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Jeroen Wa
kers and Barry KorenCWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands.Jeroen.Wa
kers�
wi.nl, Barry.Koren�
wi.nlSummary. This paper des
ribes a �ve-equation model for 
ompressible two-
uid
ow, based on physi
al 
ow equations only. The model is 
onservative and pressure-os
illation free. Equations for 
ontinuous 
ow and jump 
onditions for dis
ontinu-ities are given, as well as a dis
retisation of the equations and an adaptation ofthe HLL Riemann solver to two-
uid 
ow. Numeri
al tests in 1D and 2D show thea

ura
y of the method.
1 Introdu
tionInterfa
e-
apturing methods for 
ompressible two-
uid 
ows are based onmixture-
uid models. The interfa
e between the 
uids appears as a numer-i
ally smeared transition from 
uid 1 to 
uid 2. Many 
onservative formu-lations of su
h models produ
e large pressure errors. This problem 
an besolved by using lo
ally non-
onservative methods [1℄ or by solving the fulltwo-phase 
ow model [2℄.Here, an intermediate approa
h is presented: a two-
uid method that isfully 
onservative and pressure-os
illation free. It is an extension of the workby Van Brummelen and Koren [3℄, it will be des
ribed in detail in a futurepaper. A similar method is derived in a di�erent way by Kapila et al. [4℄.The present method has two major advantages. First, the 
onservativeformulation gives good 
apturing of sho
ks and interfa
es, also for problemswith very strong sho
ks. And se
ond, the model strongly resembles a single-
uid model: it does not require a 
omplex interfa
e-tra
king algorithm. It 
anthus be solved with existing te
hniques, even on 
omplex, irregular grids.
2 Flow modelThe physi
al model used here for two-
uid 
ow is based on a mixture model.However, the 
uids are not fully mixed: the `mixture' may be thought to
onsist of very small bits of the two pure 
uids, arranged in an arbitrarypattern. Ea
h 
uid has its own pure-
uid equation of state and the 
uidsintera
t only by exerting for
es on ea
h other. In the model, the pressure andthe velo
ity of the 
uids are equal, but ea
h 
uid has its own density. The
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2 Jeroen Wa
kers and Barry Korenvolume fra
tion of 
uid 1, �, is used to denote the relative amounts of thetwo 
uids. Thus, in 1D, we have �ve independent state variables (p, u, �1, �2and �), so we need �ve di�erential equations to solve the 
ow.The two-
uid bulk 
ow satis�es the standard Euler equations:(�)t + (�u)x = 0 ; (1a)(�u)t + ��u2 + p�x = 0 ; (1b)(�E)t + (�Eu+ pu)x = 0 : (1
)In these equations, the bulk quantities are � = ��1 + (1 � �)�2 and �E =��1E1+ (1��)�2E2, with the total energy for ea
h 
uid j = 1; 2 de�ned asEj = ej + 12u2. Here ej is the internal energy of 
uid j.Two more 
ow equations are needed to 
lose the system. The �rst one isthe 
onservation of mass for 
uid 1:(�1�)t + (�1u�)x = 0 : (2a)Together with equation (1a), this equation gives mass 
onservation for both
uids. For the last equation, the energy balan
e of 
uid 1 is used. As the
uids exert for
es on ea
h other, they ex
hange energy, whi
h appears as asour
e term in the equation:(�1E1�)t + (�1E1u�+ pu�)x = S : (2b)An expression for this sour
e term is derived in the next se
tion.To 
lose the system, equations of state (EOS) are needed for the two
uids. A possible EOS is the ideal gas law,p = (
1 � 1)�1e1 = (
2 � 1)�2e2 ; (3)with 
onstant 
's. For this equation, it is easy to 
ompute the primitivevariables p and � from the total energies.
3 The sour
e term3.1 Derivation of the sour
e termThe sour
e term S in equation (2b) models the ex
hange of energy between
uid 2 and 
uid 1. Euler 
ow has no heat 
ondu
tion, so the only energyex
hanged is the work done by the for
e between the 
uids. This for
e isfound from a momentum analysis.Consider a 
uid element in a smooth 1D 
ow (Fig. 1). The element 
on-tains 
uid 1 and 
uid 2 (the interfa
e is drawn s
hemati
ally). The for
e onthe entire 
uid element is p(x) � p(x + dx) and its bulk mass is �dx. Thefor
e on 
uid 1 in the element is (p�)(x)� (p�)(x+ dx) + SMdx. Its mass is
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eleration is equal to the a

eleration of the entire element(be
ause both 
uids have the same velo
ity). Thereforep(x)� p(x+ dx)�dx = (p�)(x)� (p�)(x+ dx) + SMdx�1�dx :The for
e SM follows from this expression (using the mass fra
tion � = �1�� ):SM = p�x + (�� �) px : (4)The energy sour
e term S is the work done by the for
e SM :S = uSM = pu�x + (�� �)upx : (5)


uid 1

uid 2SM

x+ dxx
p(x+ dx)p(x) �(x) �(x+ dx)

Fig. 1. Two-
uid element in smooth 1D 
ow.
3.2 Chara
teristi
 analysis of the system for ideal gasThe sour
e term (5) is valid for any EOS. Substitution of the ideal gas law(3) allows a 
hara
teristi
 analysis of the 
ow equations. This results in �vewave speeds,�1 = u� 
; �2;3;4 = u; �5 = u+ 
; with 
 =p(�
1 + (1� �)
2)p=� : (6)This 
ombination of wave speeds is physi
ally 
orre
t. It 
an be proved that(5) is the only possible sour
e term that gives su
h a 
ombination.3.3 Sour
e term in dis
ontinuitiesTo allow weak solutions with dis
ontinuities of the two-
uid 
ow equations,we need a proper de�nition of the 
ow a
ross a dis
ontinuity. The �rst fourequations, (1a) { (1
) and (2a), satisfy the Rankine-Hugoniot 
ondition [f ℄ =
s[q℄, with 
s the speed of the dis
ontinuity. For the �fth equation, (2b), this
ondition be
omes [f ℄ = 
s[q℄ + Z xRxL Sdx ; (7)



4 Jeroen Wa
kers and Barry Korenwhere xL and xR denote the 
oordinates of the left and right side of thedis
ontinuity. The integral must be evaluated a
ross the dis
ontinuity, whi
his impossible. However, if we assume that the dis
ontinuity is the invis
id limitof a vis
ous layer and thus has a 
ontinuous internal stru
ture (the pre
iseshape is unimportant), then we 
an write the state variables as 
ontinuousfun
tions of p and integrate the sour
e term:Z xRxL Sdx = [pu�℄ + 12�L�L(uL � 
s)[u℄2 + 1�L(uL � 
s) Z pRpL p�dp : (8)A derivation of this expression will be given in a future paper. The lastintegral 
an be evaluated exa
tly, but it requires an EOS. So there is a uniquejump 
ondition for the present two-
uid model, but, unlike the single-
uidjump 
ondition, it depends on the material properties of the 
uids.
4 Numeri
al method4.1 Se
ond-order a

urate dis
retisationThe 
ow equations are dis
retised with a se
ond-order a

urate �nite-volumes
heme. Fluxes are 
omputed with an improved version of Linde's three-waveHLL approximate Riemann solver [5℄, 
ombined with a limited re
onstru
tionof the 
ell interfa
e states. The limiter is applied to the primitive variables�, u, p, � and �. Time stepping is done with a two-step s
heme (see [7℄).4.2 Numeri
al sour
e termA dis
retisation of the sour
e term is needed in two pla
es. First, an ap-proximation of the sour
e term in a dis
ontinuity is needed to 
ompute theHLL 
ux. The HLL solver models a Riemann problem with three dis
ontin-uous waves. The easiest way to in
orporate the sour
e term in these wavesis to 
ompute only one approximate solution of (8), using the left and right
ell interfa
e state, and to divide this sour
e term proportionally over thethree waves. This pro
edure 
auses some small ina

ura
ies, but it is fastand straightforward.Se
ondly, the sour
e term for the time integration is 
omputed. It 
onsistsof two parts:i) sour
es in the dis
ontinuities at the 
ell fa
es, that are summed over allHLL waves on interfa
es i� 12 and i+ 12 , that a
tually run into 
ell i,ii) sour
es in the 
ontinuous 
ow in the 
ell, whi
h are integrated over thepie
ewise linear approximations to the primitive variables, that followfrom the use of the limiter.These two sour
es are summed per 
ell.
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al results5.1 Sho
k-tube testThe method is tested �rst on a 1D Riemann problem for ideal gases: a two-
uid variant of Sod's problem, with a ten times higher left pressure and den-sity, giving it a pressure ratio of 100:1. Figure 2 shows that the dis
ontinuities(sho
k and two-
uid interfa
e) are in the proper lo
ations. The pressure is
onstant over the 
onta
t dis
ontinuity and the volume fra
tion is 
onstantover both the sho
k and the expansion fan. A 
onvergen
e study for thisproblem shows that the L1-errors in �, u and p 
onverge approximately withthe power 0.96 of the mesh width. The volume fra
tion 
onverges with thepower 0.78 of the mesh width. This rate of 
onvergen
e is 
omparable to thatfor similar single-
uid solutions.
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Fig. 2. High-pressure, two-
uid Sod problem. (�; u; p)L = (10; 0; 10), (�; u; p)R =(0:125; 0; 0:1), 
L = 1:4 and 
R = 1:6. The grid has 200 
ells, 160 time steps,�t=�x = 0:2 (CFL = j�maxj�t=�x = 0:56). Solid lines: exa
t solution.
5.2 Sho
k hitting helium bubble in airThis 2D test 
ase has been taken from literature [6℄. It 
onsists of a 
ylindri
alhelium bubble in air, whi
h is hit by an in
oming sho
k wave. The problem issolved on a grid of 200�400 
ells, with �t = 1:25� 10�5. Figure 3 shows thesolution at two times. The (half) bubble is visible between x = �0.025 andx = 0.025. The in
ident sho
k, 
oming from the right, 
an be seen in the airabove the bubble, the 
urved sho
k in the bubble runs ahead of this sho
k.The rightmost wave is an expansion wave, re
e
ted into the air behind thesho
k. At the later time, a 
ompli
ated �-sho
k stru
ture has developed abovethe bubble. Figure 4 shows the pressure and the volume fra
tion for this time.Of the waves appearing in the density plot, the sho
k waves and expansionsare visible in the pressure plot only and the interfa
e in the volume fra
tionplot only, as it should be. The pressure is 
ontinuous over the interfa
e.The speeds of the sho
ks and the interfa
e at the 
enterline (y = 0) havebeen 
ompared with results from Quirk and Karni [6℄ (obtained on a very�ne, adapted grid). The di�eren
e is between 0.7% and 2.2%.
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Fig. 3. Sho
k hitting helium bubble, density at t = 2:74�10�3 and t = 10:74�10�3.
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Fig. 4. Sho
k hitting helium bubble, pressure (left) and volume fra
tion (right) att = 10:74� 10�3.6 Con
lusionsA model for 
ompressible two-
uid 
ow is proposed, that is 
onservative andpressure-os
illation free. 1D tests show that the model resolves 
onta
t dis-
ontinuities without 
reating pressure errors and that it a

urately handlesproblems with strong sho
ks. A 2D test shows that the method properly re-solves 
urved sho
ks and interfa
es too.A
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