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Abstract

This paper is devoted to high-order numerical time intégradf first-order wave equation sys-
tems originating from spatial discretization of Maxwekguations. The focus lies on the accu-
racy of high-order composition in the presence of sourcetfans. Source functions are known to
generate order reduction and this is most severe for higaranethods. For two methods based
on two well-known fourth-order symmetric compositionsneergence results are given assum-
ing simultaneous space-time grid refinement. Herewith ighysources and source functions
emanating from Dirichlet boundary conditions are distished. Amongst others it is shown that
the reduction can cost two orders. On the other hand, whemtairc@erturbation of a source
function is used, the reduction is generally diminished bg order. In that case reduction is ab-
sent for physical sources and for Dirichlet sources therdedequal to at least three under stable
simultaneous space-time grid refinement.
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1 Introduction

Common spatial discretization of the Maxwell equationsfrelectromagnetism

paH = —OxE,
1)
€AE = OxH-0E—J,

results in linear systems of ordinary differential equasiof the type
My O uy) [ 0 —-K u fu(t)
(o w)(v)-(e o)V (e) @

The vectorss = u(t) andv = v(t) are the unknown vector (grid) functions approximating takies
of the magnetic fieldH and electric fielcE on the space grid, respectively. The matrikeandK "



emanate from the curl operatdrx. The matrixD is associated with the dissipative conduction term
—0oE and the matriceBl,, M, typically represent mass matrices such as arising withefeléments.
They also contain the values of the coefficien@nde. Further, the vector functiorfd'(t) and fV¥(t)
are time-dependent source terms. Normé&lt) represents the given source currénbn the grid,
but f¥(t) andfY¥(t) may also contain Dirichlet boundary data.

Hence the partitioned ODE system (2) is of considerabletigaddnterest as it is generic for
semi-discrete Maxwell equations. In this paper we discugis-brder numerical integration of (2)
when considered as a semi-discrete system. In particubawilvassume that element wise

1
K~ o h—0, 3)
whereh parameterizes the distance of the (possibly nonuniforma¢emgrid and the dimensions of
the arising matrices and vectors. Hence we assume thatttendion of (2) is variable (PDE setting)
and we thus do not consider a single system of fixed dimensiamthe ODE setting.
In the remainder we also assume that we have eliminated the matrices so that instead of (2)

we proceed with the semi-discrete system

(v)=(& 5)(v)+( 0 ) @

This somewhat more convenient form is obtained from the meesix form through a simple trans-
formation, see [1], and the numerical integration methodsligcuss can be implemented for either
choice. In particular, results for (4) always carry over2pdnd vice versa. For convenience of nota-
tion and presentation, we will therefore proceed with (48réin the damping matri@ is symmetric,
non-negative definite. Ofte is not square so the lengthswéndv generally are different. Except
for common sufficient differentiability of the source fuimts, no further conditions are imposed on
(4).

Composition methods and partitioned systems like (4) foparéect match, see e.g. [6] for a de-
scription of the composition technique. One of the most fegntegration methods for Maxwell’s
equations, the second-order method (7), is a compositidhadesee e.g. [9] and [1]. Composition
is an elegant and powerful technique. One can directly budfi-order methods from known com-
positions from the literature. Composition methods are kiswown to be accurate. However, in the
PDE setting of semi-discrete systems, the convergence ofdeich a method may be lower than
the chosen composition order. Such a reduction of order ataarirom source terms, even from
physical ones, and this occurs for composition methodsadrogreater than two. We examine this
for two methods based on two well-known fourth-order conimss from the literaturé)

In Section 2 we will review local error analysis results fbetsecond-order method (7) since
we need these further on. In this section we also proposertarpeone of the source functions in
a manner that the second-order method no longer shows lobed ceduction. Whereas this is not
relevant for the global error of the second-order method for the global error of higher-order
composition methods. We will discuss this in Section 3 far tihvo methods based on fourth-order
composition. For these two methods we will prove that duehtogerturbation the general PDE
order increases by one. Specifically, if one of the sourcetfons contains Dirichlet boundary data
the order is a least two without the perturbation and at léase with the perturbation. On the
other hand, if boundary data is absent in both, these nunalberdhree and four. For given source
functions, these convergence orders depend on the seqaokocandv used in the composition
method. We will numerically illustrate the PDE convergeresults in the final Section 4.

1) When we write order without referring specifically to the PBéting, we will always mean the ODE order which is
determined by the composition order.



2 The second-order method

In this section we review the second-order method which game basis for the composition meth-
ods discussed further on in the paper. tgtdenote the integration method
Upr1—U
% = —Kvnp1+ fYthya),
5)

V, —V
% KTUn —DVny1+ f¥(tnsa),
anddj its adjoint
Unt1 = th

== _KVn+fu(tn),
it v ©
7“4» T n == KTUn+l - DVn+ fv(tn) .

The compositior®; , o CD’;/2 then defines the second-order method

u —Uu
W = —IKva+1fY(t),
V —V
W KTy 300 Vi) () + i), )
Un+1— Untq/2 1 1
——= = —3Ky, 5fU(the).
T 5KVni1+ 5 fU(thia)

This one-step method steps frdim, vi) to (Uny1,Vni1) With step sizer. Hereu, denotes the ap-
proximation to the exact solutiomlt,), etc., andr = t,;1 —tn. The method is explicit in the wave
terms and implicit inD (the trapezoidal rule). ID is block-diagonal with a small bandwidth, as
it is for discontinuous Galerkin finite element and finitefelience discretizations, this implicitness
comes with little costs. Fam > 1 the third-stage derivative computation can be copied editkt
stage at the next time step. Per time step this method thesyseeonomical as it actually requires
a single righthand side evaluation per time step (for Z@xowhile it is second-order consistent (a
consequence of symmetry). Method (7) is well-known in therditure on geometric integration, see
e.g. [6], in particular for zer®. With regard to time stepping it bears a close resemblantetpop-
ular Yee-scheme [14] from electromagnetism and to Vente&shod from molecular dynamics [11].
For the Maxwell equations it has for example been studiefjiafd [1, 13].

Our error analysis concerns temporal convergence towhedgue solutions of the underlying
PDE problem restricted to the space grid. We denote thesg(byandwvy(t) and observe that these
exact grid functions are solutions of the semi-discretéesys

Uh(t) = —Kvn(t) + FH(t) + oR () ,

(8)
Vh(t) = KTun(t) — Dwa(t) + F¥(t) + oy(1),
where gy(t) and g)(t) represent local spatial errors. In [1, 13] the followingdtem has been
proved:

Theorem 2.1 Let the source functions'ft), f¥(t) € C2[0,T] on a given finite time intervgD, T]
and suppose a Lax-Richtmyer stable space-time grid refineme h, h — 0. On the interval0, T|
the approximationsq v, of method (7) then converge with temporal order twog@ Uvh(t).



This theorem thus says that the second-order method dossfiiet from order reduction. This
second-order result is special in that the local error mdfesfrom reduction, cf. (14), which
cancels in the transition towards global error. Below we reNiew the local errors for ~h,h— 0
since we will need these when the method is used as buildotklibr the higher-order composition
methods? For the full proof of the theorem explaining the fortunataaalation we refer to [1, 13].
Details on stability properties and energy conservationatso be found in [1].

2.1 Local error properties

We review the local error properties of method (7). To thid e first replaceV(t,) + fV(th11) by

a perturbed source contributicfl"i(tn) + fNV(th) which will enable us to overcome the local order
reduction. The precise definition will be given shortly. Sitaneously we eliminate the intermediate
valueuy /> from the second stage by substituting half of its expresshutained from the first and
third stage. This yields the equivalent formulation

U1 —U 1

I 3K (vt viga) + 5 () + Pltnin))

Vi —V ~ ~

T = 3K (U Un) = 3D (V1) + 3 (FUlta) + ¥(tns) ®)

—2TKT [=KVp i1+ fU(tnsa)] + 2TKT [=Kvn + fU(t)] .
Substitution ofun(tn) for un, etc., results in the defect§' anddy defined by

Un(tnt1) — Un(tn
T
Vh(thi1) — Va(tn)
T

= — 3K (Wh(tn) +Vh(tns1)) + 3 (F(tn) + F(tn2)) + S,

= 3KT (Un(tn) + Un(tr+1)) — 3D (Va(tn) + Vn(tn+1)) (10)
+3 (FY(t) + FY(tnsa)) — FTKT [=KVh(tara) + FU(tnsa)]
+ 2TKT [=Kvn(tn) + FU(tn)] + 3.

Using (8) we get

gy = 2] Wil 2 (400 4 thtoen)) + 5,
gy = ) ) () i) + 5K i) )] £ D
+3 (V) + P (thea)) — 3 (FY(tn) + FV(tas)
where L
=5 'y th o th ;
$=3 (Uh( )+ 0,( +1)) 12)

8= 3 (03 (tn) + O (tn-1)) — 37KT [0} (tn 1) — OF(tn)] .
denote the local spatial error contributions.

Because our focus lies on temporal accuracy, we will now gfraindsy, that is, we simply put
s1 ands), to zero. This is not essential. Carrying the spatial errlinsgain further derivations yields

2) The notationt ~ h, h — 0 is used throughout the paper and means that we considemu#isieous space-time grid
refinement, where the ratio betweeandh is determined by the common demand of Lax-Richtmyer stgbili



no more insight in temporal accuracy. It would merely make expressions more lengthy. We
stress, however, that temporal accuracy will remain to besicered with respect ta,(t) andvy(t)
for T ~ h, h— 0. Henceforttuy(t) andwvy(t) are supposed to be continuously differentiable as many
times as the derivations require.

Let us first examin@} (for zerosh) which is in fact the implicit trapezoidal rule defect. Exyuh
ing at the center poirtt, 1, for T — 0 yields the familiar expansion

O = _irzuf) — —r4uf]5) + (13)

wherej = 2" means even values fgronly and the derivatives are evaluated att, 1/,. The ex-
pansion contains only constants and (odd) solution dévestvhich when appropriately measured
(with the inner product norm) are bounded For- 0. So, ifuy, is three times continuously differen-
tiable, from Taylor's theorem with remainder we @it= ¢(12) with the order constant involved
independent of andh.%)

Next we expandy (for s = 0) att,, 1/, first without a source function perturbation, that is,

with fY(th) + fY(tny1) = FY(tn) + FY(tns1). We get

& = _%ZTZVE‘S) — ir“vf]s) + ot TKT[%TUE]Z) + ir3uf14> + -] (14)
Because of property (3) we hav " = ¢(1) for T ~ h,h— 0. This means that in general the second
part of the expansion is onlg (1) and henc&! = ¢(1) instead of¢’(1?). Would

d2 d2 (v)

T,@ 1) — 3 (2) _
K'u”(t) =V, (t) + Dy, (t)—ﬁfv(t)—@oh (t)y=0(1), h—0, (15)

thendy = 0(1?) for T ~ h,h — 0. This holds if

@,
o =001, h—o, (16)

because the third derivative @f(t) and the second derivatives B/, (t) and a,sv) (t) are bounded.
Condition (16) is true for physical sourcé&$(t) but generally not iffY(t) contains Dirichlet bound-
ary data, since then part of its components behavé'@s?!),h — 0, cf. property (3), and this
generally also holds for the derivatives.

To overcome this possible cause of local order reduttiae now define the perturbed source
function contribution

() + Pten) = )+ Pltai) + 5T (1)~ Pltar), a7)

where we emphasize that the perturbation is defined for thme ®¥ith this definitiondy becomes

&) = M;"“(t”) - % (Vh(tn) +Vh(tnt1))

+4T (Vi(thr1 — Vi (tn)) + 7D (Vh(tn1 — Vi(tn)) -

(18)

3) Unless noted otherwise, the symigo(-) will always be used with this meaning, that is, order cortstamist which are
independent of andhfor T ~h— 0.
4)As proved in [1, 13], this local order reduction does notetftee 2nd-order convergence of method (7)ifer h, h— 0.



Expanding in the same way as @} gives

1 1 1 1
e U R P (19)

Like for uy, if vy, is three times continuously differentiable, from Tayldat®orem with remainder
we getdY = ¢(1?) for T ~ h,h — 0 with the order constant involved independent @indh.

2.2 Theglobal error recursion

Let &) = unh(tn) — up @and gy = vh(tn) — vy denote the global errors. From (9) and the local error
discussion we deduce the following global error recursion:

1
I 37K £#+1 .
—1kT  1-1%KTK + 11D &,

(20)
| —31K gl o
1T 12T 1 v +T n |’
51K | —31°K'K - 31D & oy
and puttings, = [(¥)7, (¥)T]T andd, = [(89)T, (&)T]T, we arrive at the compact notation
&nt1 = Ren+TPn, R= R[lRRa Pn= R[lém (21)

with R. andRg the left and right block matrix, respectively. This recorshas the standard form
featuring in the convergence analysis of one-step integratethods, see e.g. [7]. Assuming Lax-
Richtmyer stability, whereby we includ®_ inversely bounded for ~ h, h — 0, it transfers local
errors to the global error by essentially adding all locabes. It reveals second-order convergence
for 1 ~ h,h — 0, if both 8" anddY are&(12) for T ~ h,h — 0.

2.3 Reversed u,v sequence

The sequence, vin (7) may be reversed. For this second-order method thistiselevant. However,
when used as a base method for higher-order compositiore thay arise significant accuracy
differences. This fully depends on the source terms, i.bether they contain Dirichlet boundary
data or not. We will illustrate this in the numerical Sectnraking into account the sequence and
the source function perturbation, this means that altagdtur different second-order methods are
distinguished, namely (7), its version with the perturbai{17),

u — U
W = —%Kvn-#%fu(tn)a
Vi1l — V) + f f
% = KTnia/2— 3DV + V1) + 3(F(tn) + FY(tnr1)), #2
Unt1—Unt1/2
nfmr/ = —%KVn+l‘|' % fu(tn+1) ’



its version with reversed sequence,

v -V
W = 3KTuy—3Dvn+ 3 ¥(tn),

Unt+1— U

% = —KvVqi1/2+ 3(FUta) + fU(tns 1)), (23)
V41— Vnt1/2
% = %KTUnJrl—%DVnJrj_"'%fv(tn"'l)v

and its version with reversed sequence and the perturb@ffrapplied tof ",

Vnt1/2 = Vn
P2 3KTuy - 30w+ 31().
Unty1—U £ £
T = Kt 3(FU) + Fltas)). (24)
Vni1 — Vnt1/2
fn/ e %KTUnJrl—%DVn+1+%fv(tn+1)'

For the analysis it is sufficient to only consider methodsafj (22).

3 Symmetric composition methods
Our aimed methods are based on symmetric compositions

W — @ oo yl2) (25)
of composition order fourf + --- + s =1 andy; + - + 2 = 0) WhereLlJ% represents one of the
four methods from Section 2.3. Within this composition, ieese method steps frotgH- (Y4 + -+ - +

W1)Ttoth+ (v1+---+ W%)T fork=1,... ,sspanning the intervdty,t,.1]. For composition order
four two compositions of interest hage= 3 ands =5, respectively,

1 21/3
Vlz)"s:ma sz—ma (26)
and
1 41/3
N=Ye=W=¥=r""13 W= 3 (27)

We have taken these parameters from [6], formulas (11.4hd)(#.4.5), where fos = 3 a reference
is givento [2, 4, 10, 15] and far= 5 to [10].

A convergence proof for method (25) is given in [6]. This pidwwever, does not take into
account the Lipschitz constant of the ODE system which esdlgnmeans that for our case it is
restricted to a fixed ODE system, whereas we wish to investitiee order forr ~ h,h — 0. In
Section 3.2 we will present a proof for the following coumpttt of Theorem 2.1

Theorem 3.1 Let D be zero, f(t), f¥(t) € CP[0, T], and suppose a Lax-Richtmyer stable space-time
grid refinement ~ h, h— 0. On |0, T] the approximationsy v, of method (25) based on (22) and
parameters (26) or (27) then converge §dt), v, (t) with

(i) at least order p= 3,

(i) order p = 4, if in addition KTu{> (t), Kv{¥ (t) = (1) forh— 0.



We have takeD = 0 as this simplifies the analysis. With respect to order rédndchis is not
essential as order reduction is not related to conduction.

Theorem 3.1 states that on the whole problem class (4) ftitt), fV(t) € C3[0, T] order three
is guaranteed. If both source functions areCj0, T] and the additional condition on the third
derivatives is satisfied, the composition order four willhd-rom

3 4 d3 d3
KW (0) = 0 () + 55 10 + S5 aR(0), o5
28
3 4 3 d? a3
KTup () = v 0+ Dy (1) = 5 () — 5 o),
follows that this is true if foh — 0 the source functions satisfy
dd dd
w =00, =00, (29)

because the fourth derivatives of(t),vy(t) and the third derivatives dDv,(t),o(t), oy (t) are
bounded foh — O.

This boundedness condition applies to physical sourcdsshiolated by sources containing
Dirichlet boundary data, since for these there will exisnponents which are’(h~1) for h — 0.
Hence with only physical sources we are guaranteed tha¢ thigir be no order reduction. With
Dirichlet boundary data we are guaranteed that we have ¢hdee, and we expect that normally
order three will show up. However, for special solutions éheéer may lie between three and four,
even if the (sufficient) condition of assertion (ii) will béolated.

We owe the good convergence results of Theorem 3.1 to tharped source function contri-
bution (17). Generally, by using (17) the reduction is diistred with one order. The following
theorem, where the composition is based on the original odgfh), clarifies this:

Theorem 3.2 Let D be zero, f(t), f¥(t) € CP[0, T], and suppose a Lax-Richtmyer stable space-time
grid refinement ~ h, h — 0. On|[0, T| the approximations v, of method (25) based on (7) and
parameters (26) or (27) then converge gy, v, (t) with

(i) at least order p= 2,

(ii) at least order p= 3, if in addition KTu” (t) = &'(1) forh — 0,

(iii) order four p = 4, if in addition KTuﬁ,>() Kvi2(t), KKTu (t) = 6/(1) forh — 0.

Similar as above, from (8) follows thaet" u ( )=0(1) if

d2
a2 fYt)=0(1), h—0, (30)
while the additional conditions for order four are satisfig@9) holds and if
d2
K@ fY(t)=0(1), h—D0. (31)

In particular this latter condition is restrictive and ingd that even with only physical sources order
four for T ~ h,h — 0 will rarely occur. However, as observed above, for spesnaltions the order
reduction may be less, even if the (sufficient) conditionassertion (ii) and (iii) will be violated.

When comparing Theorems 3.1 and 3.2, it is obvious that theifieed source function contri-
bution (17) should be used as a default option. In the nurleBiection 4 we will illustrate this, both
for the base methods (7) and (22), assumed in these theansmell as for their reversed versions
(23) and (24). Finally, because the proof of Theorem 3.2 goasdar as that of Theorem 3.1, we
refrain from presenting it here so as to avoid duplication.



3.1 Step-by-step stability

Before proving the above convergence theorems we recaditétidlity analysis as this is based on
material also needed for the proofs. Consider the semiatissystem (4). Assumec R™ v e R"
with n > m (the reversed case can be treated likewise) and khgsR™" andD € R™". Let

w € R™™M denote the solution vector composedipy. A natural norm for establishing stability is
the inner-product norriw||? = (u,u) + (v,v). As D is symmetric positive semi-definite, and for zero
D the matrix of the system is skew-symmetric, for the homogeasgart of (4) follows

d
giwil* = —2(dvy) <o, (32)

showing stability in the inner product norm.
For numerical stability analysis we suppose that the cotimueatrix D is constant diagonal,
D = al say. This holds if in (1) the conductivity coefficieatand the permittivity coefficierd are
constant scalars and allows the use of the singular valuengeasitiork = UAVT whereU € R™™
andV € R™" are orthogonal and is a diagonain x n matrix with nonnegative diagonal entrigs,
..., Amp satisfying
M2z Z2A>Ai1=---=An=0. (33)

Herer < mis the (row) rank oK and theA; are the singular values & (the square roots of the
eigenvalues oKKT). The transformed variables and source terms

ai) =uTu(t), vit)=VvTvt), fUt)=uTfut), ft)=VvT(t), (34)

satisfy the ODE system

7T\ (0 -A a fu(t)
(v)-(a ) (5) (=) )
Because the matrix transformation induced by (34) is a anityl transformation, the matrices of
systems (4) and (35) have the same eigenvalues. Fuffi&+ ||v||3 = ||0]|3 + ||V]|3 due to the
orthogonality ofU andV. Thus, ifD = al applies, the stability of any time integration method
may be studied for the homogeneous part of (35), providesltals method is invariant under the

transformations leading to (35). This holds for the methmatssidered in this paper.
Since the matrix\ is diagonal, system (35) decouples inttwo-by-two systems

<5)—(§ iﬁ)(ﬁ%(ﬁi@) A=A>0, k=1,...r,  (36)

m—r scalar equationg’ = fU(t), andn —r scalar equationg = —av+ f¥(t).>) This the canon-
ical form for semi-discrete Maxwell equation systems viitk= al. Both with regard to stability,
consistency and convergence analysis, numerical methbidé \&re invariant under the used trans-
formation can be examined for this canonical form. Herewithm — r scalar equations’ = fU(t),
andn—r scalar equationg = —av+ f"(t) are trivial. What matters are thhegwo-by-two systems
(36) of which the homogeneous form provides a useful testaifod stability.

5) We have used the singular value decomposition also in [Lag#]note that the description of the decoupling given
in [1] contains an error.



When applied to the homogeneous form of (36), the compositiethod based on (7) or (22)
yields

(am):ﬁ 1 <1+%w<2a—%vk22§ W +3%7 )(u) -
k:sl+ 1 ’

Un+1 S Wz e 1-3Wz—3%% )\ %

wherezy = 10,2, = 1A. We define stability through the common root condition(zat z, ) the two
roots of the characteristic equation of the amplificatioririrdie on the unit disc and are different
when both lie on the unit circle. We recall that for method §Ad its three counterparts from
Section 2.3 holds that far = 0 the root condition is satisfied if and onlyaf < 2, while fora > 0

the root condition is satisfied if and only4f < 2 [1]. Hence there is no step size restriction on the
conduction coefficiend.

For the composition methods defined by the parameter sefsa(@b(27) we also distinguish
betweera = 0 anda > 0. Fora = 0 the stability interval is the largest interv@&, z) ) along which
the root condition holds. Along this interval both roots die the unit circle. A numerical search
has resulted irf0, 3 1] for s= 3 and(0, €] for s= 5, where} mande are accurate lower bounds. For
a > 0 we have computed, with a numerical search, the stabil@prs

7 ={(24,2\) : Za,2, > 0 and both roots have modulusl}, (38)

where we impose the slightly stricter conditienl, see Figure 1. Both regions contain a hole along
the zy-axis due to the negative time step (see (26) and (27)) whigioses a step size restriction
determined by the conduction coefficiemt Further, fors=5 the region is larger due to smaller
coefficientsy. Taking into account the workload (five sub steps or stagespened to three), the
advantage of a large# still exists. This advantage is negligible far= 0 (compare the scaled
lengthse/5 ~ 0.54 and%n/s ~ 0.52). Finally, when stability is more important than accyrand

the workload is taken into account, it is clear that the méthiors = 3 ands =5 cannot compete
with the second-order methods. This holds in particulaoifduction terms limit the step size.

Figure 1:The stability regions .# of the two composition methods. At the left for s= 3, at the right
for s=5.
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3.2 Proof of Theorem 3.1

We will give the proof fors= 3. From the derivations and results gatheredsfer3 one can readily
see that the case= 5 goes in precisely the same way.

3.21 Preliminaries

Consider the global error recursion (20). I®tdenote the amplification operatBrintroduced in
(21) with T replaced byyt and defineR¢ as the counterpart d®.. With the material of Sec-
tions 2.1 and 2.2 one then readily derives for the compasitiethod (25) based on (22) the global
error recursion

En+1 = ReRoRuen + ReReR; 1" + ReRy 1047 + Ryt ol (39)

where

9 =

(—ﬁ@%ﬂw—ﬁ@%ﬂw+w> o)

3 5
BT (80 + o TV (80 + -

andsc=th+ (Y1 +-+ %1+ %yk)r denotes the center point for theth sub step. Note that we
here have included the step size fagiar into the defect expressions. For zédave can express

R.i andRy as
Lo TRTPKKT  —IprK
Rel = 1 T ’
SIK I
(41)
—3RKKT  —ptK + 12 KKTK
Rk:
WIKT | — 3y212KTK

and sincerK = &'(1) for T ~ h,h — 0 due to (3), this also holds for these two matrices and any
combination thereof.
We write (39) as

Eni1= Xt pn. X =ReReR1, pn=ReRRFO" + ReRy 187 + R,  (42)
and introduce the following Ansatz ([7], Lemma II.2.3); can be written as
pn= (I —=2)én+Nn, (43)
with &, andnp,, local error quantities satisfying
§i=0(1°), &u1—&=0(t""Y) and ny=0(t"). (44)
If this holds, therg, = &, — &, satisfies the recurrence
Eni1 =X — (&ni1—&n) + M, (45)
with an &(tP+1) local error. Assuming Lax-Richtmeyer stability then giveshe standard way

O(1P) for & and hence fok,. The importance of the Ansatz is thus that the global order ca
be proven to be equal to the order &f, which is a local quantity. Consequently, the proof of

11



Theorem 3.1 is complete if far ~ h,h — 0 the Ansatz applies witp = 3 for assertion (i) and with
p = 4 for assertion (ii).

For examining (43) we use the singular value decompositfddeation 3.1. This means that
within the expressions (41) one may refafbor K andAT for KT and then, following the decoupling
into ther two-by-two systems (36), decouple alépf andRy in r two-by-two matrice®

- 1-1@72 ~Inz A 1-3@Z2 —yz+ i
Rl = 1 , Re= 1
Sz 1 Wz 1- 37
Hence (43) is replaced bytwo-by-two systems
Pn= (1 = Z)én+fin. (47)

wherep, is the transformed counterpartgf, etc. In accordance with the limit transitien~ h,h —

0 andtK = (1) we will considerz uniformly in an interval[0, znay with (0,zmay C the stability
interval of the numerical method as defined in Section 3.1teNaat this implies Lax-Richtmyer
stability. The end point,axwill be defined below.

), Z=TA. (46)

3.2.2 Assertion (i)

If f4,fV e C3[0,T], thenup, vy € C*0,T]. Fort ~ h,h — 0, Taylor's theorem with remainder then

allows us to replace (40) by
1.3, 4
—3 U+ O(1%)
5 =g , : (48)
%T3v§] )+ 0(1%)
where the third derivatives may be taken at amyftn, ty11] independent ok. Hence we can express
the local erroip, as

1.3 .(3)
U4,

(3)

1.3
T°Vy

pn:‘,an‘f'ﬁ(Tzl)’ Wn:<
6

>, Z = P RRR [+ BRR L+ 3Rs T, (49)

The local error is of order three. For proving convergendepthree in the standard way we need
alocal error of order four. To circumvent this we now employ Ansatz withp = 3. Trivially, for nn,
we may choose thé’(r“) term in (49) and there remains to deal with the relatiéw, = (I — %)&.
For this purpose we proceed with the transformed counterpar

Piin= (1 - R)én. (50)
Let us write 1y2 .
. A gk 3k
Aot A= T T,
k0
(51)

1

3 . . —3RZ Wt IRZ?
R«=14+2By, Bx= s
Yk — 3Kz

6) The scalar equations associated with zero singular valagsagrivial role. Note that instead af we here writez.
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and substitute inte7 and.#. Using the third-order conditiop® + 3 + y3 = 0 we then can extract
one factorz from (50), that is, we can write

L=, \—-%=29, (52)

where the two-by-two matris¢’ collects remaining”(1) terms. If 21 exists and is bounded uni-
formly in [0, znay, then

b= =0(1%), &na—&=0(1", (53)

andgen satisfies (50). A
Consequently, we are done%f—* exists and is bounded uniformly 0, Znay. There holds

9=~ Z(éséz +BsB1+ Bzél) — ZB3ByBy (54)
where, usings + o+ s = L andy? + 3+ 5 = 0,

3 —1z53 W -1

- ~ 242k=1 Yk

Jo=Y B= . . (55)
k=1 1 —373ka %

HenceZ ! exists in a neighborhood af= 0 which proves the existence ofzgax > 0. Obviously,
we wish to maximizemax. Forz > 0 follows thaty 1 = 1 —L%)*l exists if both eigenvalues of
Z are unequal one. This is true inside the whole stabilityrirgte where the eigenvalues lie on the
unit circle, but forz — the right end point of the stability interval the eigenvawsaincide in one.
Necessarily we thus hawa,ax < than the right endpoint. Witlanax = 11/2 we can conclude that
91 exists and is bounded uniformly [0, znay, becauser/2 is smaller than the true end poffit.
This completes our proof of assertion (i).

3.2.3 Assertion (ii)
If f4,fV € C*0,T], thenup, vy € C°[0, T]. Fort ~ h,h — 0, Taylor's theorem with remainder then

allows us to replace (40) by

1-3,8 1 4)
6[2;() _ VS _1_2T3uh 12 (Sk - tn+1/2) T4uh + (ﬁ(TS) (56)
3 4
13® 1 1 (s —thy1/2) ™Y 4+ o(15)
where the derivatives are takentgt,, = sk — (Vi + -+ + -1+ %yk — %)r. Note that due to
symmetrys; =ty 1, ands; — s, = S, — S1. As a consequence

oY+ 82+ &Y = o(1°). (57)

Alternatively, the¢'(1°) result can also be concluded from the quadrature order $inoe (57) is
the local error for zer& for which the composition method reduces to a 4th-order catack rule.

") FOr z — Zmax H@A*HZ monotonically increases but remains close to one (the \&tlme- 0) on the greatest part of the
interval. For example, at the valué350,0.75,0.90,1.00) - 1t/2 the norm equals, approximatelyP8, 1.48,3.09,189.9.
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Proceeding with transformed variables we thus can exphedstal error ag, = zﬁn +0(1%),

én = [ég + éz + Aj_ + Z(égéz + égAl + ézAl) + ZzégézAl] 3,2”4-
. . (58)
[Bs+ Ao+ 28R &7 + A&y

and our task is now to check the Ansatz rule (47)or 4. Obviously we assigh, to the 0(1°)
term and we are done if in the intervl zynay we can solve, with orderp = 4 from

(I _@)Enzzén, (59)

or, equivalently,jrom@fn = ﬁn, see (53) and the discussion thereafter on the existencgréiodm
boundedness a¥ 1. Hence what remains to show is tiat= &' (14).
From (56) follows

Bn = V3 B+ Bo+ Aq +2(BsBo + BaAg + BoAr) + 2BaBoAq) i+
V3 [Bs+ Ap + ZBaAo] Wi + y3AgWin + O/(T%) (60)
= (V3 [Bs+ B2+ A + 3 [Bs + Ag] + V3Ag) W+ T - 2 + O(1%)
where. collects remaining’(1) terms and

~ 57307 (1))
Wn—( 2° “h \'ntl/ . (61)

~(3
i, )(tn+1/2)

Recall that the&k, B, and their combinations ag(1) sincez € [0, zmay With zmaxfinite.

At this stage we invoke the additional condititﬂuﬁf) (t),Kvﬁf) (t) = 0(1),h — 0 made for
assertion (ii). For the transformed variables this impliesh — 0,

A0 t), 293 (1) = 0 (1), (62)

for any component painy;V, and occurring singular valu of K. This provides us with an addi-
tional factorr such that7 - 2w, = ¢(1#) and likewise we can simplify expression (60) to

Bo= (V3 [Bs+ Bo+ Ad] + V3 [Ba + Ag) + V3As) Wi + 0/(1%). (63)

Continuing this we find

. AW . 1 1 1
Bn= W+ (1), y=R(strtsn)+Bsr5R) % 56 (64)
y O

and sincey = 0 we have proved thz;fin = 0(1*) which completes the proof of assertion (ii).

4 Numerical illustration

In this section we illustrate the results of Theorems 3.2 f@: the parameter sets (26), (27).
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41 Thetest moded class

Let u,,0in (1) be scalar. Writinde = (E*,EY, E?), etc., in three dimensions we then have

oH* 0BV 0B  OEX oH* oHY .,
Hoe = 9z oy ot dy oz e
OHY  9E? QEX JEY  gH* HZ
o o= o= _ 0T ey 65
Hot " ox "oz fat oz ax 5 F (65)
oH* OE* JBY  OE* oHY oH* ., 4
H50 oy ~ ax ot ox  ady E-

From this 3D model we derive the 2D (transversal magneticgjehaith componentsl*, H? EY:

o oe
ot 0z’

oH? oEY

T ax (66)
OEY WX 9H?

ot 9z ox B

where we have pyt = ¢ =1 ando = 0. As space domain we take the unit square 8z < 1.

We suppose initial conditions f@Y, H*, H? and Dirichlet boundary conditions f&" only, which is

natural sinceeY satisfies the second-order wave equation
0’EY 0°EY  0°EY oY

o2 o2 | 92z ot

(67)

and uniquely determind4* HZ.

4.2 Spatial discretization

For spatial discretization we use a uniform grid with grigedi = 1/m, staggering, and 2nd-order
central-difference discretization. L&t= ih,x 1> = (i+1/2)h, etc. ThenEY is approximated
at(x,zj) fori,j =1(1)m—1, H* at(x,zj,1/5) fori=1(1)m—1andj =0(1)m—1, andH? at
(Xi+1/2,2)) fori=0(1)m—1andj = 1(1)m— 1. This spatial discretization yields a semi-discrete
system that fits in format (4) with of length 2n(m— 1) andv of length(m— 1)(m—1), see [13]
for details. Note that the staggering accommodates our daryrcondition, because due to the
staggerindd* andHZ? are not required at the domain boundary, with the benefitethaysfY(t) =
0(1), whereas eithef!(t) = ¢(h™1) or fU(t) = 0, depending on whether a time-dependent Dirichlet
condition is chosen for componet or not. Hence, with our staggering, starting with component
uis profitable because then alwaf)§t) = &'(1). For illustration purposes, however, we will use all
four base methods mentioned in Section 2.3, including thersed sequence methods.

For this spatial discretization, the maximum singular ealy from (33) equals 22/h. This
leads for method (25) to the step size restrictions

T
——h~ 0555h, s=3,
T<Tc= 4}? (68)
—_h~ 0961.h, s=5.
V2

In the tests we will use the critical step size valagsHowever, to account for the different numbers
of stages in the convergence plots, accuracy will be platzdnst the total numbers of stages.
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4.3 Two test solutions
43.1 Test solution one

As a first test solution we impose the artificial functions
EY=¢€(x—a)(x—b)z(1-2),
HX=é(x—a)(x—b)(1-22), (69)
HZ=—é(2x—a—b)z(1-2),

with (a,b) = (0,1) or (a,b) = (0.5,0.5). With (a,b) = (0,1) we haveEY zero at the boundary,
and thusf!(t) = 0. For(a,b) = (0.5,0.5) we haveEY nonzero at thex= 0,1 boundary and thus
fu(t) = ¢(h~1). For both choices the source functib(t) = ¢(1) and nonzero as determined by
J?E’. In space the solution is quadratic and hence we have a zatialsgrror. As integration interval
we have used0,1]. Convergence plots are given in Figure 2, where, for a semehdecreasing
values ofh, the maximum norm global error ofy, vy for NT = 1 is plotted against the total number
of stagedNs As step size the critical value= 1 given in (68) is used.

In the left plot (the zero boundary case) the o-andarker refer ts = 3 ands =5, respectively.
The solid lines refer to the base scheme (22) using the foation for the source functiof’(t).
These solid lines confirm assertion (ii) of Theorem 3.1 oreofdur (the parallel lower dashed line
has slope four). The dash-dotted lines refer to the basersxfié not using the perturbation. These
dash-dotted lines confirm assertion (ii) of Theorem 3.2 aleothree (the parallel upper dashed line
has slope three). Note that the composition scheme yielddesnerrors fors = 5 than fors = 3.
This was expected due to the smaljgiparameters and the nearly equal scaled critical step sizes
Tc/S.

In the right plot (the nonzero boundary case) we give redoits = 5 only. Because we have a
nonzero Dirichlet boundary condition, we expect to obtasximal convergence order three. The
results confirm this. The three solid lines with theéd, &-markers all three represent a third-order
convergence result (the parallel lower dashed line hagdlmee). The--marker corresponds with
the base method (22) using the perturbation, andthearker with the base method (7) without
the perturbation. The fact that both methods lead to ordeetls in line with assertion (i) from
Theorem 3.1 and assertion (ii) from Theorem 3.2. In othedapwith nonzero Dirichlet boundary
values contained irf!(t) the perturbation has no effect on the convergence order. elenythis
changes if the sequence in treatiny is reversed. The&-marker corresponds with method (24)
where the reversed sequenca is used, with in addition the perturbation appliedftt{t). This
order-three result is in line with assertion (i) of Theorerh 8nd is clearly the most accurate one.
The +-marker along the dash-dotted line corresponds with mef@8y that is also with reversed
sequence but without the perturbation. In line with asser{i) of Theorem 3.2 this case reveals
only order two (the dashed upper line has slope two). So e dlustrates that we can loose two
orders if we consider convergence in the PDE sense compatkd brder in the ODE sense.

To sum up, albeit contrived, the current test solution cardithe order reduction predicted by
Theorem 3.1 and 3.2. On the other hand, when using the scemoeperturbation as in methods
(22) and (24), the obtained accuracies are high. In thisrdaga expect that in general the smaller
s= 5-parameters will be competitive with tilse= 3-parameters.
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Figure 2:Convergence plots for test solution one. See Section 4.3.1 for explanations.

4.3.2 Test solution two

The second test solution is the eigenmode

HX — \/% sin(k«1x + 71/ 2) cog k. 112) sin<,/k§+k§ rrt> ,
X V4

e & cog ke + 71/ 2) sin(k,11z) sin( kg + k2 nt) , (70)

EY = sin(kax+ 5,71/ 2) sin(k,112) cos<\/k§+ ke nt> :

where we fixky = k; = 2 and take as an optiay = 0 ors, = 1 in order to impose, respectively, a
zero and nonzero Dirichlet boundary condition for compai&n So fors, = 0 we havef!(t) =0,
whereas fols, = 1 the source functioi(t) = ¢ (h~1). Further, both options result if¥(t) = 0 as
JX=0.

While we discuss temporal ordprup to four, the chosen spatial discretization yields onlg-2n
order convergence for the spatial error, see e.g. [8]. Indks we have therefore applied standard
Richardson extrapolation in space to Eeapproximations to lift the spatial order to four for error
measuring at the output time. Lej.o, denote they, obtained at the output timé = N7 = 1 with
grid size . Similarly, let vy.n—.on denote thev, obtained with grid sizén and restricted to the
2h-grid. Then, at the output time we measure the PDE erroEfat the h-grid by ®)

Von(T) — (gVN;hHZh - %VN;2h> =0(t°) +o(h"). (71)

Convergence plots are given in Figure 3, where, for a sequehdecreasing values bf the max-
imum norm of this PDE error foNT = 1 is plotted against the total number of stafjess As step
size again the critical value= 1¢ given in (68) is used.

In the left plot the o-and-marker refer tes = 3 ands = 5, respectively. The solid and dash-
dotted lines refer, respectively, to the zero- and nonzetmbary case. For the zero case, where we

8) Because we extrapolate only at the output time, the intiegranethods are not changed. This would be the case with
extrapolation after every step. Extrapolation at the outipue only serves our purpose of testing here. We do not adeoc
it over long time intervals for wave equations without dangpi See also [1] and [5] for comments on this issue regarding
extrapolation in time. Higher spatial orders are betteliead with spatial discretization techniques such as baseithe
discontinuous Galerkin method, see e.qg. [3] and refereihezein.
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have no source terms, we see a straight order four (the pleatahed line has slope four) with again
more accurate results fer= 5. According to Theorem 3.1, we expected to see order threiado
nonzero case because thifft) = ¢(h~1). However, while the errors zigzag slightly as shown by
the two dash-dotted lines lying between the two solid onestall we see order four. We probably
owe this to fortunate error cancelation emanating from #wllatory nature of the solution.

In the right plot the o-and-marker again refer ts = 3 ands = 5, respectively. Here we treat
only the nonzero boundary case and reversaithiesequence. The solid lines refer to (24) with the
source term perturbation (17) now appliedfttit). The dash-dotted lines refer to (23) which does
not employ this perturbation. Without the perturbation wel forder two (the upper dashed line has
slope two) in accordance with assertion (i) of Theorem 3M#leragain thes= 5 method is notably
more accurate. With the perturbation we expected to see timae in accordance with assertion (i)
of Theorem 3.1. The order turns out to lie between three and(fbe lower dashed line has slope
three). Like in the left plot, we probably owe this to forté@&rror cancelation emanating from the
oscillatory nature of the solution. Note that with the pdpation,s =3 ands =5 now yield the
same accuracy (the two solid lines nearly coincide).

On the other hand, similar as for test solution one, we caclade that the idea of perturbing
the source function works out very well. We therefore aptiée that for many Maxwell applications
the composition method (25) based on method (22) or methdhdvides an efficient integration
method when high accuracy is in demand. In particular tharpater set (27) fos = 5 due to [10]
is then most attractive.

10° 10° 10° 10

Figure 3:Convergence plots for test solution two. See Section 4.3.2 for explanations.
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