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Analysis of explicit multirate and partitioned Runge-
Kutta schemes for conservation laws

ABSTRACT
Multirate schemes for conservation laws or convection-dominated problems seem to come in
two flavors: schemes that are locally inconsistent, and schemes that lack mass-conservation. In
this paper these two defects are discussed for one-dimensional conservation laws. Particular
attention will be given to monotonicity properties of the multirate schemes, such as maximum
principles and the total variation diminishing (TVD) property. The study of these properties will
be done within the framework of partitioned Runge-Kutta methods.
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Analysis of Expliit Multirate andPartitioned Runge-Kutta Shemes forConservation LawsW. Hundsdorfer, A. Mozartova�, V. SavenoyCWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
AbstratMultirate shemes for onservation laws or onvetion-dominated problems seemto ome in two avors: shemes that are loally inonsistent, and shemes thatlak mass-onservation. In this paper these two defets are disussed for one-dimensional onservation laws.Partiular attention will be given to monotoniity properties of the multirateshemes, suh as maximum priniples and the total variation diminishing (TVD)property. The study of these properties will be done within the framework ofpartitioned Runge-Kutta methods.2000 Mathematis Subjet Classi�ation: 65L06, 65M06, 65M20.Keywords and Phrases: multirate methods, partitioned Runge-Kutta methods,monotoniity, TVD, stability, onvergene.1 IntrodutionMultirate shemes for onservation laws that have appeared in the literature all seemto have one of the following defets: there are shemes that are loally inonsistent,e.g. [3, 4, 17, 18℄, and shemes that are not mass-onservative, e.g. [26℄. In this paperthese two defets are disussed for one-dimensional onservation laws ut + f(u)x = 0.We will mainly onentrate on time stepping aspets for simple shemes with onelevel of temporal re�nement. The spatial grids are assumed to be given and �xed intime. Spatial disretization of a PDE (partial di�erential equation) then leads to asystem of ODEs (ordinary di�erential equations), the so-alled semi-disrete system.Partiular attention will be given to monotoniity properties of the multirate timestepping shemes, suh as maximum priniples and the total variation diminishing(TVD) property.After some preliminaries, we will present in Setion 3 a detailed analysis of twomultirate forward Euler shemes, due to Osher & Sanders [18℄ and Tang & Warneke[26℄. The �rst of these shemes is inonsistent at interfae points, but it will beshown that onvergene of order one an be still obtained in the maximum-norm.Furthermore, we will see that step size restritions for monotoniity will depend onthe type of monotoniity: in general the restritions for maximum priniples an bemore relaxed than for the TVD property.�The work of A.M. is supported by the Netherlands Organisation for Sienti� Researh NWO.yThe work of V. S. is supported by a Peterih Sholarship through the Netherlands Organisationfor Sienti� Researh NWO. 1



In Setion 4 we will present some multirate shemes that are based on a standardtwo-stage Runge-Kutta method. These multirate shemes were reently introduedby Tang & Warneke [26℄, Constantinesu & Sandu [3℄, and Saveno et al. [22℄. Forthese shemes some results of numerial experiments for linear advetion and Burgers'equation are disussed.For the analysis of general multirate shemes it is onvenient to write them in theform of partitioned Runge-Kutta methods. In Setion 5 it will be seen that reentresults for (standard and additive) Runge-Kutta methods of Higueras, Ferraina andSpijker [7, 10, 11, 25℄ an then be employed to obtain monotoniity results for themultirate shemes through the partitioned Runge-Kutta methods. As for the forwardEuler multirate shemes, the step size restritions for maximum-norm monotoniityand maximum priniples are in general more relaxed than for the TVD property.Comparison of the theoretial results with the numerial tests indiates that the re-stritions for maximum-norm monotoniity are more relevant in pratie. This setionalso ontains a disussion on loal and global temporal errors for problems with smoothsolutions. To understand the onvergene behaviour of the shemes, the propagationof the loal errors, with assoiated damping and anellation e�ets, are to be takeninto aount.2 Preliminaries2.1 Forward Euler multirate shemes for the advetion equation2.1.1 Examples of simple shemesConsider as a simple example the advetion equationut + ux = 0 (2.1)on a one-dimensional spatial region 0 < x < 1 with given initial value u(x; 0), andinow boundary ondition u(0; t) or spatial periodiity. Spatial disretization is per-formed with the �rst-order upwind sheme on ells Cj = (xj � 12�xj ; xj + 12�xj). Thisgives a semi-disrete systemu0j(t) = 1�xj �uj�1(t)� uj(t)� for j 2 I = f1; 2; : : : ;mg ; (2.2)where u0j(t) = ddtuj(t), and uj(t) approximates u(xj ; t) or the average value over thesurrounding ell Cj .Appliation of the forward Euler method with time step �t gives the CFL stabilityondition �j � 1 for all j, where �j = �t=�xj is the loal Courant number. Supposethis stability ondition is satis�ed for j 2 I1 but on I2 = I � I1 we need to take twosmaller steps with step size 12�t to reah tn+1 = tn + �t.Then for this simple situation, the sheme of Osher and Sanders [18℄ an be writtenas un+ 12j = ( unj for j 2 I1 ;unj + 12�j(unj�1 � unj ) for j 2 I2 ; (2.3a)
un+1j = unj + 12�j(unj�1 � unj ) + 12�j(un+ 12j�1 � un+ 12j ) for j 2 I : (2.3b)As observed in [26℄, the sheme (2.3) is not onsistent at the interfae: if i� 1 2 I1and i 2 I2 then1�t�un+1i � uni � = 1�xi �uni�1 � 12(uni + un+ 12i )� = 1� 14�i�xi �uni�1 � uni � ;
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whih is onsistent for �xed Courant number �i with the equationut + (1� 14�i)ux = O(�t) +O(�xi) ;rather than the original advetion equation (2.1).To overome this inonsisteny, Tang and Warneke [26℄ therefore proposed themodi�ed shemeun+ 12j = unj + 12�j(unj�1 � unj ) for j 2 I ; (2.4a)
un+1j = un+ 12j +( 12�j(unj�1 � unj ) for j 2 I1 ;12�j(un+ 12j�1 � un+ 12j ) for j 2 I2 : (2.4b)

This sheme, however, is not mass onserving at the interfae. If i� 1 2 I1 and i 2 I2then the ux at xi�1=2 that leaves ell Ci�1 over the time interval [tn; tn+1℄ equalsuni�1, whereas the ux that enters Ci is given by 12 (uni�1 + un+1=2i�1 ).It should be noted that exept for interfae points the shemes (2.3) and (2.4) areidential. For example, if I1 = fj : j < ig and I2 = fj : j � ig, then (2.3) and (2.4)give in one step the same result for j 6= i. It will be shown next that, also with largerinterfae regions, the properties of internal onsisteny and mass onservation annotbe ombined.2.1.2 Inompatibility of onsisteny and mass onservationConsider the �rst-order upwind disretization (2.2) for the advetion equation withspatial periodiity. Then M =Xj2I �xjuj(t) :is a onserved quantity. If the uj are densities, this is global mass onservation.Now suppose that for j � k1 we use forward Euler with step size �t, for j > k2 weapply forward Euler with step size 12�t, and on the interfae region k1 < j � k2 wetake any ombination of a number of forward Euler steps with �t and 12�t togetherwith interpolation or extrapolation. The result an be written as
un+1j =

8>>>><>>>>:
unj + �j(unj�1 � unj ) ; 1 � j � k1 ;unj + �j(unj�1 � unj ) + �2j mXk=1�jk unk ; k1 < j � k2 ;unj + �j(unj�1 � unj ) + 14�2j (unj�2 � 2unj�1 + unj ) ; k2 < j � m; (2.5)

with unspei�ed oeÆients �jk, and with u0 = um due to spatial periodiity. Theinterfae at x = 0; 1 poses no problem here. We will show that this sheme annot beboth mass onservative and onsistent, no matter how the sheme is de�ned on theinterfae region k1 < j � k2. For onveniene it an be assumed that the spatial gridis uniform, �j = � = �t=�x, and we set �jk = 0 for j � k1 and j > k2.Insertion of exat solution values in the sheme gives for k1 < j � k2 the trunationerror1�t�u(xj ; tn+1)� u(xj ; tn)�� 1�x�u(xj�1; tn)� u(xj ; tn)�� �t�x2 mXk=1�jku(xk; tn) :
3



For onsisteny, that is, trunation errorO(�t)+O(�x), we obtain by Taylor expansionthe onditions Xk �jk = 0 ; Xk (k � j)�jk = 0 for k1 < j � k2 : (2.6)On the other hand, we have�xXj un+1j � �xXj unj = �t2�x Xj Xk �jk unk + �t24�x Xj>k2 �unj�2 � 2unj�1 + unj �= �t2�x Xk �Xj �jk�unk + �t24�xunk2�1 � �t24�xunk2 ;from whih it seen that the requirement of mass onservation leads toXj �jk = 8><>: 0 if k 6= k2 � 1; k2 ;�14 if k = k2 � 1 ;14 if k = k2 : (2.7)
However, the onditions (2.6) and (2.7) together lead to a ontradition:0 = Xj Xk (k � j)�jk = Xj Xk �(k � k2 + 1)� (j � k2 + 1)��jk= Xj (j � k2 + 1)Xk �jk �Xk (k � k2 + 1)Xj �jk = Xj �jk2 = 14 :This shows that onsisteny and mass onservation annot be valid at the same time.2.2 General formulationsIn this paper we will disuss monotoniity properties and temporal onvergene ofmultirate shemes for general semi-disrete problems in Rm ,u0(t) = F (u(t)) ; u(0) = u0 : (2.8)The approximations to u(tn) = [uj(tn)℄ 2 Rm will be denoted by un = [unj ℄ 2 Rm .As above, we onsider partitioning I = I1 [ I2. Corresponding to these sets Ik, letI1; I2 be m �m diagonal matries with diagonal entries 0 or 1, suh that (Ik)jj = 1for j 2 Ik, k = 1; 2. We have I1 + I2 = I, the identity matrix.The semi-disrete system (2.2) obviously �ts in this form with linear F . The generalsystem (2.8) allows nonlinear problems and nonlinear disretizations. For suh systemsthe Osher-Sanders sheme (2.3) beomes8<: un+ 12 = un + 12�tI2F (un) ;un+1 = un + 12�tF (un) + 12�tF (un+ 12 ) ; (2.9)

and the Tang-Warneke sheme (2.4) reads8<: un+ 12 = un + 12�tF (un) ;un+1 = un + �tI1F (un) + 12�tI2�F (un) + F (un+ 12 )� : (2.10)
In the following we will refer to (2.9) as the OS1 sheme, and to (2.10) as the TW1sheme. We note that in [18℄ and [26℄ the number of sub-steps on the index set I2was allowed to be larger than two for these shemes. More general formulations willbe onsidered in Setion 5. 4



2.3 Monotoniity assumptionsConsider a suitable onvex funtion,1 semi-norm or norm kvk for v = [vj ℄ 2 Rm .Interesting examples are the maximum-normkvk1 = max1�j�m jvj j ; (2.11)or the total variation semi-normkvkTV = mXj=1 jvj�1 � vj j with v0 = vm ; (2.12)
arising from one-dimensional salar PDEs with spatial periodiity.The basi monotoniity assumption on the semi-disrete system that will be usedin this setion iskv + �1I1F (v) + 12�2I2F (v)k � kvk for all v 2 Rm and 0 � �1; �2 � �0 ; (2.13)where �0 > 0 is a problem dependent parameter. For the multirate shemes we shalldetermine fators C suh that we have the monotoniity propertykun+1k � kunk whenever �t � C�0 : (2.14)For a given sheme, the optimal C will be alled the threshold fator for monotoniity.In general, suh monotoniity properties are intended to ensure that unwanted over-shoots or numerial osillations will not arise. Following [23, 24℄ we will all a shemetotal variation diminishing (TVD) if (2.14) holds with the semi-norm (2.12). If the(semi-)norm is not spei�ed, methods that have a positive threshold C an be alledstrong stability preserving (SSP), as in [5℄ for standard, single-rate methods.Example 2.1 Apart from (semi-)norms, suh as kvkTV and kvk1, we an also on-sider onvex funtions. For example, following [25℄, onsiderkvk+ = max1�j�m vj ; kvk� = � min1�j�m vj :Then, having (2.14) for both these onvex funtions amounts to the maximum priniplemin1�i�mu0i � unj � max1�i�mu0i for all n � 1 and 1 � j � m:In general, this is of ourse somewhat stronger than having monotoniity in themaximum-norm, kun+1k1 � kunk1, but for the shemes onsidered in this paperthe assoiated threshold values C will be the same. 3Example 2.2 Consider a salar onservation law ut + f(u)x = 0 with a periodiboundary ondition, and with 0 � f 0(u) � �. Spatial disretization in onservationform gives semi-disrete systems (2.8) withFj(v) = 1�xj �f(vj� 12 )� f(vj+ 12 )�1Reall that � : Rm ! R is a onvex funtion if �((1 � �)v + �w) � (1 � �)�(v) + ��(w) for all� 2 [0; 1℄ and v;w 2 Rm . If we have �(v) � 0, �(v + w) � �(v) + �(w) and �(�v) = j�j�(v) for all� 2 R, v;w 2 Rm , then � is a semi-norm. If it holds in addition that �(v) = 0 only if v = 0, then �is a norm. 5



where vj�1=2 are the values at the ell boundaries, determined from the omponentsof v = [vi℄ 2 Rm . Using limiters in the disretization it an be guaranteed that0 � vj� 12 � vj+ 12vj�1 � vj � 1 + �with a onstant � � 0 determined by the limiter; see also formula (8) in [4℄. This holdstrivially for the �rst-order upwind disretization with � = 0; a detailed higher-orderexample will be given in Appendix A. It now follows that Fj(v) an be written asFj(v) = aj(v)�xj �vj�1 � vj� ; j = 1; : : : ;m ; v0 = vm ;where 0 � aj(v) � �(1 + �) for all j and v 2 Rm :Suppose that �xj = h for j 2 I1 and �xj = 12h for j 2 I2. Then a well-knownlemma of Harten [8, Lemma 2.2℄ shows that (2.13) will be valid for the total variationsemi-norm (2.12) provided that ��0h � 11 + � :Moreover, it is easy to see that (2.13) will also hold in the maximum-norm under thesame CFL restrition. 33 Analysis of the forward Euler multirate shemes3.1 Monotoniity results3.1.1 Monotoniity results for sheme TW1Standard (single-rate) shemes give the same step size restrition for various mono-toniity properties. As we shall see, with the multirate shemes di�erent step sizerestritions are obtained for the maximum-norm or the total variation semi-norm.In the �rst stage of the TW1 sheme (2.10) we have of oursekun+ 12 k � kunk whenever �t � �0 :The seond stage an be written in the formun+1 = (1� �)un + ��un+ 12 � 12�tF (un)�+ �tI1F (un) + 12�tI2�F (un) + F (un+ 12 )� ;with arbitrary � 2 [0; 1℄. This leads toun+1 = (1� �)�un + 2��2(1��)�tI1F (un) + 12�tI2F (un)�+ ��un+ 12 + 12��tI2F (un+ 12 )� : (3.1)
Under assumption (2.13) this gives the monotoniity property (2.14) withC = max0���1min�1 ; 2(1��)2�� ; �� = 2�p2 : (3.2)This value C � 0:58 is valid for general semi-norms. So, in partiular, it provides aTVD result for shemes with limiters. 6



Next, onsider the maximum-norm. Then, by noting that the seond stage analso be written asun+1 = I1�un + �tI1F (un)�+ I2�un+ 12 + 12�tI2F (un+ 12 )� ;it diretly follows (see also [26, Lemma 2.1℄) that the threshold fator for max-normmonotoniity is C = 1 : (3.3)Note that this result has been obtained by using the inequalitykI1v + I2wk � max(kvk; kwk) ; (3.4)whih holds for the maximum-norm and for the onvex funtions k � k� from Exam-ple 2.1, but not for general norms or semi-norms; in partiular, it will not hold for thetotal variation semi-norm.3.1.2 Monotoniity results for sheme OS1In the �rst stage of the OS1 sheme (2.9) we diretly obtainkun+ 12 k � kunk whenever �t � �0 :The seond stage an be written asun+1 = (1� �)un + ��un+ 12 � 12�tI2F (un)�+ 12�tF (un) + 12�tF (un+ 12 )with parameter � 2 [0; 1℄. Heneun+1 = (1� �)�un + 12(1��)�tI1F (un) + 12�tI2F (un)�+ ��un+ 12 + 12��tF (un+ 12 )� : (3.5)
It follows that under assumption (2.13) the monotoniity property (2.14) holds withC = max0���1min �1 ; 2(1� �) ; �� = 23 : (3.6)Again, for the maximum-norm a better result an be obtained by onsideringI1un+1 and I2un+1 separately. Multipliation of (3.5) with I1 and taking � = �1 = 12gives I1un+1 = 12I1�un + �tI1F (un)�+ 12I1�un+ 12 + �tI1F (un+ 12 )� :Likewise, with � = �2 = 1, it follows thatI2un+1 = I2�un+ 12 + 12�tI2F (un+ 12 )� :Hene the threshold fator for max-norm monotoniity isC = 1 : (3.7)This result, formulated in terms of a maximum priniple, was already obtained in [18℄for �rst-order upwind spatial disretization and in [15℄ for a lass of high-resolutiondisretizations. In these papers also TVD results were presented; this will be disussedbelow.
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3.1.3 The TVD property for linear �rst-order upwind advetionFor the linear advetion equation ut + ux = 0 with spatial periodiity, the �rst-orderupwind disretization (2.2) an be written asu0(t) = Au(t) ; A = H�1(E � I) ; (3.8)with H = diag(�x1; : : : ;�xm) and E the bakward shift operator, (Ev)i = vi�1 fori = 1; : : : ;m with v0 = vm. Consider also~A = H�1(�I + ET ) :This orresponds to �rst-order upwind disretization for ut � ux = 0. We denoteZ = �tA, ~Z = �t ~A. Then ~Z = H�1ZTH :For the OS1 and TW1 shemes applied to (3.8) we have un+1 = Sun, where theampli�ation matrix S an be written as S = R(Z) with
R(Z) = ( ROS1(Z) = I + Z + 14ZI2Z ;RTW1(Z) = I + Z + 14I2Z2 :Let ~R be suh that ~R(Z)Z = Z R(Z) : (3.9)It is easily seen that ~ROS1(Z) = I + Z + 14Z2I2 and ~RTW1(Z) = I + Z + 14ZI2Z. Forboth shemes it follows by some simple alulations thatR( ~Z) = H�1 ~R(Z)TH : (3.10)As we saw above, both shemes OS1 and TW1 are suh thatkR( ~Z)k1 � 1 (3.11)whenever �j = �t=�xj � k for j = Ik, k = 1; 2. It will now be demonstrated thatunder the same CFL restrition we havekR(Z)vkTV � kvkTV for all v 2 Rm ; (3.12)that is, the TVD property is valid with threshold C = 1 for the speial ase of �rst-order upwind advetion disretization.Lemma 3.1 If (3.10) and (3.11) are valid, then (3.12) is also satis�ed.Proof. Along with the disrete L1-norm on Rm , kvk1 = Pmj=1�xj jvj j, we also on-sider the `1-norm kvk`1 = Pmj=1 jvj j, together with the indued matrix norms. Thenwe have kWk1 = kWT k`1 for any W 2 Rm�m ; see for example [12℄. Moreover, it iseasily seen that kWT k`1 = kH�1WTHk1, and thereforekWk1 = kH�1WTHk1 :Hene (3.10) and (3.11) imply k ~R(Z)k1 � 1 : (3.13)
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Further we havekvkTV = mXj=1 jvj�1 � vj j = kAvk1 = 1�tkZvk1 :Consequently, for a sheme un+1 = R(Z)un the TVD property (3.12) is equivalent tokZR(Z)vk1 = k ~R(Z)Zvk1 � kZvk1 :This is satis�ed beause k ~R(Z)wk1 � kwk1 for any w 2 Rm , in view of (3.13). 2The above result is not new for the OS1 sheme. In fat, already in [18℄ the resultwas given for the ase of �rst-order upwind disretization for non-linear problems. In[15℄ this was extended to a lass of high-resolution spatial disretizations. The proofsof these more general results for the OS1 sheme are more tehnial than the above.3.2 Convergene for smooth problemsIn this setion bounds for the global errors en = u(tn) � un will be derived. It willbe assumed that the problem (2.8) is suÆiently smooth. Both the shemes OS1 andTW1 are overed by the formulaun+ 12 = un + ��tI1F (un) + 12�tI2F (un) ;un+1 = un + 12�t�F (un) + F (un+ 12 )�+ ��tI1�F (un)� F (un+ 12 )� ; (3.14)
with parameter value � = 0 for OS1 and � = 12 for TW1.If we insert exat ODE values u(tn), u(tn+1=2), u(tn+1) into the stages of (3.14)we obtain residuals �n+1=2 and �n+1, respetively. By Taylor expansions it is easilyfound that �n+ 12 = u(tn+ 12 )� u(tn)� ��tI1u0(tn)� 12�tI2u0(tn)= �12 � ���tI1u0(tn) + 18�t2u00(tn) +O(�t3) ;�n+1 = u(tn+1)� u(tn)� �12I + �I1��tu0(tn)� �12I � �I1��tu0(tn+ 12 )= �t2�14I + 12�I1�u00(tn) +O(�t3) :Let Z` 2 Rm�m be suh thatZ`�u(t`)� u`� = �t�F (u(t`))� F (u`)� (3.15)for all ` = n; n + 12 , n � 0. If F is di�erentiable we an take Z` as the integratedJaobian matrix Z` = Z 10 �tF 0(�u(t`) + (1� �)u`) d� :For the errors in the two stages of (3.14) it follows thaten+ 12 = en + �I1Znen + 12I2Znen + �n+ 12 ;en+1 = en + 12Znen + 12Zn+ 12 en+ 12 + �I1�Znen � Zn+ 12 en+ 12 �+ �n+1 :Eliminating en+1=2 we thus obtain a reursion for the global errors of the formen+1 = Snen + dn ; n = 0; 1; : : : ; (3.16)9



with ampli�ation matrix Sn and loal disretization error dn. The resulting expres-sions are given below for � = 0; 12 . The reursion (3.16) will be the basis for thesubsequent analysis. The method is alled onsistent of order p if kdnk = O(�tp+1),and onvergent of order p if kenk = O(�tp) for all n.Sine we want to study onvergene at all grid points, inluding the interfae points,the natural norm is the maximum-norm. For stability it will be assumed thatkI + I1Z` + 12I2Z`k1 � 1 ; (3.17)for all ` = n; n+ 12 . It is easily seen that we then have kI + �1I1Z` + 12�2I2Z`k1 � 1whenever 0 � �j � 1. This is of the same form as (2.13), with F (v) replaed by Z`v.In ombination with the smoothness assumptions on the problem this stabilityresult will easily lead to onvergene for the TW1 sheme. Due to the inonsistenyat interfae points, the error build-up is more ompliated for sheme OS1. It willstill be possible to show onvergene with order one under the following additionalassumptions: kI2Z`k1 � 4K < 4 ; (3.18)kZ`+ 12 � Z`k1 � L�t ; (3.19)for ` = n; n+ 12 , n � 0, with onstants K 2 (0; 1) and L � 0. Note that (3.18) may beslightly stronger than the loal CFL ondition implied by (3.17) on the index set I2.3.2.1 Convergene of sheme TW1For the TW1 sheme (2.10) we obtain from the above derivation, with � = 12 , theexpressions Sn = I1�I + Zn�+ I2�I + 12Zn+ 12 ��I + 12Zn� ; (3.20)dn = 12�t2�I1 + 12I2 + 18I2Zn+ 12 �u00(tn) +O(�t3) : (3.21)As already noted above, (3.17) has the same form as (2.13). Therefore we an opythe derivation leading to (3.3) whih now gives the boundkSnk1 � 1 (3.22)for the ampli�ation matrix.Furthermore, (3.17) implies kI2(I + 14Z`)k1 � 1, whih provides the loal errorbound kdnk1 � 12�t2ku00(tn)k1 +O(�t3) :Convergene now follows in a standard fashion. Summarizing, we have the followingresult:Theorem 3.2 Consider the TW1 sheme (2.10) with the time step restrition (3.17).Then kSk1 � 1, and we have the error boundkenk1 � 12T�t maxt2[0;T ℄ ku00(t)k1 +O(�t2) ; 0 � tn � T :
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3.2.2 Convergene of sheme OS1Also for the OS1 sheme (2.9) we an prove onvergene with order one in the maximum-norm, in spite of the loal inonsistenies. For this result, damping and anellatione�ets are to be taken into aount.For the OS1 sheme we obtain from the above derivation, with � = 0, the expres-sions Sn = I + 12Zn + 12Zn+ 12 �I + 12I2Zn� ; (3.23)dn = 14�tZn+ 12 I1u0(tn) + 14�t2�I + 14Zn+ 12 �u00(tn) +O(�t3) : (3.24)In the same way as above it follows that (3.22) is valid, showing stability of theerror reursion. However, here we get only an O(�t) bound for the loal errors beauseZ`I1u0(tn) will not be an O(�t) term in general; this is due to the fat that I1u0(t) isnot a smooth grid funtion (jumps at the interfaes). To prove onvergene we needto establish a relation between loal errors and ampli�ation fators.We have Sn � I = Zn+ 12 �I + 14I2Zn�� 12�Zn+ 12 � Zn� :Hene Zn+ 12 = (Sn � I)Qn + 12�Zn+ 12 � Zn�Qn ; Qn = �I + 14I2Zn��1 :It follows that we an deompose the loal error asdn = (Sn � I)�n + �n ; (3.25)with �n = 14�tQnI1u0(tn) ;�n = 18�t�Zn+ 12 � Zn�QnI1u0(tn) + 14�t2�I + 14Zn+ 12 �u00(tn) +O(�t3) : (3.26)
Suh a deomposition an be used to show onvergene for sheme OS1; the argu-ments are the same as in [14, p. 216℄ for onstant Sn = S. Let us de�ne ên = en + �nfor n � 0. Then ên+1 = Snên + d̂n ; d̂n = �n+1 � �n + �n ;for n � 0. Hene kênk1 � kê0k1 + nXk=0 kd̂kk1 :Sine e0 = 0 we obtainkenk1 � k�0k1 + k�nk1 + nXk=0 �k�k+1 � �kk1 + k�kk1� : (3.27)
It remains to bound the terms on the right-hand side. Under assumption (3.18) itis easily seen that kQkk1 � (1�K)�1 :Moreover, we have Qk+1 �Qk = �14Qk(I2Zk+1 � I2Zk)Qk+1 ;11



kQk+1 �Qkk1 � 12�tL(1�K)�2 :It follows that k�kk1 � 14 (1�K)�1�tku0(tk)k1 ;k�k+1 � �kk1 � 18(1�K)�2L�t2ku0(tk)k1 + 14(1�K)�1�t2ku00(tk)k1 +O(�t3) ;k�kk1 � 18(1�K)�1L�t2ku0(tk)k1 + 14�t2ku00(tk)k1 :Insertion of these three estimates into (3.27) gives the following onvergene result.Theorem 3.3 Consider the OS1 sheme (2.9) with the time step restrition (3.17).Then kSk1 � 1. Under the additional assumption (3.18), (3.19) we have the errorboundkenk1 � (M1 +M2TL)�t maxt2[0;T ℄ ku0(t)k1 +M3T�t maxt2[0;T ℄ ku00(t)k1 +O(�t2) ;for 0 � tn � T , with M1;M2;M3 determined by K.3.2.3 Convergene of OS1 for linear �rst-order upwind advetionConsider the �rst-order upwind disretization (2.2) for linear advetion. Then (3.17)will hold if �t�xj � 1 for j 2 I1 ; �t2�xj � 1 for j 2 I2 :These are the usual restritions on the loal Courant numbers. To have (3.18) we getthe restrition �t2�xj � K < 1 for j 2 I2 :However, for this �rst-order upwind advetion ase the ondition (3.18) with K < 1is not needed. Let Z = �tA with A as in (3.8). Suppose for simpliity that I1 = fj :j < ig, I2 = fj : j � ig with given i 2 I. Consider(S � I)� = ZI1v ;where � = �n and v = vn = 14�tu0(tn) in the loal error deomposition (3.25). Thevetor � will satisfy this relation if (I + 14I2Z)� = I1v, that isI1� = I1v ; I2�I + 14Z�� = 0 :It is seen that � = [�j ℄ 2 Rm is given by�j = vj (for j < i) ; �i+k = � �j�j�4�k+1vi�1 (for k � 0) ;where �j = �t=�xj . Therefore k�k1 � kvk1 if �j � 2 on I2.It follows that for this linear advetion ase, the loal error deomposition (3.25)will be valid under (3.17), with k�nk1 = O(�t), k�n+1 � �nk1 = O(�t2), and withk�nk1 = O(�t2) ontaining the higher-order terms in the loal error, leading to on-vergene with order one.
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4 Seond-order shemesIn the literature, several seond-order multirate shemes for onservation laws havebeen derived that are based on the standard two-stage Runge-Kutta methodu�n+1 = un + �tF (un) ; un+1 = un + 12�t�F (un) + F (u�n+1)� :The seond stage an also be written asun+1 = 12un + 12�u�n+1 + �tF (u�n+1)� :Monotoniity properties are more lear with this form. The method is known as theexpliit trapezoidal rule or the modi�ed Euler method. In this setion we onsidersome multirate shemes, based on this method, with one level of temporal re�nement.Results on internal onsisteny and mass onservation are mentioned here, but a de-tailed disussion will only be given in Setion 5.The seond-order sheme of Tang & Warneke [26℄ reads8>>>>>><>>>>>>:
u�n+ 12 = un + 12�tF (un) ;un+ 12 = 12�un + u�n+ 12 + 12�tF (u�n+ 12 )� ;u�n+1 = I1�un + �tF (un)�+ I2�un+ 12 + 12�tF (un+ 12 )� ;un+1 = 12I1�un + u�n+1 + �tF (u�n+1)�+ 12I2�un+ 12 + u�n+1 + 12�tF (u�n+1)� :(4.1)We will refer to this sheme as TW2. It will be shown below that this sheme isinternally onsistent but not mass-onserving.Constantinesu & Sandu [3℄ introdued the following sheme, whih will be referredto as CS2,8>>>>>><>>>>>>:

u�n+ 12 = un + �tI1F (un) + 12�tI2F (un) ;un+ 12 = un + 14�tI2�F (un) + F (u�n+ 12 )� ;u�n+1 = I1�un + �tI1F (un+ 12 )�+ I2�un+ 12 + 12F (un+ 12 )� ;un+1 = un + 14�t�F (un) + F (u�n+ 12 ) + F (un+ 12 ) + F (u�n+1)� :
(4.2)

This sheme is mass-onserving but not internally onsistent. Nevertheless, we will seethat it is still onvergent (with order one) in the maximum-norm due to damping andanellation e�ets. Note that for non-sti� ODE systems the sheme will be onsistentand onvergent with order two.The related method of Dawson and Kirby [4℄ is also mass-onserving but not in-ternally onsistent. However in that sheme a limiter is applied whih is adapted tothe outome of previous stages, so it does not �t in the framework of this paper wherethe semi-disrete system is supposed to be given a priori.In Saveno [21℄ several other multirate shemes of order two an be found for sti�(paraboli) problems. These are Rosenbrok-type shemes that ontain a parameter, and setting  = 0 yields an expliit sheme. We onsider here the sheme that wasintrodued in [22℄; it will be referred to as SHV2. In this sheme, �rst a predition�un+1 is omputed, followed by re�nement steps on I2 using interpolated values �un+1=2
13



on I1. The sheme reads8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

�u�n+1 = un + �tF (un) ;�un+1 = 12un + 12 �u�n+1 + 12�tF (�u�n+1) ;�un+ 12 = 12un + 14 �un+1 + 14 �u�n+1 ;u�n+ 12 = I1�un+ 12 + I2�un + 12�tF (un)� ;un+ 12 = I1�un+ 12 + I2�12un + 12u�n+ 12 + 14�tF (u�n+ 12 )� ;u�n+1 = I1�un+1 + I2�un+ 12 + 12�tF (un+ 12 )� ;un+1 = I1�un+1 + I2�12un+ 12 + 12u�n+1 + 14�tF (u�n+1)� :
(4.3)

This sheme will be seen to be internally onsistent but not mass-onserving. We notethat (4.3) ould be written with fewer stages; there are no funtion evaluations of �un+1and �un+ 12 , so these vetors are just inluded for notational onveniene. Further wenote that this sheme was not intended originally as used here. Instead, the preditionvalues �u�n+1 and �un+1 were used in [22℄ to estimate loal errors, and based on thisestimate the partitioning I = I1 [ I2 was adjusted. For the shemes in the presentpaper the partitioning is supposed to be given, based on loal Courant numbers.The interpolation step in (4.3) an be written as�un+ 12 = 34un + 14 �un+1 + 14�tF (un) ; (4.4)whih orresponds to quadrati Hermite interpolation. As an alternative we an alsoonsider linear interpolation �un+ 12 = 12un + 12 �un+1 ; (4.5)but in the numerial tests (4.4) gave somewhat better results (errors approximately5% smaller) in general.In pratial appliations, for systems of onservation laws, evaluation of the fun-tion omponents Fj(v) will be the main omputational work. Note that if IkF (v) isneeded then v should be known on Ik and on a few additional points near the interfae(how many points depends on the stenil of the spatial disretization). If we ignorethese interfae points, and assume that Ik ontains mk points, m1+m2 = m, then wean easily estimate the amount of work per step with the shemes. For the shemesTW2 and SHV2 this is 2(m+m2)�W , and for the CS2 sheme it is 4m�W , where �Wis the measure of work for a single omponent Fj(v). Therefore, if m2 � m1, thatis, temporal re�nement is only needed at few points, then the CS2 sheme will beapproximately twie as expensive as the other two shemes.4.1 Numerial testsAn analysis of the above seond-order shemes will be given in the next setion inthe framework of partitioned Runge-Kutta methods. Here we already present somenumerial results that will serve as benhmarks for the analysis.4.1.1 Linear advetion with smooth solutionAs a �rst test on the auray of the shemes we onsider the linear advetion equation(2.1) on the spatial interval 0 < x < 1 with periodi boundary onditions, and time in-terval 0 < t � T = 1. For test purposes a uniform spatial grid is taken, so that interfae14



Table 1: Results for the smooth advetion problem with the CS2, TW2 and SHV2 shemes.Maximum errors and L1-errors at �nal time tN = T for various m with �xed Courant number� = 0:4. m 100 200 400 800CS2, keNk1 1:97 � 10�3 5:64 � 10�4 1:88 � 10�4 9:96 � 10�5CS2, keNk1 7:11 � 10�4 1:84 � 10�4 4:85 � 10�5 1:28 � 10�5TW2, keNk1 6:08 � 10�4 1:57 � 10�4 3:98 � 10�5 9:99 � 10�6TW2, keNk1 2:85 � 10�4 7:35 � 10�5 1:86 � 10�5 4:66 � 10�6SHV2, keNk1 6:10 � 10�4 1:57 � 10�4 3:95 � 10�5 9:90 � 10�6SHV2, keNk1 2:91 � 10�4 7:40 � 10�5 1:86 � 10�5 4:66 � 10�6
e�ets are ertainly not due to the spatial disretization, for whih the WENO5 shemeis hosen; the formulas for this disretization an be found for example in [23℄. Tem-poral re�nement is used at the union of spatial intervals Dk = fx : jx�k=10j � 1=40g,k = 1; : : : ; 9, and we onsider a �xed Courant number � = �t=�x = 0:4.For this auray test a smooth solution u(x; t) = sin2(�(x� t)) is onsidered. Theerrors in the maximum-norm and disrete L1-norm (kvk1 =Pj �xj jvj j) are presentedin Table 1. It is seen that with the CS2 sheme we have only �rst-order onvergenein the maximum-norm, due to the interfae points; the L1-errors are still seond-order. For the shemes TW2 and SHV2 we see an order two onvergene also in themaximum-norm. The entries in Table 1 are the total (absolute) errors with respetto the PDE solution, but it was veri�ed that the spatial errors are muh smaller herethan the temporal errors.To see that the large errors for sheme CS2 in the maximum-norm are indeed ausedby the interfae points, the errors as funtion of x at the �nal time with m = 800 aredisplayed in Figure 1. The (relatively) large errors for CS2 at the interfae points arelearly visible. For sheme TW2 there are no visible interfae e�ets. The errors forSHV2 are almost the same as for TW2.
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Figure 1: Errors versus xj 2 (0; 1) at �nal time tN = T for the shemes CS2 (thik solidline) and TW2 (thik dashed line), m = 800.
The CS2 sheme is not internally onsistent at the interfaes, but we see in thistest that it is still onvergent. This is similar as with the OS1 sheme.The linear advetion test was repeated with an initial blok-funtion with the aimof seeing the e�et of the lak of mass-onservation for the TW2 and SHV2 shemes.In general, mass onservation is needed to guarantee a orret shok speed and shok
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loation. However, this test with a blok funtion showed very little di�erene betweenthe shemes.4.1.2 Burgers' equation with stationary shokIn the above numerial test the lak of mass onservation for sheme TW2 only gavea very small e�et. To make this e�et more pronouned we onsider the Burgersequation with a stationary shok at a grid interfae. The equation is given byut + 12�u2�x = 0 (4.6)for 0 < t < T = 0:3 and �1 < x < 1, with initial pro�leu(x; 0) = � 1 if jxj < 0:3 ;�1 otherwise ;and boundary onditions u(�1; t) = u(1; t) = �1. This will lead to a rarefation wavearound x = �0:3 and a stationary shok at x = 0:3. In this experiment re�nement isused at D = [ 10k=1[yk; yk + 0:1℄, yk = 0:2 k � 1:1. So the stationary shok is loated ata grid interfae.The spatial disretization is given by the limited TVD sheme of Appendix Ausing a ell-entered non-uniform grid with mesh widths �xj = 12�x if xj 2 D, and�xj = �x otherwise. Also I2 = fj : xj 2 Dg and I1 = I n I2, so that spatial andtemporal re�nements are taken at the same points.Numerial solutions at the output time t = T are shown in Figure 2 for �x = 180and � = �t=�x = 0:8. The left piture shows the solution with �1 < x < 1 for the CS2sheme. Di�erenes between the shemes are not well visible on this sale. Thereforethe right piture shows a zoom around x = 0:3 for the shemes TW2, CS2 and SHV2.One sees that with CS2 the shok loation is orret; there is some smearing dueto numerial di�usion in the spatial disretization, but it is more or less symmetriaround x = 0:3. The solution of TW2 is leaning too muh to the left, and for SHV2too muh to the right. This due to the lak of (loal) onservation.
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Figure 2: Numerial solutions at time T = 0:3 for �x = 180 , � = 0:8. Left piture: initialpro�le (dashed), and semi-disrete solution for �1 < x < 1. Right piture: solutions aroundthe stationary shok with the shemes TW2 (� marks), CS2 (Æ marks) and SHV2 (� marks),and with exat PDE solution (dashed line).Let M(v) = Pj �xjvj . (If the vj were densities, this would be total mass; forBurgers' equation it is more natural to think of momenta.) ThenM(u(tn))�M(un) isa onservation defet. Figure 3 shows this defet at the �nal time tN = T for the threeshemes on a �xed spatial mesh, �x = 1=160, and with � = �t=�x varying between0 and 1:2. (We have taken � = k=40, k = 1; 2; : : : ; 48, with markers plaed when � isa multiple of 0:1.) In the same �gure, middle plot, the inrease of the total variation16



kuNkTV is displayed. The total variation should be 4, as for the PDE solution, andthis is the numerial value for the semi-disrete system (within mahine preision). Inthis example it is onserved with larger Courant numbers for the sheme CS2 thanfor TW2 and SHV2. The right plot in the �gure shows the inrease of the maximumnorm kuNk1 � 1.In these �gures overow values are not plotted. The shemes CS2 remained stablein this test up to � = 1:2, whih is slightly larger than with the other two shemes.The instabilities did emerge at the stationary shok. Adding some initial perturbationsresults in instability for � > 1 with all three shemes.
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Figure 3: Conservation defets and inrease of total variation and max-norm for 0 < � � 1:2with �x = 1160 , for the shemes TW2 (� marks), CS2 (Æ marks) and SHV2 (� marks).Finally, in Figure 4 the logarithm (base 10) of the L1-errors of the three shemesare given, again for �x = 1=160 with varying �. Both the errors with respet to thesemi-disrete solution and the errors with respet to the PDE solution are plotted. Itis seen that the ODE errors for CS2 are smaller than for the other two shemes forlarge Courant numbers. That is due to the fat that CS2 has a smaller error near thestationary shok. However, this sheme is more inaurate than TW2 and SHV2 inthe rarefation wave, similar as in the previous test, and that reveals itself in the largererror for small Courant numbers. In the PDE errors the spatial errors will beomedominant for small time steps, so there the best results are found for CS2 overall.From the PDE point of view, temporal errors less then 10�3 are not relevant on thisspatial grid where we have a spatial error of 3:4 � 10�3 approximately (PDE error for� ! 0).
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Figure 4: Logarithm (log10) of the L1-errors, with respet to the exat semi-disrete solution(ODE error) and the exat PDE solution (PDE error), for 0 < � � 1:2 with �x = 1160 .Results for the shemes TW2 (� marks), CS2 (Æ marks) and SHV2 (� marks).
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4.1.3 Burgers' equation with moving shokThe last test is again Burgers' equation (4.6), but now with a moving shok. We take0 < t < T = 0:6, �1 < x < 1 with initial pro�leu(x; 0) = � 1 if �0:6 < x < 0 ;0 otherwise:and boundary onditions u(�1; t) = u(1; t) = 0. This will lead to a rarefation wavebetween x = �0:6 + t and x = 0, together with a moving shok at x = 12 t. Further,we use the same set-up as in the previous test.The solutions at time T = 0:6 are shown in Figure 5. The enlargement around theshok at x = 0:3 now shows very little di�erene between the three shemes. So thelak of mass onservation for the TW2 and SHV2 shemes does not have muh impatfor this test. This is similar as in the tests of [26℄ for the TW2 sheme.
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Figure 5: Numerial solutions at time T = 0:6 for �x = 180 , � = 0:8. Left piture: initialpro�le (dashed), and semi-disrete solution for �1 < x < 1. Right piture: solutions aroundthe moving shok with the shemes TW2 (� marks), CS2 (Æ marks) and SHV2 (� marks),and with exat PDE solution (dashed line).The onservation defets and the inrease of total variation and maximum-norm,with �xed mesh width �x = 1160 and variable �, are displayed in Figure 6. Here wesee that all three shemes start to loose the TVD property when Courant numbersbeome larger than 0:8, approximately. The plot on the right of the overshoot valueskuNk1�1 looks similar, exept that now the inrease starts at Courant number one.The loss of the TVD property for � 2 [0:8; 1℄ is ause by osillations at the shok, notin the rarefation wave.
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Figure 6: Conservation defets and inrease of total variation and max-norm for 0 < � � 1:2with �x = 1160 , for the shemes TW2 (� marks), CS2 (Æ marks) and SHV2 (� marks).
We see that the onservation defet in this test is muh smaller than in the previoustest with a standing shok at a grid interfae. Of ourse, both these tests are somewhat18



aademi, but for pratial situations the present test with a moving shok seems morerelevant. Monotoniity for the TW2 and SHV2 shemes holds with larger Courantnumbers than in the previous test. This is aused by the fat that in the previoustest there were two inoming uxes at the standing shok, whereas now we have oneinoming and one outgoing ux at eah grid ell. In the standing shok test theonservation property of the CS2 sheme did suppress the tendeny of inreasing thetotal variation and maximum-norm.In Figure 7 the temporal (ODE) errors and total (PDE) errors are plotted, againwith �xed mesh width �x = 1160 and variable �. The ODE errors for the CS2 shemeare larger than for the other two shemes for small Courant numbers, but for the PDEerrors this is not relevant here. In the plot of the PDE errors we see that here theSHV2 sheme gives somewhat larger errors than the TW2 and CS2 shemes. Detailedinspetion of the solution plots revealed that this is due to a slight dissipation withSHV2 at the top and bottom of the rarefation wave. We did notie, however, thatthese errors are quite sensitive to the preise set-up of the test. For example, withT = 0:5 and initial pro�le u(0; x) = 1 for �T < x < 0 and 0 otherwise, then the PDEerrors of SHV2 were smaller than with the other two shemes for the larger Courantnumbers.
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Figure 7: Logarithm (log10) of the L1-errors, with respet to the exat semi-disrete solution(ODE error) and the exat PDE solution (PDE error), for 0 < � � 1:2 with �x = 1160 .Results for the shemes TW2 (� marks), CS2 (Æ marks) and SHV2 (� marks).
For theoretial purposes it is interesting to note that with the Burgers ux funtionf(u) = 12u2 we have f 0(u) 2 [0; 1℄ in this test. Furthermore, the mesh width in spaeis �xj = �x=k for j 2 Ik, k = 1; 2, and � = 1 for the used spatial disretization.Therefore, as disussed in Example 2.2, the monotoniity assumption (2.13) will besatis�ed with �0 = 12�xfor both the maximum-norm and for the total variation semi-norm. Note that withthe �rst-order upwind disretization this would be �0 = �x.5 Partitioned Runge-Kutta methods5.1 General propertiesIn the multirate examples onsidered thus far, only one level of re�nement was used tokeep the notation simple. Generalizations will be formulated in this setion in termsof partitioned Runge-Kutta methods; see also [3, 6℄. This will enable us to presentthe shemes in a ompat fashion. Sine this paper is onerned with shemes foronservation laws, we will restrit ourselves to expliit methods.
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For the ODE system in Rm , arising from semi-disretization of a PDE with giveninitial value, u0(t) = F (u(t)) ; u(0) = u0 ; (5.1)let I = I1 [ � � � [ Ir be an index partitioning with orresponding diagonal matriesI = I1 + � � � + Ir, where the entries of the Ik are zero or one, and I is the identitymatrix. For a time step from tn to tn+1 = tn+�t, an expliit partitioned Runge-Kuttamethod reads vn;i = un + �t rXk=1 i�1Xj=1 a(k)ij IkF (vn;j) ; i = 1; : : : ; s ;
un+1 = un + �t rXk=1 sXj=1 b(k)j IkF (vn;j) : (5.2)

The internal stage vetors vn;i, i = 1; : : : ; s, give approximations at intermediate timelevels. The multirate shemes of the previous setions all �t in this form with r = 2.With r > 2 more levels of temporal re�nement are allowed.5.1.1 Internal onsisteny and onservationLet (k)i =Pi�1j=1 a(k)ij , i = 1; : : : ; s. If we have(k)i = (l)i for all 1 � k; l � r and 1 � i � s ; (5.3)then the internal vetors vn;i will be onsistent approximations to u(tn + i�t), andthe method will be alled internally onsistent. As will be seen, this is an importantproperty for the auray of the method when applied to semi-disrete systems.Apart from onsisteny, we will also regard global onservation, for example massonservation. Suppose that hT = [h1; : : : ; hm℄ is suh that hTu(t) = Pj hjuj(t) is aonserved quantity for the ODE system (5.1). This will hold for arbitrary initial valueu0 provided that hTF (v) = 0 for all v 2 Rm : (5.4)For the partitioned Runge-Kutta sheme we havehTun+1 = hTun + �t rXk=1 sXj=1 b(k)j hT IkF (vn;j)= hTun + �tXk 6=l sXj=1 �b(k)j � b(l)j �hT IkF (vn;j) ;
for any 1 � l � r. Therefore, as noted in [3℄, the onservation property hTun+1 = hTunwill be valid provided thatb(k)j = b(l)j for all 1 � k; l � r and 1 � j � s : (5.5)5.1.2 Order onditions for non-sti� problemsBelow we shall use the order onditions for partitioned Runge-Kutta methods appliedto non-sti� problems as found in [9, Thm. I.15.9℄ for r = 2. This lassial order will bedenoted by p. As we will see, it often does not orrespond to the order of onvergenefor semi-disrete systems, and therefore p is often referred to as the lassial order.
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To write the order onditions in a ompat way, let Ak = [a(k)ij ℄ 2 R s�s and bk =[b(k)i ℄ 2 R s ontain the oeÆients of the method, and set e = [1; : : : ; 1℄T 2 R s . Theonditions for p = 1 are justbTk e = 1 for k = 1; : : : ; r ; (5.6)that is Psj=1 b(k)j = 1 for all k. To have p = 2 the oeÆients should satisfybTkAl e = 12 for k; l = 1; : : : ; r : (5.7)The number of onditions quikly inrease for higher orders; for p = 3 we getbTkCl1Al2e = 13 ; bTkAl1Al2e = 16 for k; l1; l2 = 1; : : : ; r ; (5.8)where Cl = diag(Ale).5.1.3 Formulation for non-autonomous systemsFor non-autonomous systemsu0(t) = F (t; u(t)) ; u(0) = u0 ; (5.9)we will use the partitioned method (5.2) with the stage funtion values F (vn;j) replaedby F (tn + j�t; vn;j). If (5.3) is valid, the absissa are naturally taken as i = (k)i ,whih is independent of k.If (5.3) does not hold, then a proper hoie of the absissa is less obvious. Forthe OS1 and CS2 multirate shemes with r = 2 it is natural to take i = (2)i . Asgeneralization we will therefore usei = (r)i ; i = 1; : : : ; s : (5.10)Note that if hTF (t; v) = 0 for all t 2 R , v 2 Rm , then we still have the onservationproperty hTun+1 = hTun if the sheme satis�es (5.5).The alternative of replaing IkF (vn;j) in (5.2) by IkF (tn+(k)j �t; vn;j) will destroythis onservation property. If the non-autonomous form originates from a soure termin the PDE, this loss of onservation may be of little onern, but for the advetionequation ut + �a(x; t)u)x = 0 with time-dependent veloity it is still a very desirableproperty.Example 5.1 The OS1 sheme (2.9) leads to the partitioned method (5.2) with r = 2and oeÆients given bya(1)ij a(2)ijb(1)j b(2)j = 0 00 0 1/2 01/2 1/2 1/2 1/2For non-autonomous systems u0(t) = F (t; u(t)) the sheme with (5.10) reads8<: un+ 12 = un + 12�tI2F (tn; un) ;un+1 = un + 12�tF (tn; un) + 12�tF (tn+ 12 ; un+ 12 ) :The use of IkF (tn + (k)j �t; vn;j) instead of IkF (tn + j�t; vn;j), j = (2)j , would leadto the same formula for un+1=2 in the �rst stage, but thenun+1 = un + 12�tF (tn; un) + 12�tI1F (tn; un+ 12 ) + 12�tI2F (tn+ 12 ; un+ 12 ) ;whih is no longer onservative. 321



The above order onditions have been derived for autonomous systems, but with(5.10) they are also valid for non-autonomous systems. This follows from the fatthat u0(t) = F (t; u(t)) an be written as an equivalent, augmented autonomous sys-tem u0(t) = F (#(t); u(t)), #0(t) = 1, with #(0) = 0, and appliation of the parti-tioned method to this augmented system gives the same result as to the original,non-autonomous system provided the additional equation #0(t) = 1 is inluded in theindex set Ir.5.1.4 Conservation versus internal onsistenyFor the multirate shemes that have been onsidered in this paper, the onditions forinternal onsisteny (5.3) and onservation (5.5) did not math. This inompatibilityis valid for all `genuine' multirate shemes that are based on one single methodMRK,that is, for shemes (5.2) that redue to mk appliations (with step size �t=mk) of thisbase method MRK to over [tn; tn+1℄ in ase that Ik = I and the other Il are empty.Consider, as simple example, a quadrature problem u0(t) = g(t) 2 Rm , whih isjust a speial ase of (5.9). (In a PDE ontext, this an be viewed as a degeneratease of advetion with a soure term where the advetive veloity happens to be zero.)Suppose (5.5) is valid, and let J = fi 2 I : bi 6= 0g. Then for the quadrature problemwe simply get un+1 = un + �tXi2J bi g(tn + i�t) ;whih is independent of the partitioning. However, if this is the result of a base methodMRK with m1 = 1, I1 = I, then the result for m2 = 2, I2 = I should beun+1 = un + 12�tXi2J bi�g�tn + 12i�t�+ g�tn + 12 (1 + i)�t�� ;whih is not the same for arbitrary soure terms g.Note that for general partitioned Runge-Kutta methods there is no onit between(5.3) and (5.5). Given a sheme with the same (k)i = (l)i (for all i; k; l), but di�erentweights b(k)i 6= b(l)i (for some i; k; l), we an add an extra stage with new weights b�ithat are independent of k, to make it mass-onserving. Of ourse, this will inreasethe omputational work per step, and for the TW1, TW2 and SHV2 shemes suh amodi�ation does not seem to lead to eÆient shemes.5.2 Monotoniity and onvex Euler ombinationsWe are in partiular interested in the ase where the partitioned Runge-Kutta method(5.2) stands for a multirate sheme that takes mk substeps of size �t=mk on Ik toover [tn; tn+1℄, k = 1; : : : ; r, with m1 = 1 < m2 < � � � < mr. The orrespondingmonotoniity assumption isv + rXk=1 �kmk IkF (v) � kvk for all v 2 Rm and �k � �0, k = 1; : : : ; r ; (5.11)where k � k is a onvex funtion or (semi-)norm. For theoretial purposes we will alsoonsider v + �0mk IkF (v) � kvk for all v 2 Rm and k = 1; : : : ; r : (5.12)Of ourse, (5.11) implies (5.12). On the other hand, if (5.12) is valid, then the in-equality in (5.11) will hold under the step size restrition �1+ � � �+ �m � �0. If we aredealing with the maximum-norm, then (5.11) and (5.12) are equivalent.22



In the following we denote for l = 1; : : : ; r,8>>><>>>:
�(l)ij = mla(l)ij ; 1 � i; j � s ;�(l)s+1;j = mlb(l)j ; 1 � j � s ;�(l)i;s+1 = 0 ; 1 � i � s+ 1 : (5.13)

These oeÆients will be grouped in the (s + 1) � (s + 1) matrix Kl = [�(l)ij ℄. It isonvenient to add vn;s+1 = un+1 to the internal vetors. Then (5.2) an be written as
vn;i = un + rXl=1 i�1Xj=1 �(l)ij �tml IlF (vn;j) ; i = 1; : : : ; s+ 1 : (5.14)

Depending on the monotoniity assumption, we an onsider various ways to rep-resent this partitioned sheme in terms of onvex Euler ombinations. For this we willintrodue new method oeÆients �(k)ij , �(k)ij with orresponding lower triangular ma-tries Ak = [�(k)ij ℄ and Bk = [�(k)ij ℄. Suh onvex Euler forms are also alled Shu-Osherforms, after [24℄ where suh representations were used originally to demonstrate theTVD property of ertain Runge-Kutta methods.Inequalities for matries or vetors in this setion are to be understood omponent-wise, that is, P = [pij ℄ � 0 means that all pij are non-negative. Furthermore, ifP 2 R (s+1)�q1 and Q 2 R (s+1)�q2 , then [[P Q℄℄ stands for the matrix whose �rst q1olumns equal those of P and the other olumns equal those of Q. In this setion welet e = [1; 1; : : : ; 1℄T 2 R s+1 , and we use the onvention �=� = +1 if � � 0, � = 0.5.2.1 Convex Euler form I: maximum-norm monotoniity.A suitable form of (5.14) to obtain results on monotoniity in the maximum-norm isvn;i = rXk=1 Ik��1� �(k)i �un + i�1Xj=1 ��(k)ij vn;j + �(k)ij �tmkF (vn;j)�� ; (5.15)
where �(k)i =Pi�1j=1 �(k)ij and i = 1; : : : ; s + 1. To have orrespondene between (5.14)and (5.15) the oeÆients should satisfyKk = �I �Ak��1Bk ; k = 1; : : : ; r : (5.16)Further we want the oeÆients to be suh that�(k)i � 1 ; �(k)ij ; �(k)ij � 0 for 1 � j < i � s+ 1 ; 1 � k � r : (5.17)For suh oeÆients, let C = mini;j;k �(k)ij =�(k)ij : (5.18)If there are no oeÆients suh that (5.16) and (5.17) are satis�ed, we set C = 0.Theorem 5.2 Consider (5.15) with (5.17) and let C be given by (5.18). Assume(5.11) is valid in the maximum-norm. Then kun+1k1 � kunk1 whenever �t � C�0.Proof. The form (5.15) is equivalent toIkvn;i = Ik��1� �(k)i �un + i�1Xj=1 ��(k)ij vn;j + �(k)ij �tmk IkF (vn;j)�� ; k = 1; : : : ; r :
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We have vn;1 = un. Suppose (indution assumption) that kvn;jk1 � kunk1 forj = 1; : : : ; i� 1. Sine�(k)ij vn;j + �(k)ij �tmk IkF (vn;j) = ��(k)ij � C�(k)ij �vn;j + C�(k)ij �vn;j + �tCmk IkF (vn;j)� ;we then havek�(k)ij vn;j + �(k)ij �tmk IkF (vn;j)k1 � �(k)ij kvn;jk1 � �(k)ij kunk1 :It follows that kIkvn;ik1 � kunk1 for k = 1; : : : ; r, and hene kvn;ik1 � kunk1.Using indution with respet to i = 1; : : : ; s+ 1 the proof thus follows. 2It is obvious that we are in partiular interested in the optimal value of C in (5.18)for a given method (5.14). To obtain a suitable expression for this optimal value,we an follow the onstrution of Ferraina & Spijker [7℄ and Higueras [10℄ for theindividual Runge-Kutta methods given by the oeÆients Kk.Theorem 5.3 The optimal value for C � 0 in (5.18), under the onstraints (5.16)and (5.17), equals the largest  � 0 suh that(I + Kk)�1[[e Kk℄℄ � 0 ; k = 1; : : : ; r : (5.19)Proof. Suppose  � 0 is suh that (5.19) holds. We take Bk = (I + Kk)�1Kk andAk = Bk. With this hoie it is easily seen that (5.16) and (5.17) are valid and that(5.18) holds with C = .On the other hand, suppose that we have (5.16), (5.17) and (5.18) with C � 0, andset  = C. Then�I + Kk��1[[e Kk℄℄ = �I �Mk��1[[(I �Ak)e Bk℄℄ ;where Mk = Ak � Bk. From (5.18) we know that Mk � 0, and sine it is a stritlylower triangular matrix we also have(I �Mk)�1 = I +Mk +M2k + : : :+Msk � 0 :It follows that (5.19) is valid. 25.2.2 Convex Euler form II: monotoniity under (5.12)If we assume (5.12) for a general (semi-)norm or onvex funtion, then a suitable formfor (5.14) is vn;i = �1� �(0)i �un + rXk=1 i�1Xj=1 ��(k)ij vn;j + �(k)ij �tmk IkF (vn;j)� ; (5.20)
where �(0)i =Pi�1j=1 ��(1)ij + � � �+ �(r)ij �, i = 1; : : : ; s+ 1, andKk = �I � rXl=1 Al��1Bk ; k = 1; : : : ; r : (5.21)We want�(0)i � 1 ; �(k)ij ; �(k)ij � 0 for 1 � j < i � s+ 1 ; 1 � k � r ; (5.22)with an optimal C = mini;j;k �(k)ij =�(k)ij : (5.23)
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Theorem 5.4 Assume (5.12) is valid.(i) Consider (5.20) with (5.22) and let C be given by (5.23). Then kun+1k � kunkwhenever �t � C�0.(ii) The optimal C � 0 in (5.23), under the onstraints (5.21) and (5.22), equals thelargest  � 0 suh that�I + rXl=1 Kl��1[[e Kk℄℄ � 0 ; k = 1; : : : ; r : (5.24)The proof of this result is similar to that of the Theorems 5.2 and 5.3. In fat, theresult for r = 2 an be obtained diretly from Higueras [11℄ and Spijker [25℄. Furtherwe note that the oeÆient matries Ak and Bk whih lead to an optimal value C arein this ase given by Bk = (I +Pl Kl)�1Kk and Ak = Bk.5.2.3 Convex Euler form III: TVD property and monotoniity under (5.11)Finally, if (5.11) is assumed for a general (semi-)norm or onvex funtion, then weonsider vn;i = �1� �(0)i �un + i�1Xj=1 ��(0)ij vn;j + rXk=1�(k)ij �tmk IkF (vn;j)� ; (5.25)
where �(0)i =Pi�1j=1 �(0)ij , i = 1; : : : ; s+ 1, andKk = (I �A0)�1Bk ; k = 1; : : : ; r : (5.26)Here we want�(0)i � 1 ; �(0)ij ; �(k)ij � 0 for 1 � j < i � s+ 1 ; 1 � k � r : (5.27)suh that C = mini;j;k �(0)ij =�(k)ij (5.28)is optimal.Theorem 5.5 Consider (5.25) with (5.27) and let C be given by (5.28). Assume(5.11) is valid. Then kun+1k � kunk whenever �t � C�0.The proof is similar to that of Theorem 5.2. For this ase there is no onvenientrepresentation of the optimal C. An optimization ode an be used to determine thisoptimal value. However, from the previous results we obtain useful upper and lowerbounds for C.Theorem 5.6 The optimal values C, C, C in (5.18), (5.23) and (5.28) satisfy1rC � C � C � C :Consequently, if C = 0 then C = 0.Proof. Given an optimal C with orresponding oeÆient matries A0, Bk, we antake Ak = A0, Bk = Bk. Then (5.16) and (5.17) hold and mini;j;k �(k)ij =�(k)ij � C.Consequently we have C � C for the optimal value C.Likewise, for a given optimal C with orresponding Ak, Bk, we an hoose Bk = Bk,A0 = Prl=1Al. Then (5.26) and (5.27) hold and we have mini;j;k �(0)ij =�(k)ij � C,showing that C � C.On the other hand, for given optimal C with orresponding A0, Bk, we an takeBk = Bk, Ak = 1rA0. It follows that C � 1rC. 225



5.2.4 Results for the multirate shemes with one level of re�nementThe monotoniity results for the multirate shemes of the previous setions are pre-sented in Table 2. The table gives the threshold values C, C and C for the variousshemes. The results for the �rst-order shemes OS1 and TW1 an be derived analyt-ially as in Setion 3.1; we get C = 1, C = 2=3, C = 1 � 1=p3 for OS1, and C = 1,C = 2�p2, C = 1� 1=p3 for TW1. The threshold values C, C for the seond-ordershemes have been found numerially, using (5.19) and (5.24). For the TW2 and CS2shemes we have C = 0 and therefore also C = 0. (The fat that C = 0 for these twoshemes an also be shown analytially, similar to [11℄, by onsidering (5.24) for small > 0.) The value of C for SHV2 was obtained with the Matlab optimization odefminimax. This does not provide a guarantee that the solution is a global optimum,and therefore this C is to be onsidered as a lower bound. The fat that we merelyhave C = 1=2 for the SHV2 sheme is due to the �rst stage. Finally we note thatfor the variant of that sheme with linear interpolation (4.5), instead of (4.4), it wasfound that C = 1=2, C = 0:304, and the optimization ode produed the same valueC = 0:304 for this variant.Table 2: Threshold values for the multirate shemes with one level of re�nement. The entryC for the sheme SHV2 is a lower bound.C C COS1 1 0:667 0:423TW1 1 0:580 0:423TW2 1 0 0CS2 1 0 0SHV2 0:5 0:284 0:284
As noted before, the result C = 1 for the OS1 and TW1 sheme was already givenin [15, 18, 26℄ in terms of maximum priniples. For the CS2 sheme the same resulthas been proved in [3℄.Reall that the threshold values C are suh that we will have monotoniity in themaximum-norm, as well as maximum priniples, provided that �t � C�0. Likewise,for spatial disretization with limiting the TVD property will hold if �t � C�0. Allthis under orresponding assumptions (2.13) for the semi-disrete system.Comparison of these theoretial values with the experiments of Setion 4.1 forBurgers' equation with the TW2, CS2 and SHV2 shemes does not show a lear or-respondene. As was noted, in those experiments we had �0 = 12�x for both themaximum-norm and the total variation semi-norm. Therefore, with � = �t=�x, theTVD property is guaranteed by the above results for � � 12C and the maximum prin-iple for � � 12C. For the Burgers' experiment with a moving shok it was notied thatfor the shemes TW2, CS2 and SHV2 we had no overshoots for � � 1, whereas theTVD property was valid for � � 0:8 approximately. Therefore, for that test, the theo-retial threshold values C = 0 for the TW2 and CS2 shemes in Table 2 are muh toopessimisti. The same seems to hold for the small value C = 12 of the SHV2 shemeompared to the value C = 1 for TW2 and CS2. This may be aused by the fatthat spatial disretizations with ux-limiting (or of WENO type) do add some loaldi�usion near very steep gradients, whih may ounterat an overshoot or inrease oftotal variation of the time stepping sheme. However, for the disrepany in the TVDresults it is more likely that a more re�ned theory is needed. As noted before, it was26



shown in [15℄ that the OS1 sheme is TVD for a lass of limited disretizations underthe same step size restrition as for the maximum priniple, but that proof does notlend itself to generalization for the higher-order shemes.Remark 5.7 Re�ned TVD results for the OS1 and TW1 sheme were also disussedin Setion 3.1. It was shown that the TVD thresholds of both the OS1 and TW1shemes beome 1 for the system (3.8) arising from linear advetion with �rst-orderupwind disretization in spae.Experimentally, using various partitionings, inluding random partitionings, weobserved that for this system the thresholds for monotoniity in the maximum-normare 1 for the TW2 and CS2 shemes, and approximately 0:66 for the SHV2 sheme,whereas the thresholds for the TVD property are 0:5 for the TW2 and CS2 shemes,and 0:86 for the SHV2 sheme.Furthermore, it should be notied that having a bound kSk1 � 1 for the ampli�a-tion matrix S guarantees stability in the maximum norm for this linear problem, butthis is not a neessary ondition. The spetral radius of S was found to be bounded by1 for Courant numbers �j = �t=�xj � k for j 2 Ik, k = 1; 2, for these three shemes,that is, inluding the SHV2 sheme. Note that having spetral radius bounded by 1is of ourse neessary for stability, but it is not suÆient, not even in the L2 normbeause the ampli�ation matries S are not normal. 35.3 Convergene for smooth problemsIn this setion we derive bounds for the disretization errors that are valid for semi-disrete hyperboli systems with smooth solutions. The lassial, non-sti� order on-ditions are then no longer suÆient to obtain onvergene of order p, due to the fatthat F ontains negative powers of the mesh widths �xj in spae. We will aepta restrition on �t=�xj but the resulting error bounds should not ontain negativepowers of �xj .It is useful here to take also non-autonomous equations (5.9) into onsideration.Then linear onstant oeÆient problems u0(t) = Au(t) + g(t) with time dependentsoure terms are inluded. Suh g(t) may originate from a genuine soure term in thePDE or from an inhomogeneous boundary ondition.To ensure stability, it will be assumed that~v � v + �0mk Ik�F (t; ~v)� F (t; v)�1 � k~v � vk1 ; k = 1; : : : ; r ; (5.29)for any two vetors ~v; v 2 Rm and t 2 R . In appliations to semi-disrete systemsobtained from onservation laws this �0 will be proportional to the mesh widths usedin the spatial disretization, and hene an upper bound �t � C�0 on the step size willbe a CFL restrition.5.3.1 Perturbed shemesConsider, along with (5.2) in non-autonomous form, the perturbed sheme~vn;i = ~un + �t rXk=1 i�1Xj=1 a(k)ij IkF (tn;j ; ~vn;j) + �n;i ; i = 1; : : : ; s ;
~un+1 = ~un + �t rXk=1 sXj=1 b(k)j IkF (tn;j ; ~vn;j) + �n ; (5.30)

where tn;j = tn+ j�t and the �n;i, �n are perturbations. These perturbations will beused later on to obtain expressions for the disretization errors. In order to distinguish27



the auray of the un from those of the internal stages we will mainly use the standardform (5.2) rather than (5.14).As before, let the matries Ak = [a(k)ij ℄ 2 R s�s and the vetors bk = [b(k)i ℄ 2 R sontain the oeÆients of the sheme. Further, for the vetor of absissa  = [i℄ 2 R swe denote j = [ ji ℄ for j � 1, with 0 = e = [1; : : : ; 1℄T 2 R s . To make the dimensions�tting we will use the Kroneker produts Ak = Ak 
 I, bTk = bTk 
 I, j = j 
 Iand e = e 
 I with m � m identity matrix I = Im�m. Likewise, Ik = I 
 Ik withs� s identity matrix I = Is�s. To make the notation onsistent, the ms�ms identitymatrix is denoted by I.Let Zn = diag(Zn;i) 2 Rms�ms withZn;i(~vn;i � vn;i) = �t�F (tn;i; ~vn;i)� F (tn;i; vn;i)� : (5.31)In view of (5.29) these Zn;i 2 Rm�m an be taken suh that2I + 1mk IkZn;i1 � 1 for �t � �0 ;  > 0 ; k = 1; : : : ; r : (5.32)To write the di�erene of (5.30) and (5.2) in a ompat form, let also �n = [�n;i℄ 2 R smand vn = [vn;i℄, ~vn = [~vn;i℄ 2 R sm . Then~vn � vn = e(~un � un) + rXk=1AkIkZn(~vn � vn) + �n ;~un+1 � un+1 = ~un � un + rXk=1 bTk IkZn(~vn � vn) + �n : (5.33)
Elimination of ~vn � vn thus leads to~un+1 � un+1 = Sn(~un � un) + rTn�n + �n ; (5.34)where Sn = I + rTne ; rTn = � rXk=1 bTk IkZn��I � rXk=1AkIkZn��1: (5.35)
The following result provides stability for this reursion with a step size restrition�t � C�0, where C is the threshold for monotoniity in the maximum-norm. We anonsider arbitrary matries Zn with bloks satisfying (5.32), so that these matriesare independent from the perturbations �n and �n.Lemma 5.8 Consider (5.33). Assume (5.32) and �t � C�0. ThenkSnk1 � 1 ; krTnk1 � 2s : (5.36)Proof. Denote wn;i = ~vn;i � vn;i and also wn;s+1 = ~un+1 � un+1, �n;s+1 = �n. Thenwn;i = ~un � un + rXk=1 i�1Xj=1 1mk �(k)ij IkZn;jwn;j + �n;i ; i = 1; : : : ; s+ 1 :2As noted before, if F is di�erentiable we an take the Zn;i as integrated Jaobian matries, butalso for non-di�erentiable F we an hoose them to satisfy (5.31). This is similar to the fat that ifx; y 2 Rm with kyk1 � kxk1, then there is an V 2 Rm�m suh that V x = y and kV k1 � 1; forexample, if jxkj = kxk1, the matrix with kth olumn 1xk y and the other olumns zero.28



Following the onstrution used in Theorem 5.3 with optimal oeÆients �(k)ij = �(k)ij =, = C, we obtain
Ik(wn;i � �n;i) = �1� �(k)i �Ik(~un � un) + i�1Xj=1 �(k)ij Ik�wn;j + 1mkZn;jwn;j � �n;j� :This leads tokIkwn;ik1 � k�n;ik1 � �1� �(k)i �k~un � unk1 + i�1Xj=1 �(k)ij �kwn;jk1 + k�n;jk1� :If we make the indution assumptionkwn;jk1 � k~un � unk1 + Lj max��j k�n;�k1 ; (5.37)for j = 1; : : : ; i� 1, with Lj = 2j � 1, then
kIkwn;ik1 � k~un � unk1 + i�1Xj=1 �(k)ij �Lj max��j k�n;�k1 + k�n;jk1�+ k�n;ik1� k~un � unk1 + (Li�1 + 1) maxj�i�1 k�n;jk1 + k�n;ik1 :Hene (5.37) will also be satis�ed for j = i, and the proof thus follows. 2Note that without the internal perturbations we obtain a result on ontrativity inthe maximum-norm:k~un+1 � un+1k1 � k~un � unk1 whenever �t � C�0 ; (5.38)for any two parallel steps of the sheme (5.2), starting with ~un and un, respetively.In the above proof, the arguments leading to monotoniity have been opied. A moreelegant and diret way to dedue ontrativity from monotoniity is found in [25,p. 1236℄, following a onstrution of [2℄ for inner-produt norms.5.3.2 Loal and global disretization errorsThroughout this setion we will denote byO(�tq) a term or vetor that an be boundedin norm by K�tq, for �t > 0 small enough, with K not depending on the meshwidths �xj in the spatial disretization. The norm in this setion is the maximum-norm. Moreover it will be taitly assumed that the exat solution is smooth, so thatderivatives of u(t) are O(1).Let en = u(tn) � un be the global disretization error at time level tn, n � 0. Toobtain a reursion for these global errors we an employ the above perturbed shemewith ~un = u(tn) and ~vn;i = u(tn;i), tn;i = tn + i�t, i = 1; : : : ; s. This hoie for the~vn;i de�nes the perturbations �n;i and �n. Assuming the exat solution u to be l + 1times di�erentiable, Taylor expansion diretly leads to

�n = rXk=1 lXj=1 �tjj! �j � jAkj�1�Iku(j)(tn) +O(�tl+1) ;
�n = rXk=1 lXj=1 �tjj! �I � jbTk j�1�Iku(j)(tn) +O(�tl+1) : (5.39)
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It follows that the global errors en = u(tn)� un satisfy the reursionen+1 = Snen + dn ; n � 0 ; (5.40)with loal disretization errors dn given bydn = rTn�n + �n ; (5.41)and with Sn 2 Rm�m , rTn 2 Rm�ms given by (5.35).Note that from kSnk1 � 1 it follows diretly that onsisteny of order q (i.e.,kdnk1 = O(�tq+1)) implies onvergene of order q (i.e., kenk1 = O(�tq)), but we willsee that the order of onvergene an also be one larger than the order of onsisteny.Let us �rst onsider methods with lassial order p � 1 that are not internallyonsistent, that is, Ake 6= Ale for some k; l. Then the leading term in the loal error isdn = �t rTn rXk=1(�Ake)Iku0(tn) +O(�t2) : (5.42)This gives an O(�t) loal error bound, whih is of ourse quite poor. After all, dn isthe error that results after one step if en = 0. However, as we will see below, it anlead to onvergene of order one.Next assume the internal onsisteny ondition (5.3) is satis�ed, that is Ake = Alefor 1 � k; l � r. If p = 1 it follows diretly that kdnk1 = O(�t2). If p � 2 the leadingterm in the loal disretization errors is given bydn = �t2rTn rXk=1 �122 �Ak�Iku00(tn) +O(�t3) : (5.43)This still gives only onsisteny of order one, that is, an error O(�t2) after one step,but we will disuss below damping and anellation e�ets that an lead to onvergenewith order two in this ase.For problems that are (mildly) sti�, suh as semi-disrete systems from hyperboliequations, the above derivation shows that order redution is to be expeted. Thisorder redution will appear primarily at interfae points on the spatial grid, wherethe grid-funtions Iku(j)(t) have jumps. This is similar to the situation for standardRunge-Kutta methods, where order redution appears at boundaries if the boundaryvalues are time-dependent; see for instane the review with referenes in [14, Set. II.2℄.With the partitioned and multirate shemes, we are reating interfaes that at like(internal) boundaries with time-dependent boundary onditions.Based on the loal error behaviour, one would expet onvergene with order onefor the TW2 and SHV2 shemes, and lak of onvergene for the sheme CS2. Thisis not what was seen in the numerial test in Setion 4.1 for advetion with a smoothsolution. To obtain the orret (observed) order of onvergene q = 1; 2, we need tostudy the propagation of the leading term in the loal error. We already saw thatthe global error an be of the same order �tq as the loal error if we have a suitabledeomposition dn = (Sn� I)�n+ �n. In fat, we only need to study the priniple termof the loal error. It will be assumed that there exist vetors �n 2 Rm , n � 0, suhthat �rTne��n � �tqrTn rXk=1 1q!�q � qAkq�1�Iku(q)(tn)1 = O(�tq+1) ;k�nk1 = O(�tq) ; k�n+1 � �nk1 = O(�tq+1) :
9>=>; (5.44)

Then, following the proof of Theorem 3.3, we diretly arrive at the following result.30



Proposition 5.9 Assume that (5.29) is valid, and let p be the (lassial) order of thepartitioned Runge-Kutta method.(i) If p = 1 and (5.44) holds with q = 1, then the method is onvergent with order onein the maximum-norm.(ii) Suppose that p � 2 and the method is internally onsistent. Then, if (5.44) holdswith q = 2, the method is onvergent with order two in the maximum-norm.The above result has been alled a proposition, rather than a theorem, beauseit is far from lear how to verify the ondition (5.44) in most situations of pratialimportane. In the next subsetion we will onsider this ondition for a simple ase:linear advetion with �rst-order upwind spatial disretization. Of ourse, this is notthe spatial disretization one would like to use with a high-order time stepping sheme,but it will give a heuristi explanation for the temporal orders observed in the aurayexperiment in Setion 4.1.Remark 5.10 The above expressions for the loal errors are similar to those given in[13℄ for impliit-expliit Runge-Kutta methods, and in [19, 20℄ for a lass of impliitadditive Runge-Kutta methods with domain deomposition. Apart from the fat thatthese latter methods are impliit, beause they are intended for paraboli problems, aninteresting feature is that the matries Ik are onstruted from smooth grid funtions,instead of the the step funtions (zero-one entries) in this paper. This an have apositive inuene on the auray of the shemes. 35.3.3 Veri�ation of ondition (5.44) for linear advetionTo study ondition (5.44), let us onsider linear problems with onstant oeÆients,u0(t) = Au(t) + g(t) : (5.45)Denote Z = �tA, Z = I 
 Z with I = Is�s the s� s identity matrix, andr(Z)T = [r1(Z); : : : ; rs(Z)℄ = � rXk=1 bTk IkZ��I � rXk=1AkIkZ��1: (5.46)
In this ase we have bTk IkZ = bTk 
IkZ and AkIkZ = Ak
IkZ. The matries Ak arestritly lower triangular s� s matries, and onsequently a produt of s suh matriesvanishes. Writing the matrix inverse in (5.46) as a power series, it follows that

r(Z)Te = s�1Xl=0 rXk;j1;:::;jl=1 �bTkAj1 � � �Ajle� IkZ Ij1Z � � � IjlZ : (5.47)
In the same way it is seen thatr(Z)T rXi=1 �q � qAiq�1�Ii= s�1Xl=0 rXk;j1;:::;jl;i=1 �bTkAj1 � � �Ajl(q � qAiq�1)� IkZ Ij1Z � � � IjlZ Ii ; (5.48)
If there is a matrix W 2 Rm�m suh that kWk1 = O(1) and�r(Z)Te�W = r(Z)T rXi=1 �q � qAiq�1�Ii ; (5.49)
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then we an take �n = 1q!�tqWu(q)(tn) in (5.44). Reall that kWk1 = O(1) meansthat W an be bounded uniformly in the mesh width and dimension m.Consider as a simple example, the semi-disrete system (2.2) in Rm with u0(t) =0, orresponding to �rst-order upwind disretization of the advetion equation withhomogeneous inow ondition u(0; t) = 0. We take a partitioning I = I1 [ I2 =f1; 2; : : : ;mg with I2 = fj : 14m < j � 34mg, and mesh widths �xj = h if j 2 I1,�xj = 12h if j 2 I2, with h = 4=(3m). In Figure 8 we have plotted the norm kWk1as funtion of m = 20; 40; : : : ; 640 for various values of � = �t=h for the shemesTW2 and CS2; the results for SHV2 were similar to those of TW2. In this example,the matrix r(Z)Te is nonsingular, and it is well-onditioned for � � 1. We see thatkWk1 = O(1) provided that � < 1, whereas kWk1 � m if � = 1. Other partitioningsI = I1 [ I2 produed similar results.
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Figure 8: Norm kWk1 versus m = 20; 40; : : : ; 640 for various values of � = �t=h with theshemes TW2 (left) and CS2 (right). Markers: Æ for � = 0:5, � for � = 0:75, � for � = 0:9,4 for � = 0:95 and � for � = 1.It is obvious that veri�ation of ondition (5.44) would be desirable for nonlinearproblems and higher-order (nonlinear) spatial disretizations. Nevertheless, the om-bination of Proposition 5.9 and these experimental bounds for �rst-order advetiondisretization does provide a heuristi explanation for the numerial observations inSetion 4.1 for the advetion problem with smooth solution and WENO5 spatial dis-retization, where we saw onvergene of the shemes TW2 and SHV2 with order twoin the maximum-norm, and with order one for the CS2 sheme.6 Final remarks6.1 Partitioning based on uxesFor onservation laws ut+ f(u)x = 0, the semi-disrete system (2.8) will in general beof the formu0j(t) = Fj(u(t)) = 1�xj �fj� 12 (u(t))� fj+ 12 (u(t))� ; j 2 I = f1; 2; : : : ;mg :Multirate methods an be based on these numerial uxes fj�1=2(u) rather than interms of the omponents Fj(u), and this is not well overed by the above formulations.Suppose, as an example, that I1 = fj : j < ig and I2 = fj : j � ig. Instead ofF = I1F +I2F , we an onsider the deomposition F = F 1+F 2 with vetor funtions
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F 1 and F 2 whose jth omponent is given byF 1j (v) = 1�xj �fj� 12 (v)� fj+ 12 (v)� ; F 2j (v) = 0 for j < i ;F 1j (v) = 1�xi fi� 12 (v) ; F 2j (v) = �1�xi fi+ 12 (v) for j = i ;F 2j (v) = 1�xj �fj� 12 (v)� fj+ 12 (v)� ; F 1j (v) = 0 ; for j > i :
9>>>=>>>; (6.1)

We an onsider any of the above shemes with IkF (v) replaed by F k(v). Sine weare then dealing with uxes, mass-onservation is guaranteed at any stage. However,there are two reasons why suh shemes were not onsidered in this paper.First, monotoniity assumptions suh as (2.13) will not be valid in the maximum-norm with this deomposition. This an be seen already quite easily for the �rst-orderupwind advetion disretization (2.2). Writing this system as u0(t) = Au(t), the abovedeomposition would orrespond to A = AI1 + AI2, that is, F k = AIk, but it is easyto show that kI + �AIkk1 is larger than one for any � > 0.Seondly, suh a deomposition of F an easily lead to inonsistenies, sine we donot have F k(u(t)) = O(1), no matter how smooth the solution is. For example, for the�rst-order upwind system (2.2), formula (2.10) with F k replaing IkF , k = 1; 2, leadsto method (2.3) rather than (2.4). Using these F 1 and F 2 in (2.9) gives a ompletelyinonsistent result.6.2 Summary and onlusionsIn this paper some multirate shemes based on the forward Euler method and the two-stage expliit trapezoidal rule have been analyzed. All these methods an be writtenas partitioned Runge-Kutta methods.For the analysis of the monotoniity properties of the shemes we followed theTVD/SSP framework of [5, 24℄, assuming monotoniity of one forward Euler step withsuitable loal time steps. Di�erent monotoniity thresholds were found for maximum-norm monotoniity and maximum priniples on the one hand, and the TVD propertyon the other hand. However, these theoretial di�erenes did not reveal themselves inthe numerial tests. In pratial situations, the threshold C found for maximum-normmonotoniity seems the most relevant.Many multirate shemes are not internally onsistent. This may lead to low au-ray at interfae points. An analysis of the loal disretization errors even suggestslak of onvergene, but this is too pessimisti. Also for the other shemes, that areinternally onsistent, propagation of the leading loal error terms has to be studied tounderstand the proper onvergene behaviour.Lak of mass onservation seems in many ases not a very serious defet beauseit only arises at interfae points, so it will mainly be felt when a shok or very steepsolution gradient passes suh an interfae. This onlusion is similar as in [26℄. Ofourse, if mass onservation an be built in a sheme without a�eting other essentialproperties, suh as internal onsisteny and omputational work per step, this is ad-visable. For the shemes onsidered in this paper laking mass onservation we didnot �nd suh suitable modi�ations.The use of a high-order Runge-Kutta methods as basis for a multirate sheme or apartitioned sheme will not diretly lead to a high order of auray at interfae points.The disretization errors have to be onsidered within the PDE ontext, leading toexpressions for the loal errors of the form (5.42) or (5.43). Regarding the semi-disreteas a �xed (non-sti�) ODE will in general lead to a too optimisti estimate of the rateof onvergene. 33



A Appendix: a spatial disretization with TVD limiter on non-uniform gridsAs an example of a disretization with limiting we will onsider formulas on non-uniform grids that generalize the third-order upwind-biased sheme with the so-alledKoren limiter on uniform grids.A.1 Disretization and limitingFor a non-uniform grid with ells Cj = (xj� 12�xj ; xj+ 12�xj) and ell-average values uj ,the third-order upwind-biased spatial disretization an be derived by pieewise ubireonstrution of the primitive grid-funtion Ui =Pj�i�xjuj and di�erentiation.On Cj we take U(x) to be the ubi polynomial that passes through the points(xj+k=2; Uj+k=2), k = �3;�1; 1; 3. Then the resulting valuesuRj� 12 = U 0(xj� 12 ) ; uLj+ 12 = U 0(xj+ 12 ) ;an be used as ell-boundary values in a numerial ux-funtion. In the following weonly give the formulas for the left states uLj+1=2; those for uRj�1=2 are essentially thesame, just the mirror image.By some alulations (with Newton divided di�erenes) it follows thatuLj+ 12 = L�1;juj�1 + L0;juj + L1;juj+1 ; (A.1)with oeÆients L0;j = 1� L�1;j � L1;j andL�1;j = ��xj�xj+1(�xj�1 + �xj)(�xj�1 + �xj + �xj+1) ;L1;j = (�xj�1 + �xj)�xj(�xj + �xj+1)(�xj�1 + �xj + �xj+1) :This provides the non-limited value.To apply a limiter, we �rst write (A.1) in the form
uLj+ 12 = uj +  �j (uj+1 � uj) ;  �j = uLj+ 12 � ujuj+1 � uj : (A.2)Next we apply a limiter to this  �j , j = max �0 ; min �1 ;  �j ; �j�� ; �j = uj � uj�1uj+1 � uj ; (A.3)to obtain the limited value uLj+ 12 = uj +  j(uj+1 � uj) : (A.4)This kind of limiting is often alled `target limitering' beause the limited valuesare taken as lose as possible to a target sheme (whih is in our ase the non-limitedsheme) within the monotoniity onstraints. It an be applied to any sheme produ-ing non-limited values uLj+1=2. From (A.1), (A.2) it is seen that  �j = L1;j � L�1;j�j ,and therefore the limiter an also be written as j = max �0 ; min �1 ; L1;j � L�1;j�j ; �j�� : (A.5)34



To see that (A.4) will indeed introdue a spatial disretization with ertain mono-toniity properties, suh as positivity and TVD, note thatuLj� 12 � uLj+ 12 = �j(uj�1 � uj) ; �j = 1�  j�1 +  j = �j :In view of (A.3) we have 0 �  j�1 � 1 and 0 �  j=�j � 1, and therefore0 � �j � 2 :As explained in Example 2.2, this guarantees max-norm monotoniity and the TVDproperty for ut + f(u)x = 0 with f 0(u) � 0 (for the relevant range of u values).As mentioned already above, the formulas for the right states uRj�1=2 are essentiallythe same (reexion around xj�1=2), and these will be used if we have f 0(u) < 0 for all(relevant) u values. With an arbitrary ux funtion f(u) a suitable ux splitting is tobe used, for example the simple Lax-Friedrih splitting given in [16, 23℄.Remark A.1 The numerial uxes fj+1=2(u) = f(uj+1=2) of the limited disretizationare Lipshitz ontinuous,jfj+1=2(~u)� fj+1=2(u)j � Lk~u� ukj1for all ~u = [~uj ℄; u = [uj ℄ 2 Rm . This is not obvious from (A.3), (A.5), beause theratios �j will not satisfy a Lipshitz ondition. However, if we denote �j = uj+1 � uj ,then by onsidering the di�erent sign possibilities it is seen thatuLj+ 12 = uj + sign(�j)min �j�j j ; L1;j j�j j � L�1;j j�j�1j ; j�j�1j�if sign(�j) = sign(�j�1), and uLj+1=2 = uj otherwise. From this the Lipshitz onditionan be dedued, with Lipshitz onstant L determined by the atual grid. 3A.2 Auray testConsider the advetion equation ut + ux = 0, 0 < x; t < 1, with spatial periodi-ity and initial value u(x; 0) = sin4(�x). The relative L1-errors of the spatial dis-retization are given in Table 3 for various grids with m points, m = 20; 40; 80; 160.These results are to be ompared with those in Appendix B of [1℄. The randomgrids are hosen by �rst generating random numbers �j 2 [ 12 ; 1℄ and then setting�xj = �j=Pmk=1 �k. The grids indiated by `Blok1' and `Blok2' are yli repetitionsof (�x1;�x2;�x3;�x4) = (h; 2h; 3h; 4h) and (�x1;�x2;�x3;�x4) = (h; 2h; 10h; 11h),respetively, with appropriate h = 4=(10m), h = 4=(14m), respetively.The results ompare favourably to those in [1℄, where it should be noted that therandom grid used here has more variation in [1℄ and also the initial pro�le has beenslightly hanged to make it periodi.We also note that the above limiter does not �t into the framework of slope limitingwith linear reonstrution onsidered in [1℄. There it is required that on eah ell Cjwe have an approximation u(x) = uj + (x� xj)sj , with slope sj that may be limited,and then uRj� 12 = uj � 12�xjsj ; uLj+ 12 = uj + 12�xjsj :To ahieve this in the above algebrai framework one needs a ertain `symmetry'ondition to ensure that uj is the average of uRj�1=2 and uLj+1=2.The spatial disretization used in [3℄ is of the same form as (A.5) but with di�erentoeÆients k;j . In the above auray test this sheme gave less aurate results,35



Table 3: Relative L1-errors for salar advetion on non-uniform gridsUniform Random Blok 1 Blok 2Non-lim., m = 20 4:79 � 10�2 5:14 � 10�2 6:06 � 10�2 9:65 � 10�2Non-lim., m = 40 6:82 � 10�3 7:49 � 10�3 9:13 � 10�3 1:58 � 10�2Non-lim., m = 80 8:70 � 10�4 9:49 � 10�4 1:18 � 10�3 2:05 � 10�3Non-lim., m = 160 1:09 � 10�4 1:19 � 10�4 1:49 � 10�4 2:60 � 10�4Limited, m = 20 6:57 � 10�2 6:79 � 10�2 9:35 � 10�2 1:45 � 10�1Limited, m = 40 1:36 � 10�2 1:49 � 10�2 2:02 � 10�2 3:32 � 10�2Limited, m = 80 2:65 � 10�3 2:97 � 10�3 4:25 � 10�3 7:56 � 10�3Limited, m = 160 4:97 � 10�4 5:73 � 10�4 8:11 � 10�4 1:58 � 10�3
due to the fat that then the non-limited sheme is only of order two. The errorswith limiter were then a fator three to four larger than in Table 3 on the �ne grids,m = 160.Finally we note that the limited shemes used in [26℄ are based on saled ratios �j =�j�1=�j with �k = (uk+1 � uk)=�xk. It is not too diÆult to show that suh shemesare not TVD or positivity preserving, but in tests they do perform quite well; there areovershoots, but these are very minor. Nevertheless, to remain within the theoretialframework outlined in Setion 2.3, the disretization (A.5) seems preferable.Referenes[1℄ M. Berger, M.J. Aftosmis, S.M. Murman, Analysis of slope limiters on irregulargrids. AIAA Paper 2005-0490, 2005.[2℄ K. Burrage, J.C. Buther, Nonlinear stability of a general lass of di�erentialequation methods. BIT 20 (1980), 185{203.[3℄ E.M. Constantinesu, A. Sandu, Multirate timestepping methods for hyperbolionservation laws. Report TR-06-15 (913), Dept. Comp. S. Virginia Teh, 2006.[4℄ C. Dawson, R. Kirby, High resolution shemes for onservation laws with loallyvarying time steps. SIAM J. Si. Comput. 22 (2000), 2256{2281.[5℄ S. Gottlieb, C.-W. Shu, E. Tadmor, Strong stability preserving high-order timedisretization methods. SIAM Review 42 (2001), 89{112.[6℄ M. G�unther, A. Kv�rn�, P. Rentrop, Multirate partitioned Runge-Kutta methods.BIT 41 (2001), 504{514.[7℄ L. Ferraina, M.N. Spijker, An extension and analysis of the Shu-Osher represen-tation of Runge-Kutta methods. Math. Comp. 74 (2005), 201{219.[8℄ A. Harten, High resolution shemes for hyperboli onservation laws. J. Comput.Phys. 49 (1983), 357{393.[9℄ E. Hairer, S.P. N�rsett, G. Wanner, Solving Ordinary Di�erential Equations I {Nonsti� Problems. Seond edition, Springer Series Comput. Math. 8, Springer,1993.
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