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ABSTRACT

Multirate schemes for conservation laws or convection-dominated problems seem to come in
two flavors: schemes that are locally inconsistent, and schemes that lack mass-conservation. In
this paper these two defects are discussed for one-dimensional conservation laws. Particular
attention will be given to monotonicity properties of the multirate schemes, such as maximum
principles and the total variation diminishing (TVD) property. The study of these properties will
be done within the framework of partitioned Runge-Kutta methods.
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Abstract
Multirate schemes for conservation laws or convection-dominated problems seem
to come in two flavors: schemes that are locally inconsistent, and schemes that
lack mass-conservation. In this paper these two defects are discussed for one-
dimensional conservation laws.

Particular attention will be given to monotonicity properties of the multirate
schemes, such as maximum principles and the total variation diminishing (TVD)
property. The study of these properties will be done within the framework of
partitioned Runge-Kutta methods.
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1 Introduction

Multirate schemes for conservation laws that have appeared in the literature all seem
to have one of the following defects: there are schemes that are locally inconsistent,
e.g. [3, 4, 17, 18], and schemes that are not mass-conservative, e.g. [26]. In this paper
these two defects are discussed for one-dimensional conservation laws u; + f(u), = 0.
We will mainly concentrate on time stepping aspects for simple schemes with one
level of temporal refinement. The spatial grids are assumed to be given and fixed in
time. Spatial discretization of a PDE (partial differential equation) then leads to a
system of ODEs (ordinary differential equations), the so-called semi-discrete system.
Particular attention will be given to monotonicity properties of the multirate time
stepping schemes, such as maximum principles and the total variation diminishing
(TVD) property.

After some preliminaries, we will present in Section 3 a detailed analysis of two
multirate forward Euler schemes, due to Osher & Sanders [18] and Tang & Warnecke
[26]. The first of these schemes is inconsistent at interface points, but it will be
shown that convergence of order one can be still obtained in the maximum-norm.
Furthermore, we will see that step size restrictions for monotonicity will depend on
the type of monotonicity: in general the restrictions for maximum principles can be
more relaxed than for the TVD property.

*The work of A. M. is supported by the Netherlands Organisation for Scientific Research NWO.
tThe work of V.S. is supported by a Peterich Scholarship through the Netherlands Organisation
for Scientific Research NWO.



In Section 4 we will present some multirate schemes that are based on a standard
two-stage Runge-Kutta method. These multirate schemes were recently introduced
by Tang & Warnecke [26], Constantinescu & Sandu [3], and Savcenco et al. [22]. For
these schemes some results of numerical experiments for linear advection and Burgers’
equation are discussed.

For the analysis of general multirate schemes it is convenient to write them in the
form of partitioned Runge-Kutta methods. In Section 5 it will be seen that recent
results for (standard and additive) Runge-Kutta methods of Higueras, Ferracina and
Spijker [7, 10, 11, 25] can then be employed to obtain monotonicity results for the
multirate schemes through the partitioned Runge-Kutta methods. As for the forward
Euler multirate schemes, the step size restrictions for maximum-norm monotonicity
and maximum principles are in general more relaxed than for the TVD property.
Comparison of the theoretical results with the numerical tests indicates that the re-
strictions for maximum-norm monotonicity are more relevant in practice. This section
also contains a discussion on local and global temporal errors for problems with smooth
solutions. To understand the convergence behaviour of the schemes, the propagation
of the local errors, with associated damping and cancellation effects, are to be taken
into account.

2 Preliminaries

2.1 Forward Euler multirate schemes for the advection equation
2.1.1 Ezamples of simple schemes
Consider as a simple example the advection equation

ur+u, =0 (2.1)

on a one-dimensional spatial region 0 < z < 1 with given initial value u(z,0), and
inflow boundary condition u(0,t) or spatial periodicity. Spatial discretization is per-
formed with the first-order upwind scheme on cells C; = (z; — 1Az, z; + 1 Az;). This
gives a semi-discrete system
1 .
ui(t) = — (uj—1(t) — u;(t)) forjeZ={1,2,...,m}, (2.2)

J Aitj

where /;(t) = 4 ;(t), and u;(t) approximates u(z;,t) or the average value over the
surrounding cell C;.

Application of the forward Euler method with time step At gives the CFL stability
condition v; <1 for all j, where v; = At/Ax; is the local Courant number. Suppose
this stability condition is satisfied for j € Z; but on Zy = Z — Z; we need to take two
smaller steps with step size %At to reach t, 11 = t, + At.

Then for this simple situation, the scheme of Osher and Sanders [18] can be written

as
§ .
N I for j €11, (2.3a)
! uj +5v(uj_g —uj)  forje Iy,
1 1
ut =l Lyl — )+ v —u ) forjeZ. (2.3b)

As observed in [26], the scheme (2.3) is not consistent at the interface: ifi—1 € 7;
and 7 € Zo then

1 1 L 1-— lI/;
A (=) = (e = g ) = o (- ),



which is consistent for fixed Courant number v; with the equation

up + (1 fvi)u, = O(At) + O(az;)
rather than the original advection equation (2.1).

To overcome this inconsistency, Tang and Warnecke [26] therefore proposed the
modified scheme

u; = uj + 5vi(uf_y —uj) forjez, (2.4a)
1 .
n+1 n+3i Vi (U?A o ’U‘;l) for J € 7 ’ b
uj o= Uyt mael  pyl . (2.4b)
1 (u; 2 — 2)  for j €T
sVi(uj ¢ —u; orjel,.

This scheme, however, is not mass conserving at the interface. If i —1 € 7y and i € Z»
then the flux at z;_;,, that leaves cell C; | over the time interval [t,,t,11] equals
u?_;, whereas the flux that enters C; is given by %(U;LI + u?jll/Z).

It should be noted that except for interface points the schemes (2.3) and (2.4) are
identical. For example, if 7y = {j : j < i} and Zo = {j : j > i}, then (2.3) and (2.4)
give in one step the same result for j # i. It will be shown next that, also with larger
interface regions, the properties of internal consistency and mass conservation cannot
be combined.

2.1.2 Incompatibility of consistency and mass conservation
Consider the first-order upwind discretization (2.2) for the advection equation with
spatial periodicity. Then
M = ZijUj(t) .
JET
is a conserved quantity. If the u; are densities, this is global mass conservation.

Now suppose that for j < k; we use forward Euler with step size At, for j > ko we
apply forward Euler with step size %At, and on the interface region k1 < j < ko we
take any combination of a number of forward Euler steps with At and %At together
with interpolation or extrapolation. The result can be written as

uj +v(uf_y —uj), 1<j <k,
m
1 2 .
u;”r = u? + I/j(u;Ll — u?) +v; Zajk up , k1 <j <k, (2.5)
k=1
u? + v (u?  —u?) + ll/z(un —2u? , +ul) ko <j<m
J JVTi-1 J 47§\ -2 i—1 j/ s 2<J]Jxm,

with unspecified coefficients a;, and with uy = u,, due to spatial periodicity. The
interface at x = 0,1 poses no problem here. We will show that this scheme cannot be
both mass conservative and consistent, no matter how the scheme is defined on the
interface region k1 < j < ko. For convenience it can be assumed that the spatial grid
is uniform, v; = v = At/Az, and we set o, = 0 for j < k; and j > k.

Insertion of exact solution values in the scheme gives for k1 < j < ks the truncation
error

1 1

At &
E(u(xj,tn+l) —u(zj, tn)) — E(u(xj,l,tn) —u(zj, tn)) — e ;ajku(xk,tn) .



For consistency, that is, truncation error O(At)+O(Az), we obtain by Taylor expansion
the conditions

ajp=0, Y (k—jajp=0 fork <j<ks. (2.6)
k k
On the other hand, we have

t? t2
AJJZU;.H* - AmZu? = %ZZajkuZ + 4AA—$ Z (U;LQ — 2u?71 +u?)
J j ik

2 j>k22
N At2
<; 031Uk + g1 ~ g ke
from which it seen that the requirement of mass conservation leads to
0 ifk#ky—1ko,
Sajp=3 —3 ifk=k—1, (2.7)

T ifk=ke.

However, the conditions (2.6) and (2.7) together lead to a contradiction:

ZZ —yajk—zz (k= ko +1) = (G = ko + 1))y
:Z(jfkg—l—lzajk*z:k kg—}—l Zajkuajkzz—
k

J

This shows that consistency and mass conservation cannot be valid at the same time.

2.2 General formulations

In this paper we will discuss monotonicity properties and temporal convergence of
multirate schemes for general semi-discrete problems in R™,

u'(t) = F(u(t)), u(0) = ug . (2.8)

The approximations to u(t,) = [u;(t,)] € R™ will be denoted by u, = [u]] € R™.
As above, we consider partitioning Z = Z; U Z,. Corresponding to these sets Zy, let
I1,I, be m x m diagonal matrices with diagonal entries 0 or 1, such that (Ix);; =1
for j € Iy, k = 1,2. We have I1 + I, = I, the identity matrix.

The semi-discrete system (2.2) obviously fits in this form with linear F.. The general
system (2.8) allows nonlinear problems and nonlinear discretizations. For such systems

the Osher-Sanders scheme (2.3) becomes

Upyl = Up + %AtIQF(un) ,

! L (2.9)
Unt1 = Un + 5ALF (up) + ALF (U4 1),
and the Tang-Warnecke scheme (2.4) reads
Upii = Un + %AtF(un) (210)
Upt1 = Up + AL F(uy,) + AtIz (F(un) + F(un+%)) .

In the following we will refer to (2.9) as the OS1 scheme, and to (2.10) as the TW1
scheme. We note that in [18] and [26] the number of sub-steps on the index set Z,
was allowed to be larger than two for these schemes. More general formulations will
be considered in Section 5.



2.3 Monotonicity assumptions

Consider a suitable convex function,’ semi-norm or norm |v|| for v = [v;] € R™.
Interesting examples are the maximum-norm

|v]co = 1r;agxm lvj], (2.11)
or the total variation semi-norm
||’UHTV = Z "Uj,1 — ’Uj‘ With Vo = Um (2.12)

arising from one-dimensional scalar PDEs with spatial periodicity.
The basic monotonicity assumption on the semi-discrete system that will be used
in this section is

v+ 7L F(v) + 3L F(@)| < || forallv e R™ and 0 < 7,7 < 79, (2.13)

where 79 > 0 is a problem dependent parameter. For the multirate schemes we shall
determine factors C such that we have the monotonicity property

lunt1]l < ||lun|| whenever At < Cryp. (2.14)

For a given scheme, the optimal C will be called the threshold factor for monotonicity.
In general, such monotonicity properties are intended to ensure that unwanted over-
shoots or numerical oscillations will not arise. Following [23, 24] we will call a scheme
total variation diminishing (TVD) if (2.14) holds with the semi-norm (2.12). If the
(semi-)norm is not specified, methods that have a positive threshold C' can be called
strong stability preserving (SSP), as in [5] for standard, single-rate methods.

Example 2.1 Apart from (semi-)norms, such as ||v||, and ||v|/«, we can also con-
sider convex functions. For example, following [25], consider

[vll+ = Bax g, [vll- = - nin 0.

Then, having (2.14) for both these convex functions amounts to the maximum principle

min u?<u’?< maﬂ(u0 foralln>1and 1< j<m.

1<i<m J = 1<i<m

In general, this is of course somewhat stronger than having monotonicity in the
maximum-norm, ||tn41|lec < ||tn]lco, but for the schemes considered in this paper
the associated threshold values C' will be the same. <

Example 2.2 Consider a scalar conservation law u; + f(u), = 0 with a periodic
boundary condition, and with 0 < f’(u) < a. Spatial discretization in conservation
form gives semi-discrete systems (2.8) with

1
B = 5 ()~ F034)
IRecall that ¢ : R™ — R is a convex function if ¢((1 — 8)v + 6w) < (1 — 8)¢(v) + 8p(w) for all
f € [0,1] and v,w € R™. If we have ¢(v) > 0, ¢(v + w) < ¢(v) + ¢(w) and
t ¢

B(Mv) = |A|p(v) for all
0

AeER v,we ]Rm, then ¢ is a semi-norm. If it holds in addition tha only if v = 0, then ¢

is a norm.

v) =



where v;41,, are the values at the cell boundaries, determined from the components
of v = [v;] € R™. Using limiters in the discretization it can be guaranteed that

Yi-3 ~ Yi+3

0 < = < 1+u

Vj—1 — V5
with a constant x4 > 0 determined by the limiter; see also formula (8) in [4]. This holds
trivially for the first-order upwind discretization with u = 0; a detailed higher-order
example will be given in Appendix A. It now follows that Fj(v) can be written as

(v) _ aj(v)

Aa:j

(vjfl_vj)a .j:la"'ama Vo = Um

where
0<a;(v) <a(l+p) for all j and v € R™.

Suppose that Az; = h for j € Z; and Azx; = %h for j € Zo. Then a well-known
lemma of Harten [8, Lemma 2.2] shows that (2.13) will be valid for the total variation
semi-norm (2.12) provided that

aTg 1

h = 1+4+p
Moreover, it is easy to see that (2.13) will also hold in the maximum-norm under the

same CFL restriction. O

3 Analysis of the forward Euler multirate schemes

3.1 Monotonicity results
3.1.1 Monotonicity results for scheme TW1

Standard (single-rate) schemes give the same step size restriction for various mono-
tonicity properties. As we shall see, with the multirate schemes different step size
restrictions are obtained for the maximum-norm or the total variation semi-norm.

In the first stage of the TW1 scheme (2.10) we have of course

[tpg il < luanl| whenever At < 5.
The second stage can be written in the form
tngr = (1= 0)up + (1 — 5ALF (un)) + AL F(up) + 5AtE (F(un) + F(u,, 1)),

with arbitrary 6 € [0,1]. This leads to

Unp1 = (1-— 9)(un + %AthF(un) + %AtIQF(un)) o)
3.1
1
+ 9(un+% v %AtIQF(un_i_%)) .
Under assumption (2.13) this gives the monotonicity property (2.14) with
2(1-6
C = maxmin(l, (2 9),0):27\/5. (3.2)
0<6<1 -

This value C = 0.58 is valid for general semi-norms. So, in particular, it provides a
TVD result for schemes with limiters.



Next, consider the maximum-norm. Then, by noting that the second stage can
also be written as

tny1 = I (un + AU F (u)) + I (un 1 + %AtIQF(unJr%)) ,

it directly follows (see also [26, Lemma 2.1]) that the threshold factor for max-norm
monotonicity is

c=1. (3.3)
Note that this result has been obtained by using the inequality

1110 + Thwl|]| < max(||v], [[wl]), (3-4)

which holds for the maximum-norm and for the convex functions || - ||+ from Exam-
ple 2.1, but not for general norms or semi-norms; in particular, it will not hold for the
total variation semi-norm.

3.1.2 Monotonicity results for scheme OS1
In the first stage of the OS1 scheme (2.9) we directly obtain

[tpgn ]l < luanll whenever At < 5.
The second stage can be written as
tngr = (1= O)un +0(u, 1 — 5ALLF(uy)) + FALF (u,) + 5ALF (u,,, 1)

with parameter 6 € [0,1]. Hence

Uppr = (1-— 9)(un + ﬁAthF(un) + %AtIQF(un))

1 (3.5)
+ 9(un+% + %AtF(un+%)) .

It follows that under assumption (2.13) the monotonicity property (2.14) holds with

— ; _ — 2
C = (Dax min (1,2(1-6),0) 3 (3.6)

Again, for the maximum-norm a better result can be obtained by considering
Iiuy,iq and Tou,qq separately. Multiplication of (3.5) with I; and taking § = 6, = %
gives

Ntni1 = 51 (un + AL F(un)) + 57 (g3 + AT F(,,1))

Likewise, with 8 = 65 = 1, it follows that
Ltni1 = Io(u, 1 + 3AtHF(u,, 1))
Hence the threshold factor for max-norm monotonicity is
c=1. (3.7)

This result, formulated in terms of a maximum principle, was already obtained in [18]
for first-order upwind spatial discretization and in [15] for a class of high-resolution
discretizations. In these papers also TVD results were presented; this will be discussed
below.



3.1.3 The TVD property for linear first-order upwind advection

For the linear advection equation u; + u, = 0 with spatial periodicity, the first-order
upwind discretization (2.2) can be written as

u'(t) = Au(t), A=H YE-1I), (3.8)

with H = diag(Azy,...,Az,,) and E the backward shift operator, (Fv); = v;_; for
i=1,...,m with vg = v,,. Consider also

A=HY(-T+ET).

This corresponds to first-order upwind discretization for u; — u, = 0. We denote
7 = AtA, Z = AtA. Then ~
Z=H"'Z"H.

For the OS1 and TW1 schemes applied to (3.8) we have u,4+1 = Su,, where the
amplification matrix S can be written as S = R(Z) with

Ry, (Z)=1+Z+ 71,7,
R(Z)Z{ 0s1 4

Row,(2) =T+ Z + 11,72,

TW1

Let R be such that

R(Z)Z = ZR(Z). (3.9)

It is easily seen that Ry, (Z) = I+ Z + 1221, and R, (Z) = I + Z + 1 Z1,Z. For
both schemes it follows by some simple calculations that

R(Z)=H 'R(Z)"H. (3.10)

As we saw above, both schemes OS1 and TW1 are such that

IR(Z)]|ls <1 (3.11)

whenever v; = At/Az; < k for j = Iy, k = 1,2. It will now be demonstrated that
under the same CFL restriction we have

I1R(Z)||py < V]l 2y for all v € R™, (3.12)

that is, the TVD property is valid with threshold C' = 1 for the special case of first-
order upwind advection discretization.

Lemma 3.1 If (3.10) and (3.11) are valid, then (3.12) is also satisfied.

Proof. Along with the discrete Li-norm on R™, |jv[l; = "7, Az;lv;], we also con-
sider the ¢;-norm ||v||g, = Z;"Zl |vj|, together with the induced matrix norms. Then

we have |W| s = [|[WT|ls, for any W € R™*™; see for example [12]. Moreover, it is
easily seen that ||W7T||,, = | H 'WTH]|, and therefore

Wl = [HT'WTH: .

Hence (3.10) and (3.11) imply }
IR(Z)|: <1. (3.13)



Further we have
[vlley = i vjm1 — o] = [Av]ly = o5 )1 2]
™V 7—1 il = 1= At 1.
j=1
Consequently, for a scheme u, 1 = R(Z)u, the TVD property (3.12) is equivalent to
|1ZR(Z)v||y = [|R(Z) Zv|1 < [|Zv]1 -
This is satisfied because |R(Z)w||; < ||w|; for any w € R™, in view of (3.13). O

The above result is not new for the OS1 scheme. In fact, already in [18] the result
was given for the case of first-order upwind discretization for non-linear problems. In
[15] this was extended to a class of high-resolution spatial discretizations. The proofs
of these more general results for the OS1 scheme are more technical than the above.

3.2 Convergence for smooth problems

In this section bounds for the global errors e, = wu(t,) — u, will be derived. It will
be assumed that the problem (2.8) is sufficiently smooth. Both the schemes OS1 and
TWI1 are covered by the formula

Upy1 =t + BALIF (uy) + $ALLF (uy), 610
L .
Upg1 = Uy + EAt(F(un) + F(un+%)) + Kkatly (F(u,) — F(un+%)) ,

with parameter value kK = 0 for OS1 and k = % for TW1.

If we insert exact ODE values u(ty), u(tn41/2), u(tns1) into the stages of (3.14)
we obtain residuals p,1/o and p,1, respectively. By Taylor expansions it is easily
found that

Prpy = ultyy1) = ultn) — KALT W (tn) — 5ALTU (tn)

= (§ — K)AtI! (t,) + gAt2" (t,) + O(AF)

Pt = ltni1) — ultn) — (51 + 61 ) At () — (31 — K1) Atu (t,, 1)
= At (31 + 16D/ (t,) + O(at?) .
Let Z, € R™*™ be such that
Zo(u(te) — ue) = AL(F(u(te)) — F(ue)) (3.15)

for all £ = n,n + %, n > 0. If F is differentiable we can take Z, as the integrated
Jacobian matrix

7 = /1 AP (Bu(te) + (1 — 6)ug) do.
0
For the errors in the two stages of (3.14) it follows that
€ntl =e€n+ k1 Z,e, + %Ianen +Pny s
ent1 = €n + %Znen + %ZnJr%eTH% + ﬁIl(Znen — n+%en+%) + Pnt1 -
Eliminating e, /2 we thus obtain a recursion for the global errors of the form

€nt1 = Spén +d,, n=0,1,..., (3.16)



with amplification matrix S,, and local discretization error d,,. The resulting expres-
sions are given below for k = 0, % The recursion (3.16) will be the basis for the
subsequent analysis. The method is called consistent of order p if ||d,| = O(atP+l),
and convergent of order p if |le, || = O(at?) for all n.

Since we want to study convergence at all grid points, including the interface points,
the natural norm is the maximum-norm. For stability it will be assumed that

11+ 11 Zg+ 31274l < 1, (3.17)

for all £ = n,n + % It is easily seen that we then have ||I 4+ 6111 Z; + %HQIQZ[HOC <1
whenever 0 < §; < 1. This is of the same form as (2.13), with F'(v) replaced by Zyv.
In combination with the smoothness assumptions on the problem this stability
result will easily lead to convergence for the TW1 scheme. Due to the inconsistency
at interface points, the error build-up is more complicated for scheme OS1. It will
still be possible to show convergence with order one under the following additional

assumptions:
[ 12Z||c0 < 4K < 4, (3.18)

1Zey 1 = Zilloo < Lat, (3.19)

for £ =n,n+ %, n > 0, with constants K € (0,1) and L > 0. Note that (3.18) may be
slightly stronger than the local CFL condition implied by (3.17) on the index set Zs.

3.2.1 Convergence of scheme TW1

For the TW1 scheme (2.10) we obtain from the above derivation, with k = %, the
expressions
Sn=L(I+2Zn) + LI+ 5Zy 1) (I + 520n), (3.20)

1 1 1
dn = A8 (I + 51 + glaZ, 1 )u" (tn) + O(AFY) (3.21)

As already noted above, (3.17) has the same form as (2.13). Therefore we can copy
the derivation leading to (3.3) which now gives the bound

[Snlloe <1 (3.22)

for the amplification matrix.
Furthermore, (3.17) implies |[I>( + $Z;)||c < 1, which provides the local error
bound
ldnlloo < AL (0" (n)[loo + O(AE?) .

Convergence now follows in a standard fashion. Summarizing, we have the following
result:

Theorem 3.2 Consider the TW1 scheme (2.10) with the time step restriction (3.17).
Then ||S]leo < 1, and we have the error bound

lenlloo < 5Tt max [l ()0 + O(aF), 0ty <T.

10



3.2.2 Convergence of scheme OS1

Also for the OS1 scheme (2.9) we can prove convergence with order one in the maximum-
norm, in spite of the local inconsistencies. For this result, damping and cancellation
effects are to be taken into account.

For the OS1 scheme we obtain from the above derivation, with k = 0, the expres-
sions

1 1 1
Sn =1+ 320+ 5Z, 1 (1+ 5122,), (3.23)
dn = 7ALZ, 1 T () + 1A (T + 32, 1 )u” () + O(at?). (3.24)

In the same way as above it follows that (3.22) is valid, showing stability of the
error recursion. However, here we get only an O(At) bound for the local errors because
ZpIh/ (t,) will not be an O(At) term in general; this is due to the fact that Iyu/(t) is
not a smooth grid function (jumps at the interfaces). To prove convergence we need
to establish a relation between local errors and amplification factors.

We have

Sp—T=2Z,1(T+ 11270) - %(ZM% ~ 7).

Hence
1 1 -1
Zn+% = (Sﬂ*I)Qn'FQ(Zn.F% 7Zn)Qna Qn: (I+ ZIQZW) .
Tt follows that we can decompose the local error as
dp = (Sn = 1)&n + M (3.25)
with
€n = FALQu I (1),
Mo = S8 (Zos = Z2)Qulnt () + SAR(T+ 12, ) (8,) + O(aF?).

2

(3.26)

Such a decomposition can be used to show convergence for scheme OS1; the argu-
ments are the same as in [14, p. 216] for constant S,, = S. Let us define é,, = e, + &,
for n > 0. Then

én+1 - Snén + Cin 5 dn = £n+1 - gn + Mn

for n > 0. Hence

n
énlloe < N€olloo + > lldklloo -
k=0

Since eqg = 0 we obtain
lenlloe < lléolloo + lénlloo + D (Iék+1 = Eklloo + [IMkllo) - (3.27)
k=0

It remains to bound the terms on the right-hand side. Under assumption (3.18) it
is easily seen that

1Qklloe < (1 —K)".

Moreover, we have

Qri1 — Qk = —3Qu(T2Zir1 — 12Z21) Qi1
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[Qr+1 — Qullo < %AtL(l ~K)72.
It follows that

l€xlloe < G~ K) At (1) oo
16k 11— Eklloo < 51— K) LA | (1) |oo + 3(1 = K) 7 A2 |[w" (k) |0 + O(at?),
Imelloo < g(1 = K) T LAl (t) oo + 7 A8 ()] -
Insertion of these three estimates into (3.27) gives the following convergence result.

Theorem 3.3 Consider the OS1 scheme (2.9) with the time step restriction (3.17).
Then ||S||oo < 1. Under the additional assumption (3.18), (3.19) we have the error
bound

llenlloo < (My+ MyTL)At max ||u'(t)]|co + M3TAt max |[u”(t)]0o + O(Atg) ,
+€[0,T] +€[0,T]

for 0 <t, <T, with My, My, M3 determined by K.

3.2.83 Convergence of OS1 for linear first-order upwind advection

Consider the first-order upwind discretization (2.2) for linear advection. Then (3.17)
will hold if At At

A—mjgl for j € 7y, mgl for j € Z.
These are the usual restrictions on the local Courant numbers. To have (3.18) we get
the restriction At

2A{Ej

<K<1 forjel,.

However, for this first-order upwind advection case the condition (3.18) with K < 1
is not needed. Let Z = AtA with A as in (3.8). Suppose for simplicity that Z; = {j :
j<i}, Iy ={j:j>1i} with given i € Z. Consider

(S—1)¢ = ZIv,

where £ = ¢, and v = v, = $Atu'(t,) in the local error decomposition (3.25). The
vector & will satisfy this relation if (I + %IgZ)f = Iv, that is

hé=Tlv, DL(I+32)¢=0.
It is seen that £ = [¢;] € R™ is given by

. vj \k+1
§=v; (for j<i), Sivk = (Vj_4) vi—1  (for k> 0),

where v; = At/Az;. Therefore ||{||o < [|v]|oo if ¥; <2 on Zs.

It follows that for this linear advection case, the local error decomposition (3.25)
will be valid under (3.17), with ||£,|lec = O(AL), [[€ns1 — &nllec = O(At?), and with
|1Mnllec = O(At?) containing the higher-order terms in the local error, leading to con-
vergence with order one.
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4 Second-order schemes

In the literature, several second-order multirate schemes for conservation laws have
been derived that are based on the standard two-stage Runge-Kutta method

uy = Uy + ALF (uy,), Upt1 = Up + %At(F(un) + F(“Z-H)) .
The second stage can also be written as
1 1 * *
Unt1 = FUn + §(un+1 + AtF(unH)) .

Monotonicity properties are more clear with this form. The method is known as the
explicit trapezoidal rule or the modified Euler method. In this section we consider
some multirate schemes, based on this method, with one level of temporal refinement.
Results on internal consistency and mass conservation are mentioned here, but a de-
tailed discussion will only be given in Section 5.

The second-order scheme of Tang & Warnecke [26] reads

2
Unyy = 3 (un +ul,y + 5AF (0] L))
Upir =11 (un + AtF(un)) + 1 (un+% + %AtF(un+%)) ,

Upp1 = %Il (un +upyq + ALF(uf ) + %IQ (un+% +ul g+ %AtF(u:;H)) .
(4.1)
We will refer to this scheme as TW2. It will be shown below that this scheme is
internally consistent but not mass-conserving.
Constantinescu & Sandu [3] introduced the following scheme, which will be referred
to as CS2,

3

* 1
Un+% = U, + AtIlF(un) + EAtIQF(Un)

1 *
* 1 .
uy g = I (Un + AtIlF(u,H_%)) + Iz(un+% + §F(Un+%)) )

Upi1 = Up + iAt(F(un) + F(u;‘LJr%) + F(upy1) + Fugy)) -

This scheme is mass-conserving but not internally consistent. Nevertheless, we will see
that it is still convergent (with order one) in the maximum-norm due to damping and
cancellation effects. Note that for non-stiff ODE systems the scheme will be consistent
and convergent with order two.

The related method of Dawson and Kirby [4] is also mass-conserving but not in-
ternally consistent. However in that scheme a limiter is applied which is adapted to
the outcome of previous stages, so it does not fit in the framework of this paper where
the semi-discrete system is supposed to be given a priori.

In Savcenco [21] several other multirate schemes of order two can be found for stiff
(parabolic) problems. These are Rosenbrock-type schemes that contain a parameter
v, and setting v = 0 yields an explicit scheme. We consider here the scheme that was
introduced in [22]; it will be referred to as SHV2. In this scheme, first a prediction
Up1 is computed, followed by refinement steps on Z; using interpolated values i, 1,2

13



on Z;. The scheme reads

Uy = Uy + ALF (uy),

_ 1 1- 1 ~
lni1 = HUn + 5lpy + §AtF(“:+1)a

_ 1 1_ 1%
unJr% = Eun + Zun+1 + Zun+1 )
~ 1
u:‘H_% =N, 1 + I (un + iAtF(un)) , (4.3)
= 1 1« 1 *
Upy1 = Dyt + I (3un + SUny1 T ZAtF(un+%)) ,

* - 1
Up gy = Nl + I (Un_‘_% + §AtF(un+%)) ,

_ 1 1 . 1 .
Unt1 = D1Upg1 + I2(§Un+% +5Un + ZAtF(Un+1)) .

This scheme will be seen to be internally consistent but not mass-conserving. We note
that (4.3) could be written with fewer stages; there are no function evaluations of @41
and 1, 1, so these vectors are just included for notational convenience. Further we
note that this scheme was not intended originally as used here. Instead, the prediction
values uj, | and @41 were used in [22] to estimate local errors, and based on this
estimate the partitioning 7 = 7; U Z, was adjusted. For the schemes in the present
paper the partitioning is supposed to be given, based on local Courant numbers.
The interpolation step in (4.3) can be written as

_ 3 1- 1
Upil = ZUn + 7Un+1 + ZAtF(un) , (44)
which corresponds to quadratic Hermite interpolation. As an alternative we can also
consider linear interpolation

1 1_
PR VRN T (45

but in the numerical tests (4.4) gave somewhat better results (errors approximately
5% smaller) in general.

In practical applications, for systems of conservation laws, evaluation of the func-
tion components F;(v) will be the main computational work. Note that if I F(v) is
needed then v should be known on Z;, and on a few additional points near the interface
(how many points depends on the stencil of the spatial discretization). If we ignore
these interface points, and assume that Z; contains m; points, m; +mo = m, then we
can easily estimate the amount of work per step with the schemes. For the schemes
TW2 and SHV?2 this is 2(m + ma)p,, , and for the CS2 scheme it is 4mpu,, , where u,
is the measure of work for a single component Fj;(v). Therefore, if mo < my, that
is, temporal refinement is only needed at few points, then the CS2 scheme will be
approximately twice as expensive as the other two schemes.

4.1 Numerical tests

An analysis of the above second-order schemes will be given in the next section in
the framework of partitioned Runge-Kutta methods. Here we already present some
numerical results that will serve as benchmarks for the analysis.

4.1.1 Linear advection with smooth solution

As a first test on the accuracy of the schemes we consider the linear advection equation
(2.1) on the spatial interval 0 < z < 1 with periodic boundary conditions, and time in-
terval 0 < t < T = 1. For test purposes a uniform spatial grid is taken, so that interface

14



Table 1: Results for the smooth advection problem with the CS2, TW2 and SHV2 schemes.
Maximum errors and Li-errors at final time ¢ty = T for various m with fixed Courant number
v =04

] m H 100 200 400 800
CS2, |len|loo 1.97-1072 | 5.64-107* | 1.88-107* | 9.96-10°°
CS2, |len|1 711-107* | 1.84-107* | 4.85-107° | 1.28.107°

TW2, |len || 6.08-107* | 1.57-107* | 3.98-107° | 9.99.10°
TW2, |len]l1 285-107* | 7.35-107° | 1.86-107° | 4.66.10"°

SHV?2, |len||so 6.10-107* | 1.57-107* | 3.95-107° | 9.90-10°¢
SHV?2, |len|1 291-107* | 7.40-107° | 1.86-1075 | 4.66 107 °

effects are certainly not due to the spatial discretization, for which the WENQOS5 scheme
is chosen; the formulas for this discretization can be found for example in [23]. Tem-
poral refinement is used at the union of spatial intervals Dy, = {z : |z — k/10] < 1/40},
k=1,...,9, and we consider a fixed Courant number v = At/Az = 0.4.

For this accuracy test a smooth solution u(z,t) = sin?(7(z —t)) is considered. The
errors in the maximum-norm and discrete Li-norm (|[v[[1 = }_; Az;|v;|) are presented
in Table 1. Tt is seen that with the CS2 scheme we have only first-order convergence
in the maximum-norm, due to the interface points; the Li-errors are still second-
order. For the schemes TW2 and SHV2 we see an order two convergence also in the
maximum-norm. The entries in Table 1 are the total (absolute) errors with respect
to the PDE solution, but it was verified that the spatial errors are much smaller here
than the temporal errors.

To see that the large errors for scheme CS2 in the maximum-norm are indeed caused
by the interface points, the errors as function of = at the final time with m = 800 are
displayed in Figure 1. The (relatively) large errors for CS2 at the interface points are
clearly visible. For scheme TW2 there are no visible interface effects. The errors for
SHV?2 are almost the same as for TW2.

0.5
0 === > v
_05
-1 L L L L L L L L L I
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1: Errors versus z; € (0,1) at final time ¢ty = T for the schemes CS2 (thick solid
line) and TW2 (thick dashed line), m = 800.

The CS2 scheme is not internally consistent at the interfaces, but we see in this
test that it is still convergent. This is similar as with the OS1 scheme.

The linear advection test was repeated with an initial block-function with the aim
of seeing the effect of the lack of mass-conservation for the TW2 and SHV2 schemes.
In general, mass conservation is needed to guarantee a correct shock speed and shock
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location. However, this test with a block function showed very little difference between
the schemes.

4.1.2 Burgers’ equation with stationary shock

In the above numerical test the lack of mass conservation for scheme TW2 only gave
a very small effect. To make this effect more pronounced we consider the Burgers
equation with a stationary shock at a grid interface. The equation is given by

ue + %(uQ)z =0 (4.6)

for0 <t <T=03and —1 < z < 1, with initial profile

(1 iflz <03,
u(z,0) = { —1 otherwise,
and boundary conditions u(—1,¢) = u(1,t) = —1. This will lead to a rarefaction wave
around x = —0.3 and a stationary shock at z = 0.3. In this experiment refinement is

used at D = U2, [yg, yr + 0.1], yr. = 0.2k — 1.1. So the stationary shock is located at
a grid interface.

The spatial discretization is given by the limited TVD scheme of Appendix A
using a cell-centered non-uniform grid with mesh widths Az; = %Az if z; € D, and
Az; = Az otherwise. Also 7, = {j : z; € D} and Z; = T\ Z,, so that spatial and
temporal refinements are taken at the same points.

Numerical solutions at the output time ¢t = T are shown in Figure 2 for Az = %
and v = At/Ax = 0.8. The left picture shows the solution with —1 < z < 1 for the CS2
scheme. Differences between the schemes are not well visible on this scale. Therefore
the right picture shows a zoom around x = 0.3 for the schemes TW2, CS2 and SHV?2.
One sees that with CS2 the shock location is correct; there is some smearing due
to numerical diffusion in the spatial discretization, but it is more or less symmetric
around z = 0.3. The solution of TW2 is leaning too much to the left, and for SHV2

too much to the right. This due to the lack of (local) conservation.

0.5 1 0.28 0.29 0.3 0.31 0.32

Figure 2: Numerical solutions at time 7' = 0.3 for Az = %, v = 0.8. Left picture: initial
profile (dashed), and semi-discrete solution for —1 < = < 1. Right picture: solutions around
the stationary shock with the schemes TW2 (0 marks), CS2 (o marks) and SHV2 (¢ marks),

and with exact PDE solution (dashed line).

Let M(v) = > ; Azjv;. (If the v; were densities, this would be total mass; for
Burgers’ equation it is more natural to think of momenta.) Then M (u(t,)) — M (u,,) is
a conservation defect. Figure 3 shows this defect at the final time ¢ = T for the three
schemes on a fixed spatial mesh, Az = 1/160, and with v = At/Az varying between
0 and 1.2. (We have taken v = k/40, k = 1,2,...,48, with markers placed when v is
a multiple of 0.1.) In the same figure, middle plot, the increase of the total variation
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|lun]| . is displayed. The total variation should be 4, as for the PDE solution, and
this is the numerical value for the semi-discrete system (within machine precision). In
this example it is conserved with larger Courant numbers for the scheme CS2 than
for TW2 and SHV2. The right plot in the figure shows the increase of the maximum
norm ||un /e — 1.

In these figures overflow values are not plotted. The schemes CS2 remained stable
in this test up to v = 1.2, which is slightly larger than with the other two schemes.
The instabilities did emerge at the stationary shock. Adding some initial perturbations
results in instability for v > 1 with all three schemes.

Conservation defect TV increase Max—norm increase

0.01
0.005

-0.005
-0.01

-0.015
0

Figure 3: Conservation defects and increase of total variation and max-norm for 0 < v < 1.2
with Az = -1, for the schemes TW2 (0 marks), CS2 (o marks) and SHV2 (¢ marks).

1607

Finally, in Figure 4 the logarithm (base 10) of the Lj-errors of the three schemes
are given, again for Az = 1/160 with varying v. Both the errors with respect to the
semi-discrete solution and the errors with respect to the PDE solution are plotted. It
is seen that the ODE errors for CS2 are smaller than for the other two schemes for
large Courant numbers. That is due to the fact that CS2 has a smaller error near the
stationary shock. However, this scheme is more inaccurate than TW2 and SHV2 in
the rarefaction wave, similar as in the previous test, and that reveals itself in the larger
error for small Courant numbers. In the PDE errors the spatial errors will become
dominant for small time steps, so there the best results are found for CS2 overall.
From the PDE point of view, temporal errors less then 10~2 are not relevant on this
spatial grid where we have a spatial error of 3.4 - 10~2 approximately (PDE error for
v —0).

ODE error PDE error

0 02 04 06 08 1 12 0 02 04 06 08 1 12
Figure 4: Logarithm (log,,) of the L;-errors, with respect to the exact semi-discrete solution

(ODE error) and the exact PDE solution (PDE error), for 0 < v < 1.2 with Az = 4.
Results for the schemes TW2 (10 marks), CS2 (o marks) and SHV2 (¢ marks).
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4.1.8 Burgers’ equation with moving shock

The last test is again Burgers’ equation (4.6), but now with a moving shock. We take
0<t<T=0.6,—-1<2a <1 with initial profile

u(z,0) = 1 if-06<2<0,
"1 0 otherwise.

and boundary conditions u(—1,%) = u(1,#) = 0. This will lead to a rarefaction wave
between z = —0.6 + ¢ and = = 0, together with a moving shock at = = %t. Further,
we use the same set-up as in the previous test.

The solutions at time 7' = 0.6 are shown in Figure 5. The enlargement around the
shock at x = 0.3 now shows very little difference between the three schemes. So the
lack of mass conservation for the TW2 and SHV2 schemes does not have much impact
for this test. This is similar as in the tests of [26] for the TW2 scheme.

-1 -0.5 0 0.5 1 0.28 0.29 0.3 0.31 0.32

Figure 5: Numerical solutions at time T' = 0.6 for Az = %, v = 0.8. Left picture: initial
profile (dashed), and semi-discrete solution for —1 < < 1. Right picture: solutions around
the moving shock with the schemes TW2 (o marks), CS2 (o marks) and SHV2 (¢ marks),
and with exact PDE solution (dashed line).

The conservation defects and the increase of total variation and maximum-norm,
with fixed mesh width Az = ﬁ and variable v, are displayed in Figure 6. Here we
see that all three schemes start to loose the TVD property when Courant numbers
become larger than 0.8, approximately. The plot on the right of the overshoot values
|lun||oo —1 looks similar, except that now the increase starts at Courant number one.
The loss of the TVD property for v € [0.8,1] is cause by oscillations at the shock, not
in the rarefaction wave.

X 10'4 Conservation defect TV increase Max-norm increase
15 0.2 0.2
0.15 0.15
0.1 0.1
0.05 0.05
of 0RO O0O0
-5 -0.05 -0.05
0 0.5 1 0 0.5 1 0 0.5 1

Figure 6: Conservation defects and increase of total variation and max-norm for 0 < v < 1.2
with Az = -+, for the schemes TW2 (0 marks), CS2 (o marks) and SHV2 (¢ marks).

1607

We see that the conservation defect in this test is much smaller than in the previous
test with a standing shock at a grid interface. Of course, both these tests are somewhat
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academic, but for practical situations the present test with a moving shock seems more
relevant. Monotonicity for the TW2 and SHV2 schemes holds with larger Courant
numbers than in the previous test. This is caused by the fact that in the previous
test there were two incoming fluxes at the standing shock, whereas now we have one
incoming and one outgoing flux at each grid cell. In the standing shock test the
conservation property of the CS2 scheme did suppress the tendency of increasing the
total variation and maximum-norm.

In Figure 7 the temporal (ODE) errors and total (PDE) errors are plotted, again
with fixed mesh width Az = ﬁ and variable v. The ODE errors for the CS2 scheme
are larger than for the other two schemes for small Courant numbers, but for the PDE
errors this is not relevant here. In the plot of the PDE errors we see that here the
SHV2 scheme gives somewhat larger errors than the TW2 and CS2 schemes. Detailed
inspection of the solution plots revealed that this is due to a slight dissipation with
SHV2 at the top and bottom of the rarefaction wave. We did notice, however, that
these errors are quite sensitive to the precise set-up of the test. For example, with
T = 0.5 and initial profile u(0,z) = 1 for —T < = < 0 and 0 otherwise, then the PDE
errors of SHV2 were smaller than with the other two schemes for the larger Courant
numbers.

ODE error PDE error
-2 T -2 T
-25
-3
-35
-4 - - - - - -2.6 - - - - - -
0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2

Figure 7: Logarithm (log,) of the L;-errors, with respect to the exact semi-discrete solution
(ODE error) and the exact PDE solution (PDE error), for 0 < v < 1.2 with Az =
Results for the schemes TW2 (o0 marks), CS2 (o marks) and SHV2 (¢ marks).

1
160

For theoretical purposes it is interesting to note that with the Burgers flux function
f(u) = $u® we have f'(u) € [0,1] in this test. Furthermore, the mesh width in space
is Az; = Az/k for j € Iy, k = 1,2, and p = 1 for the used spatial discretization.
Therefore, as discussed in Example 2.2, the monotonicity assumption (2.13) will be
satisfied with

1
T0 — §A$

for both the maximum-norm and for the total variation semi-norm. Note that with
the first-order upwind discretization this would be 7 = Az.

5 Partitioned Runge-Kutta methods

5.1 General properties

In the multirate examples considered thus far, only one level of refinement was used to
keep the notation simple. Generalizations will be formulated in this section in terms
of partitioned Runge-Kutta methods; see also [3, 6]. This will enable us to present
the schemes in a compact fashion. Since this paper is concerned with schemes for
conservation laws, we will restrict ourselves to explicit methods.
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For the ODE system in R™, arising from semi-discretization of a PDE with given
initial value,

u'(t) = F(u(t)), u(0)=ug, (5.1)

let Z =7, U---UZ,. be an index partitioning with corresponding diagonal matrices
I =1, +---+ I, where the entries of the I} are zero or one, and I is the identity
matrix. For a time step from ¢, to t,41 = t, + At, an explicit partitioned Runge-Kutta
method reads

r oi—1
k :
Uni = un—I—AtZZan)IkF(vn,j), i=1,...,s,
k=1j=1
P’ s (5.2)
k
Uppl = Up + Atz Z bg- )IkF(vn,j) .
k=1 j=1
The internal stage vectors v, ;, i = 1,...,s, give approximations at intermediate time

levels. The multirate schemes of the previous sections all fit in this form with » = 2.
With r > 2 more levels of temporal refinement are allowed.

5.1.1 Internal consistency and conservation
i—1 .
Let ¢ =Y ;.:1 a®,i=1,...,s If we have

cgk):cl(-l) forall1<k,l<rand1<i<s, (5.3)

then the internal vectors v, ; will be consistent approximations to u(t, + c;At), and
the method will be called internally consistent. As will be seen, this is an important
property for the accuracy of the method when applied to semi-discrete systems.
Apart from consistency, we will also regard global conservation, for example mass
conservation. Suppose that hT = [hy,..., h,,] is such that hTu(t) = > hju;(t) is a
conserved quantity for the ODE system (5.1). This will hold for arbitrary initial value
ug provided that
RTF(v)=0  forallve R™. (5.4)

For the partitioned Runge-Kutta scheme we have

W tnir = hTup + a8 >3 0TI F (v, )

k=1 j=1

= hTup + 8t Y3 (0 bV L (v, 5)
kAl j=1

for any 1 < I < r. Therefore, as noted in [3], the conservation property hTu, 1 = hTu,
will be valid provided that

b =bl"  foralll <kl<randl1<j<s. (5.5)

5.1.2  Order conditions for non-stiff problems

Below we shall use the order conditions for partitioned Runge-Kutta methods applied
to non-stiff problems as found in [9, Thm.I1.15.9] for r = 2. This classical order will be
denoted by p. As we will see, it often does not correspond to the order of convergence
for semi-discrete systems, and therefore p is often referred to as the classical order.
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To write the order conditions in a compact way, let A = [aiy’] € R**® and by, =

]

[b'] € R® contain the coefficients of the method, and set e = [1,...,1]7 € R®. The
conditions for p = 1 are just

bre=1  for k=1,...,r, (5.6)

3

that is Z;:1 b =1 for all k. To have p = 2 the coefficients should satisfy

bTAle:l for k,i=1,...,r. 5.7
k 2

The number of conditions quickly increase for higher orders; for p = 3 we get
biCLApe=75, biA,Aye=3%  for klla=1,...r, (5.8)
where C; = diag(4ye).

5.1.83 Formulation for non-autonomous systems

For non-autonomous systems
o (8) = F(t,u(t)),  u(0)=uo, (5.9)

we will use the partitioned method (5.2) with the stage function values F (v, ;) replaced
by F(t, + cjAt, v, ;). If (5.3) is valid, the abscissa are naturally taken as ¢; = i,
which is independent of k.

If (5.3) does not hold, then a proper choice of the abscissa is less obvious. For
the OS1 and CS2 multirate schemes with » = 2 it is natural to take ¢; = ¢. As

generalization we will therefore use
=c",  i=1,...s. (5.10)

Note that if AT F(t,v) = 0 for all t € R, v € R™, then we still have the conservation
property hTu, 1 = hTu, if the scheme satisfies (5.5).

The alternative of replacing Iy F (v, ;) in (5.2) by I F(t, + ¢\ At, v, ;) will destroy
this conservation property. If the non-autonomous form originates from a source term
in the PDE, this loss of conservation may be of little concern, but for the advection
equation u; + (a(z,t)u), = 0 with time-dependent velocity it is still a very desirable
property.

Example 5.1 The OS1 scheme (2.9) leads to the partitioned method (5.2) with r = 2
and coeflicients given by

0
0 0 |12 0
12 12]172 12

For non-autonomous systems u'(¢) = F(¢,u(t)) the scheme with (5.10) reads
Upypy =Un + %Atle(tn, Upn) s
Upt1 = Up + %AtF(tn, Un) + %AtF(tn+%,un+ ).

1
2

The use of I, F(t, + ¢}’ At,v, ;) instead of I F(t, + cjAt, vy ;), ¢; = ci*, would lead
to the same formula for u, /2 in the first stage, but then

Uit =t + FALF (b ) + SALL F (b, 1) + 3ALF(t, 1 ,1u,,1),

which is no longer conservative. <
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The above order conditions have been derived for autonomous systems, but with
(5.10) they are also valid for non-autonomous systems. This follows from the fact
that u'(t) = F(¢,u(t)) can be written as an equivalent, augmented autonomous sys-
tem u/(t) = F(I(t),u(t)), ¥ (t) = 1, with ¥(0) = 0, and application of the parti-
tioned method to this augmented system gives the same result as to the original,
non-autonomous system provided the additional equation ¥'(t) = 1 is included in the
index set Z,.

5.1.4 Conservation versus internal consistency

For the multirate schemes that have been considered in this paper, the conditions for
internal consistency (5.3) and conservation (5.5) did not match. This incompatibility
is valid for all ‘genuine’ multirate schemes that are based on one single method Mgk,
that is, for schemes (5.2) that reduce to my, applications (with step size At/my) of this
base method MRk to cover [t,,t,11] in case that Z = 7 and the other Z; are empty.

Consider, as simple example, a quadrature problem u'(t) = g(t) € R™, which is
just a special case of (5.9). (In a PDE context, this can be viewed as a degenerate
case of advection with a source term where the advective velocity happens to be zero.)
Suppose (5.5) is valid, and let J = {i € Z : b; # 0}. Then for the quadrature problem
we simply get

Unt1 = Up + Al Z bi 9(tn, + c;At),
ieJ

which is independent of the partitioning. However, if this is the result of a base method
Mgk with m; = 1, Z; = Z, then the result for my = 2, Zy = Z should be

Uni1 = Un + 5AL Y b; (g(tn +2cint) +g(ta+3(1+ ci)At)) ,
[ASVE
which is not the same for arbitrary source terms g.

Note that for general partitioned Runge-Kutta methods there is no conflict between
(5.3) and (5.5). Given a scheme with the same c{*) = c{" (for all i, k,1), but different
weights b{*) # b{"” (for some i,k,1), we can add an extra stage with new weights b}
that are independent of k, to make it mass-conserving. Of course, this will increase
the computational work per step, and for the TW1, TW2 and SHV2 schemes such a
modification does not seem to lead to efficient schemes.

5.2 Monotonicity and convex Euler combinations

We are in particular interested in the case where the partitioned Runge-Kutta method
(5.2) stands for a multirate scheme that takes mj, substeps of size At/my on I to
cover [tn,tny1], Kk = 1,...,7, with m;y = 1 < mg < --+ < m,. The corresponding
monotonicity assumption is

HU + Z %I’“F(U)H < ol forallv € R™ and 7, <79, k=1,...,7, (5.11)
k=1

where || - || is a convex function or (semi-)norm. For theoretical purposes we will also
consider
o+ T;_OkaF(v)H < ||| forallveR™andk=1,...,r. (5.12)

Of course, (5.11) implies (5.12). On the other hand, if (5.12) is valid, then the in-
equality in (5.11) will hold under the step size restriction 71 + -« - + 7, < 7. If we are
dealing with the maximum-norm, then (5.11) and (5.12) are equivalent.
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In the following we denote for I = 1,...,r,

Y = mla(-l.) 1<4,5

i ij J<s,
K = mbl’,  1<j<s, (5.13)
K =0, 1<i<s+1.

These coefficients will be grouped in the (s + 1) x (s + 1) matrix K; = [s{}]. It is
convenient to add vy, s41 = Up+1 to the internal vectors. Then (5.2) can be written as

l .
Uni = un—}—zz EJ)EIZ (vnj), i=1,...,5+1. (5.14)
=1 j5=1

Depending on the monotonicity assumption, we can consider various ways to rep-
resent this partitioned scheme in terms of convex Euler combinations. For this we will
introduce new method coefficients o'}, B{*’ with corresponding lower triangular ma-

trices Ay = [a¥'] and By, = [8{¥’]. Such convex Euler forms are also called Shu-Osher

ij
forms, after [24] where such representations were used originally to demonstrate the

TVD property of certain Runge-Kutta methods.

Inequalities for matrices or vectors in this section are to be understood component-
wise, that is, P = [p;;] > 0 means that all p;; are non-negative. Furthermore, if
P € Re+Dxat gnd Q € RGE+D*% | then [P Q] stands for the matrix whose first g
columns equal those of P and the other columns equal those of (). In this section we
let e =[1,1,...,1]T € R**!, and we use the convention /3 = +o0 if a > 0, B = 0.

5.2.1 Convex Euler form I: mazimum-norm monotonicity.

A suitable form of (5.14) to obtain results on monotonicity in the maximum-norm is

ZM( 1 a®)u, + Z i+ B rﬁt F(vn,j))> | (5.15)

where o* = Z;_ll ¥ and i = 1,...,s + 1. To have correspondence between (5.14)

and (5.15) the coefﬁc1ents should satlsfy
Ki=(T—A) 'Be, k=1,....r. (5.16)
Further we want the coefficients to be such that
o™ <1, o P >0 for 1<j<i<s+l,1<k<r. (5.17)
For such coefficients, let
C = 1’1312 oz(].c)/ﬁgc). (5.18)
If there are no coefficients such that (5.16) and (5.17) are satisfied, we set C = 0.

Theorem 5.2 Consider (5.15) with (5.17) and let C be given by (5.18). Assume
(5.11) is valid in the mazimum-norm. Then ||unt1|lcc < |[tun]oc whenever At < Cry.
Proof. The form (5.15) is equivalent to

i—1

Ikvn,i = Ik((l —ozgk))un +Z (Ot( )Un] +6

=1

—IkF(Un’j))) . k=1,...,r.

ij m
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We have v,1 = u,. Suppose (induction assumption) that ||v, jllec < [|tn|le for
j=1,...,i—1. Since

(k) At _ (k) (k) (k) At
Q5 Unj +B1] ™ IkF(”n ) = (aij - CB;; )Vn,i + CB;; (vn,j + Cmy, IF(vn5))
we then have
k k
0¥ vns + B e T (0n,5)lloe < @l o loc < @} tnllc -
It follows that ||Ixv, i|lec < |Junlle for & = 1,...,7, and hence ||vn illco < ||tn|loo-
Using induction with respect to ¢ = 1,..., s+ 1 the proof thus follows. O

It is obvious that we are in particular interested in the optimal value of C in (5.18)
for a given method (5.14). To obtain a suitable expression for this optimal value,
we can follow the construction of Ferracina & Spijker [7] and Higueras [10] for the
individual Runge-Kutta methods given by the coefficients K.

Theorem 5.3 The optimal value for C > 0 in (5.18), under the constraints (5.16)
and (5.17), equals the largest v > 0 such that
(I +vKi) " e vKi] > 0, E=1,...,r. (5.19)

Proof. Suppose v > 0 is such that (5.19) holds. We take By, = (I + vKj) 'K} and
A = vBy. With this choice it is easily seen that (5.16) and (5.17) are valid and that
(5.18) holds with C' = ~.

On the other hand, suppose that we have (5.16), (5.17) and (5.18) with C > 0, and
set v = C. Then

(T +7Ki) " e vKr] = (T = Mi) (T = Ag)e vBi],

where My = Ay — vBg. From (5.18) we know that My > 0, and since it is a strictly
lower triangular matrix we also have

(IT-=Mp) ' =T+ M+ Mi+...+ Mj > 0.
It follows that (5.19) is valid. O

5.2.2  Convex Euler form II: monotonicity under (5.12)

If we assume (5.12) for a general (semi-)norm or convex function, then a suitable form

for (5.14) is

: At
Uni = (1-af’ un+zz alMv,; + B e T (vn3)) (5.20)
k=1 j=1
where a(O) = Z;;ll (QE;) +-- +Q5;))7 i= 17' -8+ 17 and
r -1
ICk:<I—ZAl) B., k=1,....r. (5.21)
=1
We want
o<1 @j%@%@zo for 1<j<i<s+1,1<k<r, (5.22)
with an optimal
C = min g1 /ﬂ . (5.23)
ik
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Theorem 5.4 Assume (5.12) is valid.

(i) Consider (5.20) with (5.22) and let C be given by (5.23). Then ||upi1|l < ||unll
whenever At < Crg.

(ii) The optimal C > 0 in (5.23), under the constraints (5.21) and (5.22), equals the
largest v > 0 such that

(I+i7/€l)_l[elek]20, k=1,...,r. (5.24)
=1

The proof of this result is similar to that of the Theorems 5.2 and 5.3. In fact, the
result for r = 2 can be obtained directly from Higueras [11] and Spijker [25]. Further
we note that the coefficient matrices A; and B,, which lead to an optimal value C are
in this case given by B, = (I + Y_,7K;)"'K}, and A, = 7B,.

5.2.8 Convex Euler form III: TVD property and monotonicity under (5.11)

Finally, if (5.11) is assumed for a general (semi-)norm or convex function, then we
consider

i = (1= )uy, +Z( a Vv, +Zﬁ” m—IkF Vn, )), (5.25)

i—1 ) -
where a” =Y '_ &y, i=1,...,s+1, and

Jj=1"4 >
Kp=(I-A0)""By, k=1,....r. (5.26)
Here we want
a” <1, a0 B >0 for1<j<i<s+l,1<k<r. (5.27)
such that
O =minay /B (5.28)
is optimal.

Theorem 5.5 Consider (5.25) with (5.27) and let C be given by (5.28). Assume
(5.11) is valid. Then ||upt1]|| < |un|| whenever At < Cry.

The proof is similar to that of Theorem 5.2. For this case there is no convenient
representation of the optimal C. An optimization code can be used to determine this
optimal value. However, from the previous results we obtain useful upper and lower

bounds for C.
Theorem 5.6 The optimal values C, C, C in (5.18), (5.23) and (5.28) satisfy

%Uggg@go.

Consequently, if C = 0 then C = 0.

Proof. Given an optimal C with corresponding coefficient matrices Ag, By, we can
take A, = Ay, Br = Bi. Then (5.16) and (5.17) hold and min; ;o) /8 > C.
Consequently we have C' > C for the optimal value C.

Likewise, for a given optimal C with corresponding A, , B;,, we can choose By, = B,
Ao = 3Y_, A Then (5.26) and (5.27) hold and we have min, ;a:; /Bi; > C,
showing that C' > C.

On the other hand, for given optimal C with corresponding Ag, By, we can take
B, = By, A, = L Ag. Tt follows that C > 1C. O
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5.2.4 Results for the multirate schemes with one level of refinement

The monotonicity results for the multirate schemes of the previous sections are pre-
sented in Table 2. The table gives the threshold values C, C' and C for the various
schemes. The results for the first-order schemes OS1 and TW1 can be derived analyt-
ically as in Section 3.1; we get C =1, C =2/3, C =1 —1/+/3 for OS1, and C = 1,
cC=2- \/5, CcC=1- 1/\/§ for TW1. The threshold values C, C for the second-order
schemes have been found numerically, using (5.19) and (5.24). For the TW2 and CS2
schemes we have C' = 0 and therefore also C' = 0. (The fact that C = 0 for these two
schemes can also be shown analytically, similar to [11], by considering (5.24) for small
4 > 0.) The value of C for SHV2 was obtained with the MATLAB optimization code
FMINIMAX. This does not provide a guarantee that the solution is a global optimum,
and therefore this C is to be considered as a lower bound. The fact that we merely
have C = 1/2 for the SHV2 scheme is due to the first stage. Finally we note that
for the variant of that scheme with linear interpolation (4.5), instead of (4.4), it was
found that C = 1/2, C = 0.304, and the optimization code produced the same value
C = 0.304 for this variant.

Iable 2: Threshold values for the multirate schemes with one level of refinement. The entry
C for the scheme SHV2 is a lower bound.

C C (&)
0OS1 1 0.667 0.423
TW1 1 0.580 0.423
TW2 1 0 0
CS2 1 0 0
SHV2 0.5 0.284 0.284

As noted before, the result C' =1 for the OS1 and TW1 scheme was already given
in [15, 18, 26] in terms of maximum principles. For the CS2 scheme the same result
has been proved in [3].

Recall that the threshold values C are such that we will have monotonicity in the
maximum-norm, as well as maximum principles, provided that At < Cry. Likewise,
for spatial discretization with limiting the TVD property will hold if At < Cry. All
this under corresponding assumptions (2.13) for the semi-discrete system.

Comparison of these theoretical values with the experiments of Section 4.1 for
Burgers’ equation with the TW2, CS2 and SHV2 schemes does not show a clear cor-
respondence. As was noted, in those experiments we had 79 = %Am for both the
maximum-norm and the total variation semi-norm. Therefore, with v = At/Az, the
TVD property is guaranteed by the above results for v < %6 and the maximum prin-
ciple for v < %C. For the Burgers’ experiment with a moving shock it was noticed that
for the schemes TW2, CS2 and SHV2 we had no overshoots for v < 1, whereas the
TVD property was valid for » < 0.8 approximately. Therefore, for that test, the theo-
retical threshold values C = 0 for the TW2 and CS2 schemes in Table 2 are much too
pessimistic. The same seems to hold for the small value C' = % of the SHV2 scheme
compared to the value C' = 1 for TW2 and CS2. This may be caused by the fact
that spatial discretizations with flux-limiting (or of WENO type) do add some local
diffusion near very steep gradients, which may counteract an overshoot or increase of
total variation of the time stepping scheme. However, for the discrepancy in the TVD
results it is more likely that a more refined theory is needed. As noted before, it was
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shown in [15] that the OS1 scheme is TVD for a class of limited discretizations under
the same step size restriction as for the maximum principle, but that proof does not
lend itself to generalization for the higher-order schemes.

Remark 5.7 Refined TVD results for the OS1 and TW1 scheme were also discussed
in Section 3.1. Tt was shown that the TVD thresholds of both the OS1 and TW1
schemes become 1 for the system (3.8) arising from linear advection with first-order
upwind discretization in space.

Experimentally, using various partitionings, including random partitionings, we
observed that for this system the thresholds for monotonicity in the maximum-norm
are 1 for the TW2 and CS2 schemes, and approximately 0.66 for the SHV2 scheme,
whereas the thresholds for the TVD property are 0.5 for the TW2 and CS2 schemes,
and 0.86 for the SHV2 scheme.

Furthermore, it should be noticed that having a bound ||S||» < 1 for the amplifica-
tion matrix S guarantees stability in the maximum norm for this linear problem, but
this is not a necessary condition. The spectral radius of S was found to be bounded by
1 for Courant numbers v; = At/Ax; < k for j € I, k = 1,2, for these three schemes,
that is, including the SHV2 scheme. Note that having spectral radius bounded by 1
is of course necessary for stability, but it is not sufficient, not even in the Lo norm
because the amplification matrices S are not normal. O

5.3 Convergence for smooth problems

In this section we derive bounds for the discretization errors that are valid for semi-
discrete hyperbolic systems with smooth solutions. The classical, non-stiff order con-
ditions are then no longer sufficient to obtain convergence of order p, due to the fact
that F' contains negative powers of the mesh widths Az; in space. We will accept
a restriction on At/Axz; but the resulting error bounds should not contain negative
powers of Ax;.

It is useful here to take also non-autonomous equations (5.9) into consideration.
Then linear constant coefficient problems u'(t) = Au(t) + g(t) with time dependent
source terms are included. Such g(t) may originate from a genuine source term in the
PDE or from an inhomogeneous boundary condition.

To ensure stability, it will be assumed that

||17—v+1;—okfk(F(t,®)—F(t,v))Hoog|\17—v||007 k=1,....r, (5.29)

for any two vectors 7,v € R™ and ¢ € R. In applications to semi-discrete systems
obtained from conservation laws this 7y will be proportional to the mesh widths used
in the spatial discretization, and hence an upper bound At < C7y on the step size will
be a CFL restriction.

5.3.1 Perturbed schemes
Consider, along with (5.2) in non-autonomous form, the perturbed scheme

r i—1
Ui = G + ALY Y AT F (b, T g) + pois i=1,...,5,

k=1j=1 (5.30)
ﬂn+1 = '&n+Atzzb§k)IkF(tn]aﬁn,])+0'n7

k=1 j=1

where t,, ; = t, + c;At and the p, ;, 0, are perturbations. These perturbations will be
used later on to obtain expressions for the discretization errors. In order to distinguish
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the accuracy of the u,, from those of the internal stages we will mainly use the standard
form (5.2) rather than (5.14).

As before, let the matrices Ay = [a{¥)] € R*** and the vectors b, = [b"’] € R
contain the coefficients of the scheme. Further, for the vector of abscissa ¢ = [¢;] € R®
we denote ¢/ = [¢/] for j > 1, with ® = e = [1,...,1]T € R®. To make the dimensions
fitting we will use the Kronecker products Ay = A ® I, b;f =b &I, dd=cdQI
and e = e ® I with m x m identity matrix I = I,,xm. Likewise, I}, = I ® I, with
s X s identity matrix I = I;«s. To make the notation consistent, the ms x ms identity
matrix is denoted by I.

Let Z,, = diag(Z, ;) € R™**™* with

Zni (Ui — Vi) = A(F (tniy Uni) = F(tnis Uni)) - (5.31)
In view of (5.29) these Z,, ; € R™*™ can be taken such that?
||I+—IkZm|| 1 for At <~79,v>0,k=1,...,7. (5.32)

To write the difference of (5.30) and (5.2) in a compact form, let also p,, = [pn ] € R*™
and v,, = [Un i), Dn = [Un;] € R®*™. Then

i)n_vn:e _un ZAka' ’Un)+Pn-,
(5.33)
fing1 — Uns1 = Gp — Up + Z b1, Z, (0, — ) + 0p -
k=1
Elimination of v,, — v,, thus leads to
ﬂn-{—l — Up41 = Sn(ﬂn - Un) + er’n + On (534)
where
T T -1
Sp=I+rTe, oT= (Z b{Ian) (I -y AkaZn) . (5.35)
k=1 k=1

The following result provides stability for this recursion with a step size restriction
At < C1g, where C' is the threshold for monotonicity in the maximum-norm. We can
consider arbitrary matrices Z,, with blocks satisfying (5.32), so that these matrices
are independent from the perturbations p,, and o,.

Lemma 5.8 Consider (5.88). Assume (5.32) and At < C1y. Then
HSnHoo <1, ”Tg”oo < 2s. (5'36)

Proof. Denote wy,, ; = Un,; — Vn,; and also Wy, 41 = Un41 — Unt1, Pn,s+1 = On. Then

1
. 1 (& .
Wy = Uy — Uy + E E m_k”z(‘j)IkZ Wn j+ Pni, 1=1,...,s+1.

2 As noted before, if F is differentiable we can take the Zn,; as integrated Jacobian matrices, but
also for non-differentiable F' we can choose them to satisfy (5.31). This is similar to the fact that if
z,y € R™ with ||y|lec < ||z|lcc, then there is an V € R™*™ such that Vz = y and |V|~ < 1; for
example, if |zg| = ||z||oc, the matrix with kth column ﬁy and the other columns zero.
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Following the construction used in Theorem 5.3 with optimal coefficients 3.’ = o}’ /7,
~v = C, we obtain

i—1
k . k 1
Ii(wni = pni) = (1= o) (it — un) + Y alP I, (wn,j + Sg 2 Wnig Pw’) :
j=1

This leads to

7—1
xwnilloo — llpnille < (1= a)in — unlloo + 3 @l (lwnjlloo + l1onlloo) -
j=1

If we make the induction assumption

Hwn,j loo < ||tin — un|leo + L; Iflgfllpn,bﬂoo ) (5.37)

forj=1,...,4—1, with L; = 2j — 1, then

i—1
. k
| Tetwnilloe < lln = unlloo + D o (L maxlonslloo + 2nilloe) + llomill
j=1 =
< @ — unlloo + (Lim1 +1) max [|pnjloo + [ pn,illoo -
Jj<i—1
Hence (5.37) will also be satisfied for j = i, and the proof thus follows. O

Note that without the internal perturbations we obtain a result on contractivity in
the maximum-norm:

lins1 — Untilloo < |tn — Unlloo whenever At < CTy, (5.38)

for any two parallel steps of the scheme (5.2), starting with @, and w,, respectively.
In the above proof, the arguments leading to monotonicity have been copied. A more
elegant and direct way to deduce contractivity from monotonicity is found in [25,
p. 1236], following a construction of [2] for inner-product norms.

5.83.2 Local and global discretization errors

Throughout this section we will denote by O(At9) a term or vector that can be bounded
in norm by KAt?, for At > 0 small enough, with K not depending on the mesh
widths Az; in the spatial discretization. The norm in this section is the maximum-
norm. Moreover it will be tacitly assumed that the exact solution is smooth, so that
derivatives of u(t) are O(1).

Let e, = u(t,) — u, be the global discretization error at time level ¢,, n > 0. To
obtain a recursion for these global errors we can employ the above perturbed scheme
with @, = u(t,) and 9,; = w(tni), tni = tn + ¢;At, i = 1,...,s. This choice for the
Up,,; defines the perturbations p,; and o,. Assuming the exact solution u to be [ 41
times differentiable, Taylor expansion directly leads to

T 1 .
At . . .
pr= D (¢~ jAw ) Lau(t,) + O(at),
: J:
k=1 j=1

r l :
on=_> Aj—t,] (I - jbf ) Ll (t,) + O(at't?) .

k=1 j=1

(5.39)
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It follows that the global errors e, = u(t,) — u, satisfy the recursion
ent1 = Spén + dn, n>0, (5.40)
with local discretization errors d,, given by
dn =7rp, +0,, (5.41)

and with S, € R™*™ pT ¢ RmXms oiven by (5.35).

Note that from | S,|lec < 1 it follows directly that consistency of order ¢ (i.e.,
|ldn]lee = O(At9T1)) implies convergence of order g (i.e., |le, || = O(At?)), but we will
see that the order of convergence can also be one larger than the order of consistency.

Let us first consider methods with classical order p > 1 that are not internally
consistent, that is, Axe # A;e for some k,[. Then the leading term in the local error is

dp = AtrT Z(c — Age) T/ (t,) + O(at?). (5.42)
k=1

This gives an O(At) local error bound, which is of course quite poor. After all, d,, is
the error that results after one step if e, = 0. However, as we will see below, it can
lead to convergence of order one.

Next assume the internal consistency condition (5.3) is satisfied, that is Axe = Aje
for 1 < k,I <r. If p=1 it follows directly that |d,||.c = O(At?). If p > 2 the leading
term in the local discretization errors is given by

= at’r? Z — Ae)Iu" (t,) + O(at?). (5.43)

This still gives only consistency of order one, that is, an error O(At?) after one step,
but we will discuss below damping and cancellation effects that can lead to convergence
with order two in this case.

For problems that are (mildly) stiff, such as semi-discrete systems from hyperbolic
equations, the above derivation shows that order reduction is to be expected. This
order reduction will appear primarily at interface points on the spatial grid, where
the grid-functions T,u(7)(t) have jumps. This is similar to the situation for standard
Runge-Kutta methods, where order reduction appears at boundaries if the boundary
values are time-dependent; see for instance the review with references in [14, Sect. I1.2].
With the partitioned and multirate schemes, we are creating interfaces that act like
(internal) boundaries with time-dependent boundary conditions.

Based on the local error behaviour, one would expect convergence with order one
for the TW2 and SHV2 schemes, and lack of convergence for the scheme CS2. This
is not what was seen in the numerical test in Section 4.1 for advection with a smooth
solution. To obtain the correct (observed) order of convergence ¢ = 1,2, we need to
study the propagation of the leading term in the local error. We already saw that
the global error can be of the same order At? as the local error if we have a suitable
decomposition d,, = (S, — )&, + 7. In fact, we only need to study the principle term
of the local error. It will be assumed that there exist vectors &, € R™, n > 0, such
that

H rie)é, — Atir TZ —qucqfl)Iku(Q)(tn)

H£n||oo = O(Atq) ) ||£n+1 — anoo = O(Atq'H) .

Then, following the proof of Theorem 3.3, we directly arrive at the following result.

Lo = O(atr™), (5.44)
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Proposition 5.9 Assume that (5.29) is valid, and let p be the (classical) order of the
partitioned Runge-Kutta method.

(i) If p =1 and (5.44) holds with ¢ = 1, then the method is convergent with order one
in the mazimum-norm.

(i) Suppose that p > 2 and the method is internally consistent. Then, if (5.44) holds
with ¢ = 2, the method is convergent with order two in the mazrimum-norm.

The above result has been called a proposition, rather than a theorem, because
it is far from clear how to verify the condition (5.44) in most situations of practical
importance. In the next subsection we will consider this condition for a simple case:
linear advection with first-order upwind spatial discretization. Of course, this is not
the spatial discretization one would like to use with a high-order time stepping scheme,
but it will give a heuristic explanation for the temporal orders observed in the accuracy
experiment in Section 4.1.

Remark 5.10 The above expressions for the local errors are similar to those given in
[13] for implicit-explicit Runge-Kutta methods, and in [19, 20] for a class of implicit
additive Runge-Kutta methods with domain decomposition. Apart from the fact that
these latter methods are implicit, because they are intended for parabolic problems, an
interesting feature is that the matrices I are constructed from smooth grid functions,
instead of the the step functions (zero-one entries) in this paper. This can have a
positive influence on the accuracy of the schemes. &

5.3.8 Verification of condition (5.44) for linear advection

To study condition (5.44), let us consider linear problems with constant coefficients,
u'(t) = Au(t) + g(t). (5.45)

Denote Z = AtA, Z = 1 ® Z with I = I, the s x s identity matrix, and
r T 1
r(2)T = [r(2),...,rs(Z)] = (Z b{Ikz) (I -3 AkaZ) . (5.46)
k=1 k=1

In this case we have bekZ = bf QI Z and ARl Z = A, ® I, Z. The matrices A, are
strictly lower triangular s x s matrices, and consequently a product of s such matrices
vanishes. Writing the matrix inverse in (5.46) as a power series, it follows that

s—1 T
r(Z)Te=> " Y (bfAj,---Aje) W21, 71, 7. (5.47)

1=0 k,j1 o oerji=1

In the same way it is seen that

= (5.48)
= S (BFA, A (T - gAY 21,2 L Z T
l

®»
|

_

3

I
S
-

0 kyj1,..esgiyi=

If there is a matrix W € R™*™ such that |W ||, = O(1) and

(r(2)"e)W =7r(2)" > (¢ — qAic” I, (5.49)

i=1
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then we can take ¢, = éAthu(q) (tn) in (5.44). Recall that [|[W|/sc = O(1) means
that W can be bounded uniformly in the mesh width and dimension m.

Consider as a simple example, the semi-discrete system (2.2) in R™ with ug(t) =
0, corresponding to first-order upwind discretization of the advection equation with
homogeneous inflow condition u(0,t) = 0. We take a partitioning Z = Z; UZ; =
{1,2,...,m} with Z, = {j : im < j < 3m}, and mesh widths Az; = h if j € Iy,
Azj = 1hif j € T, with h = 4/(3m). In Figure 8 we have plotted the norm |[W||o
as function of m = 20,40,...,640 for various values of v = At/h for the schemes
TW2 and CS2; the results for SHV2 were similar to those of TW2. In this example,
the matrix 7(Z)Te is nonsingular, and it is well-conditioned for v < 1. We see that
[[Wleo = O(1) provided that v < 1, whereas ||W||oc ~ m if v = 1. Other partitionings
T = T, UZ, produced similar results.

TW2 CSs2

10° }

10

10" 10° 10° 10" 107 10°

Figure 8: Norm ||W |« versus m = 20,40, ...,640 for various values of v = At/h with the
schemes TW2 (left) and CS2 (right). Markers: O for v = 0.5, 0 for v = 0.75, ¢ for v = 0.9,
» for v =0.95 and * for v = 1.

It is obvious that verification of condition (5.44) would be desirable for nonlinear
problems and higher-order (nonlinear) spatial discretizations. Nevertheless, the com-
bination of Proposition 5.9 and these experimental bounds for first-order advection
discretization does provide a heuristic explanation for the numerical observations in
Section 4.1 for the advection problem with smooth solution and WENOS5 spatial dis-
cretization, where we saw convergence of the schemes TW2 and SHV2 with order two
in the maximum-norm, and with order one for the CS2 scheme.

6 Final remarks

6.1 Partitioning based on fluxes

For conservation laws u; + f(u), = 0, the semi-discrete system (2.8) will in general be
of the form

(u(t))_fjJr%(u(t)))" JET={12,...,m}.

Multirate methods can be based on these numerical fluxes f;1/o(u) rather than in
terms of the components F;(u), and this is not well covered by the above formulations.

Suppose, as an example, that 7y = {j : j < i} and Zo = {j : j > i}. Instead of
F = I F+I,F, we can consider the decomposition F = F! + F2 with vector functions
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F' and F? whose jth component is given by

Fl0) = 5 (53 (0) = £513 (), F2w)=0  forj<i,
Fl0) = i3 (), F20) = 5 fiyy (@) forj=i, (61)
F2(v) = ALgcj(fj,%(u) — fra ) Fl(v) =0, for j > .

We can consider any of the above schemes with I, F(v) replaced by F*(v). Since we
are then dealing with fluxes, mass-conservation is guaranteed at any stage. However,
there are two reasons why such schemes were not considered in this paper.

First, monotonicity assumptions such as (2.13) will not be valid in the maximum-
norm with this decomposition. This can be seen already quite easily for the first-order
upwind advection discretization (2.2). Writing this system as u’(t) = Au(t), the above
decomposition would correspond to A = AI; + AL, that is, F'* = AI, but it is easy
to show that ||I + 7AIL||~ is larger than one for any 7 > 0.

Secondly, such a decomposition of F' can easily lead to inconsistencies, since we do
not have F*(u(t)) = O(1), no matter how smooth the solution is. For example, for the
first-order upwind system (2.2), formula (2.10) with F* replacing I F, k = 1,2, leads
to method (2.3) rather than (2.4). Using these F'! and F? in (2.9) gives a completely
inconsistent result.

6.2 Summary and conclusions

In this paper some multirate schemes based on the forward Euler method and the two-
stage explicit trapezoidal rule have been analyzed. All these methods can be written
as partitioned Runge-Kutta methods.

For the analysis of the monotonicity properties of the schemes we followed the
TVD/SSP framework of [5, 24|, assuming monotonicity of one forward Euler step with
suitable local time steps. Different monotonicity thresholds were found for maximum-
norm monotonicity and maximum principles on the one hand, and the TVD property
on the other hand. However, these theoretical differences did not reveal themselves in
the numerical tests. In practical situations, the threshold C found for maximum-norm
monotonicity seems the most relevant.

Many multirate schemes are not internally consistent. This may lead to low accu-
racy at interface points. An analysis of the local discretization errors even suggests
lack of convergence, but this is too pessimistic. Also for the other schemes, that are
internally consistent, propagation of the leading local error terms has to be studied to
understand the proper convergence behaviour.

Lack of mass conservation seems in many cases not a very serious defect because
it only arises at interface points, so it will mainly be felt when a shock or very steep
solution gradient passes such an interface. This conclusion is similar as in [26]. Of
course, if mass conservation can be built in a scheme without affecting other essential
properties, such as internal consistency and computational work per step, this is ad-
visable. For the schemes considered in this paper lacking mass conservation we did
not find such suitable modifications.

The use of a high-order Runge-Kutta methods as basis for a multirate scheme or a
partitioned scheme will not directly lead to a high order of accuracy at interface points.
The discretization errors have to be considered within the PDE context, leading to
expressions for the local errors of the form (5.42) or (5.43). Regarding the semi-discrete
as a fixed (non-stiff) ODE will in general lead to a too optimistic estimate of the rate
of convergence.
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A Appendix: a spatial discretization with TVD limiter on non-
uniform grids

As an example of a discretization with limiting we will consider formulas on non-
uniform grids that generalize the third-order upwind-biased scheme with the so-called
Koren limiter on uniform grids.

A.1 Discretization and limiting
For a non-uniform grid with cells C; = (z;— %Aa:j, xj+%Aacj) and cell-average values u;,
the third-order upwind-biased spatial discretization can be derived by piecewise cubic
reconstruction of the primitive grid-function U; = qu Azxju; and differentiation.

On C; we take U(z) to be the cubic polynomial that passes through the points
(% 4k/2,Ujsrs2)s k= —3,-1,1,3. Then the resulting values

R _ Tl L T/
ujié—U(:L‘jf%), uH%*U(mﬁ%),

can be used as cell-boundary values in a numerical flux-function. In the following we
only give the formulas for the left states “JL+1/23 those for “fél/z are essentially the

same, just the mirror image.
By some calculations (with Newton divided differences) it follows that

L L L L
Uit L=y -1 Yoyt Y (A1)

with coefficients ’y(ij =1- 751,3' — 71L’j and
—Ax;AT 11
A.T]'_l + A.Tj)(AiEj_l —|— AEj + Amj-l—l) ’

(AI]‘,1 + AIj)Al‘j
Azj+ Azj1)(ATj1 + ATj + ATjp)

751,]’ = (

’71L,j:(

This provides the non-limited value.
To apply a limiter, we first write (A.1) in the form

L * * ’U,]+% uj
Ui 1=+ V5 (w1 — uj), Y; = m . (A.2)
Next we apply a limiter to this ¢7,
¥; = max (O, min (1, (8 Gj)) , 6; = o e il , (A.3)
Uj+1 — Uj
to obtain the limited value
ujy =y + P(ujn — ug). (A4)

This kind of limiting is often called ‘target limitering’ because the limited values
are taken as close as possible to a target scheme (which is in our case the non-limited
scheme) within the monotonicity constraints. It can be applied to any scheme produc-
ing non-limited values ufﬂ/? From (A.1), (A.2) it is seen that ¥} = ~v{; —~%, ;0;,
and therefore the limiter can also be written as

¥; = max (0, min (1, fylL’j —fyfl’jﬁj, 6;)) - (A.5)
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To see that (A.4) will indeed introduce a spatial discretization with certain mono-
tonicity properties, such as positivity and TVD, note that

(7

Ly = pi(ui ) pp =1 i+ 45/ 65

1
3
In view of (A.3) we have 0 <1¢;_; <1 and 0 <1;/6; <1, and therefore
0<p; <2.

As explained in Example 2.2, this guarantees max-norm monotonicity and the TVD
property for u; + f(u), = 0 with f’(u) > 0 (for the relevant range of u values).

As mentioned already above, the formulas for the right states uf;l 5 are essentially
the same (reflexion around z;_;/9), and these will be used if we have f'(u) < 0 for all
(relevant) u values. With an arbitrary flux function f(u) a suitable flux splitting is to
be used, for example the simple Lax-Friedrich splitting given in [16, 23].

Remark A.1 The numerical fluxes f;1/2(u) = f(u;41/2) of the limited discretization
are Lipschitz continuous,

|fiv1/2(1) — fivij2(u)l < Llla — ull]e

for all @ = [@;], u = [u;] € R™. This is not obvious from (A.3), (A.5), because the
ratios 6; will not satisfy a Lipschitz condition. However, if we denote o; = u;j41 — u;,
then by considering the different sign possibilities it is seen that

L

Ui L =, + sign(o;) min (|0j\ , 7fj|0j\ - ’yfl,j

oj-1l, loj-1l)

if sign(o;) = sign(o;—1), and uerl o, = u; otherwise. From this the Lipschitz condition
can be deduced, with Lipschitz constant L determined by the actual grid. &

A.2 Accuracy test

Consider the advection equation u; + u, = 0, 0 < z,t < 1, with spatial periodic-
ity and initial value u(x,0) = sin*(7z). The relative Lj-errors of the spatial dis-
cretization are given in Table 3 for various grids with m points, m = 20, 40, 80, 160.
These results are to be compared with those in Appendix B of [1]. The random
grids are chosen by first generating random numbers o; € [%, 1] and then setting
Azj; =05/ > 4, o. The grids indicated by ‘Blockl’ and ‘Block2’ are cyclic repetitions
of (Azy, Axa, Axg, Axs) = (h,2h,3h,4h) and (Azq, Azg, Axs, Axy) = (h,2h, 10k, 11R),
respectively, with appropriate h = 4/(10m), h = 4/(14m), respectively.

The results compare favourably to those in [1], where it should be noted that the
random grid used here has more variation in [1] and also the initial profile has been
slightly changed to make it periodic.

We also note that the above limiter does not fit into the framework of slope limiting
with linear reconstruction considered in [1]. There it is required that on each cell C;
we have an approximation u(z) = u; + (z — z;)s;, with slope s; that may be limited,
and then

R

u.

- 1 L _ 1
J,%~Uj— Axjs;, u, l—uj—{—QAszJ.

2 J+2

To achieve this in the above algebraic framework one needs a certain ‘symmetry’
condition to ensure that u; is the average of “f71/2 and ujLH/Q.

The spatial discretization used in [3] is of the same form as (A.5) but with different
coefficients v, ;. In the above accuracy test this scheme gave less accurate results,
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Table 3: Relative Lj-errors for scalar advection on non-uniform grids

H Uniform Random Block 1 Block 2

Non-lim., m =20 || 4.79-1072 | 5.14-107% | 6.06-10"2 | 9.65-1072
Non-lim., m = 40 6.82-1073 | 7.49.107% | 9.13-1073 | 1.58-10"2
Non-lim., m =80 || 8.70-10"* | 9.49.10"* | 1.18-107% | 2.05-1072
Non-lim., m = 160 || 1.09-10"% | 1.19.107* | 1.49-10"* | 2.60-10"4

Limited, m = 20 6.57-1072 | 6.79-107% | 9.35-1072 | 1.45-107"
Limited, m = 40 1.36-1072 | 1.49-107% | 2.02-107% | 3.32-1072
Limited, m = 80 2.65-1073 | 2.97-10°% | 4.25-1073 | 7.56-10"3
Limited, m = 160 || 4.97-10"% | 5.73.10"* | 811-107* | 1.58-102

due to the fact that then the non-limited scheme is only of order two. The errors
with limiter were then a factor three to four larger than in Table 3 on the fine grids,
m = 160.

Finally we note that the limited schemes used in [26] are based on scaled ratios §; =

oj_1/0; with o = (ug41 — ug)/Azk. It is not too difficult to show that such schemes
are not TVD or positivity preserving, but in tests they do perform quite well; there are
overshoots, but these are very minor. Nevertheless, to remain within the theoretical
framework outlined in Section 2.3, the discretization (A.5) seems preferable.

References

[1] M. Berger, M.J. Aftosmis, S.M. Murman, Analysis of slope limiters on irreqular
grids. ATAA Paper 2005-0490, 2005.

[2] K. Burrage, J.C. Butcher, Nonlinear stability of a general class of differential
equation methods. BIT 20 (1980), 185-203.

[3] E.M. Constantinescu, A. Sandu, Multirate timestepping methods for hyperbolic
conservation laws. Report TR-06-15 (913), Dept. Comp. Sc. Virginia Tech, 2006.

[4] C. Dawson, R. Kirby, High resolution schemes for conservation laws with locally
varying time steps. SIAM J. Sci. Comput. 22 (2000), 2256-2281.

[5] S. Gottlieb, C.-W. Shu, E. Tadmor, Strong stability preserving high-order time
discretization methods. SIAM Review 42 (2001), 89-112.

[6] M. Giinther, A. Kvaerng, P. Rentrop, Multirate partitioned Runge- Kutta methods.
BIT 41 (2001), 504-514.

[7] L. Ferracina, M.N. Spijker, An extension and analysis of the Shu-Osher represen-
tation of Runge-Kutta methods. Math. Comp. 74 (2005), 201-219.

[8] A. Harten, High resolution schemes for hyperbolic conservation laws. J. Comput.
Phys. 49 (1983), 357-393.

[9] E. Hairer, S.P. Ngrsett, G. Wanner, Solving Ordinary Differential Equations I —

Nonstiff Problems. Second edition, Springer Series Comput. Math. 8, Springer,
1993.

36



[10]

[11]

[12]
[13]

[18]

[19]

[20]

[21]

[22]

[23]

I. Higueras, Representations of Runge-Kutta methods and strong stability preserv-
ing methods. STAM J. Numer. Anal. 43 (2005), 924-948.

I. Higueras, Strong stability for additive Runge-Kutta methods. STAM J. Numer.
Anal. 44 (2006), 1735-1758.

R.A. Horn, C.R. Johnson, Matriz Analysis. Cambridge University Press, 1985.

W. Hundsdorfer, S.J. Ruuth, IMEX extensions of linear multistep methods with
general monotonicity and boundedness properties. CWI Report MAS-E0621, Am-
sterdam, 2006. To appear in J. Comput. Phys.

W. Hundsdorfer, J.G. Verwer, Numerical Solution of Advection-Diffusion-
Reaction Equations. Springer Series Comput. Math. 33, Springer, 2003.

R. Kirby, On the convergence of of high resolution methods with multiple time
scales for hyperbolic conservation laws. Math. Comp. 72 (2003), 1239-1250.

R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems. Cambridge Texts
in Appl. Math., Cambridge Univ. Press, 2002.

N.M. Maurits, H. van der Ven, A.E.P. Veldman, Ezplicit multi-time stepping
methods for convection dominated flow problems. Comput. Meth. Appl. Mech.
Engrg. 157 (1998), 133-150.

S. Osher, R. Sanders, Numerical approzimations to nonlinear conservation laws
with locally varying time and space grids. Math. Comp. 41 (1983), 321-336.

L. Portero, B. Bujanda, J.C. Jorge, A combined fractional step domain decompo-
sition method for the numerical integration of parabolic problems, Lect. Notes in
Comp. Sc. 3019 (2004), 1034-1041.

L. Portero, Fractional step Runge-Kutta methods for multidimensional evolution-
ary problems with time-dependent coefficients and boundary conditions. Thesis,
Univ. of Navarra, Pamplona, 2007.

V. Savcenco, Comparison of the asymptotic stability properties for two multirate
strategies, CWI Report MAS-R0705, Amsterdam, 2007.

V. Savcenco, W. Hundsdorfer, J.G. Verwer, A multirate time stepping strategy for
stiff ordinary differential equations. BIT 47 (2007), 137-155.

C.-W. Shu, High order ENO and WENQO schemes for computational fluid dy-
namics. In: High-Order Methods for Computational Physics, Eds. T.J. Barth,
H. Deconinck, Lect. Notes Comp. Sc. Eng. 9, Springer, 1999, 439-582.

C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory
shock-capturing schemes. J. Comput. Phys. 77 (1988), 439-471.

M.N. Spijker, Stepsize restrictions for general monotonicity in numerical initial
value problems. SIAM J. Numer. Anal. 45 (2007), 1226-1245.

H.-Z. Tang, G. Warnecke, High resolution schemes for conservation laws and
convection-diffusion equations with varying time and space grids. J. Comput.

Math. 24 (2006), 121-140.

37



