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Abstract

This paper is devoted to high-order numerical time integration of first-order wave equation sys-
tems originating from spatial discretization of Maxwell’sequations. The focus lies on the accu-
racy of high-order composition in the presence of source functions. Source functions are known to
generate order reduction and this is most severe for high-order methods. For two methods based
on two well-known fourth-order symmetric compositions, convergence results are given assum-
ing simultaneous space-time grid refinement. Herewith physical sources and source functions
emanating from Dirichlet boundary conditions are distinguished. Amongst others it is shown that
the reduction can cost two orders. On the other hand, when a certain perturbation of a source
function is used, the reduction is generally diminished by one order. In that case reduction is ab-
sent for physical sources and for Dirichlet sources the order is equal to at least three under stable
simultaneous space-time grid refinement.
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1 Introduction

Common spatial discretization of the Maxwell equations from electromagnetism

µ ∂tH = −∇×E ,

ε ∂tE = ∇×H−σE−JE ,
(1)

results in linear systems of ordinary differential equations of the type
(

Mu 0
0 Mv

)(

u′

v′

)

=

(

0 −K
KT −D

)(

u
v

)

+

(

f u(t)
f v(t)

)

. (2)

The vectorsu = u(t) andv = v(t) are the unknown vector (grid) functions approximating the values
of the magnetic fieldH and electric fieldE on the space grid, respectively. The matricesK andKT
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emanate from the curl operator∇×. The matrixD is associated with the dissipative conduction term
−σE and the matricesMu, Mv typically represent mass matrices such as arising with finite elements.
They also contain the values of the coefficientsµ andε. Further, the vector functionsf u(t) and f v(t)
are time-dependent source terms. Normallyf v(t) represents the given source currentJE on the grid,
but f u(t) and f v(t) may also contain Dirichlet boundary data.

Hence the partitioned ODE system (2) is of considerable practical interest as it is generic for
semi-discrete Maxwell equations. In this paper we discuss high-order numerical integration of (2)
when considered as a semi-discrete system. In particular, we will assume that element wise

K ∼ 1
h

, h→ 0, (3)

whereh parameterizes the distance of the (possibly nonuniform) space grid and the dimensions of
the arising matrices and vectors. Hence we assume that the dimension of (2) is variable (PDE setting)
and we thus do not consider a single system of fixed dimension as in the ODE setting.

In the remainder we also assume that we have eliminated the mass matrices so that instead of (2)
we proceed with the semi-discrete system

(

u′

v′

)

=

(

0 −K
KT −D

)(

u
v

)

+

(

f u(t)
f v(t)

)

. (4)

This somewhat more convenient form is obtained from the mass-matrix form through a simple trans-
formation, see [1], and the numerical integration methods we discuss can be implemented for either
choice. In particular, results for (4) always carry over to (2) and vice versa. For convenience of nota-
tion and presentation, we will therefore proceed with (4). Herein the damping matrixD is symmetric,
non-negative definite. OftenK is not square so the lengths ofu andv generally are different. Except
for common sufficient differentiability of the source functions, no further conditions are imposed on
(4).

Composition methods and partitioned systems like (4) form aperfect match, see e.g. [6] for a de-
scription of the composition technique. One of the most popular integration methods for Maxwell’s
equations, the second-order method (7), is a composition method, see e.g. [9] and [1]. Composition
is an elegant and powerful technique. One can directly buildhigh-order methods from known com-
positions from the literature. Composition methods are also known to be accurate. However, in the
PDE setting of semi-discrete systems, the convergence order of such a method may be lower than
the chosen composition order. Such a reduction of order emanates from source terms, even from
physical ones, and this occurs for composition methods of order greater than two. We examine this
for two methods based on two well-known fourth-order compositions from the literature.1)

In Section 2 we will review local error analysis results for the second-order method (7) since
we need these further on. In this section we also propose to perturb one of the source functions in
a manner that the second-order method no longer shows local order reduction. Whereas this is not
relevant for the global error of the second-order method, itis for the global error of higher-order
composition methods. We will discuss this in Section 3 for the two methods based on fourth-order
composition. For these two methods we will prove that due to the perturbation the general PDE
order increases by one. Specifically, if one of the source functions contains Dirichlet boundary data
the order is a least two without the perturbation and at leastthree with the perturbation. On the
other hand, if boundary data is absent in both, these numbersare three and four. For given source
functions, these convergence orders depend on the sequenceof u andv used in the composition
method. We will numerically illustrate the PDE convergenceresults in the final Section 4.

1) When we write order without referring specifically to the PDEsetting, we will always mean the ODE order which is
determined by the composition order.
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2 The second-order method

In this section we review the second-order method which forms the basis for the composition meth-
ods discussed further on in the paper. LetΦτ denote the integration method

un+1−un

τ
= −Kvn+1+ f u(tn+1) ,

vn+1−vn

τ
= KTun−Dvn+1+ f v(tn+1) ,

(5)

andΦ∗
τ its adjoint

un+1−un

τ
= −Kvn+ f u(tn) ,

vn+1−vn

τ
= KTun+1−Dvn+ f v(tn) .

(6)

The compositionΦτ/2 ◦Φ∗
τ/2 then defines the second-order method

un+1/2−un

τ
= − 1

2Kvn + 1
2 f u(tn) ,

vn+1−vn

τ
= KTun+1/2− 1

2D(vn +vn+1)+ 1
2( f v(tn)+ f v(tn+1)) ,

un+1−un+1/2

τ
= − 1

2Kvn+1 + 1
2 f u(tn+1) .

(7)

This one-step method steps from(un,vn) to (un+1,vn+1) with step sizeτ. Hereun denotes the ap-
proximation to the exact solutionu(tn), etc., andτ = tn+1− tn. The method is explicit in the wave
terms and implicit inD (the trapezoidal rule). IfD is block-diagonal with a small bandwidth, as
it is for discontinuous Galerkin finite element and finite difference discretizations, this implicitness
comes with little costs. Forn ≥ 1 the third-stage derivative computation can be copied to the first
stage at the next time step. Per time step this method thus is very economical as it actually requires
a single righthand side evaluation per time step (for zeroD), while it is second-order consistent (a
consequence of symmetry). Method (7) is well-known in the literature on geometric integration, see
e.g. [6], in particular for zeroD. With regard to time stepping it bears a close resemblance tothe pop-
ular Yee-scheme [14] from electromagnetism and to Verlet’smethod from molecular dynamics [11].
For the Maxwell equations it has for example been studied in [9] and [1, 13].

Our error analysis concerns temporal convergence towards the true solutions of the underlying
PDE problem restricted to the space grid. We denote these byuh(t) andvh(t) and observe that these
exact grid functions are solutions of the semi-discrete system

u′h(t) = −Kvh(t)+ f u(t)+ σu
h(t) ,

v′h(t) = KTuh(t)−Dvh(t)+ f v(t)+ σv
h(t) ,

(8)

whereσu
h (t) and σv

h(t) represent local spatial errors. In [1, 13] the following theorem has been
proved:

Theorem 2.1 Let the source functions fu(t), f v(t) ∈ C2[0,T] on a given finite time interval[0,T]
and suppose a Lax-Richtmyer stable space-time grid refinement τ ∼ h, h→ 0. On the interval[0,T]
the approximations un,vn of method (7) then converge with temporal order two to uh(t),vh(t).
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This theorem thus says that the second-order method does notsuffer from order reduction. This
second-order result is special in that the local error may suffer from reduction, cf. (14), which
cancels in the transition towards global error. Below we will review the local errors forτ ∼ h, h→ 0
since we will need these when the method is used as building block for the higher-order composition
methods.2) For the full proof of the theorem explaining the fortunate cancelation we refer to [1, 13].
Details on stability properties and energy conservation can also be found in [1].

2.1 Local error properties

We review the local error properties of method (7). To this end we first replacef v(tn)+ f v(tn+1) by
a perturbed source contributioñf v(tn)+ f̃ v(tn+1) which will enable us to overcome the local order
reduction. The precise definition will be given shortly. Simultaneously we eliminate the intermediate
valueun+1/2 from the second stage by substituting half of its expressionobtained from the first and
third stage. This yields the equivalent formulation

un+1−un

τ
= − 1

2K (vn +vn+1)+
1
2

( f u(tn)+ f u(tn+1)) ,

vn+1−vn

τ
= 1

2KT (un+un+1)− 1
2D(vn +vn+1)+ 1

2

(

f̃ v(tn)+ f̃ v(tn+1)
)

− 1
4τKT [−Kvn+1+ f u(tn+1)]+

1
4τKT [−Kvn + f u(tn)] .

(9)

Substitution ofuh(tn) for un, etc., results in the defectsδ u
n andδ v

n defined by

uh(tn+1)−uh(tn
τ

= − 1
2K (vh(tn)+vh(tn+1))+ 1

2 ( f u(tn)+ f u(tn+1))+ δ u
n ,

vh(tn+1)−vh(tn)
τ

= 1
2KT (uh(tn)+uh(tn+1))− 1

2D(vh(tn)+vh(tn+1))

+ 1
2

(

f̃ v(tn)+ f̃ v(tn+1)
)

− 1
4τKT [−Kvh(tn+1)+ f u(tn+1)]

+ 1
4τKT [−Kvh(tn)+ f u(tn)]+ δ v

n .

(10)

Using (8) we get

δ u
n =

uh(tn+1)−uh(tn
τ

− 1
2

(

u′h(tn)+u′h(tn+1)
)

+sn
u ,

δ v
n =

vh(tn+1)−vh(tn)
τ

− 1
2

(

v′h(tn)+v′h(tn+1)
)

+
1
4

τKT [u′h(tn+1)−u′h(tn)
]

+sv
n

+ 1
2 ( f v(tn)+ f v(tn+1))− 1

2

(

f̃ v(tn)+ f̃ v(tn+1)
)

,

(11)

where
su
n = 1

2

(

σu
h (tn)+ σu

h(tn+1)
)

,

sv
n = 1

2

(

σv
h(tn)+ σv

h(tn+1)
)

− 1
4τKT

[

σu
h (tn+1)−σu

h(tn)
]

,
(12)

denote the local spatial error contributions.
Because our focus lies on temporal accuracy, we will now omitsu

n andsv
n, that is, we simply put

su
n andsv

n to zero. This is not essential. Carrying the spatial errors along in further derivations yields

2) The notationτ ∼ h, h → 0 is used throughout the paper and means that we consider a simultaneous space-time grid
refinement, where the ratio betweenτ andh is determined by the common demand of Lax-Richtmyer stability.
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no more insight in temporal accuracy. It would merely make our expressions more lengthy. We
stress, however, that temporal accuracy will remain to be considered with respect touh(t) andvh(t)
for τ ∼ h, h→ 0. Henceforthuh(t) andvh(t) are supposed to be continuously differentiable as many
times as the derivations require.

Let us first examineδ u
n (for zerosu

n) which is in fact the implicit trapezoidal rule defect. Expand-
ing at the center pointtn+1/2 for τ → 0 yields the familiar expansion

δ u
n = − 1

12
τ2u(3)

h − 1
480

τ4u(5)
h + · · · , (13)

where j = 2′ means even values forj only and the derivatives are evaluated att = tn+1/2. The ex-
pansion contains only constants and (odd) solution derivatives which when appropriately measured
(with the inner product norm) are bounded forh→ 0. So, ifuh is three times continuously differen-
tiable, from Taylor’s theorem with remainder we getδ u

n = O(τ2) with the order constant involved
independent ofτ andh.3)

Next we expandδ v
n (for sv

n = 0) at tn+1/2, first without a source function perturbation, that is,
with f̃ v(tn)+ f̃ v(tn+1) = f v(tn)+ f v(tn+1). We get

δ v
n = − 1

12
τ2v(3)

h − 1
480

τ4v(5)
h + · · · + τKT [

1
4

τu(2)
h +

1
96

τ3u(4)
h + · · · ] . (14)

Because of property (3) we haveτKT = O(1) for τ ∼ h,h→ 0. This means that in general the second
part of the expansion is onlyO(τ) and henceδ v

n = O(τ) instead ofO(τ2). Would

KTu(2)
h (t) = v(3)

h (t)+Dv(2)
h (t)− d2

dt2
f v(t)− d2

dt2
σ (v)

h (t) = O(1), h→ 0, (15)

thenδ v
n = O(τ2) for τ ∼ h,h→ 0. This holds if

d2

dt2
f v(t) = O(1), h→ 0, (16)

because the third derivative ofvh(t) and the second derivatives ofDvh(t) andσ (v)
h (t) are bounded.

Condition (16) is true for physical sourcesf v(t) but generally not iff v(t) contains Dirichlet bound-
ary data, since then part of its components behave asO(h−1),h → 0, cf. property (3), and this
generally also holds for the derivatives.

To overcome this possible cause of local order reduction4) we now define the perturbed source
function contribution

f̃ v(tn)+ f̃ v(tn+1) = f v(tn)+ f v(tn+1)+
1
2

τ
d
dt

( f v(tn)− f v(tn+1)) , (17)

where we emphasize that the perturbation is defined for the sum. With this definitionδ v
n becomes

δ v
n =

vh(tn+1)−vh(tn)
τ

− 1
2

(

v′h(tn)+v′h(tn+1)
)

+ 1
4τ
(

v′′h(tn+1−v′′h(tn)
)

+ 1
4τD(vh(tn+1−vh(tn)) .

(18)

3) Unless noted otherwise, the symbolO(·) will always be used with this meaning, that is, order constants exist which are
independent ofτ andh for τ ∼ h→ 0.

4)As proved in [1, 13], this local order reduction does not affect the 2nd-order convergence of method (7) forτ ∼ h, h→ 0.

5



Expanding in the same way as forδ u
n gives

δ v
n = τ2

[

1
6

v(3)
h +

1
4

Dv(1)
h

]

+ τ4
[

1
120

v(5)
h +

1
96

Dv(3)
h

]

+ · · · . (19)

Like for uh, if vh is three times continuously differentiable, from Taylor’stheorem with remainder
we getδ v

n = O(τ2) for τ ∼ h,h→ 0 with the order constant involved independent ofτ andh.

2.2 The global error recursion

Let εu
n = uh(tn)− un andεv

n = vh(tn)− vn denote the global errors. From (9) and the local error
discussion we deduce the following global error recursion:

(

I 1
2τK

− 1
2τKT I − 1

4τ2KTK + 1
2τD

)(

εu
n+1

εv
n+1

)

=

(

I − 1
2τK

1
2τKT I − 1

4τ2KTK− 1
2τD

)(

εu
n

εv
n

)

+ τ

(

δ n
u

δ n
v

)

,

(20)

and puttingεn = [(εu
n)T ,(εv

n)T ]T andδn = [(δ u
n )T ,(δ v

n)T ]T , we arrive at the compact notation

εn+1 = Rεn + τρn , R= R−1
L RR, ρn = R−1

L δn , (21)

with RL andRR the left and right block matrix, respectively. This recursion has the standard form
featuring in the convergence analysis of one-step integration methods, see e.g. [7]. Assuming Lax-
Richtmyer stability, whereby we includeRL inversely bounded forτ ∼ h, h → 0, it transfers local
errors to the global error by essentially adding all local errors. It reveals second-order convergence
for τ ∼ h,h→ 0, if bothδ u

n andδ v
n areO(τ2) for τ ∼ h,h→ 0.

2.3 Reversed u,v sequence

The sequenceu,v in (7) may be reversed. For this second-order method this is not relevant. However,
when used as a base method for higher-order composition, there may arise significant accuracy
differences. This fully depends on the source terms, i.e., whether they contain Dirichlet boundary
data or not. We will illustrate this in the numerical Section4. Taking into account the sequence and
the source function perturbation, this means that altogether four different second-order methods are
distinguished, namely (7), its version with the perturbation (17),

un+1/2−un

τ
= − 1

2Kvn + 1
2 f u(tn) ,

vn+1−vn

τ
= KTun+1/2− 1

2D(vn +vn+1)+ 1
2( f̃ v(tn)+ f̃ v(tn+1)) ,

un+1−un+1/2

τ
= − 1

2Kvn+1 + 1
2 f u(tn+1) ,

(22)
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its version with reversed sequence,

vn+1/2−vn

τ
= 1

2KTun− 1
2Dvn + 1

2 f v(tn) ,

un+1−un

τ
= −Kvn+1/2+ 1

2( f u(tn)+ f u(tn+1)) ,

vn+1−vn+1/2

τ
= 1

2KTun+1− 1
2Dvn+1+ 1

2 f v(tn +1) ,

(23)

and its version with reversed sequence and the perturbation(17) applied tof u,

vn+1/2−vn

τ
= 1

2KTun− 1
2Dvn + 1

2 f v(tn) ,

un+1−un

τ
= −Kvn+1/2+ 1

2( f̃ u(tn)+ f̃ u(tn+1)) ,

vn+1−vn+1/2

τ
= 1

2KTun+1− 1
2Dvn+1+ 1

2 f v(tn +1) .

(24)

For the analysis it is sufficient to only consider methods (7)and (22).

3 Symmetric composition methods

Our aimed methods are based on symmetric compositions

Ψ(4)
τ = Ψ(2)

γsτ ◦ · · · ◦ Ψ(2)
γ1τ (25)

of composition order four (γ1+ · · · + γs = 1 andγ3
1 + · · · + γ3

s = 0) whereΨ(2)
γkτ represents one of the

four methods from Section 2.3. Within this composition, thebase method steps fromtn+(γ1+ · · ·+
γk−1)τ to tn +(γ1 + · · ·+ γk)τ for k = 1, . . . ,s spanning the interval[tn,tn+1]. For composition order
four two compositions of interest haves= 3 ands= 5, respectively,

γ1 = γ3 =
1

2−21/3
, γ2 = − 21/3

2−21/3
, (26)

and

γ1 = γ2 = γ4 = γ5 =
1

4−41/3
, γ3 = − 41/3

4−41/3
. (27)

We have taken these parameters from [6], formulas (II.4.4) and (II.4.5), where fors= 3 a reference
is given to [2, 4, 10, 15] and fors= 5 to [10].

A convergence proof for method (25) is given in [6]. This proof, however, does not take into
account the Lipschitz constant of the ODE system which essentially means that for our case it is
restricted to a fixed ODE system, whereas we wish to investigate the order forτ ∼ h,h → 0. In
Section 3.2 we will present a proof for the following counterpart of Theorem 2.1:

Theorem 3.1 Let D be zero, fu(t), f v(t)∈Cp[0,T], and suppose a Lax-Richtmyer stable space-time
grid refinementτ ∼ h, h→ 0. On [0,T] the approximations un,vn of method (25) based on (22) and
parameters (26) or (27) then converge to uh(t),vh(t) with
(i) at least order p= 3,

(ii) order p = 4, if in addition KTu(3)
h (t), Kv(3)

h (t) = O(1) for h→ 0 .
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We have takenD = 0 as this simplifies the analysis. With respect to order reduction this is not
essential as order reduction is not related to conduction.

Theorem 3.1 states that on the whole problem class (4) withf u(t), f v(t) ∈ C3[0,T] order three
is guaranteed. If both source functions are inC4[0,T] and the additional condition on the third
derivatives is satisfied, the composition order four will hold. From

Kv(3)
h (t) = −u(4)

h (t)+
d3

dt3
f u(t)+

d3

dt3
σu

h (t) ,

KTu(3)
h (t) = v(4)

h (t)+Dv(3)
h (t)− d3

dt3
f v(t)− d3

dt3
σv

h(t) ,

(28)

follows that this is true if forh→ 0 the source functions satisfy

d3

dt3
f u(t) = O(1),

d3

dt3
f v(t) = O(1) , (29)

because the fourth derivatives ofuh(t),vh(t) and the third derivatives ofDvh(t),σu
h (t),σv

h(t) are
bounded forh→ 0.

This boundedness condition applies to physical sources, but is violated by sources containing
Dirichlet boundary data, since for these there will exist components which areO(h−1) for h → 0.
Hence with only physical sources we are guaranteed that there will be no order reduction. With
Dirichlet boundary data we are guaranteed that we have orderthree, and we expect that normally
order three will show up. However, for special solutions theorder may lie between three and four,
even if the (sufficient) condition of assertion (ii) will be violated.

We owe the good convergence results of Theorem 3.1 to the perturbed source function contri-
bution (17). Generally, by using (17) the reduction is diminished with one order. The following
theorem, where the composition is based on the original method (7), clarifies this:

Theorem 3.2 Let D be zero, fu(t), f v(t)∈Cp[0,T], and suppose a Lax-Richtmyer stable space-time
grid refinementτ ∼ h, h→ 0. On [0,T] the approximations un,vn of method (25) based on (7) and
parameters (26) or (27) then converge to uh(t),vh(t) with
(i) at least order p= 2,

(ii) at least order p= 3, if in addition KTu(2)
h (t) = O(1) for h→ 0 ,

(iii) order four p = 4, if in addition KTu(3)
h (t), Kv(3)

h (t), KKTu(2)
h (t) = O(1) for h→ 0 .

Similar as above, from (8) follows thatKTu(2)
h (t) = O(1) if

d2

dt2
f v(t) = O(1), h→ 0, (30)

while the additional conditions for order four are satisfiedif (29) holds and if

K
d2

dt2
f v(t) = O(1), h→ 0. (31)

In particular this latter condition is restrictive and implies that even with only physical sources order
four for τ ∼ h,h→ 0 will rarely occur. However, as observed above, for specialsolutions the order
reduction may be less, even if the (sufficient) conditions ofassertion (ii) and (iii) will be violated.

When comparing Theorems 3.1 and 3.2, it is obvious that the perturbed source function contri-
bution (17) should be used as a default option. In the numerical Section 4 we will illustrate this, both
for the base methods (7) and (22), assumed in these theorems,as well as for their reversed versions
(23) and (24). Finally, because the proof of Theorem 3.2 goessimilar as that of Theorem 3.1, we
refrain from presenting it here so as to avoid duplication.
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3.1 Step-by-step stability

Before proving the above convergence theorems we recall thestability analysis as this is based on
material also needed for the proofs. Consider the semi-discrete system (4). Assumeu∈ R

m,v∈ R
n

with n > m (the reversed case can be treated likewise) and thusK ∈ R
m×n and D ∈ R

n×n. Let
w∈ R

n+m denote the solution vector composed byu,v. A natural norm for establishing stability is
the inner-product norm‖w‖2 = 〈u,u〉+ 〈v,v〉. As D is symmetric positive semi-definite, and for zero
D the matrix of the system is skew-symmetric, for the homogeneous part of (4) follows

d
dt
‖w‖2 = −2〈Dv,v〉 6 0, (32)

showing stability in the inner product norm.
For numerical stability analysis we suppose that the conduction matrixD is constant diagonal,

D = αI say. This holds if in (1) the conductivity coefficientσ and the permittivity coefficientε are
constant scalars and allows the use of the singular value decompositionK =UΛVT whereU ∈R

m×m

andV ∈ R
n×n are orthogonal andΛ is a diagonalm×n matrix with nonnegative diagonal entriesλ1,

. . . , λm satisfying
λ1 > λ2 > · · · > λr > λr+1 = · · · = λm = 0. (33)

Herer 6 m is the (row) rank ofK and theλi are the singular values ofK (the square roots of the
eigenvalues ofKKT ). The transformed variables and source terms

ū(t) = UTu(t) , v̄(t) = VTv(t) , f̄ u(t) = UT f u(t) , f̄ v(t) = VT f v(t) , (34)

satisfy the ODE system
(

ū′

v̄′

)

=

(

0 −Λ
ΛT −αI

)(

ū
v̄

)

+

(

f̄ u(t)
f̄ v(t)

)

. (35)

Because the matrix transformation induced by (34) is a similarity transformation, the matrices of
systems (4) and (35) have the same eigenvalues. Further,‖u‖2

2 + ‖v‖2
2 = ‖ū‖2

2 + ‖v̄‖2
2 due to the

orthogonality ofU andV. Thus, if D = αI applies, the stability of any time integration method
may be studied for the homogeneous part of (35), provided also the method is invariant under the
transformations leading to (35). This holds for the methodsconsidered in this paper.

Since the matrixΛ is diagonal, system (35) decouples intor two-by-two systems

(

û′

v̂′

)

=

(

0 −λ
λ −α

)(

û
v̂

)

+

(

f̂ u(t)
f̂ v(t)

)

, λ = λk > 0, k = 1, . . . , r , (36)

m− r scalar equations ˆu′ = f̂ u(t), andn− r scalar equations ˆv′ = −α v̂+ f̂ v(t).5) This the canon-
ical form for semi-discrete Maxwell equation systems withD = αI . Both with regard to stability,
consistency and convergence analysis, numerical methods which are invariant under the used trans-
formation can be examined for this canonical form. Herewiththem− r scalar equations ˆu′ = f̂ u(t),
andn− r scalar equations ˆv′ = −α v̂+ f̂ v(t) are trivial. What matters are ther two-by-two systems
(36) of which the homogeneous form provides a useful test model for stability.

5) We have used the singular value decomposition also in [1, 12]and note that the description of the decoupling given
in [1] contains an error.
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When applied to the homogeneous form of (36), the composition method based on (7) or (22)
yields

(

ûn+1

v̂n+1

)

=
1

∏
k=s

1

1+ 1
2γkzα

(

1+ 1
2γkzα − 1

2γ2
k z2

λ −γkzλ + 1
4γ3

k z3
λ

γkzλ 1− 1
2γkzα − 1

2γ2
k z2

λ

)

(

ûn

v̂n

)

, (37)

wherezα = τα,zλ = τλ . We define stability through the common root condition: at(zα ,zλ ) the two
roots of the characteristic equation of the amplification matrix lie on the unit disc and are different
when both lie on the unit circle. We recall that for method (7)and its three counterparts from
Section 2.3 holds that forα = 0 the root condition is satisfied if and only ifzλ < 2, while forα > 0
the root condition is satisfied if and only ifzλ ≤ 2 [1]. Hence there is no step size restriction on the
conduction coefficientα.

For the composition methods defined by the parameter sets (26) and (27) we also distinguish
betweenα = 0 andα > 0. Forα = 0 the stability interval is the largest interval(0,zλ ) along which
the root condition holds. Along this interval both roots lieon the unit circle. A numerical search
has resulted in(0, 1

2π ] for s= 3 and(0,e] for s= 5, where1
2π ande are accurate lower bounds. For

α > 0 we have computed, with a numerical search, the stability regions

S = {(zα ,zλ ) : zα ,zλ ≥ 0 and both roots have modulus< 1} , (38)

where we impose the slightly stricter condition< 1, see Figure 1. Both regions contain a hole along
the zα -axis due to the negative time step (see (26) and (27)) which imposes a step size restriction
determined by the conduction coefficientα. Further, fors= 5 the region is larger due to smaller
coefficientsγk. Taking into account the workload (five sub steps or stages compared to three), the
advantage of a largerS still exists. This advantage is negligible forα = 0 (compare the scaled
lengthse/5≈ 0.54 and1

2π/3≈ 0.52). Finally, when stability is more important than accuracy and
the workload is taken into account, it is clear that the methods fors= 3 ands= 5 cannot compete
with the second-order methods. This holds in particular if conduction terms limit the step size.

z
α
 = τ α

z λ =
 τ

 λ

0 1 2 3 4
0

1

2

3

4

z
α
 = τ α

z λ =
 τ

 λ

0 1 2 3 4
0

1

2

3

4

Figure 1:The stability regions S of the two composition methods. At the left for s= 3, at the right

for s= 5.
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3.2 Proof of Theorem 3.1

We will give the proof fors= 3. From the derivations and results gathered fors= 3 one can readily
see that the cases= 5 goes in precisely the same way.

3.2.1 Preliminaries

Consider the global error recursion (20). LetRk denote the amplification operatorR introduced in
(21) with τ replaced byγkτ and defineRk,L as the counterpart ofRL. With the material of Sec-
tions 2.1 and 2.2 one then readily derives for the composition method (25) based on (22) the global
error recursion

εn+1 = R3R2R1εn +R3R2R−1
1,Lδ (1)

n +R3R
−1
2,Lδ (2)

n +R−1
3,Lδ (3)

n , (39)

where

δ (k)
n =





− 1
12γ3

k τ3u(3)
h (sk)− 1

480γ5
k τ5u(5)

h (sk)+ · · ·

1
6γ3

k τ3v(3)
h (sk)+ 1

120γ5
k τ5v(5)

h (sk)+ · · ·



 , (40)

andsk = tn + (γ1 + · · ·+ γk−1 + 1
2γk)τ denotes the center point for thek-th sub step. Note that we

here have included the step size factorγkτ into the defect expressions. For zeroD we can express
R−1

k,L andRk as

R−1
k,L =





I − 1
4γ2

k τ2KKT − 1
2γkτK

1
2γkτKT I



 ,

Rk =





I − 1
2γ2

k τ2KKT −γkτK + 1
4γ3

k τ3KKTK

γkτKT I − 1
2γ2

k τ2KTK



 ,

(41)

and sinceτK = O(1) for τ ∼ h,h → 0 due to (3), this also holds for these two matrices and any
combination thereof.

We write (39) as

εn+1 = Rεn + ρn , R = R3R2R1, ρn = R3R2R−1
1,Lδ (1)

n +R3R
−1
2,Lδ (2)

n +R−1
3,Lδ (3)

n , (42)

and introduce the following Ansatz ([7], Lemma II.2.3):ρn can be written as

ρn = (I −R)ξn+ ηn , (43)

with ξn andηn local error quantities satisfying

ξn = O(τ p), ξn+1− ξn = O(τ p+1) and ηn = O(τ p+1) . (44)

If this holds, theñεn = εn− ξn satisfies the recurrence

ε̃n+1 = Rε̃n− (ξn+1− ξn)+ ηn , (45)

with an O(τ p+1) local error. Assuming Lax-Richtmeyer stability then givesin the standard way
O(τ p) for ε̃n and hence forεn. The importance of the Ansatz is thus that the global order can
be proven to be equal to the order ofξn, which is a local quantity. Consequently, the proof of
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Theorem 3.1 is complete if forτ ∼ h,h→ 0 the Ansatz applies withp = 3 for assertion (i) and with
p = 4 for assertion (ii).

For examining (43) we use the singular value decomposition of Section 3.1. This means that
within the expressions (41) one may readΛ for K andΛT for KT and then, following the decoupling
into ther two-by-two systems (36), decouple alsoR−1

k,L andRk in r two-by-two matrices6)

R̂−1
k,L =





1− 1
4γ2

k z2 − 1
2γkz

1
2γkz 1



 , R̂k =





1− 1
2γ2

k z2 −γkz+ 1
4γ3

k z3

γkz 1− 1
2γ2

k z2



 , z= τλ . (46)

Hence (43) is replaced byr two-by-two systems

ρ̂n = (I − R̂)ξ̂n + η̂n , (47)

whereρ̂n is the transformed counterpart ofρn, etc. In accordance with the limit transitionτ ∼ h,h→
0 andτK = O(1) we will considerz uniformly in an interval[0,zmax] with (0,zmax] ⊂ the stability
interval of the numerical method as defined in Section 3.1. Note that this implies Lax-Richtmyer
stability. The end pointzmax will be defined below.

3.2.2 Assertion (i)

If f u, f v ∈C3[0,T], thenuh,vh ∈C4[0,T]. Forτ ∼ h,h→ 0, Taylor’s theorem with remainder then
allows us to replace (40) by

δ (k)
n = γ3

k





− 1
12τ3u(3)

h +O(τ4)

1
6τ3v(3)

h +O(τ4)



 , (48)

where the third derivatives may be taken at anyt ∈ [tn,tn+1] independent ofk. Hence we can express
the local errorρn as

ρn = L wn +O(τ4), wn =





− 1
12τ3u(3)

h

1
6τ3v(3)

h



 , L = γ3
1 R3R2R−1

1,L + γ3
2 R3R−1

2,L + γ3
3 R−1

3,L , (49)

The local error is of order three. For proving convergence order three in the standard way we need
a local error of order four. To circumvent this we now employ the Ansatz withp= 3. Trivially, for ηn

we may choose theO(τ4) term in (49) and there remains to deal with the relationL wn = (I −R)ξn.
For this purpose we proceed with the transformed counterpart

L̂ ŵn = (I − R̂)ξ̂n . (50)

Let us write

R̂−1
k,L = I +zÂk, Âk =





− 1
4γ2

k z − 1
2γk

1
2γk 0



 ,

R̂k = I +zB̂k, B̂k =





− 1
2γ2

k z −γk + 1
4γ3

k z2

γk − 1
2γ2

k z



 ,

(51)

6) The scalar equations associated with zero singular values play a trivial role. Note that instead ofzλ we here writez.
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and substitute intoR̂ andL̂ . Using the third-order conditionγ3
1 + γ3

2 + γ3
3 = 0 we then can extract

one factorz from (50), that is, we can write

L̂ = zĈ , I − R̂ = zD̂ , (52)

where the two-by-two matrixĈ collects remainingO(1) terms. IfD̂−1 exists and is bounded uni-
formly in [0,zmax], then

ξ̂n = D̂
−1

Ĉ ŵn = O(τ3), ξ̂n+1− ξ̂n = O(τ4) , (53)

andξ̂n satisfies (50).
Consequently, we are done if̂D−1 exists and is bounded uniformly in[0,zmax]. There holds

D̂ = −D̂0−z
(

B̂3B̂2 + B̂3B̂1 + B̂2B̂1
)

−z2B̂3B̂2B̂1 , (54)

where, usingγ1 + γ2+ γ3 = 1 andγ3
1 + γ3

2 + γ3
3 = 0,

D̂0 =
3

∑
k=1

B̂k =





− 1
2z∑3

k=1 γ2
k −1

1 − 1
2z∑3

k=1 γ2
k



 . (55)

HenceD̂−1 exists in a neighborhood ofz= 0 which proves the existence of azmax > 0. Obviously,
we wish to maximizezmax. For z> 0 follows thatD̂−1 = z(I − R̂)−1 exists if both eigenvalues of
R̂ are unequal one. This is true inside the whole stability interval, where the eigenvalues lie on the
unit circle, but forz→ the right end point of the stability interval the eigenvalues coincide in one.
Necessarily we thus havezmax < than the right endpoint. Withzmax = π/2 we can conclude that
D̂−1 exists and is bounded uniformly in[0,zmax], becauseπ/2 is smaller than the true end point.7)

This completes our proof of assertion (i).

3.2.3 Assertion (ii)

If f u, f v ∈C4[0,T], thenuh,vh ∈C5[0,T]. Forτ ∼ h,h→ 0, Taylor’s theorem with remainder then
allows us to replace (40) by

δ (k)
n = γ3

k





− 1
12τ3u(3)

h − 1
12 (sk− tn+1/2)τ4u4)

h +(O(τ5)

1
6τ3v(3)

h + 1
6 (sk− tn+1/2)τ4v(4)

h +O(τ5)



 , (56)

where the derivatives are taken attn+1/2 = sk − (γ1 + · · · + γk−1 + 1
2γk − 1

2)τ. Note that due to
symmetrys2 = tn+1/2 ands3−s2 = s2−s1. As a consequence

δ (1)
n + δ (2)

n + δ (3)
n = O(τ5) . (57)

Alternatively, theO(τ5) result can also be concluded from the quadrature order four,since (57) is
the local error for zeroK for which the composition method reduces to a 4th-order quadrature rule.

7) For z→ zmax, ‖D̂−1‖2 monotonically increases but remains close to one (the valueat z= 0) on the greatest part of the
interval. For example, at the values(0.50,0.75,0.90,1.00) ·π/2 the norm equals, approximately, 1.08,1.48,3.09,189.9.
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Proceeding with transformed variables we thus can express the local error aŝρn = zβ̂n +O(τ5),

β̂n = [B̂3 + B̂2+ Â1+z
(

B̂3B̂2 + B̂3Â1 + B̂2Â1
)

+z2B̂3B̂2Â1] δ̂
(1)
n +

[B̂3 + Â2 +zB̂3Â2] δ̂
(2)
n + Â3 δ̂ (3)

n ,

(58)

and our task is now to check the Ansatz rule (47) forp = 4. Obviously we assign̂ηn to theO(τ5)

term and we are done if in the interval[0,zmax] we can solvêξn with orderp = 4 from

(I − R̂)ξ̂n = zβ̂n , (59)

or, equivalently, fromD̂ ξ̂n = β̂n, see (53) and the discussion thereafter on the existence anduniform
boundedness of̂D−1. Hence what remains to show is thatβ̂n = O(τ4).

From (56) follows

β̂n = γ3
1 [B̂3 + B̂2 + Â1+z

(

B̂3B̂2 + B̂3Â1 + B̂2Â1
)

+z2B̂3B̂2Â1]ŵn+

γ3
2 [B̂3 + Â2+zB̂3Â2]ŵn + γ3

3Â3ŵn +O(τ4)

=
(

γ3
1 [B̂3 + B̂2+ Â1]+ γ3

2 [B̂3 + Â2]+ γ3
3Â3
)

ŵn + T̂ · zŵn +O(τ4) ,

(60)

whereT̂ collects remainingO(1) terms and

ŵn =





− 1
12τ3 û(3)

h (tn+1/2)

1
6τ3 v̂(3)

h (tn+1/2)



 . (61)

Recall that thêAk, B̂k and their combinations areO(1) sincez∈ [0,zmax] with zmax finite.

At this stage we invoke the additional conditionKTu(3)
h (t),Kv(3)

h (t) = O(1),h → 0 made for
assertion (ii). For the transformed variables this implies, for h→ 0,

λ û(3)
h (t), λ v̂(3)

h (t) = O(1) , (62)

for any component pair ˆuh, v̂h and occurring singular valueλ of K. This provides us with an addi-
tional factorτ such thatT̂ · zŵn = O(τ4) and likewise we can simplify expression (60) to

β̂n =
(

γ3
1 [B̂3 + B̂2+ Â1]+ γ3

2 [B̂3 + Â2]+ γ3
3Â3
)

ŵn +O(τ4) . (63)

Continuing this we find

β̂n =

(

0 −γ

γ 0

)

ŵn +O(τ4) , γ = γ3
1(γ3 + γ2+

1
2

γ1)+ γ3
2(γ3 +

1
2

γ2)+ γ3
3 ·

1
2

γ3 , (64)

and sinceγ = 0 we have proved that̂βn = O(τ4) which completes the proof of assertion (ii).

4 Numerical illustration

In this section we illustrate the results of Theorems 3.1, 3.2 for the parameter sets (26), (27).
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4.1 The test model class

Let µ ,ε,σ in (1) be scalar. WritingE = (Ex,Ey,Ez), etc., in three dimensions we then have

µ
∂Hx

∂ t
=

∂Ey

∂z
− ∂Ez

∂y
, ε

∂Ex

∂ t
=

∂Hz

∂y
− ∂Hy

∂z
−σEx−Jx

E ,

µ
∂Hy

∂ t
=

∂Ez

∂x
− ∂Ex

∂z
, ε

∂Ey

∂ t
=

∂Hx

∂z
− ∂Hz

∂x
−σEy−Jy

E ,

µ
∂Hz

∂ t
=

∂Ex

∂y
− ∂Ey

∂x
, ε

∂Ez

∂ t
=

∂Hy

∂x
− ∂Hx

∂y
−σEz−Jz

E .

(65)

From this 3D model we derive the 2D (transversal magnetic) model with componentsHx, Hz,Ey:

∂Hx

∂ t
=

∂Ey

∂z
,

∂Hz

∂ t
= −∂Ey

∂x
,

∂Ey

∂ t
=

∂Hx

∂z
− ∂Hz

∂x
−Jy

E ,

(66)

where we have putµ = ε = 1 andσ = 0. As space domain we take the unit square 0< x,z < 1.
We suppose initial conditions forEy,Hx,Hz and Dirichlet boundary conditions forEy only, which is
natural sinceEy satisfies the second-order wave equation

∂ 2Ey

∂ t2 =
∂ 2Ey

∂ 2x
+

∂ 2Ey

∂ 2z
− ∂Jy

E

∂ t
, (67)

and uniquely determinesHx,Hz.

4.2 Spatial discretization

For spatial discretization we use a uniform grid with grid sizeh = 1/m, staggering, and 2nd-order
central-difference discretization. Letxi = ih,xi+1/2 = (i + 1/2)h, etc. Then,Ey is approximated
at (xi ,zj) for i, j = 1(1)m−1, Hx at (xi ,zj+1/2) for i = 1(1)m−1 and j = 0(1)m−1, andHz at
(xi+1/2,zj ) for i = 0(1)m−1 and j = 1(1)m−1. This spatial discretization yields a semi-discrete
system that fits in format (4) withu of length 2m(m−1) andv of length(m−1)(m−1), see [13]
for details. Note that the staggering accommodates our boundary condition, because due to the
staggeringHx andHz are not required at the domain boundary, with the benefit thatalways f v(t) =
O(1), whereas eitherf u(t)= O(h−1) or f u(t)= 0, depending on whether a time-dependent Dirichlet
condition is chosen for componentEy or not. Hence, with our staggering, starting with component
u is profitable because then alwaysf v(t) = O(1). For illustration purposes, however, we will use all
four base methods mentioned in Section 2.3, including the reversed sequence methods.

For this spatial discretization, the maximum singular value λ1 from (33) equals 2
√

2/h. This
leads for method (25) to the step size restrictions

τ ≤ τc =











π
4
√

2
h ≈ 0.555·h, s= 3,

e

2
√

2
h ≈ 0.961·h, s= 5.

(68)

In the tests we will use the critical step size valuesτc. However, to account for the different numbers
of stages in the convergence plots, accuracy will be plottedagainst the total numbers of stages.
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4.3 Two test solutions

4.3.1 Test solution one

As a first test solution we impose the artificial functions

Ey = et(x−a)(x−b)z(1−z) ,

Hx = et(x−a)(x−b)(1−2z) ,

Hz = −et(2x−a−b)z(1−z) ,

(69)

with (a,b) = (0,1) or (a,b) = (0.5,0.5). With (a,b) = (0,1) we haveEy zero at the boundary,
and thusf u(t) = 0. For (a,b) = (0.5,0.5) we haveEy nonzero at thex = 0,1 boundary and thus
f u(t) = O(h−1). For both choices the source functionf v(t) = O(1) and nonzero as determined by
Jy

E. In space the solution is quadratic and hence we have a zero spatial error. As integration interval
we have used[0,1]. Convergence plots are given in Figure 2, where, for a sequence of decreasing
values ofh, the maximum norm global error ofuN,vN for Nτ = 1 is plotted against the total number
of stagesNs. As step size the critical valueτ = τc given in (68) is used.

In the left plot (the zero boundary case) the o-and∗-marker refer tos= 3 ands= 5, respectively.
The solid lines refer to the base scheme (22) using the perturbation for the source functionf v(t).
These solid lines confirm assertion (ii) of Theorem 3.1 on order four (the parallel lower dashed line
has slope four). The dash-dotted lines refer to the base scheme (7) not using the perturbation. These
dash-dotted lines confirm assertion (ii) of Theorem 3.2 on order three (the parallel upper dashed line
has slope three). Note that the composition scheme yields smaller errors fors= 5 than fors= 3.
This was expected due to the smallerγk-parameters and the nearly equal scaled critical step sizes
τc/s.

In the right plot (the nonzero boundary case) we give resultsfor s= 5 only. Because we have a
nonzero Dirichlet boundary condition, we expect to obtain maximal convergence order three. The
results confirm this. The three solid lines with the∗,2,3-markers all three represent a third-order
convergence result (the parallel lower dashed line has slope three). The∗-marker corresponds with
the base method (22) using the perturbation, and the2-marker with the base method (7) without
the perturbation. The fact that both methods lead to order three is in line with assertion (i) from
Theorem 3.1 and assertion (ii) from Theorem 3.2. In other words, with nonzero Dirichlet boundary
values contained inf u(t) the perturbation has no effect on the convergence order. However, this
changes if the sequence in treatingu,v is reversed. The3-marker corresponds with method (24)
where the reversed sequencev,u is used, with in addition the perturbation applied tof u(t). This
order-three result is in line with assertion (i) of Theorem 3.1 and is clearly the most accurate one.
The+-marker along the dash-dotted line corresponds with method(23), that is also with reversed
sequence but without the perturbation. In line with assertion (i) of Theorem 3.2 this case reveals
only order two (the dashed upper line has slope two). So this case illustrates that we can loose two
orders if we consider convergence in the PDE sense compared to the order in the ODE sense.

To sum up, albeit contrived, the current test solution confirms the order reduction predicted by
Theorem 3.1 and 3.2. On the other hand, when using the source term perturbation as in methods
(22) and (24), the obtained accuracies are high. In this regard we expect that in general the smaller
s= 5-parameters will be competitive with thes= 3-parameters.
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Figure 2:Convergence plots for test solution one. See Section 4.3.1 for explanations.

4.3.2 Test solution two

The second test solution is the eigenmode

Hx =
kz

√

k2
x +k2

z

sin(kxπx+sxπ/2)cos(kzπz)sin

(

√

k2
x +k2

z πt

)

,

Hz =
−kx

√

k2
x +k2

z

cos(kxπx+sxπ/2)sin(kzπz)sin

(

√

k2
x +k2

z πt

)

,

Ey = sin(kxπx+sxπ/2)sin(kzπz)cos

(

√

k2
x +k2

z πt

)

,

(70)

where we fixkx = kz = 2 and take as an optionsx = 0 or sx = 1 in order to impose, respectively, a
zero and nonzero Dirichlet boundary condition for component Ey. So forsx = 0 we havef u(t) = 0,
whereas forsx = 1 the source functionf u(t) = O(h−1). Further, both options result inf v(t) = 0 as
Jy

E = 0.
While we discuss temporal orderp up to four, the chosen spatial discretization yields only 2nd-

order convergence for the spatial error, see e.g. [8]. In thetests we have therefore applied standard
Richardson extrapolation in space to theEy-approximations to lift the spatial order to four for error
measuring at the output time. LetvN;2h denote thevn obtained at the output timeT = Nτ = 1 with
grid size 2h. Similarly, let vN;h→2h denote thevn obtained with grid sizeh and restricted to the
2h-grid. Then, at the output time we measure the PDE error forEy at the 2h-grid by 8)

v2h(T)−
(

4
3

vN;h→2h−
1
3

vN;2h

)

= O(τ p)+O(h4) . (71)

Convergence plots are given in Figure 3, where, for a sequence of decreasing values ofh, the max-
imum norm of this PDE error forNτ = 1 is plotted against the total number of stagesNs. As step
size again the critical valueτ = τc given in (68) is used.

In the left plot the o-and∗-marker refer tos= 3 ands= 5, respectively. The solid and dash-
dotted lines refer, respectively, to the zero- and nonzero boundary case. For the zero case, where we

8) Because we extrapolate only at the output time, the integration methods are not changed. This would be the case with
extrapolation after every step. Extrapolation at the output time only serves our purpose of testing here. We do not advocate
it over long time intervals for wave equations without damping. See also [1] and [5] for comments on this issue regarding
extrapolation in time. Higher spatial orders are better achieved with spatial discretization techniques such as basedon the
discontinuous Galerkin method, see e.g. [3] and referencestherein.
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have no source terms, we see a straight order four (the parallel dashed line has slope four) with again
more accurate results fors= 5. According to Theorem 3.1, we expected to see order three for the
nonzero case because thenf u(t) = O(h−1). However, while the errors zigzag slightly as shown by
the two dash-dotted lines lying between the two solid ones, overall we see order four. We probably
owe this to fortunate error cancelation emanating from the oscillatory nature of the solution.

In the right plot the o-and∗-marker again refer tos= 3 ands= 5, respectively. Here we treat
only the nonzero boundary case and reverse theu,v sequence. The solid lines refer to (24) with the
source term perturbation (17) now applied tof u(t). The dash-dotted lines refer to (23) which does
not employ this perturbation. Without the perturbation we find order two (the upper dashed line has
slope two) in accordance with assertion (i) of Theorem 3.2, while again thes= 5 method is notably
more accurate. With the perturbation we expected to see order three in accordance with assertion (i)
of Theorem 3.1. The order turns out to lie between three and four (the lower dashed line has slope
three). Like in the left plot, we probably owe this to fortunate error cancelation emanating from the
oscillatory nature of the solution. Note that with the perturbation,s = 3 ands = 5 now yield the
same accuracy (the two solid lines nearly coincide).

On the other hand, similar as for test solution one, we can conclude that the idea of perturbing
the source function works out very well. We therefore anticipate that for many Maxwell applications
the composition method (25) based on method (22) or method (24) provides an efficient integration
method when high accuracy is in demand. In particular the parameter set (27) fors= 5 due to [10]
is then most attractive.
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Figure 3:Convergence plots for test solution two. See Section 4.3.2 for explanations.
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