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Analysis of explicit multirate and partitioned Runge-
Kutta schemes for conservation laws

ABSTRACT
Multirate schemes for conservation laws or convection-dominated problems seem to come in
two flavors: schemes that are locally inconsistent, and schemes that lack mass-conservation. In
this paper these two defects are discussed for one-dimensional conservation laws. Particular
attention will be given to monotonicity properties of the multirate schemes, such as maximum
principles and the total variation diminishing (TVD) property. The study of these properties will
be done within the framework of partitioned Runge-Kutta methods.
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Analysis of Expli
it Multirate andPartitioned Runge-Kutta S
hemes forConservation LawsW. Hundsdorfer, A. Mozartova�, V. Sav
en
oyCWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
Abstra
tMultirate s
hemes for 
onservation laws or 
onve
tion-dominated problems seemto 
ome in two 
avors: s
hemes that are lo
ally in
onsistent, and s
hemes thatla
k mass-
onservation. In this paper these two defe
ts are dis
ussed for one-dimensional 
onservation laws.Parti
ular attention will be given to monotoni
ity properties of the multirates
hemes, su
h as maximum prin
iples and the total variation diminishing (TVD)property. The study of these properties will be done within the framework ofpartitioned Runge-Kutta methods.2000 Mathemati
s Subje
t Classi�
ation: 65L06, 65M06, 65M20.Keywords and Phrases: multirate methods, partitioned Runge-Kutta methods,monotoni
ity, TVD, stability, 
onvergen
e.1 Introdu
tionMultirate s
hemes for 
onservation laws that have appeared in the literature all seemto have one of the following defe
ts: there are s
hemes that are lo
ally in
onsistent,e.g. [3, 4, 17, 18℄, and s
hemes that are not mass-
onservative, e.g. [26℄. In this paperthese two defe
ts are dis
ussed for one-dimensional 
onservation laws ut + f(u)x = 0.We will mainly 
on
entrate on time stepping aspe
ts for simple s
hemes with onelevel of temporal re�nement. The spatial grids are assumed to be given and �xed intime. Spatial dis
retization of a PDE (partial di�erential equation) then leads to asystem of ODEs (ordinary di�erential equations), the so-
alled semi-dis
rete system.Parti
ular attention will be given to monotoni
ity properties of the multirate timestepping s
hemes, su
h as maximum prin
iples and the total variation diminishing(TVD) property.After some preliminaries, we will present in Se
tion 3 a detailed analysis of twomultirate forward Euler s
hemes, due to Osher & Sanders [18℄ and Tang & Warne
ke[26℄. The �rst of these s
hemes is in
onsistent at interfa
e points, but it will beshown that 
onvergen
e of order one 
an be still obtained in the maximum-norm.Furthermore, we will see that step size restri
tions for monotoni
ity will depend onthe type of monotoni
ity: in general the restri
tions for maximum prin
iples 
an bemore relaxed than for the TVD property.�The work of A.M. is supported by the Netherlands Organisation for S
ienti�
 Resear
h NWO.yThe work of V. S. is supported by a Peteri
h S
holarship through the Netherlands Organisationfor S
ienti�
 Resear
h NWO. 1



In Se
tion 4 we will present some multirate s
hemes that are based on a standardtwo-stage Runge-Kutta method. These multirate s
hemes were re
ently introdu
edby Tang & Warne
ke [26℄, Constantines
u & Sandu [3℄, and Sav
en
o et al. [22℄. Forthese s
hemes some results of numeri
al experiments for linear adve
tion and Burgers'equation are dis
ussed.For the analysis of general multirate s
hemes it is 
onvenient to write them in theform of partitioned Runge-Kutta methods. In Se
tion 5 it will be seen that re
entresults for (standard and additive) Runge-Kutta methods of Higueras, Ferra
ina andSpijker [7, 10, 11, 25℄ 
an then be employed to obtain monotoni
ity results for themultirate s
hemes through the partitioned Runge-Kutta methods. As for the forwardEuler multirate s
hemes, the step size restri
tions for maximum-norm monotoni
ityand maximum prin
iples are in general more relaxed than for the TVD property.Comparison of the theoreti
al results with the numeri
al tests indi
ates that the re-stri
tions for maximum-norm monotoni
ity are more relevant in pra
ti
e. This se
tionalso 
ontains a dis
ussion on lo
al and global temporal errors for problems with smoothsolutions. To understand the 
onvergen
e behaviour of the s
hemes, the propagationof the lo
al errors, with asso
iated damping and 
an
ellation e�e
ts, are to be takeninto a

ount.2 Preliminaries2.1 Forward Euler multirate s
hemes for the adve
tion equation2.1.1 Examples of simple s
hemesConsider as a simple example the adve
tion equationut + ux = 0 (2.1)on a one-dimensional spatial region 0 < x < 1 with given initial value u(x; 0), andin
ow boundary 
ondition u(0; t) or spatial periodi
ity. Spatial dis
retization is per-formed with the �rst-order upwind s
heme on 
ells Cj = (xj � 12�xj ; xj + 12�xj). Thisgives a semi-dis
rete systemu0j(t) = 1�xj �uj�1(t)� uj(t)� for j 2 I = f1; 2; : : : ;mg ; (2.2)where u0j(t) = ddtuj(t), and uj(t) approximates u(xj ; t) or the average value over thesurrounding 
ell Cj .Appli
ation of the forward Euler method with time step �t gives the CFL stability
ondition �j � 1 for all j, where �j = �t=�xj is the lo
al Courant number. Supposethis stability 
ondition is satis�ed for j 2 I1 but on I2 = I � I1 we need to take twosmaller steps with step size 12�t to rea
h tn+1 = tn + �t.Then for this simple situation, the s
heme of Osher and Sanders [18℄ 
an be writtenas un+ 12j = ( unj for j 2 I1 ;unj + 12�j(unj�1 � unj ) for j 2 I2 ; (2.3a)
un+1j = unj + 12�j(unj�1 � unj ) + 12�j(un+ 12j�1 � un+ 12j ) for j 2 I : (2.3b)As observed in [26℄, the s
heme (2.3) is not 
onsistent at the interfa
e: if i� 1 2 I1and i 2 I2 then1�t�un+1i � uni � = 1�xi �uni�1 � 12(uni + un+ 12i )� = 1� 14�i�xi �uni�1 � uni � ;
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whi
h is 
onsistent for �xed Courant number �i with the equationut + (1� 14�i)ux = O(�t) +O(�xi) ;rather than the original adve
tion equation (2.1).To over
ome this in
onsisten
y, Tang and Warne
ke [26℄ therefore proposed themodi�ed s
hemeun+ 12j = unj + 12�j(unj�1 � unj ) for j 2 I ; (2.4a)
un+1j = un+ 12j +( 12�j(unj�1 � unj ) for j 2 I1 ;12�j(un+ 12j�1 � un+ 12j ) for j 2 I2 : (2.4b)

This s
heme, however, is not mass 
onserving at the interfa
e. If i� 1 2 I1 and i 2 I2then the 
ux at xi�1=2 that leaves 
ell Ci�1 over the time interval [tn; tn+1℄ equalsuni�1, whereas the 
ux that enters Ci is given by 12 (uni�1 + un+1=2i�1 ).It should be noted that ex
ept for interfa
e points the s
hemes (2.3) and (2.4) areidenti
al. For example, if I1 = fj : j < ig and I2 = fj : j � ig, then (2.3) and (2.4)give in one step the same result for j 6= i. It will be shown next that, also with largerinterfa
e regions, the properties of internal 
onsisten
y and mass 
onservation 
annotbe 
ombined.2.1.2 In
ompatibility of 
onsisten
y and mass 
onservationConsider the �rst-order upwind dis
retization (2.2) for the adve
tion equation withspatial periodi
ity. Then M =Xj2I �xjuj(t) :is a 
onserved quantity. If the uj are densities, this is global mass 
onservation.Now suppose that for j � k1 we use forward Euler with step size �t, for j > k2 weapply forward Euler with step size 12�t, and on the interfa
e region k1 < j � k2 wetake any 
ombination of a number of forward Euler steps with �t and 12�t togetherwith interpolation or extrapolation. The result 
an be written as
un+1j =

8>>>><>>>>:
unj + �j(unj�1 � unj ) ; 1 � j � k1 ;unj + �j(unj�1 � unj ) + �2j mXk=1�jk unk ; k1 < j � k2 ;unj + �j(unj�1 � unj ) + 14�2j (unj�2 � 2unj�1 + unj ) ; k2 < j � m; (2.5)

with unspe
i�ed 
oeÆ
ients �jk, and with u0 = um due to spatial periodi
ity. Theinterfa
e at x = 0; 1 poses no problem here. We will show that this s
heme 
annot beboth mass 
onservative and 
onsistent, no matter how the s
heme is de�ned on theinterfa
e region k1 < j � k2. For 
onvenien
e it 
an be assumed that the spatial gridis uniform, �j = � = �t=�x, and we set �jk = 0 for j � k1 and j > k2.Insertion of exa
t solution values in the s
heme gives for k1 < j � k2 the trun
ationerror1�t�u(xj ; tn+1)� u(xj ; tn)�� 1�x�u(xj�1; tn)� u(xj ; tn)�� �t�x2 mXk=1�jku(xk; tn) :
3



For 
onsisten
y, that is, trun
ation errorO(�t)+O(�x), we obtain by Taylor expansionthe 
onditions Xk �jk = 0 ; Xk (k � j)�jk = 0 for k1 < j � k2 : (2.6)On the other hand, we have�xXj un+1j � �xXj unj = �t2�x Xj Xk �jk unk + �t24�x Xj>k2 �unj�2 � 2unj�1 + unj �= �t2�x Xk �Xj �jk�unk + �t24�xunk2�1 � �t24�xunk2 ;from whi
h it seen that the requirement of mass 
onservation leads toXj �jk = 8><>: 0 if k 6= k2 � 1; k2 ;�14 if k = k2 � 1 ;14 if k = k2 : (2.7)
However, the 
onditions (2.6) and (2.7) together lead to a 
ontradi
tion:0 = Xj Xk (k � j)�jk = Xj Xk �(k � k2 + 1)� (j � k2 + 1)��jk= Xj (j � k2 + 1)Xk �jk �Xk (k � k2 + 1)Xj �jk = Xj �jk2 = 14 :This shows that 
onsisten
y and mass 
onservation 
annot be valid at the same time.2.2 General formulationsIn this paper we will dis
uss monotoni
ity properties and temporal 
onvergen
e ofmultirate s
hemes for general semi-dis
rete problems in Rm ,u0(t) = F (u(t)) ; u(0) = u0 : (2.8)The approximations to u(tn) = [uj(tn)℄ 2 Rm will be denoted by un = [unj ℄ 2 Rm .As above, we 
onsider partitioning I = I1 [ I2. Corresponding to these sets Ik, letI1; I2 be m �m diagonal matri
es with diagonal entries 0 or 1, su
h that (Ik)jj = 1for j 2 Ik, k = 1; 2. We have I1 + I2 = I, the identity matrix.The semi-dis
rete system (2.2) obviously �ts in this form with linear F . The generalsystem (2.8) allows nonlinear problems and nonlinear dis
retizations. For su
h systemsthe Osher-Sanders s
heme (2.3) be
omes8<: un+ 12 = un + 12�tI2F (un) ;un+1 = un + 12�tF (un) + 12�tF (un+ 12 ) ; (2.9)

and the Tang-Warne
ke s
heme (2.4) reads8<: un+ 12 = un + 12�tF (un) ;un+1 = un + �tI1F (un) + 12�tI2�F (un) + F (un+ 12 )� : (2.10)
In the following we will refer to (2.9) as the OS1 s
heme, and to (2.10) as the TW1s
heme. We note that in [18℄ and [26℄ the number of sub-steps on the index set I2was allowed to be larger than two for these s
hemes. More general formulations willbe 
onsidered in Se
tion 5. 4



2.3 Monotoni
ity assumptionsConsider a suitable 
onvex fun
tion,1 semi-norm or norm kvk for v = [vj ℄ 2 Rm .Interesting examples are the maximum-normkvk1 = max1�j�m jvj j ; (2.11)or the total variation semi-normkvkTV = mXj=1 jvj�1 � vj j with v0 = vm ; (2.12)
arising from one-dimensional s
alar PDEs with spatial periodi
ity.The basi
 monotoni
ity assumption on the semi-dis
rete system that will be usedin this se
tion iskv + �1I1F (v) + 12�2I2F (v)k � kvk for all v 2 Rm and 0 � �1; �2 � �0 ; (2.13)where �0 > 0 is a problem dependent parameter. For the multirate s
hemes we shalldetermine fa
tors C su
h that we have the monotoni
ity propertykun+1k � kunk whenever �t � C�0 : (2.14)For a given s
heme, the optimal C will be 
alled the threshold fa
tor for monotoni
ity.In general, su
h monotoni
ity properties are intended to ensure that unwanted over-shoots or numeri
al os
illations will not arise. Following [23, 24℄ we will 
all a s
hemetotal variation diminishing (TVD) if (2.14) holds with the semi-norm (2.12). If the(semi-)norm is not spe
i�ed, methods that have a positive threshold C 
an be 
alledstrong stability preserving (SSP), as in [5℄ for standard, single-rate methods.Example 2.1 Apart from (semi-)norms, su
h as kvkTV and kvk1, we 
an also 
on-sider 
onvex fun
tions. For example, following [25℄, 
onsiderkvk+ = max1�j�m vj ; kvk� = � min1�j�m vj :Then, having (2.14) for both these 
onvex fun
tions amounts to the maximum prin
iplemin1�i�mu0i � unj � max1�i�mu0i for all n � 1 and 1 � j � m:In general, this is of 
ourse somewhat stronger than having monotoni
ity in themaximum-norm, kun+1k1 � kunk1, but for the s
hemes 
onsidered in this paperthe asso
iated threshold values C will be the same. 3Example 2.2 Consider a s
alar 
onservation law ut + f(u)x = 0 with a periodi
boundary 
ondition, and with 0 � f 0(u) � �. Spatial dis
retization in 
onservationform gives semi-dis
rete systems (2.8) withFj(v) = 1�xj �f(vj� 12 )� f(vj+ 12 )�1Re
all that � : Rm ! R is a 
onvex fun
tion if �((1 � �)v + �w) � (1 � �)�(v) + ��(w) for all� 2 [0; 1℄ and v;w 2 Rm . If we have �(v) � 0, �(v + w) � �(v) + �(w) and �(�v) = j�j�(v) for all� 2 R, v;w 2 Rm , then � is a semi-norm. If it holds in addition that �(v) = 0 only if v = 0, then �is a norm. 5



where vj�1=2 are the values at the 
ell boundaries, determined from the 
omponentsof v = [vi℄ 2 Rm . Using limiters in the dis
retization it 
an be guaranteed that0 � vj� 12 � vj+ 12vj�1 � vj � 1 + �with a 
onstant � � 0 determined by the limiter; see also formula (8) in [4℄. This holdstrivially for the �rst-order upwind dis
retization with � = 0; a detailed higher-orderexample will be given in Appendix A. It now follows that Fj(v) 
an be written asFj(v) = aj(v)�xj �vj�1 � vj� ; j = 1; : : : ;m ; v0 = vm ;where 0 � aj(v) � �(1 + �) for all j and v 2 Rm :Suppose that �xj = h for j 2 I1 and �xj = 12h for j 2 I2. Then a well-knownlemma of Harten [8, Lemma 2.2℄ shows that (2.13) will be valid for the total variationsemi-norm (2.12) provided that ��0h � 11 + � :Moreover, it is easy to see that (2.13) will also hold in the maximum-norm under thesame CFL restri
tion. 33 Analysis of the forward Euler multirate s
hemes3.1 Monotoni
ity results3.1.1 Monotoni
ity results for s
heme TW1Standard (single-rate) s
hemes give the same step size restri
tion for various mono-toni
ity properties. As we shall see, with the multirate s
hemes di�erent step sizerestri
tions are obtained for the maximum-norm or the total variation semi-norm.In the �rst stage of the TW1 s
heme (2.10) we have of 
oursekun+ 12 k � kunk whenever �t � �0 :The se
ond stage 
an be written in the formun+1 = (1� �)un + ��un+ 12 � 12�tF (un)�+ �tI1F (un) + 12�tI2�F (un) + F (un+ 12 )� ;with arbitrary � 2 [0; 1℄. This leads toun+1 = (1� �)�un + 2��2(1��)�tI1F (un) + 12�tI2F (un)�+ ��un+ 12 + 12��tI2F (un+ 12 )� : (3.1)
Under assumption (2.13) this gives the monotoni
ity property (2.14) withC = max0���1min�1 ; 2(1��)2�� ; �� = 2�p2 : (3.2)This value C � 0:58 is valid for general semi-norms. So, in parti
ular, it provides aTVD result for s
hemes with limiters. 6



Next, 
onsider the maximum-norm. Then, by noting that the se
ond stage 
analso be written asun+1 = I1�un + �tI1F (un)�+ I2�un+ 12 + 12�tI2F (un+ 12 )� ;it dire
tly follows (see also [26, Lemma 2.1℄) that the threshold fa
tor for max-normmonotoni
ity is C = 1 : (3.3)Note that this result has been obtained by using the inequalitykI1v + I2wk � max(kvk; kwk) ; (3.4)whi
h holds for the maximum-norm and for the 
onvex fun
tions k � k� from Exam-ple 2.1, but not for general norms or semi-norms; in parti
ular, it will not hold for thetotal variation semi-norm.3.1.2 Monotoni
ity results for s
heme OS1In the �rst stage of the OS1 s
heme (2.9) we dire
tly obtainkun+ 12 k � kunk whenever �t � �0 :The se
ond stage 
an be written asun+1 = (1� �)un + ��un+ 12 � 12�tI2F (un)�+ 12�tF (un) + 12�tF (un+ 12 )with parameter � 2 [0; 1℄. Hen
eun+1 = (1� �)�un + 12(1��)�tI1F (un) + 12�tI2F (un)�+ ��un+ 12 + 12��tF (un+ 12 )� : (3.5)
It follows that under assumption (2.13) the monotoni
ity property (2.14) holds withC = max0���1min �1 ; 2(1� �) ; �� = 23 : (3.6)Again, for the maximum-norm a better result 
an be obtained by 
onsideringI1un+1 and I2un+1 separately. Multipli
ation of (3.5) with I1 and taking � = �1 = 12gives I1un+1 = 12I1�un + �tI1F (un)�+ 12I1�un+ 12 + �tI1F (un+ 12 )� :Likewise, with � = �2 = 1, it follows thatI2un+1 = I2�un+ 12 + 12�tI2F (un+ 12 )� :Hen
e the threshold fa
tor for max-norm monotoni
ity isC = 1 : (3.7)This result, formulated in terms of a maximum prin
iple, was already obtained in [18℄for �rst-order upwind spatial dis
retization and in [15℄ for a 
lass of high-resolutiondis
retizations. In these papers also TVD results were presented; this will be dis
ussedbelow.
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3.1.3 The TVD property for linear �rst-order upwind adve
tionFor the linear adve
tion equation ut + ux = 0 with spatial periodi
ity, the �rst-orderupwind dis
retization (2.2) 
an be written asu0(t) = Au(t) ; A = H�1(E � I) ; (3.8)with H = diag(�x1; : : : ;�xm) and E the ba
kward shift operator, (Ev)i = vi�1 fori = 1; : : : ;m with v0 = vm. Consider also~A = H�1(�I + ET ) :This 
orresponds to �rst-order upwind dis
retization for ut � ux = 0. We denoteZ = �tA, ~Z = �t ~A. Then ~Z = H�1ZTH :For the OS1 and TW1 s
hemes applied to (3.8) we have un+1 = Sun, where theampli�
ation matrix S 
an be written as S = R(Z) with
R(Z) = ( ROS1(Z) = I + Z + 14ZI2Z ;RTW1(Z) = I + Z + 14I2Z2 :Let ~R be su
h that ~R(Z)Z = Z R(Z) : (3.9)It is easily seen that ~ROS1(Z) = I + Z + 14Z2I2 and ~RTW1(Z) = I + Z + 14ZI2Z. Forboth s
hemes it follows by some simple 
al
ulations thatR( ~Z) = H�1 ~R(Z)TH : (3.10)As we saw above, both s
hemes OS1 and TW1 are su
h thatkR( ~Z)k1 � 1 (3.11)whenever �j = �t=�xj � k for j = Ik, k = 1; 2. It will now be demonstrated thatunder the same CFL restri
tion we havekR(Z)vkTV � kvkTV for all v 2 Rm ; (3.12)that is, the TVD property is valid with threshold C = 1 for the spe
ial 
ase of �rst-order upwind adve
tion dis
retization.Lemma 3.1 If (3.10) and (3.11) are valid, then (3.12) is also satis�ed.Proof. Along with the dis
rete L1-norm on Rm , kvk1 = Pmj=1�xj jvj j, we also 
on-sider the `1-norm kvk`1 = Pmj=1 jvj j, together with the indu
ed matrix norms. Thenwe have kWk1 = kWT k`1 for any W 2 Rm�m ; see for example [12℄. Moreover, it iseasily seen that kWT k`1 = kH�1WTHk1, and thereforekWk1 = kH�1WTHk1 :Hen
e (3.10) and (3.11) imply k ~R(Z)k1 � 1 : (3.13)
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Further we havekvkTV = mXj=1 jvj�1 � vj j = kAvk1 = 1�tkZvk1 :Consequently, for a s
heme un+1 = R(Z)un the TVD property (3.12) is equivalent tokZR(Z)vk1 = k ~R(Z)Zvk1 � kZvk1 :This is satis�ed be
ause k ~R(Z)wk1 � kwk1 for any w 2 Rm , in view of (3.13). 2The above result is not new for the OS1 s
heme. In fa
t, already in [18℄ the resultwas given for the 
ase of �rst-order upwind dis
retization for non-linear problems. In[15℄ this was extended to a 
lass of high-resolution spatial dis
retizations. The proofsof these more general results for the OS1 s
heme are more te
hni
al than the above.3.2 Convergen
e for smooth problemsIn this se
tion bounds for the global errors en = u(tn) � un will be derived. It willbe assumed that the problem (2.8) is suÆ
iently smooth. Both the s
hemes OS1 andTW1 are 
overed by the formulaun+ 12 = un + ��tI1F (un) + 12�tI2F (un) ;un+1 = un + 12�t�F (un) + F (un+ 12 )�+ ��tI1�F (un)� F (un+ 12 )� ; (3.14)
with parameter value � = 0 for OS1 and � = 12 for TW1.If we insert exa
t ODE values u(tn), u(tn+1=2), u(tn+1) into the stages of (3.14)we obtain residuals �n+1=2 and �n+1, respe
tively. By Taylor expansions it is easilyfound that �n+ 12 = u(tn+ 12 )� u(tn)� ��tI1u0(tn)� 12�tI2u0(tn)= �12 � ���tI1u0(tn) + 18�t2u00(tn) +O(�t3) ;�n+1 = u(tn+1)� u(tn)� �12I + �I1��tu0(tn)� �12I � �I1��tu0(tn+ 12 )= �t2�14I + 12�I1�u00(tn) +O(�t3) :Let Z` 2 Rm�m be su
h thatZ`�u(t`)� u`� = �t�F (u(t`))� F (u`)� (3.15)for all ` = n; n + 12 , n � 0. If F is di�erentiable we 
an take Z` as the integratedJa
obian matrix Z` = Z 10 �tF 0(�u(t`) + (1� �)u`) d� :For the errors in the two stages of (3.14) it follows thaten+ 12 = en + �I1Znen + 12I2Znen + �n+ 12 ;en+1 = en + 12Znen + 12Zn+ 12 en+ 12 + �I1�Znen � Zn+ 12 en+ 12 �+ �n+1 :Eliminating en+1=2 we thus obtain a re
ursion for the global errors of the formen+1 = Snen + dn ; n = 0; 1; : : : ; (3.16)9



with ampli�
ation matrix Sn and lo
al dis
retization error dn. The resulting expres-sions are given below for � = 0; 12 . The re
ursion (3.16) will be the basis for thesubsequent analysis. The method is 
alled 
onsistent of order p if kdnk = O(�tp+1),and 
onvergent of order p if kenk = O(�tp) for all n.Sin
e we want to study 
onvergen
e at all grid points, in
luding the interfa
e points,the natural norm is the maximum-norm. For stability it will be assumed thatkI + I1Z` + 12I2Z`k1 � 1 ; (3.17)for all ` = n; n+ 12 . It is easily seen that we then have kI + �1I1Z` + 12�2I2Z`k1 � 1whenever 0 � �j � 1. This is of the same form as (2.13), with F (v) repla
ed by Z`v.In 
ombination with the smoothness assumptions on the problem this stabilityresult will easily lead to 
onvergen
e for the TW1 s
heme. Due to the in
onsisten
yat interfa
e points, the error build-up is more 
ompli
ated for s
heme OS1. It willstill be possible to show 
onvergen
e with order one under the following additionalassumptions: kI2Z`k1 � 4K < 4 ; (3.18)kZ`+ 12 � Z`k1 � L�t ; (3.19)for ` = n; n+ 12 , n � 0, with 
onstants K 2 (0; 1) and L � 0. Note that (3.18) may beslightly stronger than the lo
al CFL 
ondition implied by (3.17) on the index set I2.3.2.1 Convergen
e of s
heme TW1For the TW1 s
heme (2.10) we obtain from the above derivation, with � = 12 , theexpressions Sn = I1�I + Zn�+ I2�I + 12Zn+ 12 ��I + 12Zn� ; (3.20)dn = 12�t2�I1 + 12I2 + 18I2Zn+ 12 �u00(tn) +O(�t3) : (3.21)As already noted above, (3.17) has the same form as (2.13). Therefore we 
an 
opythe derivation leading to (3.3) whi
h now gives the boundkSnk1 � 1 (3.22)for the ampli�
ation matrix.Furthermore, (3.17) implies kI2(I + 14Z`)k1 � 1, whi
h provides the lo
al errorbound kdnk1 � 12�t2ku00(tn)k1 +O(�t3) :Convergen
e now follows in a standard fashion. Summarizing, we have the followingresult:Theorem 3.2 Consider the TW1 s
heme (2.10) with the time step restri
tion (3.17).Then kSk1 � 1, and we have the error boundkenk1 � 12T�t maxt2[0;T ℄ ku00(t)k1 +O(�t2) ; 0 � tn � T :

10



3.2.2 Convergen
e of s
heme OS1Also for the OS1 s
heme (2.9) we 
an prove 
onvergen
e with order one in the maximum-norm, in spite of the lo
al in
onsisten
ies. For this result, damping and 
an
ellatione�e
ts are to be taken into a

ount.For the OS1 s
heme we obtain from the above derivation, with � = 0, the expres-sions Sn = I + 12Zn + 12Zn+ 12 �I + 12I2Zn� ; (3.23)dn = 14�tZn+ 12 I1u0(tn) + 14�t2�I + 14Zn+ 12 �u00(tn) +O(�t3) : (3.24)In the same way as above it follows that (3.22) is valid, showing stability of theerror re
ursion. However, here we get only an O(�t) bound for the lo
al errors be
auseZ`I1u0(tn) will not be an O(�t) term in general; this is due to the fa
t that I1u0(t) isnot a smooth grid fun
tion (jumps at the interfa
es). To prove 
onvergen
e we needto establish a relation between lo
al errors and ampli�
ation fa
tors.We have Sn � I = Zn+ 12 �I + 14I2Zn�� 12�Zn+ 12 � Zn� :Hen
e Zn+ 12 = (Sn � I)Qn + 12�Zn+ 12 � Zn�Qn ; Qn = �I + 14I2Zn��1 :It follows that we 
an de
ompose the lo
al error asdn = (Sn � I)�n + �n ; (3.25)with �n = 14�tQnI1u0(tn) ;�n = 18�t�Zn+ 12 � Zn�QnI1u0(tn) + 14�t2�I + 14Zn+ 12 �u00(tn) +O(�t3) : (3.26)
Su
h a de
omposition 
an be used to show 
onvergen
e for s
heme OS1; the argu-ments are the same as in [14, p. 216℄ for 
onstant Sn = S. Let us de�ne ên = en + �nfor n � 0. Then ên+1 = Snên + d̂n ; d̂n = �n+1 � �n + �n ;for n � 0. Hen
e kênk1 � kê0k1 + nXk=0 kd̂kk1 :Sin
e e0 = 0 we obtainkenk1 � k�0k1 + k�nk1 + nXk=0 �k�k+1 � �kk1 + k�kk1� : (3.27)
It remains to bound the terms on the right-hand side. Under assumption (3.18) itis easily seen that kQkk1 � (1�K)�1 :Moreover, we have Qk+1 �Qk = �14Qk(I2Zk+1 � I2Zk)Qk+1 ;11



kQk+1 �Qkk1 � 12�tL(1�K)�2 :It follows that k�kk1 � 14 (1�K)�1�tku0(tk)k1 ;k�k+1 � �kk1 � 18(1�K)�2L�t2ku0(tk)k1 + 14(1�K)�1�t2ku00(tk)k1 +O(�t3) ;k�kk1 � 18(1�K)�1L�t2ku0(tk)k1 + 14�t2ku00(tk)k1 :Insertion of these three estimates into (3.27) gives the following 
onvergen
e result.Theorem 3.3 Consider the OS1 s
heme (2.9) with the time step restri
tion (3.17).Then kSk1 � 1. Under the additional assumption (3.18), (3.19) we have the errorboundkenk1 � (M1 +M2TL)�t maxt2[0;T ℄ ku0(t)k1 +M3T�t maxt2[0;T ℄ ku00(t)k1 +O(�t2) ;for 0 � tn � T , with M1;M2;M3 determined by K.3.2.3 Convergen
e of OS1 for linear �rst-order upwind adve
tionConsider the �rst-order upwind dis
retization (2.2) for linear adve
tion. Then (3.17)will hold if �t�xj � 1 for j 2 I1 ; �t2�xj � 1 for j 2 I2 :These are the usual restri
tions on the lo
al Courant numbers. To have (3.18) we getthe restri
tion �t2�xj � K < 1 for j 2 I2 :However, for this �rst-order upwind adve
tion 
ase the 
ondition (3.18) with K < 1is not needed. Let Z = �tA with A as in (3.8). Suppose for simpli
ity that I1 = fj :j < ig, I2 = fj : j � ig with given i 2 I. Consider(S � I)� = ZI1v ;where � = �n and v = vn = 14�tu0(tn) in the lo
al error de
omposition (3.25). Theve
tor � will satisfy this relation if (I + 14I2Z)� = I1v, that isI1� = I1v ; I2�I + 14Z�� = 0 :It is seen that � = [�j ℄ 2 Rm is given by�j = vj (for j < i) ; �i+k = � �j�j�4�k+1vi�1 (for k � 0) ;where �j = �t=�xj . Therefore k�k1 � kvk1 if �j � 2 on I2.It follows that for this linear adve
tion 
ase, the lo
al error de
omposition (3.25)will be valid under (3.17), with k�nk1 = O(�t), k�n+1 � �nk1 = O(�t2), and withk�nk1 = O(�t2) 
ontaining the higher-order terms in the lo
al error, leading to 
on-vergen
e with order one.
12



4 Se
ond-order s
hemesIn the literature, several se
ond-order multirate s
hemes for 
onservation laws havebeen derived that are based on the standard two-stage Runge-Kutta methodu�n+1 = un + �tF (un) ; un+1 = un + 12�t�F (un) + F (u�n+1)� :The se
ond stage 
an also be written asun+1 = 12un + 12�u�n+1 + �tF (u�n+1)� :Monotoni
ity properties are more 
lear with this form. The method is known as theexpli
it trapezoidal rule or the modi�ed Euler method. In this se
tion we 
onsidersome multirate s
hemes, based on this method, with one level of temporal re�nement.Results on internal 
onsisten
y and mass 
onservation are mentioned here, but a de-tailed dis
ussion will only be given in Se
tion 5.The se
ond-order s
heme of Tang & Warne
ke [26℄ reads8>>>>>><>>>>>>:
u�n+ 12 = un + 12�tF (un) ;un+ 12 = 12�un + u�n+ 12 + 12�tF (u�n+ 12 )� ;u�n+1 = I1�un + �tF (un)�+ I2�un+ 12 + 12�tF (un+ 12 )� ;un+1 = 12I1�un + u�n+1 + �tF (u�n+1)�+ 12I2�un+ 12 + u�n+1 + 12�tF (u�n+1)� :(4.1)We will refer to this s
heme as TW2. It will be shown below that this s
heme isinternally 
onsistent but not mass-
onserving.Constantines
u & Sandu [3℄ introdu
ed the following s
heme, whi
h will be referredto as CS2,8>>>>>><>>>>>>:

u�n+ 12 = un + �tI1F (un) + 12�tI2F (un) ;un+ 12 = un + 14�tI2�F (un) + F (u�n+ 12 )� ;u�n+1 = I1�un + �tI1F (un+ 12 )�+ I2�un+ 12 + 12F (un+ 12 )� ;un+1 = un + 14�t�F (un) + F (u�n+ 12 ) + F (un+ 12 ) + F (u�n+1)� :
(4.2)

This s
heme is mass-
onserving but not internally 
onsistent. Nevertheless, we will seethat it is still 
onvergent (with order one) in the maximum-norm due to damping and
an
ellation e�e
ts. Note that for non-sti� ODE systems the s
heme will be 
onsistentand 
onvergent with order two.The related method of Dawson and Kirby [4℄ is also mass-
onserving but not in-ternally 
onsistent. However in that s
heme a limiter is applied whi
h is adapted tothe out
ome of previous stages, so it does not �t in the framework of this paper wherethe semi-dis
rete system is supposed to be given a priori.In Sav
en
o [21℄ several other multirate s
hemes of order two 
an be found for sti�(paraboli
) problems. These are Rosenbro
k-type s
hemes that 
ontain a parameter
, and setting 
 = 0 yields an expli
it s
heme. We 
onsider here the s
heme that wasintrodu
ed in [22℄; it will be referred to as SHV2. In this s
heme, �rst a predi
tion�un+1 is 
omputed, followed by re�nement steps on I2 using interpolated values �un+1=2
13



on I1. The s
heme reads8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

�u�n+1 = un + �tF (un) ;�un+1 = 12un + 12 �u�n+1 + 12�tF (�u�n+1) ;�un+ 12 = 12un + 14 �un+1 + 14 �u�n+1 ;u�n+ 12 = I1�un+ 12 + I2�un + 12�tF (un)� ;un+ 12 = I1�un+ 12 + I2�12un + 12u�n+ 12 + 14�tF (u�n+ 12 )� ;u�n+1 = I1�un+1 + I2�un+ 12 + 12�tF (un+ 12 )� ;un+1 = I1�un+1 + I2�12un+ 12 + 12u�n+1 + 14�tF (u�n+1)� :
(4.3)

This s
heme will be seen to be internally 
onsistent but not mass-
onserving. We notethat (4.3) 
ould be written with fewer stages; there are no fun
tion evaluations of �un+1and �un+ 12 , so these ve
tors are just in
luded for notational 
onvenien
e. Further wenote that this s
heme was not intended originally as used here. Instead, the predi
tionvalues �u�n+1 and �un+1 were used in [22℄ to estimate lo
al errors, and based on thisestimate the partitioning I = I1 [ I2 was adjusted. For the s
hemes in the presentpaper the partitioning is supposed to be given, based on lo
al Courant numbers.The interpolation step in (4.3) 
an be written as�un+ 12 = 34un + 14 �un+1 + 14�tF (un) ; (4.4)whi
h 
orresponds to quadrati
 Hermite interpolation. As an alternative we 
an also
onsider linear interpolation �un+ 12 = 12un + 12 �un+1 ; (4.5)but in the numeri
al tests (4.4) gave somewhat better results (errors approximately5% smaller) in general.In pra
ti
al appli
ations, for systems of 
onservation laws, evaluation of the fun
-tion 
omponents Fj(v) will be the main 
omputational work. Note that if IkF (v) isneeded then v should be known on Ik and on a few additional points near the interfa
e(how many points depends on the sten
il of the spatial dis
retization). If we ignorethese interfa
e points, and assume that Ik 
ontains mk points, m1+m2 = m, then we
an easily estimate the amount of work per step with the s
hemes. For the s
hemesTW2 and SHV2 this is 2(m+m2)�W , and for the CS2 s
heme it is 4m�W , where �Wis the measure of work for a single 
omponent Fj(v). Therefore, if m2 � m1, thatis, temporal re�nement is only needed at few points, then the CS2 s
heme will beapproximately twi
e as expensive as the other two s
hemes.4.1 Numeri
al testsAn analysis of the above se
ond-order s
hemes will be given in the next se
tion inthe framework of partitioned Runge-Kutta methods. Here we already present somenumeri
al results that will serve as ben
hmarks for the analysis.4.1.1 Linear adve
tion with smooth solutionAs a �rst test on the a

ura
y of the s
hemes we 
onsider the linear adve
tion equation(2.1) on the spatial interval 0 < x < 1 with periodi
 boundary 
onditions, and time in-terval 0 < t � T = 1. For test purposes a uniform spatial grid is taken, so that interfa
e14



Table 1: Results for the smooth adve
tion problem with the CS2, TW2 and SHV2 s
hemes.Maximum errors and L1-errors at �nal time tN = T for various m with �xed Courant number� = 0:4. m 100 200 400 800CS2, keNk1 1:97 � 10�3 5:64 � 10�4 1:88 � 10�4 9:96 � 10�5CS2, keNk1 7:11 � 10�4 1:84 � 10�4 4:85 � 10�5 1:28 � 10�5TW2, keNk1 6:08 � 10�4 1:57 � 10�4 3:98 � 10�5 9:99 � 10�6TW2, keNk1 2:85 � 10�4 7:35 � 10�5 1:86 � 10�5 4:66 � 10�6SHV2, keNk1 6:10 � 10�4 1:57 � 10�4 3:95 � 10�5 9:90 � 10�6SHV2, keNk1 2:91 � 10�4 7:40 � 10�5 1:86 � 10�5 4:66 � 10�6
e�e
ts are 
ertainly not due to the spatial dis
retization, for whi
h the WENO5 s
hemeis 
hosen; the formulas for this dis
retization 
an be found for example in [23℄. Tem-poral re�nement is used at the union of spatial intervals Dk = fx : jx�k=10j � 1=40g,k = 1; : : : ; 9, and we 
onsider a �xed Courant number � = �t=�x = 0:4.For this a

ura
y test a smooth solution u(x; t) = sin2(�(x� t)) is 
onsidered. Theerrors in the maximum-norm and dis
rete L1-norm (kvk1 =Pj �xj jvj j) are presentedin Table 1. It is seen that with the CS2 s
heme we have only �rst-order 
onvergen
ein the maximum-norm, due to the interfa
e points; the L1-errors are still se
ond-order. For the s
hemes TW2 and SHV2 we see an order two 
onvergen
e also in themaximum-norm. The entries in Table 1 are the total (absolute) errors with respe
tto the PDE solution, but it was veri�ed that the spatial errors are mu
h smaller herethan the temporal errors.To see that the large errors for s
heme CS2 in the maximum-norm are indeed 
ausedby the interfa
e points, the errors as fun
tion of x at the �nal time with m = 800 aredisplayed in Figure 1. The (relatively) large errors for CS2 at the interfa
e points are
learly visible. For s
heme TW2 there are no visible interfa
e e�e
ts. The errors forSHV2 are almost the same as for TW2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1
x 10

−4

Figure 1: Errors versus xj 2 (0; 1) at �nal time tN = T for the s
hemes CS2 (thi
k solidline) and TW2 (thi
k dashed line), m = 800.
The CS2 s
heme is not internally 
onsistent at the interfa
es, but we see in thistest that it is still 
onvergent. This is similar as with the OS1 s
heme.The linear adve
tion test was repeated with an initial blo
k-fun
tion with the aimof seeing the e�e
t of the la
k of mass-
onservation for the TW2 and SHV2 s
hemes.In general, mass 
onservation is needed to guarantee a 
orre
t sho
k speed and sho
k
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lo
ation. However, this test with a blo
k fun
tion showed very little di�eren
e betweenthe s
hemes.4.1.2 Burgers' equation with stationary sho
kIn the above numeri
al test the la
k of mass 
onservation for s
heme TW2 only gavea very small e�e
t. To make this e�e
t more pronoun
ed we 
onsider the Burgersequation with a stationary sho
k at a grid interfa
e. The equation is given byut + 12�u2�x = 0 (4.6)for 0 < t < T = 0:3 and �1 < x < 1, with initial pro�leu(x; 0) = � 1 if jxj < 0:3 ;�1 otherwise ;and boundary 
onditions u(�1; t) = u(1; t) = �1. This will lead to a rarefa
tion wavearound x = �0:3 and a stationary sho
k at x = 0:3. In this experiment re�nement isused at D = [ 10k=1[yk; yk + 0:1℄, yk = 0:2 k � 1:1. So the stationary sho
k is lo
ated ata grid interfa
e.The spatial dis
retization is given by the limited TVD s
heme of Appendix Ausing a 
ell-
entered non-uniform grid with mesh widths �xj = 12�x if xj 2 D, and�xj = �x otherwise. Also I2 = fj : xj 2 Dg and I1 = I n I2, so that spatial andtemporal re�nements are taken at the same points.Numeri
al solutions at the output time t = T are shown in Figure 2 for �x = 180and � = �t=�x = 0:8. The left pi
ture shows the solution with �1 < x < 1 for the CS2s
heme. Di�eren
es between the s
hemes are not well visible on this s
ale. Thereforethe right pi
ture shows a zoom around x = 0:3 for the s
hemes TW2, CS2 and SHV2.One sees that with CS2 the sho
k lo
ation is 
orre
t; there is some smearing dueto numeri
al di�usion in the spatial dis
retization, but it is more or less symmetri
around x = 0:3. The solution of TW2 is leaning too mu
h to the left, and for SHV2too mu
h to the right. This due to the la
k of (lo
al) 
onservation.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

0.28 0.29 0.3 0.31 0.32

−1

−0.5

0

0.5

1

Figure 2: Numeri
al solutions at time T = 0:3 for �x = 180 , � = 0:8. Left pi
ture: initialpro�le (dashed), and semi-dis
rete solution for �1 < x < 1. Right pi
ture: solutions aroundthe stationary sho
k with the s
hemes TW2 (� marks), CS2 (Æ marks) and SHV2 (� marks),and with exa
t PDE solution (dashed line).Let M(v) = Pj �xjvj . (If the vj were densities, this would be total mass; forBurgers' equation it is more natural to think of momenta.) ThenM(u(tn))�M(un) isa 
onservation defe
t. Figure 3 shows this defe
t at the �nal time tN = T for the threes
hemes on a �xed spatial mesh, �x = 1=160, and with � = �t=�x varying between0 and 1:2. (We have taken � = k=40, k = 1; 2; : : : ; 48, with markers pla
ed when � isa multiple of 0:1.) In the same �gure, middle plot, the in
rease of the total variation16



kuNkTV is displayed. The total variation should be 4, as for the PDE solution, andthis is the numeri
al value for the semi-dis
rete system (within ma
hine pre
ision). Inthis example it is 
onserved with larger Courant numbers for the s
heme CS2 thanfor TW2 and SHV2. The right plot in the �gure shows the in
rease of the maximumnorm kuNk1 � 1.In these �gures over
ow values are not plotted. The s
hemes CS2 remained stablein this test up to � = 1:2, whi
h is slightly larger than with the other two s
hemes.The instabilities did emerge at the stationary sho
k. Adding some initial perturbationsresults in instability for � > 1 with all three s
hemes.
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Figure 3: Conservation defe
ts and in
rease of total variation and max-norm for 0 < � � 1:2with �x = 1160 , for the s
hemes TW2 (� marks), CS2 (Æ marks) and SHV2 (� marks).Finally, in Figure 4 the logarithm (base 10) of the L1-errors of the three s
hemesare given, again for �x = 1=160 with varying �. Both the errors with respe
t to thesemi-dis
rete solution and the errors with respe
t to the PDE solution are plotted. Itis seen that the ODE errors for CS2 are smaller than for the other two s
hemes forlarge Courant numbers. That is due to the fa
t that CS2 has a smaller error near thestationary sho
k. However, this s
heme is more ina

urate than TW2 and SHV2 inthe rarefa
tion wave, similar as in the previous test, and that reveals itself in the largererror for small Courant numbers. In the PDE errors the spatial errors will be
omedominant for small time steps, so there the best results are found for CS2 overall.From the PDE point of view, temporal errors less then 10�3 are not relevant on thisspatial grid where we have a spatial error of 3:4 � 10�3 approximately (PDE error for� ! 0).
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Figure 4: Logarithm (log10) of the L1-errors, with respe
t to the exa
t semi-dis
rete solution(ODE error) and the exa
t PDE solution (PDE error), for 0 < � � 1:2 with �x = 1160 .Results for the s
hemes TW2 (� marks), CS2 (Æ marks) and SHV2 (� marks).
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4.1.3 Burgers' equation with moving sho
kThe last test is again Burgers' equation (4.6), but now with a moving sho
k. We take0 < t < T = 0:6, �1 < x < 1 with initial pro�leu(x; 0) = � 1 if �0:6 < x < 0 ;0 otherwise:and boundary 
onditions u(�1; t) = u(1; t) = 0. This will lead to a rarefa
tion wavebetween x = �0:6 + t and x = 0, together with a moving sho
k at x = 12 t. Further,we use the same set-up as in the previous test.The solutions at time T = 0:6 are shown in Figure 5. The enlargement around thesho
k at x = 0:3 now shows very little di�eren
e between the three s
hemes. So thela
k of mass 
onservation for the TW2 and SHV2 s
hemes does not have mu
h impa
tfor this test. This is similar as in the tests of [26℄ for the TW2 s
heme.
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Figure 5: Numeri
al solutions at time T = 0:6 for �x = 180 , � = 0:8. Left pi
ture: initialpro�le (dashed), and semi-dis
rete solution for �1 < x < 1. Right pi
ture: solutions aroundthe moving sho
k with the s
hemes TW2 (� marks), CS2 (Æ marks) and SHV2 (� marks),and with exa
t PDE solution (dashed line).The 
onservation defe
ts and the in
rease of total variation and maximum-norm,with �xed mesh width �x = 1160 and variable �, are displayed in Figure 6. Here wesee that all three s
hemes start to loose the TVD property when Courant numbersbe
ome larger than 0:8, approximately. The plot on the right of the overshoot valueskuNk1�1 looks similar, ex
ept that now the in
rease starts at Courant number one.The loss of the TVD property for � 2 [0:8; 1℄ is 
ause by os
illations at the sho
k, notin the rarefa
tion wave.
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Figure 6: Conservation defe
ts and in
rease of total variation and max-norm for 0 < � � 1:2with �x = 1160 , for the s
hemes TW2 (� marks), CS2 (Æ marks) and SHV2 (� marks).
We see that the 
onservation defe
t in this test is mu
h smaller than in the previoustest with a standing sho
k at a grid interfa
e. Of 
ourse, both these tests are somewhat18



a
ademi
, but for pra
ti
al situations the present test with a moving sho
k seems morerelevant. Monotoni
ity for the TW2 and SHV2 s
hemes holds with larger Courantnumbers than in the previous test. This is 
aused by the fa
t that in the previoustest there were two in
oming 
uxes at the standing sho
k, whereas now we have onein
oming and one outgoing 
ux at ea
h grid 
ell. In the standing sho
k test the
onservation property of the CS2 s
heme did suppress the tenden
y of in
reasing thetotal variation and maximum-norm.In Figure 7 the temporal (ODE) errors and total (PDE) errors are plotted, againwith �xed mesh width �x = 1160 and variable �. The ODE errors for the CS2 s
hemeare larger than for the other two s
hemes for small Courant numbers, but for the PDEerrors this is not relevant here. In the plot of the PDE errors we see that here theSHV2 s
heme gives somewhat larger errors than the TW2 and CS2 s
hemes. Detailedinspe
tion of the solution plots revealed that this is due to a slight dissipation withSHV2 at the top and bottom of the rarefa
tion wave. We did noti
e, however, thatthese errors are quite sensitive to the pre
ise set-up of the test. For example, withT = 0:5 and initial pro�le u(0; x) = 1 for �T < x < 0 and 0 otherwise, then the PDEerrors of SHV2 were smaller than with the other two s
hemes for the larger Courantnumbers.

0 0.2 0.4 0.6 0.8 1 1.2
−4

−3.5

−3

−2.5

−2
ODE error

0 0.2 0.4 0.6 0.8 1 1.2
−2.6

−2.4

−2.2

−2
PDE error

Figure 7: Logarithm (log10) of the L1-errors, with respe
t to the exa
t semi-dis
rete solution(ODE error) and the exa
t PDE solution (PDE error), for 0 < � � 1:2 with �x = 1160 .Results for the s
hemes TW2 (� marks), CS2 (Æ marks) and SHV2 (� marks).
For theoreti
al purposes it is interesting to note that with the Burgers 
ux fun
tionf(u) = 12u2 we have f 0(u) 2 [0; 1℄ in this test. Furthermore, the mesh width in spa
eis �xj = �x=k for j 2 Ik, k = 1; 2, and � = 1 for the used spatial dis
retization.Therefore, as dis
ussed in Example 2.2, the monotoni
ity assumption (2.13) will besatis�ed with �0 = 12�xfor both the maximum-norm and for the total variation semi-norm. Note that withthe �rst-order upwind dis
retization this would be �0 = �x.5 Partitioned Runge-Kutta methods5.1 General propertiesIn the multirate examples 
onsidered thus far, only one level of re�nement was used tokeep the notation simple. Generalizations will be formulated in this se
tion in termsof partitioned Runge-Kutta methods; see also [3, 6℄. This will enable us to presentthe s
hemes in a 
ompa
t fashion. Sin
e this paper is 
on
erned with s
hemes for
onservation laws, we will restri
t ourselves to expli
it methods.
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For the ODE system in Rm , arising from semi-dis
retization of a PDE with giveninitial value, u0(t) = F (u(t)) ; u(0) = u0 ; (5.1)let I = I1 [ � � � [ Ir be an index partitioning with 
orresponding diagonal matri
esI = I1 + � � � + Ir, where the entries of the Ik are zero or one, and I is the identitymatrix. For a time step from tn to tn+1 = tn+�t, an expli
it partitioned Runge-Kuttamethod reads vn;i = un + �t rXk=1 i�1Xj=1 a(k)ij IkF (vn;j) ; i = 1; : : : ; s ;
un+1 = un + �t rXk=1 sXj=1 b(k)j IkF (vn;j) : (5.2)

The internal stage ve
tors vn;i, i = 1; : : : ; s, give approximations at intermediate timelevels. The multirate s
hemes of the previous se
tions all �t in this form with r = 2.With r > 2 more levels of temporal re�nement are allowed.5.1.1 Internal 
onsisten
y and 
onservationLet 
(k)i =Pi�1j=1 a(k)ij , i = 1; : : : ; s. If we have
(k)i = 
(l)i for all 1 � k; l � r and 1 � i � s ; (5.3)then the internal ve
tors vn;i will be 
onsistent approximations to u(tn + 
i�t), andthe method will be 
alled internally 
onsistent. As will be seen, this is an importantproperty for the a

ura
y of the method when applied to semi-dis
rete systems.Apart from 
onsisten
y, we will also regard global 
onservation, for example mass
onservation. Suppose that hT = [h1; : : : ; hm℄ is su
h that hTu(t) = Pj hjuj(t) is a
onserved quantity for the ODE system (5.1). This will hold for arbitrary initial valueu0 provided that hTF (v) = 0 for all v 2 Rm : (5.4)For the partitioned Runge-Kutta s
heme we havehTun+1 = hTun + �t rXk=1 sXj=1 b(k)j hT IkF (vn;j)= hTun + �tXk 6=l sXj=1 �b(k)j � b(l)j �hT IkF (vn;j) ;
for any 1 � l � r. Therefore, as noted in [3℄, the 
onservation property hTun+1 = hTunwill be valid provided thatb(k)j = b(l)j for all 1 � k; l � r and 1 � j � s : (5.5)5.1.2 Order 
onditions for non-sti� problemsBelow we shall use the order 
onditions for partitioned Runge-Kutta methods appliedto non-sti� problems as found in [9, Thm. I.15.9℄ for r = 2. This 
lassi
al order will bedenoted by p. As we will see, it often does not 
orrespond to the order of 
onvergen
efor semi-dis
rete systems, and therefore p is often referred to as the 
lassi
al order.
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To write the order 
onditions in a 
ompa
t way, let Ak = [a(k)ij ℄ 2 R s�s and bk =[b(k)i ℄ 2 R s 
ontain the 
oeÆ
ients of the method, and set e = [1; : : : ; 1℄T 2 R s . The
onditions for p = 1 are justbTk e = 1 for k = 1; : : : ; r ; (5.6)that is Psj=1 b(k)j = 1 for all k. To have p = 2 the 
oeÆ
ients should satisfybTkAl e = 12 for k; l = 1; : : : ; r : (5.7)The number of 
onditions qui
kly in
rease for higher orders; for p = 3 we getbTkCl1Al2e = 13 ; bTkAl1Al2e = 16 for k; l1; l2 = 1; : : : ; r ; (5.8)where Cl = diag(Ale).5.1.3 Formulation for non-autonomous systemsFor non-autonomous systemsu0(t) = F (t; u(t)) ; u(0) = u0 ; (5.9)we will use the partitioned method (5.2) with the stage fun
tion values F (vn;j) repla
edby F (tn + 
j�t; vn;j). If (5.3) is valid, the abs
issa are naturally taken as 
i = 
(k)i ,whi
h is independent of k.If (5.3) does not hold, then a proper 
hoi
e of the abs
issa is less obvious. Forthe OS1 and CS2 multirate s
hemes with r = 2 it is natural to take 
i = 
(2)i . Asgeneralization we will therefore use
i = 
(r)i ; i = 1; : : : ; s : (5.10)Note that if hTF (t; v) = 0 for all t 2 R , v 2 Rm , then we still have the 
onservationproperty hTun+1 = hTun if the s
heme satis�es (5.5).The alternative of repla
ing IkF (vn;j) in (5.2) by IkF (tn+
(k)j �t; vn;j) will destroythis 
onservation property. If the non-autonomous form originates from a sour
e termin the PDE, this loss of 
onservation may be of little 
on
ern, but for the adve
tionequation ut + �a(x; t)u)x = 0 with time-dependent velo
ity it is still a very desirableproperty.Example 5.1 The OS1 s
heme (2.9) leads to the partitioned method (5.2) with r = 2and 
oeÆ
ients given bya(1)ij a(2)ijb(1)j b(2)j = 0 00 0 1/2 01/2 1/2 1/2 1/2For non-autonomous systems u0(t) = F (t; u(t)) the s
heme with (5.10) reads8<: un+ 12 = un + 12�tI2F (tn; un) ;un+1 = un + 12�tF (tn; un) + 12�tF (tn+ 12 ; un+ 12 ) :The use of IkF (tn + 
(k)j �t; vn;j) instead of IkF (tn + 
j�t; vn;j), 
j = 
(2)j , would leadto the same formula for un+1=2 in the �rst stage, but thenun+1 = un + 12�tF (tn; un) + 12�tI1F (tn; un+ 12 ) + 12�tI2F (tn+ 12 ; un+ 12 ) ;whi
h is no longer 
onservative. 321



The above order 
onditions have been derived for autonomous systems, but with(5.10) they are also valid for non-autonomous systems. This follows from the fa
tthat u0(t) = F (t; u(t)) 
an be written as an equivalent, augmented autonomous sys-tem u0(t) = F (#(t); u(t)), #0(t) = 1, with #(0) = 0, and appli
ation of the parti-tioned method to this augmented system gives the same result as to the original,non-autonomous system provided the additional equation #0(t) = 1 is in
luded in theindex set Ir.5.1.4 Conservation versus internal 
onsisten
yFor the multirate s
hemes that have been 
onsidered in this paper, the 
onditions forinternal 
onsisten
y (5.3) and 
onservation (5.5) did not mat
h. This in
ompatibilityis valid for all `genuine' multirate s
hemes that are based on one single methodMRK,that is, for s
hemes (5.2) that redu
e to mk appli
ations (with step size �t=mk) of thisbase method MRK to 
over [tn; tn+1℄ in 
ase that Ik = I and the other Il are empty.Consider, as simple example, a quadrature problem u0(t) = g(t) 2 Rm , whi
h isjust a spe
ial 
ase of (5.9). (In a PDE 
ontext, this 
an be viewed as a degenerate
ase of adve
tion with a sour
e term where the adve
tive velo
ity happens to be zero.)Suppose (5.5) is valid, and let J = fi 2 I : bi 6= 0g. Then for the quadrature problemwe simply get un+1 = un + �tXi2J bi g(tn + 
i�t) ;whi
h is independent of the partitioning. However, if this is the result of a base methodMRK with m1 = 1, I1 = I, then the result for m2 = 2, I2 = I should beun+1 = un + 12�tXi2J bi�g�tn + 12
i�t�+ g�tn + 12 (1 + 
i)�t�� ;whi
h is not the same for arbitrary sour
e terms g.Note that for general partitioned Runge-Kutta methods there is no 
on
i
t between(5.3) and (5.5). Given a s
heme with the same 
(k)i = 
(l)i (for all i; k; l), but di�erentweights b(k)i 6= b(l)i (for some i; k; l), we 
an add an extra stage with new weights b�ithat are independent of k, to make it mass-
onserving. Of 
ourse, this will in
reasethe 
omputational work per step, and for the TW1, TW2 and SHV2 s
hemes su
h amodi�
ation does not seem to lead to eÆ
ient s
hemes.5.2 Monotoni
ity and 
onvex Euler 
ombinationsWe are in parti
ular interested in the 
ase where the partitioned Runge-Kutta method(5.2) stands for a multirate s
heme that takes mk substeps of size �t=mk on Ik to
over [tn; tn+1℄, k = 1; : : : ; r, with m1 = 1 < m2 < � � � < mr. The 
orrespondingmonotoni
ity assumption is


v + rXk=1 �kmk IkF (v)


 � kvk for all v 2 Rm and �k � �0, k = 1; : : : ; r ; (5.11)where k � k is a 
onvex fun
tion or (semi-)norm. For theoreti
al purposes we will also
onsider 

v + �0mk IkF (v)

 � kvk for all v 2 Rm and k = 1; : : : ; r : (5.12)Of 
ourse, (5.11) implies (5.12). On the other hand, if (5.12) is valid, then the in-equality in (5.11) will hold under the step size restri
tion �1+ � � �+ �m � �0. If we aredealing with the maximum-norm, then (5.11) and (5.12) are equivalent.22



In the following we denote for l = 1; : : : ; r,8>>><>>>:
�(l)ij = mla(l)ij ; 1 � i; j � s ;�(l)s+1;j = mlb(l)j ; 1 � j � s ;�(l)i;s+1 = 0 ; 1 � i � s+ 1 : (5.13)

These 
oeÆ
ients will be grouped in the (s + 1) � (s + 1) matrix Kl = [�(l)ij ℄. It is
onvenient to add vn;s+1 = un+1 to the internal ve
tors. Then (5.2) 
an be written as
vn;i = un + rXl=1 i�1Xj=1 �(l)ij �tml IlF (vn;j) ; i = 1; : : : ; s+ 1 : (5.14)

Depending on the monotoni
ity assumption, we 
an 
onsider various ways to rep-resent this partitioned s
heme in terms of 
onvex Euler 
ombinations. For this we willintrodu
e new method 
oeÆ
ients �(k)ij , �(k)ij with 
orresponding lower triangular ma-tri
es Ak = [�(k)ij ℄ and Bk = [�(k)ij ℄. Su
h 
onvex Euler forms are also 
alled Shu-Osherforms, after [24℄ where su
h representations were used originally to demonstrate theTVD property of 
ertain Runge-Kutta methods.Inequalities for matri
es or ve
tors in this se
tion are to be understood 
omponent-wise, that is, P = [pij ℄ � 0 means that all pij are non-negative. Furthermore, ifP 2 R (s+1)�q1 and Q 2 R (s+1)�q2 , then [[P Q℄℄ stands for the matrix whose �rst q1
olumns equal those of P and the other 
olumns equal those of Q. In this se
tion welet e = [1; 1; : : : ; 1℄T 2 R s+1 , and we use the 
onvention �=� = +1 if � � 0, � = 0.5.2.1 Convex Euler form I: maximum-norm monotoni
ity.A suitable form of (5.14) to obtain results on monotoni
ity in the maximum-norm isvn;i = rXk=1 Ik��1� �(k)i �un + i�1Xj=1 ��(k)ij vn;j + �(k)ij �tmkF (vn;j)�� ; (5.15)
where �(k)i =Pi�1j=1 �(k)ij and i = 1; : : : ; s + 1. To have 
orresponden
e between (5.14)and (5.15) the 
oeÆ
ients should satisfyKk = �I �Ak��1Bk ; k = 1; : : : ; r : (5.16)Further we want the 
oeÆ
ients to be su
h that�(k)i � 1 ; �(k)ij ; �(k)ij � 0 for 1 � j < i � s+ 1 ; 1 � k � r : (5.17)For su
h 
oeÆ
ients, let C = mini;j;k �(k)ij =�(k)ij : (5.18)If there are no 
oeÆ
ients su
h that (5.16) and (5.17) are satis�ed, we set C = 0.Theorem 5.2 Consider (5.15) with (5.17) and let C be given by (5.18). Assume(5.11) is valid in the maximum-norm. Then kun+1k1 � kunk1 whenever �t � C�0.Proof. The form (5.15) is equivalent toIkvn;i = Ik��1� �(k)i �un + i�1Xj=1 ��(k)ij vn;j + �(k)ij �tmk IkF (vn;j)�� ; k = 1; : : : ; r :
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We have vn;1 = un. Suppose (indu
tion assumption) that kvn;jk1 � kunk1 forj = 1; : : : ; i� 1. Sin
e�(k)ij vn;j + �(k)ij �tmk IkF (vn;j) = ��(k)ij � C�(k)ij �vn;j + C�(k)ij �vn;j + �tCmk IkF (vn;j)� ;we then havek�(k)ij vn;j + �(k)ij �tmk IkF (vn;j)k1 � �(k)ij kvn;jk1 � �(k)ij kunk1 :It follows that kIkvn;ik1 � kunk1 for k = 1; : : : ; r, and hen
e kvn;ik1 � kunk1.Using indu
tion with respe
t to i = 1; : : : ; s+ 1 the proof thus follows. 2It is obvious that we are in parti
ular interested in the optimal value of C in (5.18)for a given method (5.14). To obtain a suitable expression for this optimal value,we 
an follow the 
onstru
tion of Ferra
ina & Spijker [7℄ and Higueras [10℄ for theindividual Runge-Kutta methods given by the 
oeÆ
ients Kk.Theorem 5.3 The optimal value for C � 0 in (5.18), under the 
onstraints (5.16)and (5.17), equals the largest 
 � 0 su
h that(I + 
Kk)�1[[e 
Kk℄℄ � 0 ; k = 1; : : : ; r : (5.19)Proof. Suppose 
 � 0 is su
h that (5.19) holds. We take Bk = (I + 
Kk)�1Kk andAk = 
Bk. With this 
hoi
e it is easily seen that (5.16) and (5.17) are valid and that(5.18) holds with C = 
.On the other hand, suppose that we have (5.16), (5.17) and (5.18) with C � 0, andset 
 = C. Then�I + 
Kk��1[[e 
Kk℄℄ = �I �Mk��1[[(I �Ak)e 
Bk℄℄ ;where Mk = Ak � 
Bk. From (5.18) we know that Mk � 0, and sin
e it is a stri
tlylower triangular matrix we also have(I �Mk)�1 = I +Mk +M2k + : : :+Msk � 0 :It follows that (5.19) is valid. 25.2.2 Convex Euler form II: monotoni
ity under (5.12)If we assume (5.12) for a general (semi-)norm or 
onvex fun
tion, then a suitable formfor (5.14) is vn;i = �1� �(0)i �un + rXk=1 i�1Xj=1 ��(k)ij vn;j + �(k)ij �tmk IkF (vn;j)� ; (5.20)
where �(0)i =Pi�1j=1 ��(1)ij + � � �+ �(r)ij �, i = 1; : : : ; s+ 1, andKk = �I � rXl=1 Al��1Bk ; k = 1; : : : ; r : (5.21)We want�(0)i � 1 ; �(k)ij ; �(k)ij � 0 for 1 � j < i � s+ 1 ; 1 � k � r ; (5.22)with an optimal C = mini;j;k �(k)ij =�(k)ij : (5.23)
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Theorem 5.4 Assume (5.12) is valid.(i) Consider (5.20) with (5.22) and let C be given by (5.23). Then kun+1k � kunkwhenever �t � C�0.(ii) The optimal C � 0 in (5.23), under the 
onstraints (5.21) and (5.22), equals thelargest 
 � 0 su
h that�I + rXl=1 
Kl��1[[e 
Kk℄℄ � 0 ; k = 1; : : : ; r : (5.24)The proof of this result is similar to that of the Theorems 5.2 and 5.3. In fa
t, theresult for r = 2 
an be obtained dire
tly from Higueras [11℄ and Spijker [25℄. Furtherwe note that the 
oeÆ
ient matri
es Ak and Bk whi
h lead to an optimal value C arein this 
ase given by Bk = (I +Pl 
Kl)�1Kk and Ak = 
Bk.5.2.3 Convex Euler form III: TVD property and monotoni
ity under (5.11)Finally, if (5.11) is assumed for a general (semi-)norm or 
onvex fun
tion, then we
onsider vn;i = �1� �(0)i �un + i�1Xj=1 ��(0)ij vn;j + rXk=1�(k)ij �tmk IkF (vn;j)� ; (5.25)
where �(0)i =Pi�1j=1 �(0)ij , i = 1; : : : ; s+ 1, andKk = (I �A0)�1Bk ; k = 1; : : : ; r : (5.26)Here we want�(0)i � 1 ; �(0)ij ; �(k)ij � 0 for 1 � j < i � s+ 1 ; 1 � k � r : (5.27)su
h that C = mini;j;k �(0)ij =�(k)ij (5.28)is optimal.Theorem 5.5 Consider (5.25) with (5.27) and let C be given by (5.28). Assume(5.11) is valid. Then kun+1k � kunk whenever �t � C�0.The proof is similar to that of Theorem 5.2. For this 
ase there is no 
onvenientrepresentation of the optimal C. An optimization 
ode 
an be used to determine thisoptimal value. However, from the previous results we obtain useful upper and lowerbounds for C.Theorem 5.6 The optimal values C, C, C in (5.18), (5.23) and (5.28) satisfy1rC � C � C � C :Consequently, if C = 0 then C = 0.Proof. Given an optimal C with 
orresponding 
oeÆ
ient matri
es A0, Bk, we 
antake Ak = A0, Bk = Bk. Then (5.16) and (5.17) hold and mini;j;k �(k)ij =�(k)ij � C.Consequently we have C � C for the optimal value C.Likewise, for a given optimal C with 
orresponding Ak, Bk, we 
an 
hoose Bk = Bk,A0 = Prl=1Al. Then (5.26) and (5.27) hold and we have mini;j;k �(0)ij =�(k)ij � C,showing that C � C.On the other hand, for given optimal C with 
orresponding A0, Bk, we 
an takeBk = Bk, Ak = 1rA0. It follows that C � 1rC. 225



5.2.4 Results for the multirate s
hemes with one level of re�nementThe monotoni
ity results for the multirate s
hemes of the previous se
tions are pre-sented in Table 2. The table gives the threshold values C, C and C for the variouss
hemes. The results for the �rst-order s
hemes OS1 and TW1 
an be derived analyt-i
ally as in Se
tion 3.1; we get C = 1, C = 2=3, C = 1 � 1=p3 for OS1, and C = 1,C = 2�p2, C = 1� 1=p3 for TW1. The threshold values C, C for the se
ond-orders
hemes have been found numeri
ally, using (5.19) and (5.24). For the TW2 and CS2s
hemes we have C = 0 and therefore also C = 0. (The fa
t that C = 0 for these twos
hemes 
an also be shown analyti
ally, similar to [11℄, by 
onsidering (5.24) for small
 > 0.) The value of C for SHV2 was obtained with the Matlab optimization 
odefminimax. This does not provide a guarantee that the solution is a global optimum,and therefore this C is to be 
onsidered as a lower bound. The fa
t that we merelyhave C = 1=2 for the SHV2 s
heme is due to the �rst stage. Finally we note thatfor the variant of that s
heme with linear interpolation (4.5), instead of (4.4), it wasfound that C = 1=2, C = 0:304, and the optimization 
ode produ
ed the same valueC = 0:304 for this variant.Table 2: Threshold values for the multirate s
hemes with one level of re�nement. The entryC for the s
heme SHV2 is a lower bound.C C COS1 1 0:667 0:423TW1 1 0:580 0:423TW2 1 0 0CS2 1 0 0SHV2 0:5 0:284 0:284
As noted before, the result C = 1 for the OS1 and TW1 s
heme was already givenin [15, 18, 26℄ in terms of maximum prin
iples. For the CS2 s
heme the same resulthas been proved in [3℄.Re
all that the threshold values C are su
h that we will have monotoni
ity in themaximum-norm, as well as maximum prin
iples, provided that �t � C�0. Likewise,for spatial dis
retization with limiting the TVD property will hold if �t � C�0. Allthis under 
orresponding assumptions (2.13) for the semi-dis
rete system.Comparison of these theoreti
al values with the experiments of Se
tion 4.1 forBurgers' equation with the TW2, CS2 and SHV2 s
hemes does not show a 
lear 
or-responden
e. As was noted, in those experiments we had �0 = 12�x for both themaximum-norm and the total variation semi-norm. Therefore, with � = �t=�x, theTVD property is guaranteed by the above results for � � 12C and the maximum prin-
iple for � � 12C. For the Burgers' experiment with a moving sho
k it was noti
ed thatfor the s
hemes TW2, CS2 and SHV2 we had no overshoots for � � 1, whereas theTVD property was valid for � � 0:8 approximately. Therefore, for that test, the theo-reti
al threshold values C = 0 for the TW2 and CS2 s
hemes in Table 2 are mu
h toopessimisti
. The same seems to hold for the small value C = 12 of the SHV2 s
heme
ompared to the value C = 1 for TW2 and CS2. This may be 
aused by the fa
tthat spatial dis
retizations with 
ux-limiting (or of WENO type) do add some lo
aldi�usion near very steep gradients, whi
h may 
ountera
t an overshoot or in
rease oftotal variation of the time stepping s
heme. However, for the dis
repan
y in the TVDresults it is more likely that a more re�ned theory is needed. As noted before, it was26



shown in [15℄ that the OS1 s
heme is TVD for a 
lass of limited dis
retizations underthe same step size restri
tion as for the maximum prin
iple, but that proof does notlend itself to generalization for the higher-order s
hemes.Remark 5.7 Re�ned TVD results for the OS1 and TW1 s
heme were also dis
ussedin Se
tion 3.1. It was shown that the TVD thresholds of both the OS1 and TW1s
hemes be
ome 1 for the system (3.8) arising from linear adve
tion with �rst-orderupwind dis
retization in spa
e.Experimentally, using various partitionings, in
luding random partitionings, weobserved that for this system the thresholds for monotoni
ity in the maximum-normare 1 for the TW2 and CS2 s
hemes, and approximately 0:66 for the SHV2 s
heme,whereas the thresholds for the TVD property are 0:5 for the TW2 and CS2 s
hemes,and 0:86 for the SHV2 s
heme.Furthermore, it should be noti
ed that having a bound kSk1 � 1 for the ampli�
a-tion matrix S guarantees stability in the maximum norm for this linear problem, butthis is not a ne
essary 
ondition. The spe
tral radius of S was found to be bounded by1 for Courant numbers �j = �t=�xj � k for j 2 Ik, k = 1; 2, for these three s
hemes,that is, in
luding the SHV2 s
heme. Note that having spe
tral radius bounded by 1is of 
ourse ne
essary for stability, but it is not suÆ
ient, not even in the L2 normbe
ause the ampli�
ation matri
es S are not normal. 35.3 Convergen
e for smooth problemsIn this se
tion we derive bounds for the dis
retization errors that are valid for semi-dis
rete hyperboli
 systems with smooth solutions. The 
lassi
al, non-sti� order 
on-ditions are then no longer suÆ
ient to obtain 
onvergen
e of order p, due to the fa
tthat F 
ontains negative powers of the mesh widths �xj in spa
e. We will a

epta restri
tion on �t=�xj but the resulting error bounds should not 
ontain negativepowers of �xj .It is useful here to take also non-autonomous equations (5.9) into 
onsideration.Then linear 
onstant 
oeÆ
ient problems u0(t) = Au(t) + g(t) with time dependentsour
e terms are in
luded. Su
h g(t) may originate from a genuine sour
e term in thePDE or from an inhomogeneous boundary 
ondition.To ensure stability, it will be assumed that

~v � v + �0mk Ik�F (t; ~v)� F (t; v)�

1 � k~v � vk1 ; k = 1; : : : ; r ; (5.29)for any two ve
tors ~v; v 2 Rm and t 2 R . In appli
ations to semi-dis
rete systemsobtained from 
onservation laws this �0 will be proportional to the mesh widths usedin the spatial dis
retization, and hen
e an upper bound �t � C�0 on the step size willbe a CFL restri
tion.5.3.1 Perturbed s
hemesConsider, along with (5.2) in non-autonomous form, the perturbed s
heme~vn;i = ~un + �t rXk=1 i�1Xj=1 a(k)ij IkF (tn;j ; ~vn;j) + �n;i ; i = 1; : : : ; s ;
~un+1 = ~un + �t rXk=1 sXj=1 b(k)j IkF (tn;j ; ~vn;j) + �n ; (5.30)

where tn;j = tn+ 
j�t and the �n;i, �n are perturbations. These perturbations will beused later on to obtain expressions for the dis
retization errors. In order to distinguish27



the a

ura
y of the un from those of the internal stages we will mainly use the standardform (5.2) rather than (5.14).As before, let the matri
es Ak = [a(k)ij ℄ 2 R s�s and the ve
tors bk = [b(k)i ℄ 2 R s
ontain the 
oeÆ
ients of the s
heme. Further, for the ve
tor of abs
issa 
 = [
i℄ 2 R swe denote 
j = [
 ji ℄ for j � 1, with 
0 = e = [1; : : : ; 1℄T 2 R s . To make the dimensions�tting we will use the Krone
ker produ
ts Ak = Ak 
 I, bTk = bTk 
 I, 
j = 
j 
 Iand e = e 
 I with m � m identity matrix I = Im�m. Likewise, Ik = I 
 Ik withs� s identity matrix I = Is�s. To make the notation 
onsistent, the ms�ms identitymatrix is denoted by I.Let Zn = diag(Zn;i) 2 Rms�ms withZn;i(~vn;i � vn;i) = �t�F (tn;i; ~vn;i)� F (tn;i; vn;i)� : (5.31)In view of (5.29) these Zn;i 2 Rm�m 
an be taken su
h that2

I + 1
mk IkZn;i

1 � 1 for �t � 
�0 ; 
 > 0 ; k = 1; : : : ; r : (5.32)To write the di�eren
e of (5.30) and (5.2) in a 
ompa
t form, let also �n = [�n;i℄ 2 R smand vn = [vn;i℄, ~vn = [~vn;i℄ 2 R sm . Then~vn � vn = e(~un � un) + rXk=1AkIkZn(~vn � vn) + �n ;~un+1 � un+1 = ~un � un + rXk=1 bTk IkZn(~vn � vn) + �n : (5.33)
Elimination of ~vn � vn thus leads to~un+1 � un+1 = Sn(~un � un) + rTn�n + �n ; (5.34)where Sn = I + rTne ; rTn = � rXk=1 bTk IkZn��I � rXk=1AkIkZn��1: (5.35)
The following result provides stability for this re
ursion with a step size restri
tion�t � C�0, where C is the threshold for monotoni
ity in the maximum-norm. We 
an
onsider arbitrary matri
es Zn with blo
ks satisfying (5.32), so that these matri
esare independent from the perturbations �n and �n.Lemma 5.8 Consider (5.33). Assume (5.32) and �t � C�0. ThenkSnk1 � 1 ; krTnk1 � 2s : (5.36)Proof. Denote wn;i = ~vn;i � vn;i and also wn;s+1 = ~un+1 � un+1, �n;s+1 = �n. Thenwn;i = ~un � un + rXk=1 i�1Xj=1 1mk �(k)ij IkZn;jwn;j + �n;i ; i = 1; : : : ; s+ 1 :2As noted before, if F is di�erentiable we 
an take the Zn;i as integrated Ja
obian matri
es, butalso for non-di�erentiable F we 
an 
hoose them to satisfy (5.31). This is similar to the fa
t that ifx; y 2 Rm with kyk1 � kxk1, then there is an V 2 Rm�m su
h that V x = y and kV k1 � 1; forexample, if jxkj = kxk1, the matrix with kth 
olumn 1xk y and the other 
olumns zero.28



Following the 
onstru
tion used in Theorem 5.3 with optimal 
oeÆ
ients �(k)ij = �(k)ij =
,
 = C, we obtain
Ik(wn;i � �n;i) = �1� �(k)i �Ik(~un � un) + i�1Xj=1 �(k)ij Ik�wn;j + 1
mkZn;jwn;j � �n;j� :This leads tokIkwn;ik1 � k�n;ik1 � �1� �(k)i �k~un � unk1 + i�1Xj=1 �(k)ij �kwn;jk1 + k�n;jk1� :If we make the indu
tion assumptionkwn;jk1 � k~un � unk1 + Lj max��j k�n;�k1 ; (5.37)for j = 1; : : : ; i� 1, with Lj = 2j � 1, then
kIkwn;ik1 � k~un � unk1 + i�1Xj=1 �(k)ij �Lj max��j k�n;�k1 + k�n;jk1�+ k�n;ik1� k~un � unk1 + (Li�1 + 1) maxj�i�1 k�n;jk1 + k�n;ik1 :Hen
e (5.37) will also be satis�ed for j = i, and the proof thus follows. 2Note that without the internal perturbations we obtain a result on 
ontra
tivity inthe maximum-norm:k~un+1 � un+1k1 � k~un � unk1 whenever �t � C�0 ; (5.38)for any two parallel steps of the s
heme (5.2), starting with ~un and un, respe
tively.In the above proof, the arguments leading to monotoni
ity have been 
opied. A moreelegant and dire
t way to dedu
e 
ontra
tivity from monotoni
ity is found in [25,p. 1236℄, following a 
onstru
tion of [2℄ for inner-produ
t norms.5.3.2 Lo
al and global dis
retization errorsThroughout this se
tion we will denote byO(�tq) a term or ve
tor that 
an be boundedin norm by K�tq, for �t > 0 small enough, with K not depending on the meshwidths �xj in the spatial dis
retization. The norm in this se
tion is the maximum-norm. Moreover it will be ta
itly assumed that the exa
t solution is smooth, so thatderivatives of u(t) are O(1).Let en = u(tn) � un be the global dis
retization error at time level tn, n � 0. Toobtain a re
ursion for these global errors we 
an employ the above perturbed s
hemewith ~un = u(tn) and ~vn;i = u(tn;i), tn;i = tn + 
i�t, i = 1; : : : ; s. This 
hoi
e for the~vn;i de�nes the perturbations �n;i and �n. Assuming the exa
t solution u to be l + 1times di�erentiable, Taylor expansion dire
tly leads to

�n = rXk=1 lXj=1 �tjj! �
j � jAk
j�1�Iku(j)(tn) +O(�tl+1) ;
�n = rXk=1 lXj=1 �tjj! �I � jbTk 
j�1�Iku(j)(tn) +O(�tl+1) : (5.39)
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It follows that the global errors en = u(tn)� un satisfy the re
ursionen+1 = Snen + dn ; n � 0 ; (5.40)with lo
al dis
retization errors dn given bydn = rTn�n + �n ; (5.41)and with Sn 2 Rm�m , rTn 2 Rm�ms given by (5.35).Note that from kSnk1 � 1 it follows dire
tly that 
onsisten
y of order q (i.e.,kdnk1 = O(�tq+1)) implies 
onvergen
e of order q (i.e., kenk1 = O(�tq)), but we willsee that the order of 
onvergen
e 
an also be one larger than the order of 
onsisten
y.Let us �rst 
onsider methods with 
lassi
al order p � 1 that are not internally
onsistent, that is, Ake 6= Ale for some k; l. Then the leading term in the lo
al error isdn = �t rTn rXk=1(
�Ake)Iku0(tn) +O(�t2) : (5.42)This gives an O(�t) lo
al error bound, whi
h is of 
ourse quite poor. After all, dn isthe error that results after one step if en = 0. However, as we will see below, it 
anlead to 
onvergen
e of order one.Next assume the internal 
onsisten
y 
ondition (5.3) is satis�ed, that is Ake = Alefor 1 � k; l � r. If p = 1 it follows dire
tly that kdnk1 = O(�t2). If p � 2 the leadingterm in the lo
al dis
retization errors is given bydn = �t2rTn rXk=1 �12
2 �Ak
�Iku00(tn) +O(�t3) : (5.43)This still gives only 
onsisten
y of order one, that is, an error O(�t2) after one step,but we will dis
uss below damping and 
an
ellation e�e
ts that 
an lead to 
onvergen
ewith order two in this 
ase.For problems that are (mildly) sti�, su
h as semi-dis
rete systems from hyperboli
equations, the above derivation shows that order redu
tion is to be expe
ted. Thisorder redu
tion will appear primarily at interfa
e points on the spatial grid, wherethe grid-fun
tions Iku(j)(t) have jumps. This is similar to the situation for standardRunge-Kutta methods, where order redu
tion appears at boundaries if the boundaryvalues are time-dependent; see for instan
e the review with referen
es in [14, Se
t. II.2℄.With the partitioned and multirate s
hemes, we are 
reating interfa
es that a
t like(internal) boundaries with time-dependent boundary 
onditions.Based on the lo
al error behaviour, one would expe
t 
onvergen
e with order onefor the TW2 and SHV2 s
hemes, and la
k of 
onvergen
e for the s
heme CS2. Thisis not what was seen in the numeri
al test in Se
tion 4.1 for adve
tion with a smoothsolution. To obtain the 
orre
t (observed) order of 
onvergen
e q = 1; 2, we need tostudy the propagation of the leading term in the lo
al error. We already saw thatthe global error 
an be of the same order �tq as the lo
al error if we have a suitablede
omposition dn = (Sn� I)�n+ �n. In fa
t, we only need to study the prin
iple termof the lo
al error. It will be assumed that there exist ve
tors �n 2 Rm , n � 0, su
hthat 


�rTne��n � �tqrTn rXk=1 1q!�
q � qAk
q�1�Iku(q)(tn)


1 = O(�tq+1) ;k�nk1 = O(�tq) ; k�n+1 � �nk1 = O(�tq+1) :
9>=>; (5.44)

Then, following the proof of Theorem 3.3, we dire
tly arrive at the following result.30



Proposition 5.9 Assume that (5.29) is valid, and let p be the (
lassi
al) order of thepartitioned Runge-Kutta method.(i) If p = 1 and (5.44) holds with q = 1, then the method is 
onvergent with order onein the maximum-norm.(ii) Suppose that p � 2 and the method is internally 
onsistent. Then, if (5.44) holdswith q = 2, the method is 
onvergent with order two in the maximum-norm.The above result has been 
alled a proposition, rather than a theorem, be
auseit is far from 
lear how to verify the 
ondition (5.44) in most situations of pra
ti
alimportan
e. In the next subse
tion we will 
onsider this 
ondition for a simple 
ase:linear adve
tion with �rst-order upwind spatial dis
retization. Of 
ourse, this is notthe spatial dis
retization one would like to use with a high-order time stepping s
heme,but it will give a heuristi
 explanation for the temporal orders observed in the a

ura
yexperiment in Se
tion 4.1.Remark 5.10 The above expressions for the lo
al errors are similar to those given in[13℄ for impli
it-expli
it Runge-Kutta methods, and in [19, 20℄ for a 
lass of impli
itadditive Runge-Kutta methods with domain de
omposition. Apart from the fa
t thatthese latter methods are impli
it, be
ause they are intended for paraboli
 problems, aninteresting feature is that the matri
es Ik are 
onstru
ted from smooth grid fun
tions,instead of the the step fun
tions (zero-one entries) in this paper. This 
an have apositive in
uen
e on the a

ura
y of the s
hemes. 35.3.3 Veri�
ation of 
ondition (5.44) for linear adve
tionTo study 
ondition (5.44), let us 
onsider linear problems with 
onstant 
oeÆ
ients,u0(t) = Au(t) + g(t) : (5.45)Denote Z = �tA, Z = I 
 Z with I = Is�s the s� s identity matrix, andr(Z)T = [r1(Z); : : : ; rs(Z)℄ = � rXk=1 bTk IkZ��I � rXk=1AkIkZ��1: (5.46)
In this 
ase we have bTk IkZ = bTk 
IkZ and AkIkZ = Ak
IkZ. The matri
es Ak arestri
tly lower triangular s� s matri
es, and 
onsequently a produ
t of s su
h matri
esvanishes. Writing the matrix inverse in (5.46) as a power series, it follows that

r(Z)Te = s�1Xl=0 rXk;j1;:::;jl=1 �bTkAj1 � � �Ajle� IkZ Ij1Z � � � IjlZ : (5.47)
In the same way it is seen thatr(Z)T rXi=1 �
q � qAi
q�1�Ii= s�1Xl=0 rXk;j1;:::;jl;i=1 �bTkAj1 � � �Ajl(
q � qAi
q�1)� IkZ Ij1Z � � � IjlZ Ii ; (5.48)
If there is a matrix W 2 Rm�m su
h that kWk1 = O(1) and�r(Z)Te�W = r(Z)T rXi=1 �
q � qAi
q�1�Ii ; (5.49)
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then we 
an take �n = 1q!�tqWu(q)(tn) in (5.44). Re
all that kWk1 = O(1) meansthat W 
an be bounded uniformly in the mesh width and dimension m.Consider as a simple example, the semi-dis
rete system (2.2) in Rm with u0(t) =0, 
orresponding to �rst-order upwind dis
retization of the adve
tion equation withhomogeneous in
ow 
ondition u(0; t) = 0. We take a partitioning I = I1 [ I2 =f1; 2; : : : ;mg with I2 = fj : 14m < j � 34mg, and mesh widths �xj = h if j 2 I1,�xj = 12h if j 2 I2, with h = 4=(3m). In Figure 8 we have plotted the norm kWk1as fun
tion of m = 20; 40; : : : ; 640 for various values of � = �t=h for the s
hemesTW2 and CS2; the results for SHV2 were similar to those of TW2. In this example,the matrix r(Z)Te is nonsingular, and it is well-
onditioned for � � 1. We see thatkWk1 = O(1) provided that � < 1, whereas kWk1 � m if � = 1. Other partitioningsI = I1 [ I2 produ
ed similar results.
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Figure 8: Norm kWk1 versus m = 20; 40; : : : ; 640 for various values of � = �t=h with thes
hemes TW2 (left) and CS2 (right). Markers: Æ for � = 0:5, � for � = 0:75, � for � = 0:9,4 for � = 0:95 and � for � = 1.It is obvious that veri�
ation of 
ondition (5.44) would be desirable for nonlinearproblems and higher-order (nonlinear) spatial dis
retizations. Nevertheless, the 
om-bination of Proposition 5.9 and these experimental bounds for �rst-order adve
tiondis
retization does provide a heuristi
 explanation for the numeri
al observations inSe
tion 4.1 for the adve
tion problem with smooth solution and WENO5 spatial dis-
retization, where we saw 
onvergen
e of the s
hemes TW2 and SHV2 with order twoin the maximum-norm, and with order one for the CS2 s
heme.6 Final remarks6.1 Partitioning based on 
uxesFor 
onservation laws ut+ f(u)x = 0, the semi-dis
rete system (2.8) will in general beof the formu0j(t) = Fj(u(t)) = 1�xj �fj� 12 (u(t))� fj+ 12 (u(t))� ; j 2 I = f1; 2; : : : ;mg :Multirate methods 
an be based on these numeri
al 
uxes fj�1=2(u) rather than interms of the 
omponents Fj(u), and this is not well 
overed by the above formulations.Suppose, as an example, that I1 = fj : j < ig and I2 = fj : j � ig. Instead ofF = I1F +I2F , we 
an 
onsider the de
omposition F = F 1+F 2 with ve
tor fun
tions
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F 1 and F 2 whose jth 
omponent is given byF 1j (v) = 1�xj �fj� 12 (v)� fj+ 12 (v)� ; F 2j (v) = 0 for j < i ;F 1j (v) = 1�xi fi� 12 (v) ; F 2j (v) = �1�xi fi+ 12 (v) for j = i ;F 2j (v) = 1�xj �fj� 12 (v)� fj+ 12 (v)� ; F 1j (v) = 0 ; for j > i :
9>>>=>>>; (6.1)

We 
an 
onsider any of the above s
hemes with IkF (v) repla
ed by F k(v). Sin
e weare then dealing with 
uxes, mass-
onservation is guaranteed at any stage. However,there are two reasons why su
h s
hemes were not 
onsidered in this paper.First, monotoni
ity assumptions su
h as (2.13) will not be valid in the maximum-norm with this de
omposition. This 
an be seen already quite easily for the �rst-orderupwind adve
tion dis
retization (2.2). Writing this system as u0(t) = Au(t), the abovede
omposition would 
orrespond to A = AI1 + AI2, that is, F k = AIk, but it is easyto show that kI + �AIkk1 is larger than one for any � > 0.Se
ondly, su
h a de
omposition of F 
an easily lead to in
onsisten
ies, sin
e we donot have F k(u(t)) = O(1), no matter how smooth the solution is. For example, for the�rst-order upwind system (2.2), formula (2.10) with F k repla
ing IkF , k = 1; 2, leadsto method (2.3) rather than (2.4). Using these F 1 and F 2 in (2.9) gives a 
ompletelyin
onsistent result.6.2 Summary and 
on
lusionsIn this paper some multirate s
hemes based on the forward Euler method and the two-stage expli
it trapezoidal rule have been analyzed. All these methods 
an be writtenas partitioned Runge-Kutta methods.For the analysis of the monotoni
ity properties of the s
hemes we followed theTVD/SSP framework of [5, 24℄, assuming monotoni
ity of one forward Euler step withsuitable lo
al time steps. Di�erent monotoni
ity thresholds were found for maximum-norm monotoni
ity and maximum prin
iples on the one hand, and the TVD propertyon the other hand. However, these theoreti
al di�eren
es did not reveal themselves inthe numeri
al tests. In pra
ti
al situations, the threshold C found for maximum-normmonotoni
ity seems the most relevant.Many multirate s
hemes are not internally 
onsistent. This may lead to low a

u-ra
y at interfa
e points. An analysis of the lo
al dis
retization errors even suggestsla
k of 
onvergen
e, but this is too pessimisti
. Also for the other s
hemes, that areinternally 
onsistent, propagation of the leading lo
al error terms has to be studied tounderstand the proper 
onvergen
e behaviour.La
k of mass 
onservation seems in many 
ases not a very serious defe
t be
auseit only arises at interfa
e points, so it will mainly be felt when a sho
k or very steepsolution gradient passes su
h an interfa
e. This 
on
lusion is similar as in [26℄. Of
ourse, if mass 
onservation 
an be built in a s
heme without a�e
ting other essentialproperties, su
h as internal 
onsisten
y and 
omputational work per step, this is ad-visable. For the s
hemes 
onsidered in this paper la
king mass 
onservation we didnot �nd su
h suitable modi�
ations.The use of a high-order Runge-Kutta methods as basis for a multirate s
heme or apartitioned s
heme will not dire
tly lead to a high order of a

ura
y at interfa
e points.The dis
retization errors have to be 
onsidered within the PDE 
ontext, leading toexpressions for the lo
al errors of the form (5.42) or (5.43). Regarding the semi-dis
reteas a �xed (non-sti�) ODE will in general lead to a too optimisti
 estimate of the rateof 
onvergen
e. 33



A Appendix: a spatial dis
retization with TVD limiter on non-uniform gridsAs an example of a dis
retization with limiting we will 
onsider formulas on non-uniform grids that generalize the third-order upwind-biased s
heme with the so-
alledKoren limiter on uniform grids.A.1 Dis
retization and limitingFor a non-uniform grid with 
ells Cj = (xj� 12�xj ; xj+ 12�xj) and 
ell-average values uj ,the third-order upwind-biased spatial dis
retization 
an be derived by pie
ewise 
ubi
re
onstru
tion of the primitive grid-fun
tion Ui =Pj�i�xjuj and di�erentiation.On Cj we take U(x) to be the 
ubi
 polynomial that passes through the points(xj+k=2; Uj+k=2), k = �3;�1; 1; 3. Then the resulting valuesuRj� 12 = U 0(xj� 12 ) ; uLj+ 12 = U 0(xj+ 12 ) ;
an be used as 
ell-boundary values in a numeri
al 
ux-fun
tion. In the following weonly give the formulas for the left states uLj+1=2; those for uRj�1=2 are essentially thesame, just the mirror image.By some 
al
ulations (with Newton divided di�eren
es) it follows thatuLj+ 12 = 
L�1;juj�1 + 
L0;juj + 
L1;juj+1 ; (A.1)with 
oeÆ
ients 
L0;j = 1� 
L�1;j � 
L1;j and
L�1;j = ��xj�xj+1(�xj�1 + �xj)(�xj�1 + �xj + �xj+1) ;
L1;j = (�xj�1 + �xj)�xj(�xj + �xj+1)(�xj�1 + �xj + �xj+1) :This provides the non-limited value.To apply a limiter, we �rst write (A.1) in the form
uLj+ 12 = uj +  �j (uj+1 � uj) ;  �j = uLj+ 12 � ujuj+1 � uj : (A.2)Next we apply a limiter to this  �j , j = max �0 ; min �1 ;  �j ; �j�� ; �j = uj � uj�1uj+1 � uj ; (A.3)to obtain the limited value uLj+ 12 = uj +  j(uj+1 � uj) : (A.4)This kind of limiting is often 
alled `target limitering' be
ause the limited valuesare taken as 
lose as possible to a target s
heme (whi
h is in our 
ase the non-limiteds
heme) within the monotoni
ity 
onstraints. It 
an be applied to any s
heme produ
-ing non-limited values uLj+1=2. From (A.1), (A.2) it is seen that  �j = 
L1;j � 
L�1;j�j ,and therefore the limiter 
an also be written as j = max �0 ; min �1 ; 
L1;j � 
L�1;j�j ; �j�� : (A.5)34



To see that (A.4) will indeed introdu
e a spatial dis
retization with 
ertain mono-toni
ity properties, su
h as positivity and TVD, note thatuLj� 12 � uLj+ 12 = �j(uj�1 � uj) ; �j = 1�  j�1 +  j = �j :In view of (A.3) we have 0 �  j�1 � 1 and 0 �  j=�j � 1, and therefore0 � �j � 2 :As explained in Example 2.2, this guarantees max-norm monotoni
ity and the TVDproperty for ut + f(u)x = 0 with f 0(u) � 0 (for the relevant range of u values).As mentioned already above, the formulas for the right states uRj�1=2 are essentiallythe same (re
exion around xj�1=2), and these will be used if we have f 0(u) < 0 for all(relevant) u values. With an arbitrary 
ux fun
tion f(u) a suitable 
ux splitting is tobe used, for example the simple Lax-Friedri
h splitting given in [16, 23℄.Remark A.1 The numeri
al 
uxes fj+1=2(u) = f(uj+1=2) of the limited dis
retizationare Lips
hitz 
ontinuous,jfj+1=2(~u)� fj+1=2(u)j � Lk~u� ukj1for all ~u = [~uj ℄; u = [uj ℄ 2 Rm . This is not obvious from (A.3), (A.5), be
ause theratios �j will not satisfy a Lips
hitz 
ondition. However, if we denote �j = uj+1 � uj ,then by 
onsidering the di�erent sign possibilities it is seen thatuLj+ 12 = uj + sign(�j)min �j�j j ; 
L1;j j�j j � 
L�1;j j�j�1j ; j�j�1j�if sign(�j) = sign(�j�1), and uLj+1=2 = uj otherwise. From this the Lips
hitz 
ondition
an be dedu
ed, with Lips
hitz 
onstant L determined by the a
tual grid. 3A.2 A

ura
y testConsider the adve
tion equation ut + ux = 0, 0 < x; t < 1, with spatial periodi
-ity and initial value u(x; 0) = sin4(�x). The relative L1-errors of the spatial dis-
retization are given in Table 3 for various grids with m points, m = 20; 40; 80; 160.These results are to be 
ompared with those in Appendix B of [1℄. The randomgrids are 
hosen by �rst generating random numbers �j 2 [ 12 ; 1℄ and then setting�xj = �j=Pmk=1 �k. The grids indi
ated by `Blo
k1' and `Blo
k2' are 
y
li
 repetitionsof (�x1;�x2;�x3;�x4) = (h; 2h; 3h; 4h) and (�x1;�x2;�x3;�x4) = (h; 2h; 10h; 11h),respe
tively, with appropriate h = 4=(10m), h = 4=(14m), respe
tively.The results 
ompare favourably to those in [1℄, where it should be noted that therandom grid used here has more variation in [1℄ and also the initial pro�le has beenslightly 
hanged to make it periodi
.We also note that the above limiter does not �t into the framework of slope limitingwith linear re
onstru
tion 
onsidered in [1℄. There it is required that on ea
h 
ell Cjwe have an approximation u(x) = uj + (x� xj)sj , with slope sj that may be limited,and then uRj� 12 = uj � 12�xjsj ; uLj+ 12 = uj + 12�xjsj :To a
hieve this in the above algebrai
 framework one needs a 
ertain `symmetry'
ondition to ensure that uj is the average of uRj�1=2 and uLj+1=2.The spatial dis
retization used in [3℄ is of the same form as (A.5) but with di�erent
oeÆ
ients 
k;j . In the above a

ura
y test this s
heme gave less a

urate results,35



Table 3: Relative L1-errors for s
alar adve
tion on non-uniform gridsUniform Random Blo
k 1 Blo
k 2Non-lim., m = 20 4:79 � 10�2 5:14 � 10�2 6:06 � 10�2 9:65 � 10�2Non-lim., m = 40 6:82 � 10�3 7:49 � 10�3 9:13 � 10�3 1:58 � 10�2Non-lim., m = 80 8:70 � 10�4 9:49 � 10�4 1:18 � 10�3 2:05 � 10�3Non-lim., m = 160 1:09 � 10�4 1:19 � 10�4 1:49 � 10�4 2:60 � 10�4Limited, m = 20 6:57 � 10�2 6:79 � 10�2 9:35 � 10�2 1:45 � 10�1Limited, m = 40 1:36 � 10�2 1:49 � 10�2 2:02 � 10�2 3:32 � 10�2Limited, m = 80 2:65 � 10�3 2:97 � 10�3 4:25 � 10�3 7:56 � 10�3Limited, m = 160 4:97 � 10�4 5:73 � 10�4 8:11 � 10�4 1:58 � 10�3
due to the fa
t that then the non-limited s
heme is only of order two. The errorswith limiter were then a fa
tor three to four larger than in Table 3 on the �ne grids,m = 160.Finally we note that the limited s
hemes used in [26℄ are based on s
aled ratios �j =�j�1=�j with �k = (uk+1 � uk)=�xk. It is not too diÆ
ult to show that su
h s
hemesare not TVD or positivity preserving, but in tests they do perform quite well; there areovershoots, but these are very minor. Nevertheless, to remain within the theoreti
alframework outlined in Se
tion 2.3, the dis
retization (A.5) seems preferable.Referen
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