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Summary. This paper describes a five-equation model for compressible two-fluid
flow, based on physical flow equations only. The model is conservative and pressure-
oscillation free. Equations for continuous flow and jump conditions for discontinu-
ities are given, as well as a discretisation of the equations and an adaptation of
the HLL Riemann solver to two-fluid flow. Numerical tests in 1D and 2D show the
accuracy of the method.

1 Introduction

Interface-capturing methods for compressible two-fluid flows are based on
mixture-fluid models. The interface between the fluids appears as a numer-
ically smeared transition from fluid 1 to fluid 2. Many conservative formu-
lations of such models produce large pressure errors. This problem can be
solved by using locally non-conservative methods [1] or by solving the full
two-phase flow model [2].

Here, an intermediate approach is presented: a two-fluid method that is
fully conservative and pressure-oscillation free. It is an extension of the work
by Van Brummelen and Koren [3], it will be described in detail in a future
paper. A similar method is derived in a different way by Kapila et al. [4].

The present method has two major advantages. First, the conservative
formulation gives good capturing of shocks and interfaces, also for problems
with very strong shocks. And second, the model strongly resembles a single-
fluid model: it does not require a complex interface-tracking algorithm. It can
thus be solved with existing techniques, even on complex, irregular grids.

2 Flow model

The physical model used here for two-fluid flow is based on a mixture model.
However, the fluids are not fully mixed: the ‘mixture’ may be thought to
consist of very small bits of the two pure fluids, arranged in an arbitrary
pattern. Each fluid has its own pure-fluid equation of state and the fluids
interact only by exerting forces on each other. In the model, the pressure and
the velocity of the fluids are equal, but each fluid has its own density. The
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volume fraction of fluid 1, «, is used to denote the relative amounts of the
two fluids. Thus, in 1D, we have five independent state variables (p, u, p1, pa
and «), so we need five differential equations to solve the flow.

The two-fluid bulk flow satisfies the standard Euler equations:

(p)y + (pu), =0, (1a)
(pu), + (pu* +p), =0, (1b)
(pE), + (pEu+pu), =0. (1c)

In these equations, the bulk quantities are p = ap; + (1 — a)p2 and pE =
ap1Er + (1 — a)pa B2, with the total energy for each fluid j = 1, 2 defined as
E; = e; + su®. Here ¢; is the internal energy of fluid j.

Two more flow equations are needed to close the system. The first one is
the conservation of mass for fluid 1:

(p10), + (prua), = 0. (2a)

Together with equation (1a), this equation gives mass conservation for both
fluids. For the last equation, the energy balance of fluid 1 is used. As the
fluids exert forces on each other, they exchange energy, which appears as a
source term in the equation:

(p1Era), + (p1Brua+pua), = S . (2b)

An expression for this source term is derived in the next section.
To close the system, equations of state (EOS) are needed for the two
fluids. A possible EOS is the ideal gas law,

p= (1 —1)pier = (v2 — 1)paez, (3)

with constant «’s. For this equation, it is easy to compute the primitive
variables p and « from the total energies.

3 The source term

3.1 Derivation of the source term

The source term S in equation (2b) models the exchange of energy between
fluid 2 and fluid 1. Euler flow has no heat conduction, so the only energy
exchanged is the work done by the force between the fluids. This force is
found from a momentum analysis.

Consider a fluid element in a smooth 1D flow (Fig. 1). The element con-
tains fluid 1 and fluid 2 (the interface is drawn schematically). The force on
the entire fluid element is p(z) — p(z + dz) and its bulk mass is pdz. The
force on fluid 1 in the element is (pa)(z) — (pa)(z + dz) + Sprdz. Its mass is
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piradz and its acceleration is equal to the acceleration of the entire element
(because both fluids have the same velocity). Therefore

p(z) —p(z +dz) (pa)(z) — (pa)(z + dz) + Spdx ‘

pdz pradz

The force Sy follows from this expression (using the mass fraction 8 = £5%):
Sm =paz + (o= B)ps - (4)
The energy source term S is the work done by the force Sy;:

S =uSy =pua, + (o — B) up, - (5)

p(z + dz)

k

fluid 1 a(z + dz)

T T+ dx

Fig. 1. Two-fluid element in smooth 1D flow.

3.2 Characteristic analysis of the system for ideal gas

The source term (5) is valid for any EOS. Substitution of the ideal gas law
(3) allows a characteristic analysis of the flow equations. This results in five
wave speeds,

M=u—c dza=uds=u+c, withc=+/(ay+(1—a)y)p/p. (6)

This combination of wave speeds is physically correct. It can be proved that
(5) is the only possible source term that gives such a combination.

3.3 Source term in discontinuities

To allow weak solutions with discontinuities of the two-fluid flow equations,
we need a proper definition of the flow across a discontinuity. The first four
equations, (la) — (1c) and (2a), satisfy the Rankine-Hugoniot condition [f] =
¢s[q], with ¢s the speed of the discontinuity. For the fifth equation, (2b), this
condition becomes

[f] = csla] + /zR Sdz (7)



4 Jeroen Wackers and Barry Koren

where xy, and xzr denote the coordinates of the left and right side of the
discontinuity. The integral must be evaluated across the discontinuity, which
is impossible. However, if we assume that the discontinuity is the inviscid limit
of a viscous layer and thus has a continuous internal structure (the precise
shape is unimportant), then we can write the state variables as continuous
functions of p and integrate the source term:

TR 1 PR
— 1 _ 24 - 000
/1:‘1, S = [pua] " z/BLpL(UL CS)[U] * PL ('LLL - cs) /PL padp ‘ (8)

A derivation of this expression will be given in a future paper. The last
integral can be evaluated exactly, but it requires an EOS. So there is a unique
jump condition for the present two-fluid model, but, unlike the single-fluid
jump condition, it depends on the material properties of the fluids.

4 Numerical method

4.1 Second-order accurate discretisation

The flow equations are discretised with a second-order accurate finite-volume
scheme. Fluxes are computed with an improved version of Linde’s three-wave
HLL approximate Riemann solver [5], combined with a limited reconstruction
of the cell interface states. The limiter is applied to the primitive variables
p, u, p, & and SB. Time stepping is done with a two-step scheme (see [7]).

4.2 Numerical source term

A discretisation of the source term is needed in two places. First, an ap-
proximation of the source term in a discontinuity is needed to compute the
HLL flux. The HLL solver models a Riemann problem with three discontin-
uous waves. The easiest way to incorporate the source term in these waves
is to compute only one approximate solution of (8), using the left and right
cell interface state, and to divide this source term proportionally over the
three waves. This procedure causes some small inaccuracies, but it is fast
and straightforward.

Secondly, the source term for the time integration is computed. It consists
of two parts:

i) sources in the discontinuities at the cell faces, that are summed over all
HLL waves on interfaces ¢ — % and 7 + %, that actually run into cell 7,

ii) sources in the continuous flow in the cell, which are integrated over the
piecewise linear approximations to the primitive variables, that follow
from the use of the limiter.

These two sources are summed per cell.
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5 Numerical results

5.1 Shock-tube test

The method is tested first on a 1D Riemann problem for ideal gases: a two-
fluid variant of Sod’s problem, with a ten times higher left pressure and den-
sity, giving it a pressure ratio of 100:1. Figure 2 shows that the discontinuities
(shock and two-fluid interface) are in the proper locations. The pressure is
constant over the contact discontinuity and the volume fraction is constant
over both the shock and the expansion fan. A convergence study for this
problem shows that the L!-errors in p, u and p converge approximately with
the power 0.96 of the mesh width. The volume fraction converges with the
power 0.78 of the mesh width. This rate of convergence is comparable to that
for similar single-fluid solutions.

-0.2 -0.1 0 0.1 0.2 -0.2 -0.1 0 0.1 0.2 -0.2 -0.1 0 0.1 0.2
X X X

Fig. 2. High-pressure, two-fluid Sod problem. (p,u,p), = (10, 0, 10), (p,u,p)r =
(0.125, 0, 0.1), vy = 1.4 and yg = 1.6. The grid has 200 cells, 160 time steps,
At/Az = 0.2 (CFL = |Amax|At/Az = 0.56). Solid lines: exact solution.

5.2 Shock hitting helium bubble in air

This 2D test case has been taken from literature [6]. It consists of a cylindrical
helium bubble in air, which is hit by an incoming shock wave. The problem is
solved on a grid of 200x400 cells, with At = 1.25 x 10~°. Figure 3 shows the
solution at two times. The (half) bubble is visible between x = —0.025 and
x = 0.025. The incident shock, coming from the right, can be seen in the air
above the bubble, the curved shock in the bubble runs ahead of this shock.
The rightmost wave is an expansion wave, reflected into the air behind the
shock. At the later time, a complicated A-shock structure has developed above
the bubble. Figure 4 shows the pressure and the volume fraction for this time.
Of the waves appearing in the density plot, the shock waves and expansions
are visible in the pressure plot only and the interface in the volume fraction
plot only, as it should be. The pressure is continuous over the interface.

The speeds of the shocks and the interface at the centerline (y = 0) have
been compared with results from Quirk and Karni [6] (obtained on a very
fine, adapted grid). The difference is between 0.7% and 2.2%.
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Fig. 4. Shock hitting helium bubble, pressure (left) and volume fraction (right) at
t=10.74 x 1072,

6 Conclusions

A model for compressible two-fluid flow is proposed, that is conservative and
pressure-oscillation free. 1D tests show that the model resolves contact dis-
continuities without creating pressure errors and that it accurately handles
problems with strong shocks. A 2D test shows that the method properly re-
solves curved shocks and interfaces too.
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