region adjacent to the boundary where the quantity
of interest is defined. In the rest of the domain ,the coarse dual problem
is applied. For complex and computing intensive problems, the size of the
fine model region should be chosen as small as possible from an efficiency
point of view. The larger the region is chosen, the closer the problem is to
the fine dual problem and the more accurate the error estimator is. This is
proved for the given case.

Additional comment on unsteady problems

As illustrated in the discrete unsteady case computed using a Galerkin Spec-
tral Element Method, the application of the DWR method in unsteady
problems is fairly expensive. This is because the dual problem needs to be
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solved backward in time to the initial time t = 0. In an adaptive modelling
procedure this requires the solution of the primal and dual problem, each
time on the whole space-time domain.

In the given discrete unsteady example, a discontinuity is introduced
at the boundary in the dual problem. This is caused by the difference
in the initial and the boundary condition. In the derivation of the DWR
method by the variational approach for convection-diffusion problems, it is
mentioned that only sufficiently smooth solutions should be considered to
maintain the validity of the DWR method. Although this is the case for the
primal problems, this is not the case anymore for the dual problem, due to
the difference in initial condition and boundary condition. Results however,
show that the estimator does not suffer from this ‘violation’. The fine dual
problem only suffers from the discontinuity initially, since diffusion smears
out the discontinuity for t < T .



Chapter 5

Nonlinear Burgers

Goal-oriented modelling-error estimation for the nonlinear Burgers problem
is the topic of this chapter. Here, the viscous Burgers equation is the fine
model and the inviscid Burgers equation is the coarse (or reduced) model.
As was shown in chapter 3, high-order contributions e0 and ε0 (the primal
and dual errors), arise in the modelling-error estimator from a nonlinear
model operator and a nonlinear quantity of interest. These high-order terms
are given for a general problem by ∆R and r(e0, ε0) in equations (3.19) and
(3.12), respectively. We want to derive and study these high-order terms for
the Burgers problem. For the linear diffusion-reaction problem with a non-
linear quantity of interest, it was shown that only a high-order contribution
is found in the error estimator, that originates from the quantity of inter-
est on the inner domain. In the nonlinear Burgers problem, on the other
hand, also high-order contributions arise from the nonlinear model operator.
The coefficient that multiplies the viscous term is referred to as diffusion
coefficient to emphasise the similarity with the linear convection-diffusion
problem, discussed in the previous chapter.

First the approach to derive the dual problems and the goal-oriented
modelling-error estimator for the Burgers problem is studied in section 5.1.
Attention is paid to linearisation of the dual problem and the high-order
terms in the error estimator. Then a discrete example is given in section 5.2
using a finite volume approach.

5.1 Approach for Burgers problem

The difference between the Burgers problem and the linear convection-
diffusion problem, discussed in the previous chapter, is the nonlinear con-
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vection term. The fine model problem, i.e. the viscous Burgers equation,
together with the dual problem are given in section 5.1.1 in weak form. The
same is done for the coarse model problem in section 5.1.2. The error es-
timator is derived in section 5.1.3, where the high-order terms in the error
estimator are studied as well.

5.1.1 The fine model problem

We want to evaluate the quantity of interest Q(u) from the solution of the 1-
D parabolic viscous Burgers equation on Ω× (0, T ) with Ω = (0, 1), T ∈ R

+

and boundary Γ = {x = 0, x = 1}:

ut + ( 1
2u2)x − µuxx = 0, x ∈ Ω, t ∈ (0, T ), (5.1)

with µ is the diffusion coefficient. The initial condition is u(x, 0) = φ(x)
and time-invariant boundary conditions are given by u(x, t) = a(x), x ∈ Γ.
For the two boundaries x = 0 and x = 1 we identify:

a(x) =

{

a0, x = 0,
a1, x = 1,

(5.2)

which are found from the initial condition: a0 = φ(0) and a1 = φ(1).
The weak form of the fine model problem where the initial and boundary
conditions are imposed weakly, is obtained by multiplying equation (5.1)
by a suitable testfunction q (without imposing restrictions for q on the
boundaries and t = 0). This yields: find u ∈ U such that

N(u; q) = F (q), ∀q ∈ V, (5.3)

with U and V suitable Banach spaces1 and N(u; q) and F (q) given by:

N(u; q) =

∫ T

0

∫

Ω

utq + ( 1
2u2)xq + µuxqx dxdt −

∫ T

0

µuxn q|Γdt (5.4a)

+

∫

Ω

u(x, 0)q(x, 0)dx −

∫ T

0

1
2u2nq|Γ dt −

∫ T

0

µuqxn dt,

F (q) =

∫

Ω

φ(x)q(x, 0)dx −

∫ T

0

1
2a2nq|Γ dt −

∫ T

0

µaqxn dt, (5.4b)

where n is the outward unit normal on the boundary, in this 1-D case n = +1
on x = 1 and n = −1 on x = 0. The inclusion of the convective terms at the

1We will not go into the details of the solution space here anymore, see section 4.1.2
for a short discussion on this topic.
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boundaries in equation (5.4a) is superfluous in the standard weak form of
the problem, but it is used in the derivation of the goal-oriented modelling-
error estimator, similar to the approach for the linear convection-diffusion
problem in chapter 4.

Following the theory in chapter 3, the dual problem is then given by:

N ′(u; v, p) = Q′(u; v), (5.5)

with p the fine dual solution. The operator N ′(u; v, p) is derived using (A.1a)
and performing integration by parts to transfer derivatives to p:

N ′(u; v, p) =

∫ T

0

∫

Ω

(−vpt − uvpx + µvxpx)dxdt −

∫ T

0

µvpx|Γdt

+

∫

Ω

v(x, T )p(x, T )dx −

∫ T

0

µvxp|Γdt, (5.6)

The initial and boundary conditions for the dual problem arise from the fact
that equation (5.5) holds for all v. The convective term −uvpx in the dual
operator (5.6), shows that the fine model solution u is required as coefficient
for the convective term. Since the whole idea of (goal-oriented) modelling-
error estimation is based on the absence of the fine-model solution u, one
can apply the coarse model solution u0 as coefficient for the convective term
when using the fine dual solution for the error estimator. Solving the linear
dual problem is cheaper than the nonlinear primal problem that requires
Newton-type linearisations, see also Perotto [33].

5.1.2 The coarse model problem

The coarse or approximating model is the inviscid Burgers equation, which
found by omitting the diffusion term in (5.1):

u0t + ( 1
2u2

0)x = 0, x ∈ (0, 1), t ∈ (0, T ). (5.7)

The same initial condition as the fine model problem is used: u0(x, 0) =
φ(x). For the hyperbolic problem (5.7), a boundary condition is only re-
quired on the inflow boundary Γ−. The inflow boundary Γ− is the boundary
where characteristics are incoming. In weak form, the coarse model is given
by: find u0 ∈ U such that

N0(u0; q) = F (q), ∀q ∈ V, (5.8)
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with N0(u0; q) and F (q) given by:

N0(u0; q) =

∫ T

0

∫

Ω

u0tq + ( 1
2u2

0)x q dx dt +

∫

Ω

u0(x, 0)q(x, 0) dx (5.9a)

−

∫ T

0

1
2u2

0n q|Γ− dt,

F0(q) =

∫

Ω

φ(x)q(x, 0) dx −

∫ T

0

1
2a(x)2n q|Γ− dt. (5.9b)

Here, a(x) in F0(q) is determined by (5.2), depending on which boundary
is the inflow boundary. The corresponding dual problem is given by:

N ′
0(u0; v, p0) = Q′(u0; v), (5.10)

with p0 the coarse dual solution. The coarse dual operator N ′
0(u0; v, p0) is

derived similar to the fine dual operator in (5.6) and yields:

N ′
0(u0; v, p0) =

∫ T

0

∫

Ω

v(−p0t − u0p0x)dxdt −

∫

Ω

v(x, T )p0(x, T )dx

+

∫ T

0

u0n vp0|Γ+dt, (5.11)

where Γ+ is the outflow boundary for the primal problem. Boundary and
initial conditions are found from the fact that (5.10) must hold for all v and
depend on the quantity of interest considered.

5.1.3 The error estimator

For linear convection-diffusion problems in chapter 4 (see also [59]), we
showed that imposing the boundary conditions weakly is essential when the
model equations are of a different type. Doing so, ensures that boundary
residuals are incorporated in the goal-oriented modelling-error estimator.
The same approach is applied here to the Burgers problem.

The general form of the estimator is given by (3.23) and repeated here:

Q(u) − Q(u0) = R(u0; p) + 1
2∆R + r(e0, ε0),

with the high-order terms ∆R and r(e0, ε0) defined by (3.19) and (3.12),
respectively. First the weighted residual term R(u0; p) for the Burgers equa-
tion is given, followed by an analysis of the high-order terms.
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Weighted residual contribution

With the fine model operators given in (5.4a) and (5.4b) and the coarse
model operators in (5.9a) and (5.9b), the weighted residual is found to be:

R(u0; p) = N0(u0; p) − N(u0; p) − (F0(p) − F (p))

= −

∫ T

0

∫

Ω

µu0x px dxdt +

∫ T

0

µu0xn p|Γdt

−

∫ T

0

µ
(

a − u0

)

pxn|Γ+dt

+

∫ T

0

1
2

(

a2 − u2
0

)

n p|Γ+dt, (5.12)

where a(x) is determined by (5.2).
To compare the weighted residual (5.12) with the estimator (4.16) for the

linear convection-diffusion problem the convective boundary contribution is
rewritten as:

∫ T

0

1
2

(

a2 − u2
0

)

n p|Γ+dt =

∫ T

0

(a + u0)

2
(a − u0)n p|Γ+dt. (5.13)

Comparison between equation (5.13) and (4.16), shows that the boundary
residual a−u0 at the outflow boundary is multiplied by the average outflow
velocity from the fine and coarse model. For the linear convection-diffusion
problem, we found that the boundary residual is multiplied by the (constant)
convective velocity c, see equation (4.16).

High-order terms

To discuss the high-order terms ∆R and r(e0, ε0) for the Burgers equations,
the definitions (3.19) and (3.12) are repeated:

∆R =

∫ 1

0

N ′′(u0 + se0; e0, e0, p0 + sε0)ds −

∫ 1

0

Q′′(u0 + se0; e0, e0)ds,

and

r(e0, ε0) =
1

2

∫ 1

0

{Q′′′(u0 + se0; e0, e0, e0) − 3N ′′(u0 + se0; e0, e0, ε0)

− N ′′′(u0 + se0; e0, e0, e0, p0 + sε0)}(s − 1)s ds.

Since both terms depend on the quantity of interest (contrary to R(u0; p)),
we consider a specific case of Q(u). For Q(u) linear in u, both integrals in
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∆R and r(e0, ε0) that involve Q′′ and Q′′′, respectively, are zero. Therefore
the high-order terms are analysed for the nonlinear energy measure on the
final time T , as used in the discrete cases studied in section 5.2:

Q(u) =

∫

Ω

1

2
u(x, T )2dx.

For the Burgers problem with the dual operator N ′ given in (5.4a), the
high-order terms are derived using the derivatives from appendix A and
yield:

∆R = −

∫ T

0

∫

Ω

∂(e2
0)

∂x

(

p0 + 1
2ε0
)

dxdt +

∫ T

0

e2
0

(

p0 + 1
2ε0
)

n|Γdt

−

∫

Ω

e2
0(x, T )dx, (5.14)

and

r(e0, ε0) =
1

4

{

−

∫ T

0

∫

Ω

∂(e2
0)

∂x
ε0dxdt +

∫ T

0

e2
0ε0 n|Γ dt

}

. (5.15)

Based on these forms some important conclusions can be drawn concerning
the high-order terms in the error estimator (3.23) applied to the nonlinear
Burgers problem. First the boundary contributions are discussed; these
terms are important in the application of the DWR-method to (linear and
nonlinear) convection-diffusion problems.

Boundary contributions As mentioned in section 4.1.1 for the linear
convection-diffusion problem, a primal inflow/outflow boundary is an out-
flow/inflow boundary for the dual problem. This is also the case for the
Burgers problem. Since on an inflow boundary (primal as well as dual) the
boundary conditions for the fine and coarse model are equal, the residual is
zero. This means that on each boundary either e0 or ε0 is zero and therefore
∆R and r(e0, ε0) reduce to:

∆R = −

∫ T

0

∫

Ω

∂(e2
0)

∂x

(

p0 + 1
2ε0
)

dxdt +

∫ T

0

e2
0p0n|Γ+dt

−

∫

Ω

e2
0(x, T )dx, (5.16)

and

r(e0, ε0) = −
1

4

∫ T

0

∫

Ω

∂(e2
0)

∂x
ε0 dxdt. (5.17)
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The boundary integral in ∆R in (5.16) is however, a computable term
and should be included in the error-estimator. This term cannot be ne-
glected, which is shown by comparing it with the convective boundary in-
tegral in (5.12). In case e0 ≥ 0, the high-order boundary integral from ∆R
involving e2

0 is at least of the same magnitude as the convective contribution
∫ T

0
1
2

(

a2 − u2
0

)

n p|Γ+dt. This is proven below.

Assume e0 = a− u0 ≥ 0 and consider the term 1
2 (a2 − u2

0) as it appears
in the convective boundary integral. Then the following inequality holds:

e0 ≥ 0 ⇒ 1
2 (a2 − u2

0) ≡
1
2 (a − u0)(a + u0) ≤ (a − u0)

2 ≡ e2
0, (5.18)

and therefore:

∫ T

0

1
2

(

a2 − u2
0

)

n p0|Γ+dt ≤

∫ T

0

e2
0 p0n|Γ+dt. (5.19)

And since p = p0 on a dual inflow boundary Γ+, we furthermore have:

∫ T

0

1
2

(

a2 − u2
0

)

n p|Γ+dt ≤

∫ T

0

e2
0 p0n|Γ+dt. (5.20)

Equation (5.20) shows that in case of e0 ≥ 0, the high-order term is of at
least the same magnitude as the convective contribution.

Inner domain contribution When the solutions u and u0 are sufficiently
smooth in singular perturbation problems like the present Burgers problem,
the errors e0 and ε0 are assumed to be small on the domain Ω. Then the
integrals on Ω in ∆R and r(e0, ε0) are small and it is allowed to neglect
them. When shocks occur in the solution however, this is not the case.

Due to smearing of the shock in the viscous solution, there is a point
in the shock where u = u0 and thus e0 = 0. In close vicinity of the shock,
however, the error can be of the same order as u0: |e0| ∼ O(u0) and thus
e2
0 ∼ O(u2

0). For an internal viscous layer, e.g. a shock in a viscous solution,
we can formulate the following limit:

lim
µ→0

u(x, t) = u0(x, t) ⇒ lim
µ→0

e0(x, t) = 0, (5.21)

and no singularity remains. For the high-order term remaining from the
quantity of interest, we then have:

lim
µ→0

∫

Ω

e2
0(x, T )dx = 0. (5.22)
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The derivative ∂e2
0/∂x, as appears in both ∆R and r(e0, ε0), is large in

close vicinity of the shock and discontinuous across the shock. However,
since we have the limit of e0 = 0 for vanishing µ, as given in (5.21), also
the derivative will vanish. This means that the domain integrals in ∆R and
r(e0, ε0) as given in (5.16) and (5.17), respectively, will vanish as well. In
section 5.2 a case with a shock is studied.

Following the above given analysis of the high-order terms and including
only computable terms, the error-estimator is written as:

Q(u) − Q(u0) ≈ R(u0; p) +

∫ T

0

e2
0p0 n|Γ+dt, (5.23)

with R(u0; p) given by (5.12). Computable in this context, means that the
fine model solution u(x, t) is not available, only its approximation u0(x, t)
and the dual solution p or p0.

Applying the coarse dual solution

The error-estimator involving only the coarse dual solution, is found by
substituting p = p0 + ε0 in the estimator and neglecting the dual error ε0.
As described in section 2.3 about the error estimator in linear differential
form however, the dual error ε0 can not be neglected a-priori. Consider the
error estimator (5.12) and remind that on a primal/dual inflow boundary
the primal/dual error (i.e. the residual) is zero, since the fine and coarse
problems have the same boundary conditions. The convective contributions
in (5.12) therefore, remain the same when using p0 instead of p. Such an
analysis can not be held for the diffusive boundary term:

∫ T

0

µ(a − u0(x, t)) (p0 + ε0)x(x, t)|Γ dt =

∫ T

0

µ(a − u0(x, t)) p0x(x, t)|Γ dt +

∫ T

0

µ(a − u0(x, t)) ε0x(x, t)|Γ dt. (5.24)

Only when both p0 and p are known, conclusions can be drawn about the
effect on the reliability of the estimator when neglecting the dual error
contribution. Ideally, one has on boundary Γ:

ε0x(Γ, t) � p0x(Γ, t), (5.25)

but no a-priori conclusion can be drawn whether or not this is the case. It
needs to be evaluated for each individual problem.
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5.2 Discrete problem

In this section, the Burgers problem is studied for two cases on (x, t) ∈
Ω×(0, T ) with Ω = (0, 1) and T = .5. The cases are defined by two different
initial conditions, based on which the required boundary conditions for the
primal problem are found:

case 1: φ(x) = 1 − cosπx, ⇒ a0 = 0, a1 = 2, (5.26a)

case 2: φ(x) = cosπx, ⇒ a0 = −1, a1 = 1. (5.26b)

Case 1 results in a boundary layer near x = 1 and case 2 yields a station-
ary shock at x = .5. As mentioned before, the outflow boundary for the
primal problem becomes an inflow boundary for the dual problem, due to
the reversal of characteristic direction for the dual problem (see also the lin-
ear convection-diffusion problem in chapter 4). For the nonlinear Burgers
problem, the characteristic direction is dx/dt = u for the fine model and
dx/dt = u0 for the coarse model.

The quantity of interest considered in this chapter, is the energy measure
at time T :

Q(u) =

∫

Ω

1

2
u(x, T )2dx ⇒ Q′(u; v) =

∫

Ω

u(x, T )v(x, T ) dx, (5.27)

for which an analysis of high-order terms in the estimator is made in sec-
tion 5.1.3. For the quantity of interest based on the coarse model solution
u0, substitute u0 for u in (5.27).

5.2.1 The dual initial and boundary conditions

With the linearised quantity of interest (5.27) and the initial conditions for
both cases given in (5.26), the dual initial and boundary conditions can be
derived from (5.3) and (5.8). The initial and boundary conditions for the
dual problem of case 1 are given by:

p(0, t) = p(1, t) = 0, (5.28a)

p0(1, t) = 0, (5.28b)

p(x, T )/p0(x, T ) = u(x, T )/u0(x, T ), (5.28c)

and result in a discontinuity at the dual inflow boundary x = 1 at t = T .
The initial and boundary conditions for the dual problem of case 2 are

given by:

p(0, t) = p(1, t) = 0, (5.29a)

p(x, T )/p0(x, T ) = u(x, T )/u0(x, T ), (5.29b)
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Note that the coarse dual problem has no boundary conditions, since the
dual characteristics are outgoing (opposite to the incoming primal char-
acteristics). Case 2 has no boundary residuals (due to incoming primal
characteristics on both boundaries), but the shock in the coarse primal
solution u0 violates the solution restriction that only sufficiently smooth
solutions should be considered. See also section 4.1.2, paragraph ‘Remarks
on solution spaces’.

The dual problem requires the fine model solution as coefficient for the
convective term and the fine model solution u(0, T ) as dual initial condition.
As mentioned before, goal-oriented modelling-error estimation is based on
the fact that in practice the fine model solution is not at hand. Therefore
the fine dual solution is also computed using the coarse model solution u0 as
coefficient for the convective term and the initial condition. The resulting
dual solution is indicated by pu0 .

The fact that the primal solution is required as coefficient for the con-
vective term in the dual problem, requires memory storage of the primal
solution at all time levels. For the present 1-D problem the required mem-
ory storage is not yet a problem, but for more complex and larger prob-
lems the memory storage becomes an important issue, see also Perotto [33].
A possible remedy is the so called check-pointing technique suggested in
Griewank [60]. In the present problem no special attention is paid to the
problem of memory storage.

5.2.2 Discrete approach

To solve the problem numerically, the primal and the dual Burgers equations
are discretised by means of a cell-centred finite volume method on a non-
uniform mesh. The latter allows to refine the mesh in a boundary layer when
necessary for a proper resolution of the boundary layer. The convective term
is discretised explicitly in time and the Engquist-Osher scheme [61] is used
to evaluate the flux through a cell-face. This Engquist-Osher scheme is
linearised for the dual problem as is shown in appendix C.

High-order accuracy in space is achieved by employing the so-called κ-
scheme, introduced in [62] where we apply κ = 1/3. To prevent spurious
oscillations in the solution due to the high-order discretisation, a flux lim-
iter tailored for κ = 1/3, the so-called Koren limiter [63], is applied. The
diffusion term is spatially discretised by a second-order scheme and in time
it is discretised implicitly for stability reasons, see appendix C for details.

The details of the applied finite volume approach and the linearisation
of the flux scheme are discussed in appendix C. For more details on the
finite volume method the reader is referred to, e.g., [64, 65, 66, 67].
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Special attention is paid to the discrete form of the goal-oriented mod-
elling error estimator, as derived for the Burgers problem in section 5.1.3.

The discrete goal-oriented modelling-error estimator

For the integration in time as well as in space, the trapezoidal rule is applied,
which is third-order accurate. With N the number of time steps and J the
number of cells, the discrete form of the weighted residual estimator (5.12)
with inclusion of the high-order boundary term as in (5.23), is given by:

Q(u) − Q(u0) ≈ R(u0; p) +

∫ T

0

e2
0(x, t)p0(x, t)|Γ+dt

≈ −µ

N
∑

k̄=0

∆t
{

J
∑

i=1

(uh
0xph

xh)i

}k̄

− µ

N
∑

k̄=0

∆t
{

(a − uh
0)ph

xn
}k̄

|Γ+

+

N
∑

k̄=0

∆t
{

1/2(a2 − uh
0

2
)phn

}k̄
|Γ+

+

N
∑

k̄=0

∆t
{

(a − uh
0)2ph

0n
}k̄

|Γ+ . (5.30)

Here k̄ denotes the time average over one time step of the discrete vector
between curly brackets:

{·}k̄ =
∆t

2

(

(·)k + (·)k+1
)

,

with k the time level and k = 0 the initial time level t = 0. As mentioned
before, n is the outward unit normal on the boundary, in this 1-D case
n = +1 on x = 1 and n = −1 on x = 0. Derivatives on the inner domain
are computed by the following expression:

J
∑

i=1

(uh
0xph

xh)i =

J
∑

i=1

(

(u0)i+1 − (u0)i−1

)

h− + h+

(

pi+1 − pi−1

)

h− + h+
hi, (5.31)

with h− and h+ as in (C.7). This expression is of second-order accuracy
in case of a uniform mesh (h is constant). Derivatives of the dual solu-
tion on the boundary, as they appear in the diffusive contribution in the
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error estimator, are computed by a first-order difference. The reason for us-
ing first-order instead high-order differences on the boundary, is because of
(possible) discontinuities introduced initially on the boundaries. In case of a
discontinuity the derivative is approximated more accurately by a first-order
difference.

5.3 Results

In this section, the results for case 1 and case 2 are given with an analysis
of the individual contributions in the error estimator. The quality of the
estimator is indicated by the efficiency index. For case 1 an analysis is given
of the high-order inner-domain contributions. For case 2 some numerical
aspects of the dual solution in case of a shock are discussed.

5.3.1 Case 1

The mesh used for the computations, is based on a uniform mesh of 64 cells
with a refinement in the boundary layer that depends on the value of µ,
i.e. the boundary layer thickness. A transition layer is used for a smooth
transition between the boundary layer and the uniform mesh. The total
number of cells differs for each value of µ. Both viscous and inviscid Burgers
solutions are computed on the same mesh with refinement in the boundary
layer. This is done to prevent the discretisation error from interfering with
the results. The time step is equal (and constant) for both viscous and
inviscid solutions.

The primal solutions of the viscous and inviscid Burgers equation for
case 1 are shown in figure 5.1. This figure shows the difference between the
models (5.1) and (5.7), by the boundary layer in the vicinity of the boundary
x = 1. This is emphasised by figure 5.2, which shows the solutions at the
final time u(x, T ) and u0(x, T ).

The fine and coarse dual solutions are shown in figure 5.3, where the
scales for both solutions are equal for an easy comparison. As mentioned
in section 5.1.2, the fine dual problem requires the fine model solution u
as coefficient for the convective term. For case 1, the dual initial condition
also depends on the fine model solution, see (5.28). Since the fine model
solution is not available in practice however, the fine dual solution is also
computed based on the coarse model solution u0. The resulting dual solu-
tion, indicated by pu0 , is shown in figure 5.4.

Note that the difference between the initial conditions p(x, T ) = u(x, T )
and pu0(x, T ) = u0(x, T ), is large close to the outflow boundary, see also
figure 5.2 which shows u(x, T ) and u0(x, T ). The dual boundary condition
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(a) Viscous solution, µ = .1
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(b) Inviscid solution

Figure 5.1: Primal solution of the inviscid and viscous Burgers equation.
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Figure 5.2: Final solutions u(x, T ) and u0(x, T ).

on x = 1 however, is zero for both the fine and coarse dual problem, as
given in (5.28). This is also shown in figure 5.3. The derivative of the dual
solution appears in the error estimator. Therefore, care must be taken by
using the coarse dual solution in the estimator, as mentioned in section 2.3
and at the end of section 5.1.3. In these sections it is stated that the
boundary conditions for both the fine and coarse dual problem should be
evaluated, in order to comment on the effect of neglecting the dual error.
At t = T , both the fine and coarse dual solution have a discontinuity on
x = 1, which means that the derivative is infinite. The derivative of the
coarse dual solution is zero for t < T , since the discontinuity is transported
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(a) Fine dual solution, µ = .1.
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(b) Coarse dual solution

Figure 5.3: Dual solutions of the fine and coarse model.
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Figure 5.4: Fine dual solution pu0 (based on u0) for µ = .1

into the domain, see figure 5.3(b). The initial discontinuity in the fine
dual solution is also transported into the domain, but it is smeared by the
diffusion. For decreasing t however, also the derivative of the fine dual
solution decreases and becomes zero eventually, see figure 5.3(a). Therefore
the effect of using the coarse instead of the fine dual solution has no dramatic
effect on the estimator, although inequality (5.25) is not satisfied initially.
In the following section the fine and coarse dual-weighted error estimators
are studied in detail.
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The error estimator

In figure 5.5 the real error and the estimated modelling-error, computed
by (5.30), are shown together with the efficiency index, defined by (2.47).
The mesh that is used, is based on a uniform mesh with 64 cells. It is re-
fined near x = 1, when it is required for a proper resolution of the boundary
layer. Since the fine and coarse dual inflow boundary conditions p(1, t) and
p0(1, t) are zero, the contribution from the high-order term in the estima-
tor (5.23) is zero as well. The estimated modelling error in figure 5.5 is
therefore referred to as the weighted residual R(u0, ·). Figure 5.6 shows for
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Figure 5.5: The error estimators and efficiency index as function of µ, case
1.

the fine-dual weighted residual estimator, that the boundary contribution in
the modelling-error estimator is larger than the domain contribution. This
emphasises, again, the importance of a separate treatment of boundaries in
singularly perturbed problems.

The Influence of high-order terms from the inner domain

A striking observation from figure 5.5, is that the fine dual-weighted error-
estimator R(u0; p) that should be most accurate of all, is the most inaccurate
and the coarse dual-weighted residual estimator R(u0; p0) is the most accu-
rate one. This is explained by the fact that the dual error is neglected, but
also by the effect of cancellation of the domain integrals in the high-order
terms ∆R and r(e0, ε0). Therefore we evaluate, based on the numerical
solutions, the following two integrals from ∆R (given by (5.14)) for µ = .1
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Figure 5.6: Domain and boundary contributions of the error, case 1.

where the integrals are largest (remind that the domain integrals vanish for
µ → 0):

I1 =

∫ T

0

∫

Ω

∂(e2
0)

∂x
p0dxdt ≈ 2.991e− 2, (5.32)

I2 =

∫

Ω

e2
0(x, T )dx ≈ 3.876e− 2. (5.33)

In these integrals the dual error ε0 is neglected. The estimator then becomes:

Q(u) − Q(u0) ≈ R(u0; p) − 1
2 (I1 + I2). (5.34)

In table 5.1, the efficiency index is given for the original estimator as shown
in figure 5.5, and for the estimator with the high-order terms included as in
equation (5.34). The table shows that the estimator based on p as well as

Q(u) − Q(u0) Ieff

R(u0; p) 1.46
R(u0; p) − 1

2 (I1 + I2) 1.12
R(u0; p

u0) 1.11
R(u0; p

u0) − 1
2 (I1 + I2) 1.03

R(u0; p0) 1.38
R(u0; p0) −

1
2 (I1 + I2) .77

Table 5.1: Effect of high-order domain contributions on the estimator.

pu0 improves (Ieff closer to unity), but the estimator based on p0 does not
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Figure 5.7: Discretisation errors for case in 1 in Q and R(u0, ·), µ = .01

improve; in fact the over-estimation changes to under-estimation. There-
fore, one can conclude that the better performance of R(u0; p0) in figure 5.5,
is a coincidence due to cancellation of the boundary integrals as they appear
in ∆R and r(e0, ε0).

The discretisation error

Besides the influence of the high-order terms and the neglected dual error ε0,
also discretisation errors have an effect on the accuracy of the goal-oriented
modelling-error estimator. The discretisation error in the quantity of in-
terest and the modelling-error estimators however, decreases for increasing
number of cells as shown by figure 5.7. The errors in this figure are computed
on a uniform mesh with respect to the reference solutions on a mesh with
1024 cells. All quantities shown are at least first-order accurate. Among
the error-estimators, the coarse dual-based estimator R(u0; p0) shows the
lowest discretisation error. This is caused by the lack of boundary layers in
both primal and dual solutions.

The discretisation error in the primal solutions at t = T and the dual
solutions at t = 0, given in the L0 and L2 norm, are shown in figure 5.8.
The errors are computed with respect to a reference solution on a mesh with
1024 cells. Although the third-order accurate κ = 1/3 scheme is applied,
the order of accuracy of the primal solutions becomes lower than three for
decreasing number of cells. This is caused by the flux limiter.

The order of accuracy of the dual solutions is even lower than the primal
solutions. This is explained by the effect of the flux limiter that comes into
play, due to the discontinuity introduced initially at the boundary x = 1.
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Furthermore, the use of the primal solution as coefficient in the dual equa-
tion influences the discretisation error in the dual solution. The error esti-
mators as shown in figure 5.7, are nevertheless at least first-order accurate.
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(a) Error in L0 norm
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Figure 5.8: Discretisation errors for case 1 in L0 and L2 norm, µ = .01.

Comment on the application in adaptive modelling

When the modelling-error estimator is applied in an adaptive modelling
strategy, the localised modelling error (see section 2.5.2) is used to determine
where the model should be adapted from the coarse to the fine model. When
in the present case the model is adapted to the fine model near the boundary
x = 1, a boundary layer will occur in the solution. This solution is then
determined by a mix of the coarse and fine model. To capture the new
boundary layer properly, a refinement of the mesh in the boundary layer
is required. This illustrates the reason why adaptive modelling is often
combined with mesh refinement, see for instance [12, 13, 14]).

An important aspect of the application of the DWR method in adaptive
modelling is the efficieny of the method. As mentioned before, it is essential
for the efficieny to apply the coarse dual solution in the estimator, since
solving the fine dual problem requires the same computational effort as
solving the fine primal problem. The total computational time required to
solve both the coarse primal and coarse dual problems and to compute the
error estimator, should be lower than solving the fine primal problem. In
table 5.2 the computational time is given in seconds for the primal and dual
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problems, indicated by their solutions, for µ = .01 and a mesh based on J =
128 cells (with mesh refinement in the boundary layer). The table confirms
that the computational time required for the fine dual solution p is the same
as for the fine primal solution u. Also the computational time required
to compute the modelling-error estimator R(u0; p0) is given in the table.
Table 5.2 shows that the total computational time of 234.9 seconds, required

u u0 p p0 R(u0; p0) u0 + p0 + R(u0; p0)
177.6 99.9 176.6 98.9 36.1 234.9

Table 5.2: Computational time in seconds for µ = .01.

to compute the coarse primal and dual solutions u0 and p0 and the error
estimator R(u0; p0), is more than the 177.6 seconds necessary to solve the
fine primal problem. Therefore it can be concluded that employing adaptive
modelling to save computational time for the present Burgers problem is a
waste of time.

5.3.2 Case 2

Case 2 implies the formation of a stationary shock, as shown in the primal
solutions in figure 5.9. In the viscous Burgers solution in figure 5.9(a), the
smearing of the shock due to diffusion is clearly visible. The fine and coarse
solutions at the final time T are given in figure 5.10. Due to the incoming
primal characteristics the dual characteristics are outgoing. This means no
dual boundary conditions are required. The fine and coarse dual solutions
are shown in figure 5.11.

The error estimator

Since we have incoming characteristics on both boundaries x = 0 and x = 1,
there are no boundary residuals such that the modelling-error estimator,
shown in figure 5.13(a), only has a contribution from the inner domain.
The fine dual solutions p and pu0 , have viscous layers emanating from the
shock (see figures 5.11(a) and 5.12, respectively) that move towards the
boundaries where new boundary layers arise. Therefore the whole mesh
is refined uniformly for decreasing µ. As can be expected a-priori, the
modelling error vanishes for µ → 0. The efficiency index for R(u0; p

u0) and
R(u0; p0) shows a dip for µ = .01, for which no explanation is found. It is
probably due to discretisation errors.
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(a) Viscous solution, µ = .01
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(b) Inviscid solution

Figure 5.9: Primal solutions of the viscous and inviscid Burgers equation,
case 2.
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Figure 5.10: Final solutions u(x, T ) and u0(x, T ).

The discretisation error

The discretisation errors in the L0 and L2 norms for the primal and dual
solutions, are shown in figure 5.14. For the solutions on the meshes with less
than 256 cells, the order of accuracy of the fine model solutions decreases,
due to the effect of the flux limiter. This effect is even higher for the coarse
model solution. The discretisation error in the quantity of interest and the
modelling-error estimators shown in figure 5.15, is of at least first order
accuracy.
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(a) Fine dual solution, µ = .01
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(b) Coarse dual solution

Figure 5.11: Dual solutions of the viscous and inviscid Burgers equation,
case 2.
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Figure 5.12: Fine dual solution pu0 (based on u0) for µ = .01

Remarks on shocks in the solution

When a shock occurs in the primal solution that has not left the domain
before the final time T , and the quantity of interest is the energy mea-
sure (5.27), the dual initial condition p(x, T ) = u(x, T ) contains a shock as
well. Giles shows in [68, 69] that for the Burgers problem, besides the dual
initial condition p(x, T ), an additional shock boundary condition has to be
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(b) Efficiency index Ieff

Figure 5.13: The error estimators and efficiency index as function of µ, case
2.
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(b) Error in L2 norm

Figure 5.14: Discretisation errors for case 2 in L0 and L2 norm, µ = .01.

applied, given by:

ps(T ) =
[G]

[u]
. (5.35)
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Figure 5.15: Discretisation errors for case in 2 in Q and R(u0, ·), µ = .01

Here, [·] denotes the jump in the quantity across the shock and G(u) is the
function integrated in the quantity of interest:

Q(u) =

∫

Ω

G(u)dx. (5.36)

For the energy measure (5.27), G(u) is equal to u2/2. Defining u− and u+

as the values of u(x, T ) on either side of the shock, [G] is given by:

[G] =

∫ u+

u−

dG

du
du. (5.37)

For the energy measure, this results in the following shock boundary condi-
tion:

ps(T ) =
u2

+/2− u2
x/2

u+ − u−
= 0. (5.38)

This means the dual solution p(x, t) is zero along all characteristics ema-
nating from the shock at t = T .

In Giles [68, 70] it is shown that correct values of the dual solution can
be obtained without inclusion of the shock boundary condition, depending
on the applied discretisation scheme. Giles shows that the numerical flux
scheme and, in particular for a Riemann flux scheme, the shock location on
the mesh, has a large impact on the dual solution. In case of a Riemann flux
scheme, the shock is contained in one cell and an incorrect dual solution is
computed. It is shown that a diffusive scheme which smears a shock over
several cells, is beneficial for a correct dual solution.

For the applied Engquist-Osher scheme (C.3), one can show that the
shock is always contained in at least two cells. This is an advantage when
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Figure 5.16: Dual solution ph
0 at different time levels.

applying the scheme to a dual problem with a discontinuous dual initial
condition, as shown in figure 5.9 for case 2. This is confirmed by figure 5.16,
which shows a close-up of the coarse dual initial condition ph

0 = uh
0 (x, T )

at the dual initial time n = 0, 10 and 20 (n = 0 means: t = T for the
dual problem). In the computations performed to obtain the solutions as
shown in figure 5.11, no additional shock boundary conditions are imposed.
Nevertheless, figure 5.16 shows the dual shock boundary condition (5.38) is
satisfied, without imposing it explicitly which confirms the statements by
Giles in [68, 70].

5.4 Conclusions

The application of the DWR method to the nonlinear Burgers problem is
presented in which the viscous Burgers equation (the fine model) is ap-
proximated by the inviscid Burgers equation (the coarse model). Satisfying
results are obtained using the DWR method for goal-oriented modelling-
error estimation for two cases: case 1 with a boundary layer and case 2
with a stationary shock. For both cases the nonlinear energy measure at
the final time is studied as quantity of interest. Due to the nonlinearity of
the model equations, high-order terms arise in the modelling-error estima-
tor. These high-order terms are analysed for the unsteady 1-D case, which
reveals that an additional boundary term arises. This term is computable
based on the given boundary conditions, the coarse model solution and the
dual solution. For a quantity of interest defined on a boundary however,
this high-order boundary term is zero. Analysis of this additional bound-
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ary term, shows that for e0 ≥ 0 it is at least of the same magnitude as
the convective contribution in the error-estimator and should therefore be
included.

For the discrete solutions a finite volume approach is used, where high-
order discretisation is applied and a flux limiter to prevent spurious oscilla-
tions in the solutions.

Case 1

For case 1 with the boundary layer, it is shown that incorporating the
boundary residual is important, since the boundary contribution in the er-
ror estimator is larger than the contribution from the inner domain. This is
similar to the discrete case studied for the linear convection-diffusion prob-
lem in the previous chapter.

In this nonlinear problem, the primal solution is required as coefficient
for the convective term and as dual initial condition. The purpose of goal-
oriented modelling-error estimator however, is based on the fact that the
fine model solution u(x, t) is not available. Therefore the fine dual solution
is computed as well using the coarse model solution u0(x, t) as coefficient
for the convective term and as dual initial condition. The error estimator
based on this dual solution performs good.

The efficiency index for case 1 suggests that the coarse dual-weighted
residual estimator R(u0; p0), performs better than the fine dual weighted
estimator R(u0; p). Making an explicit evaluation of the most important
high-order terms, reveals that this is a coincidence. For µ = 0.1, it is
shown that the fine dual-based estimator improves more than the coarse
dual-based estimator, when incorporating the evaluated high-order terms.
For decreasing µ, the goal-oriented modelling error estimator improves.

Case 2

Case 2 implies a stationary shock in the primal solution which enables to
study the modelling-error estimator for strongly nonlinear problems. The
situation is not a singularly perturbed problem as in case 1, since the mod-
elling error goes to zero for vanishing µ. Therefore the modelling error
Q(u) − Q(u0) and the high-order terms approach zero as well.

Also for case 2, the fine dual solution p is computed using the fine and
the coarse model solutions u and u0, as coefficient in the dual equation and
as initial condition. This estimator performs fine.

In case of shocks in the primal solution, attention should be paid to
solving the dual problem. For certain quantities of interest a discontinuous
dual initial condition may arise, for which analytically an additional shock
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boundary condition needs to be applied. For the case studied and the
applied discretisation scheme however, the proper dual solution emanates
from the shock, without imposing the additional shock boundary condition
explicitly.



Chapter 6

An approach for steady

2-D flow problems

In this chapter, an approach is described and studied to derive a goal-
oriented modelling-error estimator for a 2-D flow problem. In this case the
Navier-Stokes equations represent the fine model and the Euler equations
the coarse model, which is obtained by omitting diffusion and heat conduc-
tion in the Navier-Stokes equations. This model simplification is similar
to the (nonlinear) convection-diffusion problems described in the previous
chapters, where the coarse model is also obtained by omitting the diffusion.
In both cases the type of the equations changes, due to this simplification
in the coarse model. The elliptic Navier-Stokes equations change type when
diffusion and heat conduction are omitted.

Contrary to the convection-diffusion problems in the previous chapter
where the variational approach is followed, in this chapter the linear dif-
ferential approach as described in chapter 2 is followed. The linear differ-
ential approach followed for a 2-D flow, is based on the work of Giles and
Pierce [36] for the thin-layer Navier-Stokes equations. The advantage of
the linear differential approach in this 2-D problem, is that the formulation
and derivation of boundary operators can be done in a more compact form
than with the variational approach. However, due to the nonlinearity of
the problem, the variational approach should also be applied to gain insight
in high-order contributions in the error-estimator. Therefore this chapter
should be considered as a preliminary study into the application of the
DWR method in flow problems where model equations are of different type.
The boundary operators for the dual problem and the error estimator that
are derived by the linear differential approach are studied and described in
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more detail.

The DWR method (in the variational approach) has been successfully
applied to a flow problem by Oden and Prudhomme [27]. In this problem
however, they consider the Stokes equations as approximating model. In
the Stokes equations the convective instead of diffusive terms are omitted
due to which the type of the equations remains the same and no boundary
residuals arise.

In section 6.1 the model equations are given in conservative form and
linearised form. The latter is required in order to derive the dual equations
and dual boundary operators as will be shown in section 6.2. Using these
boundary operators the goal-oriented modelling-error estimator is derived
in section 6.3. Conclusions and recommendations are given in section 6.5.

6.1 The model equations

In this section the model equations are given for the fine and coarse model
represented by the Navier-Stokes and the Euler equations, respectively. To
apply the linear differential approach as given in chapter 2, the Navier-
Stokes and Euler equations need to be linearised as shown in the following
section.

6.1.1 The fine model: the Navier-Stokes equations

We first consider the compressible steady Navier-Stokes equations in 2-D:

∂

∂x

(

Fx(U) + F v
x (U)

)

+
∂

∂y

(

Fy(U) + F v
y (U)

)

= 0, (6.1)

where U = (ρ, ρux, ρuy, ρE)T is the solution vector of conservative vari-
ables with ρ the density, ux and uy the velocity components of ~u = (ux, uy)

T

and E the total energy. The vectors Fi and F v
i are the convective and vis-

cous flux vectors in i-direction, respectively. For the convective fluxes we
have:

Fx(U) =









ρux

ρu2
x + p

ρuxuy

ρuxH









, Fy(U) =









ρuy

ρuxuy

ρu2
y + p

ρuyH









, (6.2)
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with p the static pressure and H = γ
γ−1

ρ
p + |~u|2/2 the total enthalpy in

which γ is the ratio of specific heats. For the viscous fluxes we have:

F v
x (U) =









0
τxx

τxy

u τxx + v τxy + k ∂T
∂x









, F v
y (U) =









0
τyx

τyy

u τyx + v τyy + k ∂T
∂y









.

(6.3)
The stress tensor τij , (i, j = x, y) given by:

τij = δijλ(∇ · ~u) + 2µ
(∂uj

∂xi
+

∂ui

∂xj

)

, i, j = x, y, (6.4)

where λ = −2/3µ is the bulk viscosity coefficient and δij the Kronecker
delta. To apply the linear differential approach, the Navier-Stokes equa-
tions (6.1) are linearised around a steady state solution. In linearised form,

with u = (ρ̃, ˜(ρux), ˜(ρuy), ˜(ρE))T the solution vector of perturbed conser-
vative variables, equation (6.1) becomes:

Lu ≡
∂

∂x

(

(Ax − Av
x)u − Dxx

∂u

∂x
− Dxy

∂u

∂y

)

+
∂

∂y

(

(Ay − Av
y)u − Dyx

∂u

∂x
− Dyy

∂u

∂y

)

= 0. (6.5)

The convective and viscous Jacobians in i-direction are:

Ai =
∂Fi

∂U

∣

∣

∣

U(x,y)
, Av

i =
∂F v

i

∂U

∣

∣

∣

U(x,y)
, i = x, y. (6.6)

The matrices Dij are the Jacobians with respect to the derivatives in i, j-
directions:

Dij =
∂F v

i

∂( ∂U
∂xj

)

∣

∣

∣

U(x,y)
, i, j = x, y. (6.7)

A detailed discussion on boundary conditions for the Navier-Stokes and
Euler equations is beyond the scope of this thesis, see the numerous litera-
ture available on the subject, e.g. [64, 66, 71, 72].

6.1.2 The coarse model: the Euler equations

To obtain the approximating Euler equations, all viscous and heat conduct-
ing terms in the (linearised) Navier-Stokes equations (6.5) are dropped. This
yields:

L0u0 ≡
∂

∂x
(Axu0) +

∂

∂y
(Ayu0) = 0, (6.8)
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where u0 is the solution vector with conservative variables (with the sub-
script ‘0’ indicating the coarse model solution) and Ax and Ay are the same
convective Jacobians as in (6.5). For the derivation of the dual bound-
ary conditions for the Euler equations, the reader is referred to Giles and
Pierce [36] and Soemarwoto [38]. To derive the goal-oriented modelling-
error estimator in the following sections, the dual boundary operators for
the Navier-Stokes equations are required.

6.2 Dual boundary operators

To find the dual equation, the inner product (defined in (2.4)) of the lin-
earised Navier-Stokes equations (6.5) with the vector of dual variables v1 is
taken and integration by parts is performed as in (2.9):

(v, Lu)Ω =
(

− (Ax − Av
x)T ∂v

∂x
−

∂

∂x

(

DT
xx

∂v

∂x
+ DT

yx

∂v

∂y

)

, u
)

Ω

+
(

− (Ay − Av
y)T ∂v

∂y
−

∂

∂y

(

DT
xy

∂v

∂x
+ DT

yy

∂v

∂y

)

, u
)

Ω

+
(

v, nx

(

(Ax − Av
x)T − Dxx

∂u

∂x
− Dxy

∂u

∂y

))

Γ

+
(

v, ny

(

(Ay − Av
y)T − Dyx

∂u

∂x
− Dyy

∂u

∂y

))

Γ

+
(∂v

∂x
, (nxDxx + nyDyx)u

)

Γ

+
(∂v

∂y
, (nxDxy + nyDyy)u

)

Γ
. (6.9)

Here, nx and ny are the components of the outward pointing unit normal on
the boundary ~n = (nx, ny)T . The inner product of the dual equation and
the primal solution u, i.e. (L∗v, u), is given by the first two lines in (6.9).
This yields for the dual problem:

L∗v = −(Ax − Av
x)T ∂v

∂x
−

∂

∂x

(

DT
xx

∂v

∂x
+ DT

yx

∂v

∂y

)

+
(

− (Ay − Av
y)T ∂v

∂y
−

∂

∂y

(

DT
xy

∂v

∂x
+ DT

yy

∂v

∂y

)

= g, (6.10)

where g depends on the quantity of interest considered, as described in
chapter 2. For a quantity of interest defined on a boundary, we have g = 0.

1To prevent confusion with the pressure p it is chosen to use v for the vector of dual
variables.
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The remaining terms in equation(6.9) are the boundary integrals, which
shows that the matrices Ai, Av

i and Dij given in (6.6) and (6.7) are present
in the dual problem. There are several approaches to obtain these matrices
in discrete computations, such as explicit evaluation of the derivatives [43,
44, 73, 74, 75] or automatic differentiation [25, 76, 77, 78] of which the last
is more accurate and less time consuming.

Before proceeding, we switch from conservative variables
u ≡ (ρ̃, ˜(ρux), ˜(ρuy), ˜(ρE))T to primitive variables up ≡ (ρ̃, ũx, ũy, T̃ )T ,

with T̃ the perturbed temperature. Computing the Jacobians (6.6)–(6.7)
with respect to primitive variables yields a more synoptic derivation of
boundary operators than using Jacobians with respect to the conservative
variables. The switch to primitive variables is achieved by u = Sup, where
S is the transformation matrix S = ∂u/∂up.

In order to derive the dual boundary operators, the boundary terms
in (6.9) are written in compact form as in (2.11). Therefore the following
extended vectors up and vp are introduced containing the vector itself and
the derivatives with respect to its normal:

up =





up

∂up

∂n



 =





S−1u

∂(S−1u)

∂n



 , vp =





ST v

ST ∂v

∂n



 , (6.11)

with ∂
∂n = ~n · ∇ the directional derivative. The boundary integrals in (6.9)

are then written in matrix form as vT
p Apup. To construct the matrix

Ap with respect to the primitive variables, the matrices Ai, Av
i and Dij

from (6.6) and (6.7) are given with respect to the primitive variables, in-
dicated by the subscript ‘p’. Derivatives in (6.9) with respect to x and
y, are rewritten in terms of the directional derivative by ∂

∂x = nx
∂

∂n and
∂
∂y = ny

∂
∂n . To have the energy equation in terms of the temperature T̃ , it
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is divided by ρ cv. The resulting matrices are:

Ax,p=















ux ρ 0 0

u2
x + R T 2ρux 0 ρR

uxuy ρuy ρux 0

ux( γR
γ−1T + |~u|2

2 ) ρ( γR
γ−1T + |~u|2

2 + u2
x) ρuxuy

ργR
γ−1ux















(6.12a)

Ay,p=















uy 0 ρ 0

uxuy ρuy ρux 0

u2
y + R T 0 2ρuy ρR

uy(
γR
γ−1T + |~u|2

2 ) ρuxuy ρ( γR
γ−1T + |~u|2

2 + u2
y) ργR

γ−1uy















(6.12b)

and

Av
x,p =









0 0 0 0
0 0 0 0
0 0 0 0
0 τxx τxy 0









, Av
y,p =









0 0 0 0
0 0 0 0
0 0 0 0
0 τyx τyy 0









. (6.13)

The convective matrices Ax,p and Ay,p and the viscous matrices Av
x,p and

Av
y,p, together with their corresponding normal components nx and ny, form

the Jacobian of the normal flux defined at the boundaries:

∂(~F · ~n)

∂Up
= (Ax,p + Av

x,p) nx + (Ay,p + Av
y,p) ny (6.14)

where ~F is given by:

~F =

(

Fx + F v
x

Fy + F v
y

)

.
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For the viscous derivative matrices Dij, p we have:

Dxx, p =
∂F v

x

∂(∂U
∂x )

∣

∣

∣

U(x,y)
=









0 0 0 0
0 2 µ + λ 0 0
0 0 µ 0
0 (2 µ + λ) ux µ uy k









, (6.15a)

Dxy, p =
∂F v

x

∂(∂U
∂y )

∣

∣

∣

U(x,y)
=









0 0 0 0
0 0 λ 0
0 µ 0 0
0 µ uy λ ux 0









, (6.15b)

Dyx, p =
∂F v

y

∂(∂U
∂x )

∣

∣

∣

U(x,y)
=









0 0 0 0
0 0 µ 0
0 λ 0 0
0 λ uy µ ux 0









, (6.15c)

Dyy, p =
∂F v

y

∂(∂U
∂y )

∣

∣

∣

U(x,y)
=









0 0 0 0
0 µ 0 0
0 0 2 µ + λ 0
0 µ ux (2 µ + λ) uy k









. (6.15d)

Using the convective and viscous matrices given in (6.12a)–(6.15d), the ma-
trix Ap can finally be constructed:

Ap =









































~u · ~n ρ nx ρ ny 0 0 0 0 0

RTnx

ρ ~u · ~n 0 Rnx 0 A2,6
p A2,7

p 0

RTny

ρ 0 ~u · ~n Rny 0 A3,6
p A3,7

p 0

0 A4,2
p A4,3

p ~u · ~n 0 A4,6
p A4,7

p − k
ρ cv

0 0 0 0 0 0 0 0

0 A6,2
p A6,3

p 0 0 0 0 0

0 A7,2
p A7,3

p 0 0 0 0 0

0 A8,2
p A8,3

p
k

ρ cv
0 0 0 0









































, (6.16)
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with the shorted entries given by:

A4,2
p = −

τxy

ρ cv
ny +

(

(γ − 1)T −
τxx

ρ cv

)

nx, (6.17a)

A4,3
p =

(

(γ − 1) T −
τyy

ρ cv

)

ny −
τxy

ρ cv
nx, (6.17b)

A6,2
p = −A2,6

p =
1

ρ

{

(2 µ + λ) nx
2 + µ ny

2
}

, (6.17c)

A7,3
p = −A3,7

p =
1

ρ

{

(2 µ + λ) ny
2 + µ nx

2
}

, (6.17d)

A6,3
p = A7,2

p = −A2,7
p = −A3,6

p =
(λ + µ)

ρ
nx ny, (6.17e)

A8,2
p = −A4,6

p =
1

ρ

{

(2 µ + λ) uxn2
x + (µ + λ)uy nx ny + µ ux n2

y

}

, (6.17f)

A8,3
p = −A4,7

p =
1

ρ

{

(2 µ + λ) uyn2
y + (µ + λ)ux nx ny + µ uy n2

x

}

. (6.17g)

With matrix Ap given, it is now possible to derive the dual boundary op-
erators B∗

p and C∗
p as defined in (2.11), following the approach described in

section 2.2. In short, this means that the following relation must hold:

Ap = (B∗
p)

T Cp − (C∗
p)

T Bp. (6.18)

This can be reformulated by:

Ap = (T∗)T T, (6.19)

when defining the matrices T and T∗ as:

T =

[

Bp

Cp

]

, T∗ =

[

−C∗
p

B∗
p

]

. (6.20)

This means that T∗ needs to be resolved to determine B∗
p and C∗

p.
In the following sections, the boundary operators B∗

p and C∗
p are deter-

mined for a solid wall and for outflow boundaries. To do so, the primal
boundary conditions are rewritten in matrix form by Bp and Cp. A similar
procedure can be followed for the inflow boundary, but this is not discussed
here, since the purpose is to derive the goal-oriented modelling-error estima-
tor. Boundary residuals on the inflow boundary are zero, therefore they do
not contribute to the modelling-error estimator (similar to the (nonlinear)
convection-diffusion problems described in the previous chapters).
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6.2.1 Solid wall boundary operators

The operators are derived for a solid wall in general with arbitrary nor-
mal direction (in Giles and Pierce [36] section 2.4, the dual operators are
derived for a wall aligned with the x-axis). The solid wall boundary con-
ditions considered for the Navier-Stokes equations are the no-slip condition
ũx = ũy = 0 and a fixed wall temperature T̃ . Another possibility is to use

the no-slip condition in combination with a given heat flux ∂T̃/∂n. This
combination is not considered in this thesis.

Due to the no-slip condition on a wall, matrix Ap in equation (6.16) is
simplified using ux = uy = 0. Matrix Ap is of rank 6 since each of its rows
can be written as a combination of the following rows:

( 0 1 0 0 0 0 0 0 )

( 0 0 1 0 0 0 0 0 )

( 0 0 0 1 0 0 0 0 )

( 0 0 0 0 0 µ ny −µ nx 0 )

( RT 0 0 ρR 0 −(2µ + λ) nx −(2µ + λ) ny 0 )

( 0 0 0 0 0 0 0 −k )

(6.21)

which corresponds subsequently to perturbations in the two velocity com-
ponents, the temperature, the two (tangential and normal) components of
the surface force and the heat flux, respectively.

The idea is to define the boundary operators Bp and Cp in such a way,
that the rows of Bp and Cp (and thus T) form a complete basis for the
rows of Ap. The matrix Bp should be defined such that the product Bpup,
with up given in (6.11), yields the above given boundary conditions, i.e. the
no-slip condition and the fixed wall temperature. This is achieved by the
first three rows of (6.21), which yields for the matrix Bp:

Bp =









0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0









. (6.22)

Following Giles and Pierce [36], we choose for Cp the remaining rows of (6.21):

Cp =









0 0 0 0 0 µ ny −µ nx 0

RT 0 0 ρR 0 −(2µ + λ) nx −(2µ + λ) ny 0

0 0 0 0 0 0 0 −k









, (6.23)
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which illustrates that the quantities, represented by (a combination of) the
rows of Cp, are sensible choices for the quantity of interest: the wall shear
stress formed by the first row, the normal stress (including the static pres-
sure) formed by the second row and the heat flux formed by the third row.
When the heat flux is used as boundary condition in combination with the
no-slip condition, one finds from Cp that the wall temperature is a sensible
choice as quantity of interest.

The dual operators B∗
p and C∗

p can now be found by solving system (6.19),
where T and T∗ are determined by the definitions (6.20). For B∗

p this yields:

B∗
p =

















0 −
ny

ρ

nx

ρ
0 0 0 0 0

0
nx

ρ

ny

ρ
0 0 0 0 0

0 0 0
1

ρ cv
0 0 0 0

















. (6.24)

When solving the dual equation with respect to the primitive variables, the
dual boundary conditions are:

B∗
p vp =



















~v · ~s

ρ

~v · ~n

ρ
v4

ρcv



















, (6.25)

where ~v = (v2, v3) is the dual velocity and ~s the unit tangential vector.
This shows that the boundary conditions for the fine dual problem are
comparable to those for the primal problem (the Navier-Stokes equations),
where the no-slip condition and zero flow through the solid wall, are in fact
conditions on the tangential and normal component of the velocity vector.

For the matrix C∗
p, required for the modelling-error estimator, we have:

C∗
p =









−ρ nx 0 0 −A4,2
p 0 −A6,2

p −A7,2
p 0

−ρ ny 0 0 −A4,3
p 0 −A7,2

p −A7,3
p 0

0 0 0 0 0 0 0 − k
ρ cv









, (6.26)

in which the Ap entries are given in (6.17). These matrices can be con-
verted back into the original conservative variables using the relations in
equation (6.11). We continue by using the primitive variables and the cor-
responding matrices.
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Note that the entries of C∗
p are based on the solution u of the Navier-

Stokes equations, the fine model. Since u is not available, the coarse solution
u0 needs to be used instead. This aspect is comparable to the Burgers
problem in the previous chapter, where the fine model solution u appears
in the fine dual problem as coefficient for the convective term and as dual
initial condition. In that case the fine model solution is also replaced by
coarse model solution u0.

The C∗
p-entries A4,2

p and A4,3
p , given in (6.17), reveal that stress terms

appear in the error estimator. The stress terms as given in equation (6.4),
require the gradients of the velocity ~u from the Navier-Stokes solution. Since
the fine model solution u is not at hand, the coarse model solution u0 has
to be used. This means that the velocity gradients, as they appear in C∗

p,
are based on the coarse model velocity ~u0 instead of the fine model velocity
~u. Due to the boundary layer in the fine model solution which lacks in the
coarse model solution, the gradients of ~u at the solid wall are much larger
than the gradients of ~u0. This difference in velocity gradients has an effect
on the accuracy of the estimator that can be quite large.

Boundary conditions for a quantity of interest on a solid wall

Consider as quantity of interest the following force exerted on the solid wall
ΓS (for instance the lift of an airfoil):

Q(u) =

∫

ΓS

p̃ − (2µ + λ)(
∂ũx

∂x
+

∂ũy

∂y
)ds. (6.27)

Remind that the general form of a quantity of interest is given by (2.3):

Q(u) = (g, u)Ω + (h, Cu)Γ.

Since the quantity of interest (6.27) has zero inner domain contribution
(g = 0), it can be written as:

Q(u) = hT Cpup. (6.28)

With Cp given in (6.23) this becomes:

Q(u) = h1 µ(ny
∂ũx

∂n
+ nx

∂ũy

∂n
)

− h2

(

RT ρ̃ + ρRT̃ − (2µ + λ)(nx
∂ũx

∂n
+ ny

∂ũy

∂n
)
)

− h3 k
∂T̃

∂n
, (6.29)
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where the perturbed pressure p̃ is rewritten in terms of the primitive vari-
ables ρ̃ and T̃ , using the equation of state p = ρ R T as:

p̃ = (ρ̃ R T + ρ RT̃ ). (6.30)

Equation (6.29) in combination with equation (6.27), implies h1 = 0, h2 = 1
and h3 = 0. Since the dual boundary conditions are defined according to
B∗v = h from (2.5b), this gives for the dual boundary conditions on ΓS

using (6.25):

~v · ~s

ρ
= h1 = 0, (6.31)

~v · ~n

ρ
= h2 = 1,

v4

ρcv
= h3 = 0.

6.2.2 Outflow boundary operators

For a subsonic outflow boundary ΓO (which is an inflow boundary for the
dual problem), Neumann boundary conditions are applied on the stress and
temperature (see Wesseling [64] and Hirsch [66]):

ταβ nβ − pδαβ nβ = −p∞ nα, with α, β = x, y, (6.32a)

k
∂T

∂n
= 0. (6.32b)

which yields in terms of primitive variables:

(

2µ
∂ux

∂x
+ λ
(∂ux

∂x
+

∂uy

∂y

)

− p
)

nx = −p∞ nx, (6.33a)

(

2µ
∂uy

∂y
+ λ
(∂ux

∂x
+

∂uy

∂y

)

− p
)

ny = −p∞ ny, (6.33b)

µ
(∂ux

∂y
+

∂uy

∂x

)

nx = µ
(∂ux

∂y
+

∂uy

∂x

)

ny = 0, (6.33c)

k
∂T

∂n
= 0. (6.33d)

These conditions also apply to the equations in linearised form. Note that
in (6.33a) and (6.33b) the terms (∂uy/∂y)nx and (∂ux/∂x)ny are zero. Tak-
ing together (6.33a) and (6.33b) and rewriting the pressure p̃ using (6.30),
yields:

(R T ρ̃ + ρ R T̃ ) − (2µ + λ)
(∂ũx

∂n
nx +

∂ũy

∂n
ny

)

= p∞. (6.34)
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Similar to the solid wall boundary conditions in the previous section the
outflow boundary conditions should be defined in terms of rows that form a
basis for Ap as given in equation (6.16), in order to find the dual boundary
operators. In its full form Ap is of rank 7, since each of its rows can be
written as a combination of the following rows:

( 1 0 0 0 0 0 0 0 )

( 0 1 0 0 0 0 0 0 )

( 0 0 1 0 0 0 0 0 )

( 0 0 0 1 0 0 0 0 )

( RT 0 0 ρR 0 −(2µ + λ) nx −(2µ + λ) ny 0 )

( 0 0 0 0 0 µ ny −µ nx 0 )

( 0 0 0 0 0 0 0 −k )

(6.35)

which corresponds to perturbations in ρ, ux, uy, T , the normal stress, the
shear stress and the heat flux, respectively.

With (6.34) and (6.37), the primal outflow boundary operator Bp is then
constructed from the appropriate rows from (6.35):

Bp =





0 0 0 0 0 µ ny −µ nx 0
RT 0 0 ρR 0 −(2µ + λ) nx −(2µ + λ) ny 0
0 0 0 0 0 0 0 −k



 . (6.36)

The first row of Bp comes from the condition (6.33c) and is found by rear-
rangement:

µ
∂ũx

∂y
ny − µ

∂ũy

∂x
nx = µ

∂ũx

∂y
nx − µ

∂ũy

∂x
ny = 0,

which is equal to:

µny
∂ũx

∂n
− µnx

∂ũy

∂n
= 0. (6.37)

For Cp we choose the rest of the rows (6.21) that form, together with
Bp, a complete basis for the rows of Ap:

Cp =









1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0









. (6.38)
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Now the dual operators B∗
p and C∗

p are determined by solving system (6.19)
with T and T∗ given by (6.20). Splitting the Dirichlet and Neumann parts
in B∗

p, yields:

B∗
pvp =















~u · ~n 0 0 −TR
ρ ~u · ~n

ρ nx ~u · ~n 0 A4,2
p

ρ ny 0 ~u · ~n A4,3
p

0 0 0 (1 − R)~u · ~n















v +















0 0 0 0

0 A6,2
p A7,2

p A8,2
p

0 A6,3
p A7,3

p A8,3
p

0 0 0 k
ρ cv















∂v

∂n
, (6.39)

and for C∗
p one finds:

C∗
p =



















0
ny

ρ
−

nx

ρ

~u · ~s

ρ
0 0 0 0

0 −
nx

ρ
−

ny

ρ

−~u · ~n

ρ
0 0 0 0

0 0 0
1

ρcv
0 0 0 0



















. (6.40)

The required dual boundary conditions on a dual inflow boundary, deter-
mined by B∗

pvp given in (6.39), are rather complicated. Instead, the bound-
ary conditions for the Euler case on far-field boundaries (the inflow and
outflow boundaries) can be applied, see also Soemarwoto [38]. When the
quantity of interest is defined on a solid wall, far-field boundary conditions
have low influence on the dual solution near that wall (see [38]).

When the quantity of interest is defined on a solid wall, all dual outflow
boundary conditions are homogeneous on ΓO:

B∗v = h ⇒ B∗
pvp = h, (6.41)

with h1 = h2 = h3 = 0 and B∗
p given in (6.39).

6.3 The error estimator

The error estimator in general form is defined by equation (2.18). In the
chapters 4 and 5 it is explained that the error estimator has no contributions
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from the inflow boundary, since the fine and coarse model have the same
boundary conditions. For the 2-D flow problem considered with f = 0, the
estimator in terms of the boundary matrices with respect to the primitive
variables is given by:

Q(u) = (v,−Lu0)Ω + (aS −Bpu0,p)
T C∗

p vp|ΓS

+ (aO −Bpu0,p)
T C∗

p vp|ΓO
. (6.42)

In the following sections, the individual contributions from the inner
domain, the solid wall and the outflow boundary are discussed. Applying
the coarse dual solution v0 as weighting function in the error estimator,
means that v should be replaced by v0. Also in the dual boundary operator
C∗

p the primal variables up ≡ (ρ̃, ũy, ũy, T̃ )T should be replaced by the

coarse model variables u0p ≡ (ρ̃0, ũ0x, ũ0y, T̃0)
T .

6.3.1 Inner domain contribution

The contribution from the inner domain (v,−Lu0) is found by substituting
the Euler solution u0 into the Navier-Stokes equations (6.5). To simplify
the expression, the coarse model is used. This is allowed when the right-
hand-side of the model equations is equal (zero in this case). This yields:

(v,−Lu0) = (v, L0u0 − Lu0)

=
(

v,
∂

∂x

(

(Av
x)u0 + Dxx

∂u0

∂x
+ Dxy

∂u0

∂y

)

+
∂

∂y

(

(Av
y)u0 + Dyx

∂u0

∂x
+ Dyy

∂u0

∂y

)

)

. (6.43)

Note that the modelling residual can also be evaluated in nonlinear form
by:

(v,−Lu0) =
(

v,−
∂F v

x (U)

∂x
−

∂F v
x (U)

∂y

)

, (6.44)

with F v
x (U) and F v

y (U) given in (6.3). This allows to use the viscous flux
evaluation routines in case of numerical computations.

6.3.2 Solid wall contribution

For the modelling residual on a solid wall a−Bu0, the no-slip condition on
the wall for the Navier-Stokes equations is used, i.e. ũx = ũy = 0. Since the
wall temperature is considered to be a given boundary condition, it is equal
for both the fine and the coarse model, i.e. T̃ = T̃0. With the matrices C∗

p
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and Bp given in (6.26) and (6.22), respectively, the contribution from the
solid wall ΓS can be computed from:

(aS −Bpu0p)
T C∗

p vp|ΓS
=

=









0 − ũ0,x

0 − ũ0,y

T̃ − T̃0









T 















−ρ nx 0 0 −A4,2
p

−ρ ny 0 0 −A4,3
p

0 0 0 0









v

+









0 −A6,2
p −A7,2

p 0

0 −A7,2
p −A7,3

p 0

0 0 0 − k
ρ cv









∂v

∂~n









. (6.45)

Note that the C∗
p-entries A4,2

p and A4,3
p that are given in (6.17), involve

derivatives of the velocity components ux and uy. Since the fine model so-
lution is not available, the coarse model solution should be used to evaluate
the entries of C∗

p. This has consequences for the accuracy of the error-
estimator, as described in section 6.2.1

6.3.3 Outflow boundary contribution

For the outflow boundary, the residual (aO − Bpu0) is derived first with
aO = Bpup and Bp given in (6.36):

(aO −Bpu0) = (Bpup −Bpu0p) = Bp(up − u0p)

=





0 0 0 0 0 µ ny −µ nx 0
RT 0 0 ρR 0 −(2µ + λ) nx −(2µ + λ) ny 0
0 0 0 0 0 0 0 −k



 (up − u0)

=

















µ(
∂ũx

∂y
−

∂ũy

∂x
) − µ(

∂ũ0x

∂y
−

∂ũ0y

∂x
)

p̃ − p̃0 − (2 µ + λ)(
∂ũx

∂y
−

∂ũ0x

∂y
) − (2 µ + λ)(

∂ũy

∂x
−

∂ũ0y

∂x
)

−k(
∂T̃

∂~n
−

∂T̃0

∂~n
)

















.

(6.46)
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The residual (6.46) is multiplied by C∗
pvp with C∗

p given in (6.40):

C∗
pvp =



















0
ny

ρ
−

nx

ρ

~u · ~s

ρ

0 −
nx

ρ
−

ny

ρ

−~u · ~n

ρ

0 0 0
1

ρcv



















v. (6.47)

6.4 Overview of the approach

Goal-oriented modelling-error estimation for a 2-D flow problem with the
Navier-Stokes and the Euler equations as fine and coarse models, can be
summarised by the following steps.

When the Euler equations (6.8) are solved, the quantity of interest ex-
pressed in terms of Cp, can be computed. For a solid wall, Cp is given
by (6.23) and for an outflow boundary by (6.38). Then the dual prob-
lem (6.10) is solved with the boundary conditions determined by B∗

p. For
a solid wall and an outflow boundary, B∗

pvp is given by (6.25) and (6.39),
respectively.

To compute the goal-oriented modelling-error estimator, firstly the mod-
elling residuals are required. The residual on the inner domain can be com-
puted by substituting the Euler solution into the Navier-Stokes equations.
With the boundary conditions for the Navier-Stokes equations known, the
modelling residuals on the boundaries can also be computed. Then, these
modelling residuals are multiplied by the weighting term C∗

pvp. For the
inner domain contribution we obtain the weighted residual (6.43). For the
solid wall and outflow boundaries, we obtain the weighted residuals (6.45)
and (6.46), respectively. Summing these inner domain and boundary con-
tributions, yields the goal-oriented modelling-error estimator for a 2-D flow
problem.

A drawback of the application of the linear differential approach to non-
linear flow problems, is that high-order terms in the primal and dual error
are neglected. These high-order terms originate from nonlinear terms such
as the convective term and a nonlinear quantity of interest. In the previous
chapter concerning the Burgers problem, it is shown that a computable high-
order term on a boundary can be of significant size. Therefore, neglecting
this term may have a negative effect on the accuracy of the error estimator.
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6.5 Conclusions and recommendations

In this chapter, a possible approach is given for the application of the DWR
method to 2-D flow problems based on the linear differential approach de-
scribed in chapter 2. To derive the dual boundary operators by the linear
differential approach, the primal fine and coarse problems are linearised.
The resulting dual boundary operators yield an estimator without high-
order terms, inherent to the linear differential approach.

The boundary conditions for the fine dual problem on a solid wall also
yield a condition for the tangential and normal component of the dual ve-
locity vector ~v = (v1, v2)

T , similar to the conditions for the fine model. For
the outflow boundary however, the derived dual boundary conditions for an
outflow boundary are rather complex. Therefore, often the outflow bound-
ary conditions for the coarse dual problem are applied for the fine dual
problem. This approach is similar to the application of far-field boundary
conditions for the Euler equations to the Navier-Stokes equations.

Some of the entries of the boundary operator for a solid wall are based on
the primal solution. Since the fine model solution is not available, an error is
introduced when applying the coarse model solution. It is explained that the
gradients of the velocity at a solid wall based on the coarse model solution
can differ a lot from the gradients based on the fine model solution, due to
the boundary layer behaviour in the latter. Possible ways to improve the
estimator can be the addition of an artificial boundary layer using Blasius
theory and re-compute the gradients, or change the model type of the cells
adjacent to the solid wall in case of discrete computations. This has to be
evaluated by performing numerical tests.

The variational approach should be applied as well, in order to derive
computable high-order contributions in the error-estimator. In the pre-
vious chapter concerning the nonlinear Burgers problem, it is found that
high-order terms on a boundary can be of at least the same magnitude
as convective contributions. These computable high-order boundary terms
should therefore be included in the error estimator.

For the outflow boundary contribution in the error estimator with the
quantity of interest defined on a solid wall, it should be investigated how
large the outflow boundary contribution in the error estimator is with re-
spect to the wall boundary contribution.



Chapter 7

Conclusions and

recommendations

In this thesis it is shown that the Dual-Weighted Residual (DWR) method
is a suitable method to perform goal-oriented modelling-error estimation in
a class of hierarchical models in which the model equations are of different
type. In this case, the type concerns the characterisation of the partial dif-
ferential equation or the order of the equation. The error estimator for a
modelling error in a quantity of interest in such a class, needs an explicit
treatment of the boundaries. An example of hierarchical models of different
type are the singularly perturbed convection-diffusion problems, where the
coarse model is reduced problem in which diffusion is omitted. An expres-
sion for the modelling error is derived for (non-linear) convection-diffusion
problems in which inner domain and boundary contributions occur.

7.1 Conclusions

To employ the DWR method, a dual problem is solved of which the solution
acts as weighting function for the modelling residual. This residual is found
by substituting the coarse model solution into the fine model equations. To
obtain the goal-oriented modelling-error estimator according to the DWR
method, a so-called linear differential approach and a variational approach
are followed. The first approach is also applicable to non-linear problems,
but since the model equations are first linearised before the error estimator is
derived, all information contained in high-order contributions is discarded.
Therefore, the variational approach, in which the model equations are con-
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sidered in a weak formulation, is more suitable for non-linear problems since
it allows to analyse contributions from non-linear terms (coming from the
quantity of interest as well as the model equations).

Boundary residual inclusion

For both the linear differential and the variational approach, it is shown to
be essential to include boundary residuals explicitly in the modelling-error
estimator when boundary conditions for the fine and coarse model differ,
or when these models are of a different type. In the variational approach,
this is achieved by imposing boundary and initial conditions weakly. The
importance of boundary residual inclusion is illustrated by cases where the
quantity of interest is defined on the whole domain, whilst the error esti-
mator has only contributions from the boundaries. In convection-diffusion
problems, both the convection and the diffusion term have a boundary con-
tribution in the error estimator.

Applying the coarse dual solution in the estimator

When the computation of the fine dual solution and the computation of the
fine primal solution are equally expensive in terms of computational time, it
is essential for the efficiency of the DWR method to employ the coarse dual
solution instead of the fine dual solution. This introduces an additional dual
error in the estimator which causes the quality of the estimator to decrease.
The quality of the goal-oriented modelling-error estimator is indicated by
the efficiency index, which is defined as the ratio between the estimator
and the real error. A perfect estimator has an efficiency index of unity. In
the (nonlinear) convection-diffusion cases considered, the efficiency index
approaches unity for decreasing diffusion coefficient. This is also the case
for both the fine and coarse dual-weighted residual estimators.

In the linearised dual problem, the quantity of interest appears in a
weak formulation on the right-hand side. In some cases this leads to an ill-
posed dual problem. This is demonstrated for a diffusion-related quantity
of interest on a boundary that cannot be represented by the coarse model
without a diffusive operator. A possible remedy for the ill-posed coarse dual
problem is to apply domain decomposition, and use the fine dual equation
in a small part of the domain. Applying the fine dual equation in a small
region near that boundary yields a well-posed approximating dual problem.
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Application to nonlinear problems

Analysis of the high-order terms derived by the variational approach for the
nonlinear Burgers problem, shows that the high-order terms also involve a
computable boundary term that can be of the same magnitude as the con-
vective boundary contribution. This illustrates the importance of analysing
the high-order terms for nonlinear problems when the hierarchical models
are of a different type.

It is also found that the fine model solution appears in the fine dual
problem as a coefficient for the convective term and, in case of a nonlinear
quantity of interest defined on the domain, also in the initial dual solution.
Since the fine model solution is not provided, one can apply the coarse
model solution in case one wants to use the fine dual solution in the error
estimator. However, this introduces an additional error in the estimator.

Violation of solution restrictions

Application of the DWR method to a Burgers problem in which a shock oc-
curs in the inviscid Burgers solution, shows that the DWR method results
in a reliable estimator, despite the restriction on the coarse model solution.
This restriction is inherent to the variational approach and means that only
sufficiently smooth solutions should be considered. The studied Burgers
problem shows that for vanishing diffusion, the local modelling error van-
ishes, and consequently the modelling error in the quantity of interest.

In unsteady problems, when a discontinuity occurs between the initial
dual condition and dual boundary conditions, the restriction that only suf-
ficiently smooth solution should be considered, is violated. Despite this
violation, the unsteady convection-diffusion problems studied in this thesis
show good results for the goal-oriented modelling-error estimator.

Aspects of numerical computations

The unsteady (nonlinear) convection-diffusion problems in this thesis are
studied by numerical approximations in which difficulties arise when a dis-
continuity is introduced. A Spectral Element Method (SEM) and a Finite
Volume Method (FVM) are applied to a linear convection-diffusion and a
nonlinear Burgers problem, respectively. To deal with the initial disconti-
nuity introduced in the dual problem at the boundary in the SEM approxi-
mations, the solution is locally smoothed near the boundary. In case of the
FVM approximations, a flux limiter is applied to prevent spurious ‘wiggles’
in the solution.
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It is important to have a good approximation of the dual solution near
the boundaries, since its derivative there appears in the error estimator in
both the linear and nonlinear problems. As mentioned before, good results
for the error estimator are obtained for both problems.

Besides the efficiency gain when using the coarse dual problem, another
advantage is that no mesh refinement is required to capture possible viscous
layers in the dual solution. This is not necessarily the case however, when
the coarse model is locally adapted to the fine model, since viscous layers
may be introduced.

In unsteady problems, when a quantity of interest is defined on the final
time, the DWR method is expensive in the sense of computational time
since the dual problem must be solved backward in time to the initial time.
This is a major drawback of the DWR method when applied to unsteady
problems for the purpose of driving an adaptive modelling algorithm.

Preliminary study for application of DWR method to 2-D flow

problems

The linear differential approach is applied to derive a goal-oriented mod-
elling error estimator in 2-D flow problems, where the Navier-Stokes equa-
tions represent the fine model and the Euler equations the coarse model.
The fine model solution appears in the dual boundary operator matrix that
is used in the error estimator. Since the fine model solution is not available,
the coarse model solution needs to be used to evaluate the entries of the
dual boundary operator matrix. This introduces an additional error in the
error estimator, as was described previously for nonlinear problems.

7.2 Recommendations

The work presented in this thesis is a first step towards the application of
the DWR method to classes of hierarchical problems in which the models
are of a different type. Illustrations are given for some simple problems in
which the approach to apply the DWR method to different type of models
yields satisfactory results. More research should be performed however, for
more complex problems such as (nonlinear) convection-diffusion problems
in multi-dimensions to study the behaviour near solid wall boundaries and
quantities of interest defined on a boundary. Then flow problems can be a
next step for which also the variational approach should be used in order to
incorporate high-order terms. Analysis of high-order terms for the Burgers
problem, reveals computable high-order terms of the same magnitude as
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convective contributions. It is expected this is the case for flow problems as
well.

The application to flow problems requires a computer code that is able
to solve the Navier-Stokes equations (the fine model), the Euler equations
(the coarse model), as well as their dual problems. When such a code is
provided it enables the implementation of a goal-oriented modelling-error
estimator based on both the fine and coarse dual solutions. Using the same
code (and thus the same discretisation schemes) for the fine, as well as
coarse model, is essential to prevent the discretisation error from interfering
with the modelling error.

When the error estimator is used to drive an adaptive modelling al-
gorithm, also adaptive meshing should be incorporated. When the error
estimator is used to drive an adaptive modelling algorithm, viscous layers
may arise when the coarse model is locally adapted to the fine model. To
capture such a layer it may be necessary to refine the mesh.

When the dual problem is ill-posed as discussed before, a possible remedy
is to apply domain decomposition. In numerical problems, this can be
achieved by applying the fine model in cells adjacent to the boundary where
the quantity of interest is defined. Whether or not this is a feasible solution
to ill-posed dual problems, needs to be studied by numerical problems.

Since the dual boundary conditions on an outflow boundary for Navier-
Stokes equations are rather complex, often the far-field boundary conditions
for the dual problem of the Euler equations are applied. When doing so, its
effect on the quality of the error estimator should be studied.

The mesh used to solve a discrete problem depends on the applied model.
Problems in which boundary layers are present, often require refinement of
the mesh in order to capture a boundary layer properly. When boundary
layers are not present in the solution of a coarse -reduced- model and the
model is (locally) adapted to the fine model, this might result in the need
to refine the mesh. Therefore, adaptive modelling is often combined with
adaptive meshing (both goal-oriented) to balance modelling and discretisa-
tion errors.
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Appendix A

Differentiation and

linearisation of functionals

Let V denote a Banach space and N(·; ·) and Q(·) differentiable semilinear
and possibly nonlinear differential functional, respectively, defined on V :

N : V × V → R,

Q : V → R.

N is linear in all arguments following the semicolon. Differentiability of
N(·; ·) means that the following limits of Gâteaux derivatives exist:

N ′(u; p, v) = lim
θ→0

θ−1[N(u + θ p; v) − N(u; v)], (A.1a)

N ′′(u; p, q, v) = lim
θ→0

θ−1[N ′(u + θ q; p, v) − N ′(u; p, v)], (A.1b)

N ′′′(u; p, q, r, v) = lim
θ→0

θ−1[N ′′(u + θ r; p, q, v) − N ′′(u; p, q, v)], . . . . (A.1c)

For Q(·) differentiability is also defined in the sense of an existing limit of
the Gâteaux derivative:

Q′(u; p) = lim
θ→0

θ−1[Q(u + θ p) − Q(u)], (A.2a)

Q′′(u; p, q) = lim
θ→0

θ−1[Q′(u + θ q; p) − Q′(u; p)], (A.2b)

Q′′′(u; p, q, r) = lim
θ→0

θ−1[Q′′(u + θ r; p, q) − Q′′(u; p, q)], . . . . (A.2c)
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Since for fixed u N(·; ·) is a semilinear form in the argument following the
semicolon, its derivatives such as N ′(u; p, v) and N ′′(u; p, q, v) are bilinear
or trilinear forms in the arguments following the semicolon. Derivatives of
Q, for instance Q′(u; p) and Q′′(u; p, r), are semilinear and bilinear forms in
its arguments following the semicolon.

With the derivatives defined, Taylor expansions with integral remainders
can be constructed for functionals such as N and Q. Many forms of the
expansions are possible, but the ones used in the derivation of the DWR
modelling-error estimation are for the semilinear form N(·; ·):

N(u + v; w) − N(u; w) =

∫ 1

0

N ′(u + s v; v, w) ds (A.3a)

N(u + v; w) − N(u; w) = N ′(u; v, w)

+

∫ 1

0

N ′′(u + s v; v, v, w)(1 − s) ds, (A.3b)

and for Q(·):

Q(u + v) − Q(u) =

∫ 1

0

Q′(u + s v; v) ds, (A.4a)

Q(u + v) − Q(u) = Q′(u; v) +

∫ 1

0

Q′′(u + s v; v, v)(1 − s) ds, (A.4b)

Q(u + v) − Q(u) =
1

2
Q′(u; v) +

1

2
Q′(u + v; v)

+

∫ 1

0

Q′′′(u + s v; v, v, v)(1 − s)s ds. (A.4c)



Appendix B

The Galerkin spectral

element method

In this appendix a short overview of some basic aspects of the Galerkin
spectral element method (SEM) are given. A Galerkin spectral element
approximation is used in space-time formulation to compute both the primal
and dual solutions of the convection-diffusion and the convection equation
(i.e. the fine and coarse model, respectively). For more details on Spectral
Element Methods the reader is referred to the numerous literature on SEM,
such as [54, 55, 56, 57].

The domain is divided into space-time slaps Ωn which are again divided
into Nel non-overlapping subdomains Ωe:

Ωn =

Nel
⋃

e=1

Ωe.

With the finite dimensional subspace Uh ⊂ U with basis φi, the approx-
imating solution uh ∈ Uh (as well as the dual solution ph ∈ Uh) can be
written as the expansion:

uh(x, t) =

Nel
∑

i

uiφi(x, t) (B.1)

For the basis functions φi two-dimensional Legendre polynomials are used,
defined using the local element coordinates ξ = (ξ, η). The order of the
polynomials are indicated by P and Q for the order in space and time,
respectively, so the elemental degree of freedom is (P + 1)(Q + 1).
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Numerical integration Numerical integration is done through Gaussian
quadrature based on the Gauss-Lobatto-Legendre roots. The weights for nu-
merical integration are the corresponding Gauss-Lobatto-Legendre weights
(GLL-weights). Gaussian quadrature is a very accurate integration method
to compute integrals where the integrand is smooth. The evaluation of an
integral using Gaussian quadrature in one dimension, for example in ξ, is
done through the finite summation:

∫ 1

−1

f(ξ)dξ ≈

P+1
∑

p=1

wpf(ξp), (B.2)

where wp is the GLL-weight factor and ξp the p-th GLL-root. To evaluate
the integral in global coordinates (x, t), equation (B.2) is multiplied by the
determinant ∂x

∂ξ . A similar expression can be derived for integrals with
respect to η.

In constructing the spectral element matrices and computing the mod-
elling error, the inner product of two functions needs to be evaluated over an
elemental region Ωe. For two functions u(x, t) and v(x, t), the inner product
is computed using Gaussian quadrature:

(u, v)Ωe
=

∫ ∫

Ωe

u(ξ, η)v(ξ, η)|Je|dξdη

≈

P+1
∑

p=1

Q+1
∑

q=1

wpwqu(ξp, ηq)v(ξp, ηq)|J
e
pq | = uT Wv, (B.3)

where u and v are the vectors containing the values of u and v evaluated
in the GLL-roots. The weight matrix W contains the GLL-weights wp and
wq :

Wii = wpwq |J
e(ξi)|, (B.4)

where Je
pq is the Jacobian determinant.

Numerical differentiation Differentiation of uh (and ph) with respect
to the global coordinates x and t is achieved by applying the differentia-
tion matrices Dx and Dt. These matrices are defined in terms of the local
coordinates ξ and η by:

Dx = Λ
(∂ξ

∂x

)

Dξ + Λ
(∂η

∂x

)

Dη, (B.5)

Dt = Λ
(∂ξ

∂t

)

Dξ + Λ
(∂η

∂t

)

Dη , (B.6)
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where Λ(·) is a diagonal matrix that evaluates the function between brackets
at the GLL-points. The local differentiation matrices Dξ and Dη contain the
derivatives of the Legendre polynomials with respect to the local coordinates
ξ and η, respectively.
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Appendix C

The finite volume method

for the Burgers problem

In this appendix the discrete primal and dual problems are discussed. The
discrete approach for the dual problem differs form the primal problem, due
to the linearisation inherent to the dual problem.

C.1 The discrete primal problem

For the inviscid Burgers problem the convective part is discretised explicitly
in time with a non-linear flux evaluation:

Lk−1
0 (uh) =

uk
i − uk−1

i

∆t
+

∆F k−1
i

h
= 0, 1 ≤ i ≤ J, 0 < k ≤ N, (C.1)

where uh is the discrete solution vector, i the cell index, J = number of cells,
h the cell size, k the time-level and ∆t the time step, i, k ∈ N. The initial
time-level is k = 0. The flux residual ∆Fi in a cell centre i is computed
using the fluxes through neighbouring cell faces (indicated by i ± 1/2):

∆Fi =







F3/2 −
1
2 (a0)2 i = 1,

Fi+1/2 − Fi−1/2 2 ≤ i ≤ J − 1,
1
2 (a1)2 − FJ−1/2 i = J,

(C.2)

with a0 and a1 the values on the boundary conditions for the viscous case.
In case of the inviscid Burgers equation a0 and a1 are replaced by the
extrapolated values in case of an outflow boundary.
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The flux F through a cell face is computed by means of the non-linear
Engquist-Osher scheme, see [61], with left and right states uL and uR:

F (uL, uR) =
1

2
(
1

2
u2

L +
1

2
u2

R) −
1

2

∫ uR

uL

|u|du. (C.3)

This can also be written as:

F (uL, uR) =
1

2
(u+

L)2 +
1

2
(u−

R)2, (C.4)

where:

u− = min(u, 0), (C.5a)

u+ = max(u, 0). (C.5b)

High-order accuracy is achieved by applying the so called κ-scheme, in-
troduced by Van Leer [62] and extensively discussed in literature, for in-
stance [64]. A value of κ = 1/3 is applied, which yields a third-order up-
wind biased scheme. To prevent spurious oscillations in the solutions, the so
called Koren flux limiter [63] is applied such that the resulting discretisation
is monotonicity preserving (see, e.g., Wesseling [64]).

The dissipative operator on a non-uniform mesh is discretised by:

Ldu
h = µ

h−ui+1 − (h+ + h−)ui + h+ui−1

1
2h+h−(h+ + h−)

, 1 ≤ i ≤ J, (C.6)

which can be derived from Taylor series for ui−1 and ui+1 considering the
three grid points x−, xi and x+ from figure C.1 with:

h− = (hi−1 + hi)/2 and h+ = (hi + hi+1)/2. (C.7)

For discretisation in the cells adjacent to the boundaries, ui−1 and ui+1 are
replaced by a0 and a1, respectively. For the viscous Burgers equation (5.1)
with implicit discretisation of the dissipative operator we then obtain:

Ln−1
0 (uh) + Ln

duh = 0, 1 ≤ i ≤ J, 0 < n ≤ N. (C.8)

C.2 The discrete dual problem

The reason to discuss the discrete dual problem explicitly here, contrary
to the discrete linear convection-diffusion case in section (4.5), is the lin-
earisation required for the dual problem. In the linear convection-diffusion
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Figure C.1: Unstructured triple grid

problem the dual equation is in fact the same as the primal equation, but
it is solved backward in time with different boundary conditions and initial
solution. For the discrete approach this has no significant consequences.

Two different approaches can be followed to find the discrete dual prob-
lems: the ’analytic’ approach in which the analytical dual problems are
discretised. The other approach is the ’discrete’ approach in which the dis-
crete dual operator is the transpose of the corresponding linear operator
of the linearised primal problem, see for instance [36, 77, 37]. The latter
approach is preferred since numerical equivalence between the linearised
primal and dual problems is maintained, see also [77].

Since the primal equation is solved by a non-linear flux evaluation (C.2),
the discrete primal equation (C.8) needs to be linearised. Therefore the
Engquist-Osher scheme (C.3) is linearised by substituting uL = ũL + u′

L

and uR = ũR + u′
R in (C.3):

F (uL, uR) =
1

2
(
1

2
(ũL + u′

L)2 +
1

2
(ũR + u′

R)2) −
1

2

∫ ũR+u′

R

ũL+u′

L

|u|du

=
1

2
(
1

2
(ũL + u′

L)2 +
1

2
(ũR + u′

R)2)

−
1

2

{

∫ ũR

ũL

|u|du + (|ũR|u
′
R − |ũL|u

′
L)
}

. (C.9)

For the coarse model equation we can have:

F̃ (ũL, ũR) =
1

2
(
1

2
ũ2

L +
1

2
ũ2

R) −
1

2

∫ ũR

ũL

|u|du. (C.10)

Neglecting high-order terms in u′ and subtracting the coarse model flux
function (C.10) from equation (C.9) gives the flux function for the pertur-
bation u′:

F ′(u′
L, u′

R) =
1

2
(ũLu′

L + ũRu′
R) −

1

2
(|ũR|u

′
R − |ũL|u

′
L), (C.11)

which can be rewritten using (C.5) as:

F ′(u′
L, u′

R) = ũ+
Lu′

L + ũ−
Ru′

R. (C.12)
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Linearising the full equation and subtracting Ln−1
0 (ũh) = 0 yields for cell i

at time-level n:

u′n
i − u′n−1

i

∆t
+

1

h
(ũ+

i u′
i + ũ−

i+1u
′
i+1 − ũ+

i−1u
′
i−1 + ũ−

i u′
i)

n−1 −Ln
du′h = Ln

d ũh. (C.13)

In a space-time system equation (C.13) is written as:

LhU
′
h = fh, (C.14)

with Lh the discrete space-time operator of size (NJ) × (NJ), U′
h the

solution vector of size (NJ) containing the solution at all time-levels and fh
the discrete model residual. With zero initial perturbation, Lh looks like:

Lh =















D1 0 . . .
C1 D2 0 . . .
0 C2 D3 0 . . .

. . .
. . .

. . . 0 CN−1 DN















. (C.15)

where C is the convective matrix with the flux Jacobian entries and D the
matrix containing the discrete dissipative operator. At a specific time-level
k, the system looks like:

Ck−1u′k−1
+ Dku′k = fk

h , (C.16)

The dual operator is found by transposing the matrix Lh, see also [36,
77, 37], and yields:

LT
h =



















D1 CT,1 0 . . .
0 D2 CT,2 0 . . .

0 D3 CT,3 0
. . .

. . .

0 DN−1 CT,N−1

. . . 0 DN



















. (C.17)

Since the dissipative matrix D is symmetric, we have DT = D and therefore
the boundary condition implementation from the primal problem is main-
tained in the dual problem. On a specific time level k the dual operator is
given by:

CT,kpk+1
h + Dkpk

h = gk
h. (C.18)
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with ph the discrete dual solution and gk
h the linearised quantity of interest,

as in (2.5) for linear systems1. Time integration of the convective term in
the dual problem is again explicit, since the dual problem is solved back-
ward in time. Likewise, the dissipative operator is discretised implicitly.
Transposing the convective matrix C yields for the dual flux functions the
following formulation:

F ∗
i−1/2 = (u−

0 )i pi−1 + (u+
0 )i pi, (C.19a)

F ∗
i+1/2 = (u−

0 )i pi + (u+
0 )i pi+1. (C.19b)

Here, the convective velocity u0 is not included in the upwinding, contrary
to the primal linearised flux function (C.12). The dual flux residual ∆F ∗

i

is defined in the same way as the primal flux residual (C.2), with a similar
boundary condition treatment. The discrete dual equation for a certain
cell i at time level k, can now be written as:

pk
i − pk+1

i

∆t
−

(∆F ∗
i )k+1

h
−Lk

dph = 0. (C.20)

High-order accuracy for the dual solution is achieved by employing the same
κ-scheme as used for the primal problem. To prevent spurious oscillation
in the dual solution, also the Koren flux limiter from the primal problem is
used.

1When the quantity of interest is defined on a boundary we have gh = 0 and the
quantity of interest appears as boundary condition for the dual problem
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Dankwoord

Dit proefschrift is mede tot stand gekomen door de ondersteuning van de
Technologie Stichting STW, waarvoor veel dank. Verder wil ik mijn dank
betuigen aan iedereen die mij heeft geholpen bij het onderzoek en het schrij-
ven van dit proefschrift.

In het bijzonder wil ik mijn ouders Wybe en Jans en mijn zus Hester
bedanken voor de liefde en steun tijdens de meer, maar ook minder voort-
varende periodes van mijn promotie. Met trots kan zeggen dat ik een familie
heb die ook tot mijn beste maatjes behoren. Verder dank ik al mijn andere
vrienden voor alle positieve energie en goede afleiding die zij me gaven tij-
dens mijn promotieonderzoek en hopelijk blijven geven. TSJOCH!
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